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Abstract

A key challenge in contrastive learning is to gen-
erate negative samples from a large sample set
to contrast with positive samples, for learning
better encoding of the data. These negative sam-
ples often follow a softmax distribution which
are dynamically updated during the training pro-
cess. However, sampling from this distribution
is non-trivial due to the high computational costs
in computing the partition function. In this paper,
we propose an Efficient Markov Chain Monte
Carlo negative sampling method for Contrastive
learning (EMC2). We follow the global con-
trastive learning loss as introduced in (Yuan et al.,
2022), and propose EMC2 which utilizes an adap-
tive Metropolis-Hastings subroutine to generate
hardness-aware negative samples in an online
fashion during the optimization. We prove that
EMC2 finds an O(1/

√
T )-stationary point of the

global contrastive loss in T iterations. Compared
to prior works, EMC2 is the first algorithm that ex-
hibits global convergence (to stationarity) regard-
less of the choice of batch size while exhibiting
low computation and memory cost. Numerical
experiments validate that EMC2 is effective with
small batch training and achieves comparable or
better performance than baseline algorithms. We
report the results for pre-training image encoders
on STL-10 and Imagenet-100.
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1. Introduction
Contrastive representation learning has been instrumental
in self-supervised learning for large-scale pre-training of
foundation models (Radford et al., 2021; Cherti et al., 2023)
as well as in the fine-tuning stage on downstream tasks
(Xiong et al., 2020; Lindgren et al., 2021). It helps encode
real-world data into low-dimensional feature vectors that
abstract the important attributes about the data, and general-
ize well outside of the training distribution. More recently,
contrastive learning with multi-modal data has helped em-
bed different data modalities into the same feature space
(Li et al., 2023), such as the studies with visual-language
models (Radford et al., 2021; Alayrac et al., 2022; Cherti
et al., 2023) and document understanding (Xu et al., 2020;
Lee et al., 2023).

Contrastive learning uses pairwise comparison of represen-
tations in the training objective, with the goal of learning
representations of data where positive pairs are drawn closer
while negative pairs move apart in the representation space.
It is well known that generating a large dataset of pairwise
samples such as image-text pairs of the same semantics costs
much lower than manual labeling, e.g., the WebImageText
dataset used for training CLIP originates from Wikipedia
articles (Radford et al., 2021). While there have been many
studies about training objectives for contrastive learning,
optimizing the contrastive loss efficiently remains an open-
problem as current optimization methods critically rely on
a large batch size to maintain the quality of the negative
sample distribution.

Formally, we aim to train models ϕ : X → Rd and ψ : Y →
Rd that are parameterized by θ ∈ Rp. These models encode
data from the input space X ,Y of potentially two modalities
into a vector space. Given DX ⊆ X , DY ⊆ Y , we define a
distribution of positive pairs Dpos such that supp(Dpos) ⊆
DX×DY and a negative set Dneg(x) ⊆ DY for every data
point x ∈ DX . We denote the dataset constructed in this
manner by the tuple (Dpos,Dneg(·)).

With the dataset (Dpos,Dneg(·)), let β > 0 be the inverse
temperature, this paper aims to minimize the following
global contrastive loss proposed in (Lindgren et al., 2021;
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Yuan et al., 2022):

min
θ∈Rp

L(θ) (1)

:= E
(x,y)∼Dpos

− log
exp(βϕ(x; θ)⊤ψ(y; θ))∑

z∈Dneg(x)

exp(βϕ(x; θ)⊤ψ(z; θ))


also see (Mikolov et al., 2013) that proposed a similar loss
to (1). Assume m := |supp(DX)| < ∞ where DX is
the marginal distribution of x on Dpos. Moreover, we let
mneg := |Dneg(x)| <∞ for all x ∈ DX

1.

The global contrastive loss (1) finds the feature encoders
ϕ⋆, ψ⋆ that map data into Rd with maximized similarity
ϕ⋆(x)⊤ψ⋆(y) between positive data pair (x, y) ∼ Dpos

and minimized similarity ϕ⋆(x)⊤ψ⋆(z) between negative
data pair (x, z), z ∈ Dneg(x). In other words, the loss
maximizes the probability of observing a positive sample y
under the context x among the other negative samples.

We notice that a highly related loss function design to (1)
is the InfoNCE loss (Logeswaran & Lee, 2018; Oord et al.,
2018; Chen et al., 2020), which is defined by:

LNCE(θ;B) (2)

= E
(x,y)∼Dpos

E
Z∼Dneg(x;B)

− log
exp(βϕ(x; θ)⊤ψ(y; θ))∑

z∈Z

exp(βϕ(x; θ)⊤ψ(z; θ))


such that Dneg(x;B) is a distribution of all subsets Z ⊆
Dneg(x) with |Z| = B. In fact, the global contrastive loss
(1) is an upper bound of the InfoNCE loss (2) since

E
Z∼Dneg(x;B)

[
log
∑
z∈Z

exp(β ϕ(x; θ)⊤ψ(z; θ))

]
(3)

≤ log
∑

z∈Dneg(x)

exp(β ϕ(x; θ)⊤ψ(z; θ)),

for any x ∈ supp(Dpos), θ ∈ Rp. As the equality holds
when B = mneg, we have LNCE(θ;mneg) = L(θ).

It was demonstrated that minimizing (2) with B ≫ 1 pro-
duces encodings with interpretable geometric and semantic
properties (Wang & Isola, 2020; Robinson et al., 2020; Zim-
mermann et al., 2021). At the same time, the convergence
of pre-training foundation models on large scale dataset hap-
pens only when using a large enough batch size B (Radford
et al., 2021). Such evidence points towards the success of
models that are trained to minimize LNCE(θ;B) of large
negative batch size B. We believe that minimizing L(θ),
which yields the limiting upper bound to (2), can lead to a
better performance for contrastive learning.

1The results of this paper can be extended to the case where
the negative sample size |Dneg(x)| is uneven.

1.1. Challenges in Optimizing (1)

We notice that the contrastive loss gradient is given by:

∇L(θ) = E
(x,y)∼Dpos

[
− β ∇θ(ϕ(x; θ)

⊤ψ(y; θ))
]

(4)

+ E
(x,y)∼Dpos

[
β

∑
z∈Dneg(x)

px,θ(z)∇θ(ϕ(x; θ)
⊤ψ(z; θ))

]
≡ ∇Lpos(θ) +∇Lneg(θ),

with the softmax distribution:

px,θ(z) =
exp(β ϕ(x; θ)⊤ψ(z; θ))∑

z′∈Dneg(x)
exp(β ϕ(x; θ)⊤ψ(z′; θ))

. (5)

The challenge of optimizing L(θ) lies in the overwhelm-
ing complexity to compute or approximate ∇Lneg(θ) since
Dneg(x) often spans a large dataset, e.g., mneg = 8.8×106

for the MS MARCO dataset (Bajaj et al., 2016).

To this end, SimCLR (Chen et al., 2020) proposed to replace
Dneg(x) in (4) by a randomly selected negative batch Z of
B randomly augmented images, i.e., using the gradient of
InfoNCE loss (2). While achieving reasonable performance
in certain scenarios, SimCLR requires a large batch size
B on large-scale dataset training. For example, it requires
up to B = 32768 negative samples per iteration in train-
ing CLIP (Radford et al., 2021), making it impossible to
train such models in non-commercial data center (Cherti
et al., 2023). We note that there exists a number of con-
trastive learning tricks to avoid the problem of estimating
∇Lneg(θ). For example, (Robinson et al., 2020) imposes a
hardness-aware distribution on Dneg(x;B) of the InfoNCE
loss. (He et al., 2020) utilizes a momentum mechanism to
prevent feature collapse. (Grill et al., 2020; Zbontar et al.,
2021; Bardes et al., 2021) use alternative loss functions for
contrastive learning, such as redundancy reduction loss and
covariance regularization. See (Balestriero et al., 2023) for
a comprehensive overview on different contrastive learning
methods.

An alternative approach is to consider the estimation of
∇Lneg(θ) through negative sampling. This approach is
motivated from the observation that (5) is a probability
mass function of a softmax distribution and thus the summa-
tion

∑
z∈Dneg(x)

px,θ(z)∇θ(ϕ(x; θ)
⊤ψ(z; θ)) in∇Lneg(θ)

is equivalent to an expectation taken w.r.t. the softmax distri-
bution. Subsequently, it can be approximated through sam-
pling. In particular, if one draws (x, y) ∼ Dpos, z ∼ Px,θ

where
Px,θ ≡ (px,θ(z))z∈Dneg(x), (6)

then β∇θ(ϕ(x; θ)
⊤ψ(z; θ)) is an unbiased estimate of

∇Lneg(θ).

However, sampling from Px,θ remains a highly non-trivial
task due to the complexity in computing the partition func-
tion (i.e., denominator) in the softmax distribution (5). Prior
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Algorithms Convergence Error Memory Computation

SimCLR
(Chen et al., 2020) O

(
β2

√
T
+

m2
neg exp(4β)σ2

B

)
⋆ O(BMϕ +Bd) O(BCϕ +B2d)

Negative Cache
(Lindgren et al., 2021) O

(
β√
T
+ β6

ρ2T

)
§ O(Mϕ +mnegd+ d) O(Cϕ +mnegd+ ρmCϕ)

SogCLR
(Yuan et al., 2022) O

(
exp(6β)√

BT
+

m2
neg exp(4β)

√
mσ2

B
√
T

+m2
neg exp(4β)υ

2
)
† O(BMϕ +m+Bd) O(BCϕ +B2d)

EMC2 (Ours, R = 2) O
(

β√
T
+

m2m2
neg exp(6c2β)β3σ2

B
√
T

)
O(BMϕ +m+Bd) O(BCϕ +B2d)

EMC2 (Ours) O
(

β√
T
+

2Rm2m2
neg exp(6c2β)β3σ2

BR2
√
T

)
O(BMϕ +m+Bd) O(BCϕ +B2d+BR)

Table 1. The second column shows the upper bound on convergence error T−1 ∑T−1
t=0 E

[
∥∇θL(θt)∥22

]
. The last two columns show

the memory/computation requirement per iteration of the algorithms. Cϕ (resp. Mϕ) denotes the computational (resp. memory) cost to
compute the feature vector ϕ(x; θ) or ψ(x; θ). ⋆From (Theorem 1, Yuan et al. 2022). §The analysis shown in (Lindgren et al., 2021) only
consider the case when batch size B = 1. †SogCLR only converge to an O(υ2)-stationary solution, where υ is the worst-case feature
heterogeneity error satisfying supθ∈Rp E(x,y)∼Dpos Ez∼Uniform(Dneg(x))

[
|ϕ(x; θ)⊤ψ(z; θ)− ϕ(y; θ)⊤ψ(z; θ)|

]
≤ υ2.
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Figure 1. Training 100 epochs on STL-10 with ResNet-18 using
batch size b = 32. Horizontal axis is relative to the wall-clock
training time in seconds.

works have proposed remedies to the sampling problem.
The negative cache algorithm (Lindgren et al., 2021) stores
features {ψ(z; θτ )}z∈Dneg(x) from previous iterations and
apply the Gumbel-max trick for sampling from an approxi-
mate Px,θ. Though it is proven to converge to a stationary
point of (1), the algorithm suffers from high computation
and memory complexity. Under a similar purpose, SogCLR
(Yuan et al., 2022) proposed a running mean estimator for
the normalization sum in Px,θ. While SogCLR corrects the
gradient bias without a significant sampling nor computa-
tion overhead, the algorithm is only guaranteed to converge
to a neighborhood of stationary points of (1) with a non-
vanishing error. A comparison of the above works is in
Table 1.

1.2. Our Contributions & Related Works

We propose EMC2, an Efficient Markov Chain Monte
Carlo negative sampling method for Contrastive Learning.
Our method departs from the existing approaches since
EMC2 directly tracks Px,θ to generate negative samples for

∇Lneg(θ). More specifically,

• The EMC2 utilizes a Metropolis-Hasting (M-H) algorithm
specialized for negative sampling from (5). Moreover, the
samples from our M-H algorithm dynamically adjust to
the evolution of the stochastic gradient (SGD) iterates.
This results in a state-dependent SGD scheme that enjoys
low memory and computation complexity per iteration.

• We characterize the finite-time convergence rate of EMC2.
We show that it converges in expectation to a stationary
point satisfying E[∥∇L(θt)∥2] = O(1/

√
T ) for some t ∈

{1, ..., T}, where T is the number of iterations. Moreover,
the latter is neither affected by small batch size, nor the
burn-in period with the M-H algorithm; see Table 1.

• Our convergence analysis involves a non-trivial adaptation
of the generic result for biased stochastic approximation
scheme in (Karimi et al., 2019). Specifically, we prove
that the θ dependent kernel which induces the MCMC’s
Markov chain is ergodic, and is Lipschitz w.r.t. θ.

Figure 1 previews the performance of EMC2 for pre-training
the image encoder on the STL-10 dataset. Observe that
when training with a small batch size, EMC2 is around 2x
faster than SimCLR and SogCLR, and 3x faster than Nega-
tive Caching. The rest of this paper is organized as follows.
Section 2 develops the EMC2 algorithm by showing how
to combine M-H sampling in an online manner with SGD
updates. Section 3 presents the main convergence analysis
results. Finally, Section 4 shows the numerical experiments
to corroborate our claims on the efficacy of EMC2.

Related Works. We remark that existing works have con-
sidered using Markovian samples that is not i.i.d. in SGD
optimization. General convergence analysis results have
appeared in (Sun et al., 2018; Doan, 2022) for convex
and non-convex optimization with a homogeneous Markov
chain, and (Atchadé et al., 2017; Karimi et al., 2019)
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with controlled Markov chain. Example applications in-
clude policy evaluation in reinforcement learning (Baxter &
Bartlett, 2001; Bhandari et al., 2018; Srikant & Ying, 2019),
Bayesian optimization for maximum likelihood (De Bor-
toli et al., 2021), expectation maximization with stochastic
samples (Kuhn & Lavielle, 2004).

For tasks related to contrastive learning, prior works have
proposed using tree indexed structure to accelerate sampling
(Monath et al., 2023), and using the graph structure for graph
representation learning (Yang et al., 2020). However, they
only proved that the bias of the gradient estimator is bounded
and lack convergence analysis for the overall learning algo-
rithm. We remark that there are earlier works on estimating
the cross-entropy loss over a large set of classes (Vembu
et al., 2012), e.g., by sub-sampling the classes based on
kernel methods (Blanc & Rendle, 2018) and random Fourier
features (Rawat et al., 2019). In comparison, our work in-
troduces the technique to contrastive learning, and provide
a comprehensive theoretical and empirical analysis on its
efficacy and convergence properties.

2. Our Proposed Method: EMC2

This section develops EMC2 for optimizing the global con-
trastive loss L(θ) in (1). To simplify notation, we define

H(x, y; θ) := ∇θ

[
ϕ(x; θ)⊤ψ(y; θ)

]
(7)

as the gradient of the sample pair (x, y) ∈ X × Y . Recall
from (4) that the population gradient ∇L(θ) is composed
of two terms: (i) ∇Lpos(θ) maximizes the correlation be-
tween positive sample pairs, (ii) ∇Lneg(θ) minimizes the
correlation between negative sample pairs.

To apply SGD on (1), with a positive sample pair drawn
uniformly as (x, y) ∼ Dpos, the vector−βH(x, y; θ) yields
an unbiased estimate for ∇Lpos(θ). Our challenge lies
in obtaining an unbiased estimate for the negative sample
gradient ∇Lneg(θ). Observe that

∇Lneg(θ) = E
(x,y)∼Dpos, z∼Px,θ

[
βH(x, z; θ)

]
(8)

for Px,θ defined in (6). Compared to the case of∇Lpos(θ),
the distribution for the tuple (x, z) in the expectation above
depends on θ. It follows a softmax distribution (5) with
a large summation in the denominator that is difficult, if
not impossible, to evaluate when the number of negative
samples is large. Furthermore, the distribution also depends
on θ and has to be updated dynamically as we optimize θ.

We refer to the task of estimating (8) as the negative sam-
pling problem. To improve memory consumption and com-
putation cost, our idea is to develop an MCMC negative
sampling method that generates the desired samples in an
online manner. The resultant SGD method for (1) is then

treated as a stochastic approximation scheme with state-
dependent samples coming from a controlled Markov chain.

2.1. Negative Sampling via MCMC

The MCMC scheme (Robert & Casella, 1999) is a classical
yet powerful method for generating samples from an arbi-
trary distribution π. We focus on the Metropolis-Hastings
(M-H) algorithm (Chib & Greenberg, 1995) due to its sim-
plicity. In a nutshell, the algorithm generates new candidate
samples from a uniform distribution and adjusts the fre-
quency of samples by a reject/accept mechanism to match
the target distribution π. It induces a Markov chain whose
stationary distribution is the target distribution.

For the negative sampling problem in (8), with (x, y) ∼
Dpos, we generate samples z ∼ Px,θ by running the M-H
algorithm. In particular, we assign a state Zi ∈ [mneg] for
each i ∈ [m] that corresponds to a positive sample xi ∈ DX .
We generate a candidate sample Z ′

i ∼ Uniform([mneg]), to
be accepted as the new sample Z+

i with probability:

Qxi,θ(Z
′
i, Zi) =

pxi,θ(Z
′
i)

pxi,θ(Zi)
=

exp(β ϕ(xi; θ)
⊤ψ(Z ′

i; θ))

exp(β ϕ(xi; θ)⊤ψ(Zi; θ))
,

(9)
where Zi is the old sample; if the sample Z ′

i is rejected,
then Z+

i = Zi. The above procedure induces a Markov
chain · · · → Zi → Z+

i → · · · whose stationary distribution
coincides with Pxi,θ. Together with (xi, yi) ≡ (x, y) ∼
Dpos, this allows us to construct an unbiased estimate for
∇Lneg(θ) as βH(xi, Z

∞
i ; θ), where Z∞

i is obtained after
running the M-H algorithm for a certain number of steps.

We note that evaluating (9) does not require us to compute
the partition function in the denominator of (5). As such, the
computation complexity of evaluating (9) is only 2Cϕ. On
the other hand, we require storing the state Zi for each pos-
itive sample xi ∈ DX , which results in a memory cost of
m integers. The latter needs not be updated for every itera-
tion. Compared to the negative caching algorithm (Lindgren
et al., 2021) which requires a cache memory consumption of
mnegd real numbers for storing the feature vectors ψ(z; θ)
for all z ∈ Dneg(x), and a computation cost of ρmnegCϕ

for updating a ρ-fraction of cache, the MCMC scheme en-
joys a lower memory cost and computation complexity.

Single State MCMC vs Multi-State MCMC. Alterna-
tively, one can apply the M-H algorithm to generate samples
from the joint distribution of (x, z) in (8) using a single
state MCMC. However, the corresponding reject/accept ra-
tio [cf. (9)] involves the normalization constant G(x, θ) =∑

z∈Dneg(x)
ϕ(x; θ)⊤ψ(z; θ) from (5), for which G(x, θ)

and G(x′, θ) have to be re-evaluated when transitioning
from (x, ·) to (x′, ·). Implementing such a scheme will
require a 2mnegCϕ computation complexity, or require ap-
proximating the normalization constant as a constant that is
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Algorithm 1 Efficient MCMC Negative Sampling Method
for Contrastive Learning (EMC2)

1: input: Iteration number T , batch sizeB, negative batch
size R, burn-in period P < R, Markov chain state
initialization {Zj}mj=1 and step size γ.

2: for t = 0, ..., T − 1 do
3: Draw a mini-batch [(x

i
(t)
1
, y

i
(t)
1
), ..., (x

i
(t)
B

, y
i
(t)
B

)] ∼

Dpos, with indices {i(t)1 , ..., i
(t)
B } ⊆ [m].

4: for k = 1, ..., B; r = 0, ..., R− 1 do
5: Draw negative sample Z ′

i
(t)
k

∼ Unif(Dneg(xi(t)k

)).

6: Update the Markov chain state Z
i
(t)
k

by

Z
i
(t)
k

←

Z
′
i
(t)
k

w.p. min

{
1, Qx

i
(t)
k

,θt(Z
′
i
(t)
k

, Z
i
(t)
k

)

}
,

Z
i
(t)
k

otherwise,

where Qx,θ(Z
′, Z) is defined in (9).

7: If r ≥ P , store the sample Z̃(r)

i
(t)
k

= Z
i
(t)
k

.

8: end for
9: Update the model θ using (10).

10: end for

independent of x, both of which are encouraging the use of
a multi-state Markov chain as illustrated in (9).

2.2. State-dependent SGD Algorithm

As the target distribution in (8) depends on θ, applying
SGD with the classical MCMC scheme or M-H algorithm
requires first freezing θ and then simulating the Markov
chain for a considerable amount of time prior to forming
the stochastic gradient. The latter is known as the burn-
in period for MCMC and incurs additional complexity for
every SGD iteration.

We propose to adjust the Markov chains in an online manner
as θ is updated, i.e., the method shall not maintain a long
burn-in period. In particular, at each SGD iteration, the M-H
updates are executed with initialization given by the state
stored previously. Meanwhile, the Markov chains with the
reject/accept ratio (9) are controlled by the current θ.

Let t denotes the SGD iteration index and θt is the corre-
sponding model. Suppose that a mini-batch of B positive
samples are drawn {x

i
(t)
k

, y
i
(t)
k

}Bk=1 and {{Z̃(r)

i
(t)
k

}R−1
r=0 }Bk=1

are the sequences of samples generated by R steps of the
M-H algorithm, where the latter is initialized by the states
Z
i
(t)
k

from the previous SGD iteration. Our idea is to update
the model θ by the following recursion:

θt+1 = θt − γH (ξt+1; θt) , (10)

where ξt+1 := {x
i
(t)
k

, y
i
(t)
k

, {Z̃(r)

i
(t)
k

}R−1
r=P }Bk=1 collects the

samples used, γ > 0 is the SGD step size, and

H (ξt+1; θt) := −
β

B

B∑
k=1

H(x
i
(t)
k

, y
i
(t)
k

; θt) (11)

+
β

B(R− P )

B∑
k=1

R−1∑
r=P

H(x
i
(t)
k

, Z̃
(r)

i
(t)
k

; θt),

where P is an adjustable burn-in parameter. The overall
algorithm is summarized in Algorithm 1.

We observe that (10) is different from a standard SGD algo-
rithm as H(ξt+1; θt) corresponds to a biased estimate for
the gradient ∇L(θt) of the contrastive learning loss (1) in
general. Instead, the algorithm belongs to the more general
class of biased stochastic approximation scheme (Karimi
et al., 2019) whose stochastic updates are driven by the
Markov chain · · · → ξt → ξt+1 → · · · . Moreover, the
Markov transition kernel is controlled by the current model
θt that is updated simultaneously.

To reduce bias, a traditional approach is to consider P →∞,
R = P + 1 which will ensure that the M-H algorithm can
generate its samples from the stationary distribution. How-
ever, as we shall demonstrate in Section 3, under suitable
and verifiable conditions, the θ-dependent Markov transition
kernel is Lipschitz continuous and uniform geometrically
ergodic. Subsequently, it ensures the convergence of (10)
towards a stationary point of (1) for any P,R.

3. Convergence Analysis
This section shows that EMC2 converges to a stationary
point of (1). Our analysis is organized as follows: first we
characterize the mixing rate of the Markov chain · · · →
ξt → ξt+1 → · · · in (10) and its smoothness property,
then we analyze the convergence of the algorithm through
studying the latter as a special case of the biased stochastic
approximation scheme in (Karimi et al., 2019). Finally, we
present our main results in Theorem 3.7 and Corollary 3.8.

3.1. Analysis of MCMC Negative Sampling

To enable the convergence of (10) utilizing the Markov chain
{ξt}t≥0, intuitively it requires the Markov chain to (i) have a
fast mixing time, and (ii) satisfy certain smoothness property
as θt is gradually updated. To fix notation, we denote the
state-dependent Markov transition kernel Pθ : Ξ× Ξ→ R+

such that ξt+1 ∼ Pθt(ξt, ·). For simplicity, we analyze the
latter transition probability of ξt+1 when P = R − 1, i.e.,
the state dependent SGD update only takes the last sample
in the M-H algorithm. Moreover, with a slight abuse of
notation, we consider the collection of all hidden states
ξt+1 = {Z̃(R−1)

i }mi=1 ∈ Ξ which does not include x, y. As
the latter is drawn i.i.d., it does not affect the convergence
analysis for (10) in Section 3.2.
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For our first task in showing the fast mixing of {ξt}t≥0, it
suffices to show that the Markov chain induced by Pθ is
geometrically ergodic for any fixed θ. To this end, we note
that as the target distribution Px,θ belongs to the exponential
family, applying (Theorem 2.1, Roberts & Tweedie 1996)
implies ergodicity. To formally state the result, we impose
the following assumptions:

Assumption 3.1. There exists c > 0 such that

max{∥ϕ(x; θ)∥, ∥ψ(x; θ)∥} ≤ c, ∀ θ ∈ Rp, x ∈ X . (12)

Assumption 3.1 is common with c ≤ 1 for contrastive learn-
ing problems (Chen et al., 2020; Radford et al., 2021). This
effectively controls the behavior of Qx,θ(z, Z) in the M-H
algorithm (9) and thus the transition kernel Pθ. The follow-
ing lemma shows the geometric ergodicity property for the
Markov chain:

Lemma 3.2. Under Assumption 3.1. For any θ ∈ Rp and
any initialization ξ̃0 ∈ Ξ, the Markov chain ξ̃0 → ξ̃1 → · · ·
induced by the transition kernel Pθ converges geometrically
to the stationary distribution πx,θ(z) =

∏m
i=1 pxi,θ(zi),

where z = (zi)
m
i=1. In particular, it holds

∣∣P(ξ̃τ = z
)
− πx,θ(z)

∣∣ ≤ (1− BR

2mmneg exp(2c2β)

)τ

,

(13)

for any z and any τ ≥ 0.

See Appendix A for the proof, which relies on (Theorem
1.3, Mengersen & Tweedie 1996). Moreover, from (13), we
observe that through mini-batch sampling among Dpos and
Px,θ, the mixing rate improves by BR when consuming
BR samples in EMC2.

Our second task consists of showing that the Markov tran-
sition kernel is smooth w.r.t. θ. We require the following
condition the models ϕ, ψ:

Assumption 3.3. There exists LP ≥ 0 such that for any
θ, θ′ ∈ Rp, (x, y) ∈ supp(Dpos), z ∈ Dneg(x),

∥ϕ(x; θ)⊤ψ(z; θ)− ϕ(x; θ′)⊤ψ(z; θ′)∥ ≤ LP ∥θ − θ′∥.
(14)

Assumption 3.3 describes the Lipschitz condition of the
similarity function ϕ(x; θ)⊤ψ(z; θ), which is important in
establishing the Lipschitz condition of the transition kernel
w.r.t. the model parameter θ. For example, it can be satisfied
as LP = Lc for L-Lipschitz functions ϕ, ψ w.r.t. θ with
bounded norm as in Assumption 3.1.

The following lemma shows that the transition kernel Pθ is
Lipschitz continuous with respect to θ, as follows:

Lemma 3.4. Under Assumption 3.1, 3.3. It holds:

|Pθ(ξ, ξ′)− Pθ′(ξ, ξ′)| ≤ 2R+1BLP exp(2c2β)β∥θ− θ′∥,
(15)

for any ξ, ξ′ ∈ Ξ and any θ, θ′ ∈ Rp.

The proof can be found in Appendix B. We remark that the
dependence on 2R+1B in the Lipschitz constant is conser-
vative. We anticipate the effective Lipschitz constant for
the transition kernel to be much smaller than in (15). For
example, (43) has applied a loose bound of 1 to control the
transition probability.

3.2. Convergence to Stationary Point

Equipped with Lemma 3.2 & 3.4, we are ready to derive the
convergence rate of Algorithm 1 towards a stationary point
of (1). Our idea is to treat (10) as a biased stochastic ap-
proximation scheme and analyze the latter using the general
convergence theories given in (Karimi et al., 2019).

We require the following conditions:
Assumption 3.5. There exists LH ≥ 0 such that for any
θ, θ′ ∈ Rp, x ∈ DX , y ∈ DY ,

∥H(x, y; θ)−H(x, y; θ′)∥ ≤ LH∥θ − θ′∥. (16)

Assumption 3.6. There exists σ ≥ 0 such that for any
θ ∈ Rp, (x, y) ∈ supp(Dpos), z ∈ Dneg(x),

∥H(x, y; θ)− EDpos [H(x, y; θ)]∥ ≤ σ, (17)
∥H(x, z; θ)− EDpos,Px,θ

[H(x, z; θ)]∥ ≤ σ. (18)

Assumptions 3.5, 3.6 impose a uniform bound on the
smoothness condition of the similarity function and the
variance of stochastic gradient. These assumptions are stan-
dard in the literature, e.g., they are also used in (Lindgren
et al., 2021; Yuan et al., 2022).

We present the main convergence result for EMC2:

Theorem 3.7. Under Assumptions 3.1, 3.3, 3.5, 3.6. For
any T ≥ 1, there exists a sufficiently small step size γ > 0
such that the iterate θt generated by EMC2 satisfies

T−1 ∑T−1
t=0 E[∥∇L(θt)∥2] (19)

≤ 2L0,T

γT
+

24βσmmneg exp(2c
2β)

γBRT
+ γβ3σ2

×O
(LHmmneg exp(2c

2β)

BR
+
LP 2

Rm2m2
neg exp(6c

2β)

BR2

)
where the above expectation is taken with respect to the
randomness in the algorithm, and L0,T = E[L(θ0) −
L(θT )] ≤ 4β.

See Appendix C for the proof. Theorem 3.7 implies that in
expectation, EMC2 finds an O( 1

γT + γ) stationary solution
to (1) in T iterations, for any T ≥ 1.
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For a sufficiently large T , setting γ = 1/
√
T yields a global

convergence rate of O(1/
√
T ) regardless of the batch size

B nor the burn-in period controlled by P,R, as observed in
the following corollary:

Corollary 3.8. Under Assumptions 3.1, 3.3, 3.5, 3.6. For a
sufficiently large T , choosing γ = 1√

T
, R = 2, guarantees

that the iterates generated by EMC2 satisfy:

T−1
∑T−1

t=0 E[∥∇L(θt)∥2] (20)

≤ 8β√
T

+
12βσmmneg exp(2c

2β)

B2
√
T

+
β3σ2

√
T

×O
(LHmmneg exp(2c

2β)

B
+
LPm

2m2
neg exp(6c

2β)

B

)
.

We have presented a simplified version of the above result
in Table 1.

4. Numerical Experiments: Unimodal
Pre-Training of Image Encoder

This section examines the performance of EMC2 for the
contrastive learning task on training image encoders. We
remark that although the analysis is only shown for the SGD
optimizer with EMC2, the stochastic gradient approximation
in (11) can be applied to other popular first-order optimizers
such as Adam.

Our experiments consider the task of pre-training self-
supervised image encoder similar to (Chen et al., 2020).
This task is described by an instance of (1) with unimodal
encoders, i.e., ϕ(·; θ) ≡ ψ(·; θ) for any θ ∈ Rp. More-
over, the self-supervised dataset is specified with a set of
augmented images. Let A be a set of image augmentation
operators g : X → X , we specify (Dpos,Dneg(·)) as:

{
Dpos = Uniform({(g(x), h(x)) : x ∈ D; g, h ∈ A}),
Dneg(h(x)) = {g(y) : y ̸= x, y ∈ D; g, h ∈ A}.

(21)
For the dataset D ⊆ X , the positive pairs are set of the
random augmentations of the same image, while for x ∈
D, its negative pairs are set to be the whole dataset with
augmentation except that of x.

4.1. Implementation of EMC2

Image Augmentation. We follow previous studies on apply-
ing input augmentations for contrastive learning on image
data (Xie et al., 2020) which would lead to samples from
a distribution Dpos with infinite support. Despite the fact
that EMC2 is designed to track the Markov chain state for
each image in x1, ..., xm, in practice we approximate Algo-
rithm 1 by maintaining a Markov chain state for each set

Figure 2. Illustration of mini-batch MCMC sampling with 2 aug-
mentations (x′i, x

′′
i ) of each image xi. Each horizontal arrow

represents a distribution tracked by one Markov chain and the
direction of M-H reject/accept step. Shaded area represents the
samples used for burn-in with burn-in period P < 2b−2. Crossed-
out diagonals are not regarded as negative samples.

of {g(x1) : g ∈ A}, ..., {g(xm) : g ∈ A}2. This approxi-
mate algorithm remains practical and performant as verified
empirically in Section 4.3.

Mini-batch Sampling. As proposed by (Chen et al., 2020),
it is efficient to draw a mini-batch and use the in-batch
samples as negative samples. We can implement M-H re-
ject/accept steps on top of the same mini-batch sampling
scheme with R = B − 2. In Figure 2, we illustrate a simi-
larity matrix formed by the matrix product V⊤V such that
V = [ϕ(x′1), ..., ϕ(x

′
b), ϕ(x

′′
1), ..., ϕ(x

′′
b )] ∈ Rd×2b con-

tains the feature vectors of a mini-batch of size B = 2b
with two random augmentations (x′i, x

′′
i ) of the same im-

age xi, i ∈ [b]. EMC2 can regard the in-batch samples
{x′1, ..., x′b, x′′1 , ..., x′′b }\{x′j , x′′j } as negative samples from
the prior distribution Uniform(Dneg(xj)) and perform M-
H acceptance/rejection steps over this negative set. As il-
lustrated in Figure 2, the M-H algorithm can run in parallel
across the multiple Markov chains. For the experiments, we
consume burn-in samples from the same mini-batch without
requiring extra samples.

4.2. Dataset and Metrics

We concentrate on two common datasets under this setup –
STL-10 and Imagenet-100. We apply the Adam opti-
mizer for training with STL-10 and the LARS optimizer
with Imagenet-100. Details of the datasets and hyperpa-
rameters used can be found in Appendix D.

2When the state Zi is referred outside the iteration it was sam-
pled, it points to the image xi to avoid storing the augmented
image g(xi) in memory.
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Figure 3. Comparison between different sizes of pre-augmented
STL-10 with ResNet-18 and batch size b = 256. Horizontal axis
is relative to the number of samples accessed.

To benchmark the performance of EMC2 and other algo-
rithms, we report linear probe (LP) accuracy and 1-nearest-
neighbor (1-NN) accuracy of the embeddings produced by
the encoder, which are standard metrics for evaluating im-
age encoders (Chen et al., 2020; Kukleva et al., 2023). They
correspond to the linear separability of features on a unit
hypersphere (Wang & Isola, 2020) and the local geometry
of the learnt features.

Since the negative cache algorithm (Lindgren et al., 2021)
requires storing feature vectors of negatives, we are re-
stricted to implementing on an alternative loss function
with Dneg(x) = {y : y ∈ D\{x}}, i.e., images without
augmentation. Also, note that negative cache algorithm uses
B extra samples per iteration as the Gumbel-max negative
sampling requires out-of-batch samples.

4.3. Effects of Image Augmentations

We first examine the effect of the number of pre-computed
image augmentations, |A|, on the performance of EMC2.
Note that as suggested in (Chen et al., 2020), increasing
|A| can lead to improved performance. We also compare
a heuristic extension of EMC2 that effectively deploys an
infinite number of augmentations: the augmented images are
generated on-the-fly at every iteration and a single Markov
chain state Zi is maintained for all augmentations of the
same image xi.

From Figure 3, as the number of pre-computed augmenta-
tions increases, the performance approaches to that of the
infinite augmentation algorithm. This illustrates that EMC2

adapts to random augmentations. In later experiments with
image augmentations, we implement EMC2 with the infinite
augmentation setting for the best performance.

4.4. Effects of Burn-in Period

For every positive pair (xi, yi) in a mini-batch, EMC2 uses
P burn-in negative samples to warm-up the Markov chain
state Zi of sample xi. We study the effect of P by com-
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Figure 4. Comparison between different numbers of burn-in nega-
tive samples P for each Markov chain state Zi.
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Figure 5. Comparison on STL-10 with ResNet-18 using batch
size (top) b = 32, (bottom) b = 256. Horizontal axis is relative to
the number of samples accessed.

paring the performance for P ∈ {0, b2 , b,
3
2b}. From Figure

4, we observe that the performance of EMC2 improves by
increasing P , and the improvement stops at a certain thresh-
old of around P = b. This amounts to the mechanism of
Markov chain convergence where the negative samples af-
ter the burn-in period are more accurate to the true sample
distribution in (5).

4.5. Comparison to Baselines

We compare EMC2 to baseline algorithms: Negative Cache
(Lindgren et al., 2021), SimCLR (Chen et al., 2020), Sog-
CLR (Yuan et al., 2022). We first examine the effects of
batch sizes b ∈ {32, 256} for the experiments on STL-10,
where a standard setting for this dataset is b = 256, yet we
note that a small batch size is often preferred for training
large models due to limitations on GPU memory. Observe
from Figure 5 that EMC2 consistently outperforms the other
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Figure 6. Comparison on Imagenet-100 with ResNet-50 using
batch size b = 256. Horizontal axis is relative to the number of
samples accessed.

algorithms across all metrics regardless the choice of batch
size. This is in line with the intuition that SimCLR is bottle-
necked by a poor loss distribution on small batch size. For
SogCLR, we suspect the performance drop on linear probe
accuracy is due to the violation of feature homogeneity as-
sumption on the setup of STL-10 with Resnet-18. For
negative cache, its performance on using one negative with
stale cache error does not keep up with in-batch negatives
approaches.

Figure 6 shows a similar experiment but on the more difficult
dataset Imagenet-100. Note that the negative caching
algorithm is not run due to the excess computation complex-
ity in cache refreshing and Gumbel-max sampling. Observe
that EMC2 shows performance gain over SimCLR when
trained on the standard batch size b = 256, while the perfor-
mance is on par with SogCLR.

From the above experiments, we observe that EMC2 delivers
a consistent performance over different datasets, batch size,
that is on par with the best compared baseline for the respec-
tive tasks. In Appendix D.2, additional time-complexity
comparison on STL-10 is presented to demonstrate the
practical benefits of EMC2.

Convergence to Stationary Solution. To examine the accu-
racy of EMC2, we construct a simple dataset (Dpos,Dneg)
by taking the first 500 images from STL-10 and using
two pre-computed augmentations for each image. Under
this setting, the exact value of L(θ) in (1) and ∥∇L(θ)∥2
in (4) can be evaluated as shown in Figure 7. We observe
that the solution found by EMC2 is more accurate than the
other baselines by 2 orders of magnitude in terms of squared
gradient norm.

The code used in the experiments are available at
https://github.com/amazon-science/
contrastive_emc2.
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Figure 7. Comparison on a subset of STL-10 using the first 500
images and pre-computed two augmentations for each image.
Trained using SGD with batch size b = 4.

5. Conclusion
This paper proposed a novel method EMC2 for optimizing
the global contrastive loss (1). The algorithm combines an
adaptively adjusted MCMC scheme for generating nega-
tive samples with a standard SGD update. We prove that
EMC2 enjoys low memory and computation complexities,
and admits a global convergence rate of O(1/

√
T ) towards

a stationary solution for (1). Numerical experiments show
that EMC2 enables small batch training for contrastive learn-
ing which is due to its global convergence property. We
hope this work inspires future research into advanced sam-
pling methods for contrastive learning, such as the Langevin
dynamics, and the convergence property of optimization
algorithms that rely on them.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proof of Lemma 3.2
Notice that our target softmax distribution Px,θ has a finite support with each state having non-zero mass. For any θ ∈ Rp,

min
x,z,Z

Qx,θ(z, Z) = min
x,z,Z

exp(β ϕ(x; θ)⊤ψ(z; θ))

exp(β ϕ(x; θ)⊤ψ(Z; θ))

(Assm. 3.1)

≥ exp(−2c2β) (22)

Now recall that mneg = |Dneg(x)| for any x ∈ DX , i.e., the state space consists of mneg states on each Markov chain Zi.
Then the smallest probability to transition to state z from any initial state is lower bounded by m−1

neg exp(−2c2β), where the
factor m−1

neg comes from using the uniform prior Uniform(Dneg(x)) in Algorithm 1.

By Theorem 1.3 of (Mengersen & Tweedie, 1996), the transition kernel of each Markov chain of Zi converges to its target
distribution Px,θ at a geometric rate of 1 −m−1

neg exp(−2c2β). Therefore, the joint Markov chain of states (Z1, ..., Zm)
in Algorithm 1 has a mixing rate of 1 −m−1m−1

neg exp(−2c2β) when the batch size B = 1. As we perform mini-batch
sampling of batch size B on the expectation over (x, y) ∼ Dpos and R steps of M-H algorithm over z ∼ Px,θ in parallel,
the mixing rate can be improved to [1−Bm−1m−1

neg exp(−2c2β)]R. We can simplify the rate by the following upper bound,
as [

1− B

mmneg exp(2c2β)

]R
≤ exp

(
− BR

mmneg exp(2c2β)

)
≤ 1− BR

2mmneg exp(2c2β)
(23)

where the first inequality uses 1− x ≤ exp(−x) ∀x ∈ R, the second inequality uses exp(−x) ≤ 1− x/2 for x ∈ [0, 1] and
the assumption that BR ≤ mmneg exp(2c

2β). □

B. Proof of Lemma 3.4
For each Markov chain corresponding to Zi in the M-H algorithm, the acceptance probability is given by
min{1, Qxi,θ(Z,Z

′)}. To establish Lemma 3.4, we first observe that for any Z,Z ′ ∈ Dneg(xi) and θ, θ′ ∈ Rp, it
holds

|Qx,θ(Z,Z
′)−Qx,θ′(Z,Z ′)| (24)

= | exp
(
βϕ(x; θ)⊤ψ(Z; θ)− βϕ(x; θ)⊤ψ(Z ′; θ)

)
− exp

(
βϕ(x; θ′)⊤ψ(Z; θ′)− βϕ(x; θ′)⊤ψ(Z ′; θ′)

)
| (25)

≤ exp(2c2β) · β · |ϕ(x; θ)⊤ψ(Z; θ)− ϕ(x; θ)⊤ψ(Z ′; θ)− (ϕ(x; θ′)⊤ψ(Z; θ′)− ϕ(x; θ′)⊤ψ(Z ′; θ′))| (26)
(Assm. 3.3)

≤ 2LP · exp(2c2β) · β · ∥θ − θ′∥ (27)

where (26) uses the fact that exp(·) is exp(2c2β)-Lipschitz when restricted on the domain [−2c2β, 2c2β] and the restriction
is due to Assumption 3.1.

Now denote Ki,θ ∈ Rmneg×mneg as the transition matrix of Zi and

[Ki,θ]z′,z =

{
1

mneg
·min{1, Qxi,θ(z, z

′)} if z ̸= z′,
1

mneg
+ 1

mneg

∑
j∈[mneg]\{z}(1−min{1, Qxi,θ(z, j)}) if z = z′.

(28)

Then for z ̸= z′,

|[Ki,θ]z′,z − [Ki,θ′ ]z′,z| =
1

mneg
|min{1, Qxi,θ(z, z

′)} −min{1, Qxi,θ′(z, z′)}| (29)

≤ 1

mneg
|Qxi,θ(z, z

′)−Qxi,θ′(z, z′)|
(27)
≤ 1

mneg
· 2LP · exp(2c2β) · β · ∥θ − θ′∥ (30)

and for z = z′,

|[Ki,θ]z′,z − [Ki,θ′ ]z′,z| =

∣∣∣∣∣∣ 1

mneg

∑
j∈[mneg]\{z}

(−min{1, Qxi,θ(z, j)}+min{1, Qxi,θ′(z, j)})

∣∣∣∣∣∣ (31)
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≤ 1

mneg

∑
j∈[mneg]\{z}

|Qxi,θ(z, j)−Qxi,θ′(z, j)|
(27)
≤ 2LP · exp(2c2β) · β · ∥θ − θ′∥ (32)

To quantify the smoothness of the transition kernel with R Metropolis-Hastings steps, we observe that by the notation
[K]z,z′ = e⊤z Kez′ for some basis vectors ez, ez′ ,

max
z,z′
|Pθ(Z(0)

i = z;Z
(R)
i = z′)− Pθ′(Z

(0)
i = z;Z

(R)
i = z′)| (33)

= max
z,z′
|[KR

i,θ]z′,z − [KR
i,θ′ ]z′,z| (34)

= max
z,z′
|e⊤z′(KR

i,θ −Ki,θ′KR−1
i,θ +Ki,θ′KR−1

i,θ −KR
i,θ′)ez| (35)

≤ max
z,z′
|e⊤z′(Ki,θ −Ki,θ′)KR−1

i,θ ez|+ |e⊤z′Ki,θ′(KR−1
i,θ −KR−1

i,θ′ )ez| (36)

(i)

≤ max
z,z′
∥e⊤z′(Ki,θ −Ki,θ′)∥∞ · ∥KR−1

i,θ ez∥1 + ∥e⊤z′Ki,θ′∥1 · ∥(KR−1
i,θ −KR−1

i,θ′ )ez∥∞ (37)

(ii)

≤ max
z,z′
∥e⊤z′(Ki,θ −Ki,θ′)∥∞

(iii)
+ 2 · |[KR−1

i,θ ]z′,z − [KR−1
i,θ′ ]z′,z| (38)

(27)
≤ 2LP · exp(2c2β) · β · ∥θ − θ′∥+ 2 · |[KR−1

i,θ ]z′,z − [KR−1
i,θ′ ]z′,z| (39)

≤ (1 + 2 + ...+ 2R−1) · 2LP · exp(2c2β) · β · ∥θ − θ′∥ (40)

= (2R − 1) · 2LP · exp(2c2β) · β · ∥θ − θ′∥ (41)

where (i) uses Hölder’s inequality for the norm pair (∥ · ∥1, ∥ · ∥∞), (ii) uses the fact that KR−1
i,θ is a column stochastic

matrix and (iii) uses the inequality ∥e⊤z′Ki,θ′∥1 ≤ 2 because

∥e⊤z′Ki,θ′∥1 =
∑

z∈[mneg]

[Ki,θ]z′,z (42)

(28)
=

∑
z∈[mneg]\{z′}

1

mneg
min{1, Qxi,θ(z, z

′)} (43)

+
1

mneg
+

1

mneg

∑
j∈[mneg]\{z′}

(1−min{1, Qxi,θ(z
′, j)}) (44)

≤ mneg − 1

mneg
+

1

mneg
+
mneg − 1

mneg
≤ 2 (45)

Finally, in the Markov chain ξ̃0 → ξ̃1 → · · · , since onlyB state variables {Z
i
(t)
k

}Bk=1 are active or updated in each transition,
we have

Pθ(ξ; ξ
′) =


0 if ∆ξ = ∥ξ − ξ′∥0 > B,(
m

B

)−1

·

(
m−∆ξ

B −∆ξ

)
·
∏B

k=1 Pθ(Z
(0)

i
(t)
k

;Z
(R)

i
(t)
k

) otherwise.
(46)

where
(
m
B

)−1(
m−∆ξ

B −∆ξ

)
is the probability that j ∈ {i(t)k }Bk=1 for j s.t. ξ(j) ̸= ξ′(j). To simplify notations, suppose

Z
(0)

i
(t)
k

= zt,k and Z(R)

i
(t)
k

= z′t,k, then

|Pθ(ξ; ξ′)− Pθ′(ξ; ξ′)| =
(
m
B

)−1(
m−∆ξ

B −∆ξ

) ∣∣∣∣∣
B∏

k=1

Pθ(Z
(0)

i
(t)
k

;Z
(R)

i
(t)
k

)−
B∏

k=1

Pθ′(Z
(0)

i
(t)
k

;Z
(R)

i
(t)
k

)

∣∣∣∣∣ (47)

=

(
m
B

)−1(
m−∆ξ

B −∆ξ

) ∣∣∣∣∣
B∏

k=1

[KR
i,θ]zt,k,z′

t,k
−

B∏
k=1

[KR
i,θ′ ]zt,k,z′

t,k

∣∣∣∣∣ (48)
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=

(
m
B

)−1(
m−∆ξ

B −∆ξ

) ∣∣∣ B∏
k=1

[KR
i,θ]zt,k,z′

t,k
− [KR

i,θ′ ]zt,1,z′
t,1

B∏
k=2

[KR
i,θ]zt,k,z′

t,k
(49)

+ [KR
i,θ′ ]zt,1,z′

t,1

B∏
k=2

[KR
i,θ]zt,k,z′

t,k
−

B∏
k=1

[KR
i,θ′ ]zt,k,z′

t,k

∣∣∣ (50)

(41)
≤
(
m
B

)−1(
m−∆ξ

B −∆ξ

)
B · 2R+1 · LP · exp(2c2β) · β · ∥θ − θ′∥ (51)

The proof is concluded by taking maximum over 0 ≤ ∆ξ ≤ B. □

C. Proof of Theorem 3.7
Our idea is to apply Theorem 2 of (Karimi et al., 2019) which shows the convergence of biased stochastic approximation
scheme with Markovian noise such as (10). In particular, we shall take the Lyapunov function therein as our global
contrastive loss, i.e., V (θ) = L(θ). We proceed by verifying the required assumptions.

Verifying A1-A2 of (Karimi et al., 2019) Using Lemma 3.2, we observe that the mean field of the stochastic update in
(10), i.e., the expected value ofH(ξ; θ) when ξ is drawn from the stationary distribution of the Markov chain induced by
Pθ, coincides with the gradient of L(θ), i.e., h(θ) = ∇L(θ). As such, A1-A2 of (Karimi et al., 2019) are satisfied with
c0 = d0 = 0, c1 = d1 = 1.

Verifying A3 of (Karimi et al., 2019) For this, we need to show that∇L(θ) is Lipschitz continuous. We observe that a
stronger condition holds as the stochastic gradient map is Lipschitz w.r.t. θ. For any sample x, y, z and any θ, θ′ ∈ Rp, we
have

∥ − β∇θ(ϕ(x; θ)
⊤ψ(y; θ)) + β∇θ(ϕ(x; θ)

⊤ψ(z; θ))− [−β∇θ(ϕ(x; θ
′)⊤ψ(y; θ′)) + β∇θ(ϕ(x; θ

′)⊤ψ(z; θ′))]∥ (52)

≤ β∥∇θ(ϕ(x; θ)
⊤ψ(y; θ))−∇θ(ϕ(x; θ

′)⊤ψ(y; θ′))∥+ β∥∇θ(ϕ(x; θ)
⊤ψ(z; θ))−∇θ(ϕ(x; θ

′)⊤ψ(z; θ′))∥
(Assm. 3.5)

≤ 2βLH∥θ − θ′∥

Verifying A5-6 of (Karimi et al., 2019) For these assumptions, we observe that A12-A14 of (Karimi et al., 2019) can be
satisfied with the constants

L̄P = 2R+1BLP · exp(2c2β) · β, L̄H = 2βLH , ρ̄ = 1− BR

2mmneg exp(2c2β)
, KP = 1, σ̄

(56)
= 2βσ (53)

Applying Lemma 7 of (Karimi et al., 2019) shows that A5-A6 can be satisfied with

L
(0)
PH =

2βσρ̄

BRm−1m−1
neg exp(−2c2β)/2

, L
(1)
PH =

6 · 2R+1B exp(2c2β)β2σLP

(BRm−1m−1
neg exp(−2c2β)/2)2

+
2βLH

BRm−1m−1
neg exp(−2c2β)/2

(54)

Verifying A7 of (Karimi et al., 2019) The stochastic gradient used in (10) has a uniformly bounded error from its mean
field as

∥H(ξt+1; θt)−∇L(θt)∥ (55)

≤ β

∥∥∥∥∥ 1

B

B∑
ℓ=1

H(x
(t)
iℓ
, y

(t)
iℓ

; θt)− E(x,y)∼Dpos
[∇θ(ϕ(x; θ)

⊤ψ(y; θ))]

∥∥∥∥∥
+ β

∥∥∥∥∥ 1

B(B − P )

B∑
k=1

R−1∑
r=P

H(x
i
(t)
k

, Z̃
(r)

i
(t)
k

; θt)− E(x,y)∼Dpos
Ez∼Px,θ

[∇θ(ϕ(x; θ)
⊤ψ(z; θ))]

∥∥∥∥∥
≤ β

B

B∑
ℓ=1

∥H(x
(t)
iℓ
, y

(t)
iℓ

; θt)− E(x,y)∼Dpos
[∇θ(ϕ(x; θ)

⊤ψ(y; θ))]∥
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+
β

B(B − P )

B∑
k=1

B−1∑
r=P

∥H(x
i
(t)
k

, Z̃
(r)

i
(t)
k

; θt)− E(x,y)∼Dpos
Ez∼Px,θ

[∇θ(ϕ(x; θ)
⊤ψ(z; θ))]∥

(Assm. 3.6)

≤ 2βσ (56)

Convergence of (10) Upon verifying A1-A3, A5-A7 of (Karimi et al., 2019), we can apply Theorem 2 therein to analyze
the convergence of (10). In particular, we choose a constant step size γ satisfying γ ≤ 1

2(2βLH+Ch)
. For any T ≥ 1 and the

randomly drawn t ∼ Uniform([0, ..., T − 1]), we have

E[∥∇L(θt)∥2] =
1

T

T−1∑
t=0

E[∥∇L(θt)∥2] (57)

≤
E[L(θ0)− L(θT )] + 3L

(0)
PH + [8β3LHσ

2 + 2L
(1)
PHβσ + 2βLHL

(0)
PH(1 + 2βσ)](γ2T )

γT/2
(58)

where Ch = L
(1)
PH(1 + σ) + L

(0)
PH(βLH + 1). Simplifying and rearranging terms leads to the conclusion.

Estimating E[L(θ0)− L(θT )] We observe that by Assumption 3.1, for any θ ∈ Rp,

L(θ) = E
(x,y)∼Dpos

[
−β ϕ(x; θ)⊤ψ(y; θ)

]
+ E

(x,y)∼Dpos

log ∑
z∈Dneg(x)

exp(β ϕ(x; θ)⊤ψ(z; θ))

 (59)

≤ β + E
(x,y)∼Dpos

log ∑
z∈Dneg(x)

exp(β)


By a similar argument,

L(θ) ≥ −β + E
(x,y)∼Dpos

log ∑
z∈Dneg(x)

exp(−β)

 (60)

Therefore,

E[L(θ0)− L(θT )] ≤ 2β + E
(x,y)∼Dpos

log ∑
z∈Dneg(x)

exp(β)− log
∑

z∈Dneg(x)

exp(−β)

 (61)

= 2β + E
(x,y)∼Dpos

[
log

( ∑
z∈Dneg(x)

exp(β)∑
z∈Dneg(x)

exp(−β)

)]
= 2β + E

(x,y)∼Dpos

[log exp(2β)] = 4β.

□

D. Experiment Details
D.1. Details of Dataset and Hyperparameters

In Table 2, we list the important attributes of datasets we used in the experiment section.

In Table 3, we list the hyperparameter values adopted in our experiments.

D.2. Run-Time Complexity

Since the computational complexity differs among algorithms, we provide a performance-time plot in Figure 8 to compare
the time complexity. Note that in this setup, negative cache algorithm uses four Tesla T4 GPUs for training and refreshing
the negative cache while the other algorithms run on one Tesla T4 GPU.
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Dataset # of Pos. Pairs m # of Neg. Samples mneg Image Crop Size

STL-10 100,000 (inf. aug) 100,000 (inf. aug) 96 × 96
Imagenet-100 124,689 (inf. aug) 124,689 (inf. aug) 224 × 224

Table 2. Datasets attributes.

Dataset Model Inverse
Temp. β

Batch
Size b

Learning
Rate γ

Feature
Dim. d

Weight
Decay

Cache Refresh ρ
(Negative Cache)

Burn-in Steps P
(EMC2)

STL-10 Resnet-18 14.28 32 10−4 512 10−4 0.01024 31
STL-10 Resnet-18 5 256 10−3 512 10−4 0.1 255
Imagenet-100 Resnet-50 14.28 256 1.2 128 10−6 - 255
STL-10 subset Resnet-18 5 4 10−3 512 10−4 0.1 3

Table 3. Hyperparameter values of the experiments.
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Figure 8. Training 100 epochs on STL-10 with ResNet-18 using batch size b = 32. Horizontal axis is relative to the wall-clock training
time in seconds.
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