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ABSTRACT

Image super-resolution (SR) is fundamental to many vision systems—from surveil-
lance and autonomy to document analysis and retail analytics—because recovering
high-frequency details, especially scene-text, enables reliable downstream percep-
tion. scene-text, i.e., text embedded in natural images such as signs, product labels,
and storefronts, often carries the most actionable information; when characters
are blurred or hallucinated, optical character recognition (OCR) and subsequent
decisions fail even if the rest of the image appears sharp. Yet previous SR re-
search has often been tuned to distortion (PSNR/SSIM) or learned perceptual
metrics (LPIPS, MANIQA, CLIP-IQA, MUSIQ) that are largely insensitive to
character-level errors. Furthermore, studies that do address text SR often focus
on simplified benchmarks with isolated characters, overlooking the challenges of
text within complex natural scenes. As a result, scene-text is effectively treated
as generic texture. For SR to be effective in practical deployments, it is therefore
essential to explicitly optimize for both text legibility and perceptual quality. We
present GLYPH-SR, a vision–language-guided diffusion framework that aims to
achieve both objectives jointly. GLYPH-SR utilizes a Text-SR Fusion ControlNet
(TS-ControlNet) guided by OCR data, and a ping-pong scheduler that alternates
between text- and scene-centric guidance. To enable targeted text restoration, we
train these components on a synthetic corpus while keeping the main SR branch
frozen. Across SVT, SCUT-CTW1500, and CUTE80 at ×4 and ×8, GLYPH-SR
improves OCR F1 by up to +15.18 percentage points over diffusion/GAN baselines
(SVT ×8, OpenOCR) while maintaining competitive MANIQA, CLIP-IQA, and
MUSIQ. GLYPH-SR is designed to satisfy both objectives simultaneously—high
readability and high visual realism—delivering SR that looks right and reads right.
We provide code, pretrained models, the synthetic corpus with generation scripts,
and an evaluation suite to support reproducibility.

1 INTRODUCTION

Image super-resolution (SR),1 which reconstructs high-resolution (HR) images from low-resolution
(LR) inputs, is critical for applications like autonomous driving where clear details are paramount.
While conventional SR aims to improve perceptual quality, we argue that for many real-world
scenarios, ensuring the text legibility of scene-text (e.g., on signs, license plates) is equally, if not
more, important. Accurately restoring characters is crucial, as failures in legibility can compromise
downstream tasks like optical character recognition (OCR), regardless of the overall image sharpness.

1.1 AN OVERLOOKED CHALLENGE IN IMAGE SR: ACHIEVING HIGH SCENE-TEXT FIDELITY

However, achieving this level of text fidelity remains an overlooked challenge in most conventional
SR frameworks. Two systemic biases explain why text often degrades in existing SR models (e.g.,

1Throughout this paper, we will use image SR and SR interchangably whenever there is no ambiguity.
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Figure 1: Qualitative and quantitative comparisons of our GLYPH-SR with other competing SR
methods, demonstrating superior text fidelity and OCR F1 score.

StableSR Wang et al. (2024), DiffBIR Lin et al. (2024), InvSR Yue et al. (2025)) despite strong
perceptual scores:

(a) Metric Bias. Standard full-reference distortion metrics (PSNR/SSIM) and learned/no-
reference perceptual metrics (LPIPS, MANIQA, CLIP-IQA, MUSIQ) aggregate quality
globally and are dominated by area; small text regions (often well below 1% of the image)
therefore contribute little, so character corruption is weakly penalized.

(b) Objective Bias. Common training losses prioritize appearance similarity and treat characters
as generic high-frequency texture rather than discrete semantic units required by OCR.

In practice these biases surface as two failure modes (Fig. 1 (a)): (i) Hallucination—methods
optimized for perceptual realism may produce sharp but incorrect characters, harming OCR; (ii)
Conservative restoration—others preserve the blurry input to avoid artifacts, yielding limited SR
gains alongside mediocre perceptual quality. As a result, few approaches simultaneously enhance
visual realism and ensure text legibility—an essential requirement for OCR-dependent applications.

1.2 CONTRIBUTIONS

We address scene-text SR as a bi-objective problem—optimizing both visual quality and text
legibility—and present GLYPH-SR, a vision–language guided diffusion framework that achieves
both. Our key technical contributions and breakthroughs in this work include the followings:

2
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• Bi-Objective Formulation & Dual-Axis Evaluation. We explicitly cast SR in text-rich
scenes as the joint optimization of image quality and readability, and standardize a dual-axis
protocol that reports perceptual SR metrics (MANIQA, CLIP-IQA, MUSIQ) together with
OCR-aware measures (word/character accuracy, edit distance, F1), ensuring that small text
regions are not underweighted.

• Text-SR Fusion ControlNet with Time-Balanced Guidance. We introduce a dual-branch
TS-ControlNet that fuses token-level OCR strings with verbalized locations STXT and a
scene caption SIMG. The SR branch is frozen while the text branch is fine-tuned; residual
mixing injects complementary cues into the LDM without disrupting its generative prior. A
lightweight ping–pong scheduler λt alternates text-centric and image-centric conditioning
along the denoising trajectory, and coherently modulates both embedding fusion and residual
injection.

• Factorized Synthetic Corpus & Comprehensive Validation. We build a four-partition
synthetic corpus that independently perturbs glyph quality and global image quality, enabling
targeted text restoration while keeping the SR branch frozen. Across SVT, SCUT-CTW1500,
and CUTE80 at ×4/× 8, GLYPH-SR improves OCR F1 by up to +15.18 pp over strong
diffusion/GAN baselines while maintaining competitive MANIQA, CLIP-IQA, and MUSIQ.
We release code, pretrained models, data-generation scripts, and an evaluation suite to
support reproducibility.

2 RELATED WORKS

SR via Deep Learning. Early CNN methods such as SRCNN Dong et al. (2015), EDSR Lim et al.
(2017), and RCAN Zhang et al. (2018b), and later transformer models like SwinIR Liang et al. (2021),
substantially advanced distortion-oriented SR; yet they primarily optimize pixel fidelity rather than
semantic fidelity in small, text-bearing regions. Adversarially trained SR has improved perceptual
realism on in-the-wild images; representative examples include BSRGAN Zhang et al. (2021) and
Real-ESRGAN Wang et al. (2021).

Diffusion-based SR has recently shown strong stability and realism. Foundational approaches such
as DiffBIR Lin et al. (2024) and StableSR Wang et al. (2024) couple LR conditioning with powerful
diffusion priors, and subsequent work incorporates richer priors or auxiliary conditions: SeeSR Wu
et al. (2024) exploits semantic prompts, InvSR Yue et al. (2025) enables flexible guidance/sampling,
SUPIR Yu et al. (2024b) leverages large-scale pretrained backbones with restoration-guided sampling,
and PISA-SR Sun et al. (2025) further advances controllability. As illustrated in Fig. 1(b), explicit
character-level integrity is seldom a primary optimization target in general-purpose diffusion SR.
Consequently, as further substantiated by the quantitative benchmarks in Fig. 1(c), there is a notable
scarcity of methods that holistically address both general image fidelity and text-specific restoration
metrics.

Text-Focused SR. Text-centric SR aims to enhance readability with text-aware priors or recognition-
aware objectives. Representative methods include TATT Ma et al. (2022), STISR Noguchi et al.
(2024), and Stroke-Aware SR Chen et al. (2022). While effective on word/line crops, these approaches
often assume simplified settings and can underperform on full natural scenes where text must be
preserved together with surrounding content.

3 OUR APPROACH: GLYPH-SR

3.1 MODEL ARCHITECTURE

Overview. Fig. 2 depicts the proposed GLYPH-SR pipeline. Given an LR image ILR∈RH×W×C ,
an LR-robust conditioner of a pretrained latent diffusion model (LDM) Rombach et al. (2022) extracts
multi-scale features fLR used for conditioning. Our Text–SR Fusion ControlNet (TS-ControlNet)
then injects complementary restoration cues while preserving the generative prior of the LDM. Finally,
an Elucidated Diffusion Model (EDM) sampler Karras et al. (2022) drives the reverse process in
latent space toward a high-resolution reconstruction. However, when guidance is provided only in a

3
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Figure 2: Overview of the proposed GLYPH-SR architecture.

Figure 3: Text-centric fine-tuning framework: (a) trade-off between scene-text fidelity and overall
image quality according to guidance; (b) four synthetic training subsets with matched prompts; (c)
TS-ControlNet architecture.

holistic form, small text regions may still be treated as generic high-frequency textures rather than
semantically meaningful glyphs, which can yield imperfect character restoration.

Condition Decomposition. To address this limitation, we explicitly separate the guidance into
(i) image-oriented and (ii) text-oriented signals.

• Image-Oriented Guidance. A scene-level caption SIMG summarizes global attributes such
as illumination, composition, and depth-of-field, and is used to encourage holistic perceptual
quality.

• Text-Oriented Guidance. A dedicated OCR module detects K text instances and returns
position–text pairs {(Sk

text,Sk
pos)}Kk=1. Each pair is converted into a structured natural-

language prompt, e.g. “HSBC is displayed at the center of the image,”
and passed to the text branch.

As shown in Fig. 3(b), simply separating SIMG and {(Sk
text,Sk

pos)}Kk=1 improves text fidelity but can
degrade non-text regions, motivating our subsequent guidance-fusion strategy and the ping–pong
scheduler that alternates text-centric and scene-centric guidance.

Text–SR Fusion ControlNet. To balance the two objectives—image quality and text legibility—we
introduce the Text–SR Fusion ControlNet (TS-ControlNet), which merges glyph-level semantic priors
with global SR guidance (Fig. 3c). During training, the LDM backbone and the SR branch of TS-
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ControlNet are frozen, and only the text branch is updated, improving text legibility while preserving
overall image quality.

Given image data I, we obtain the clean target latent z0 = enc(I) via the VAE encoder. We then
sample a timestep t∼U{1, . . . , T} and noise ε∼N (0, I), and construct the noised latent by the
standard DDPM forward process Ho et al. (2020):

zt =
√
ᾱt z0 +

√
1− ᾱt ε, ᾱt =

∏t
s=1(1− βs).

The diffusion model Dθ predicts the noise residual conditioned on two control streams: (i) CSR, a
spatial condition from a frozen SR-ControlNet that guides the overall structure based on the low-
resolution input image SIMG, and (ii) CTXT, a textual condition from a trainable Text-ControlNet
that controls the rendering of text based on a set of OCR-derived text-position pairs STXT.

At inference, we start from zT and use the EDM sampler Karras et al. (2022) with the same conditions
to obtain the HR latent, which is then decoded to the image domain.

Diffusion Loss with Residual Injection. The frozen SR-ControlNet and the trainable Text-
ControlNet produce residual hierarchies. We blend them before injection via

c =
1

2
sCTRL

[
CSR

(
zt; ϕimg(SIMG + P )

)
+ CTXT

(
zt; ϕtxt(STXT + P )

)
]. (1)

where sCTRL is a global scaling factor and P denotes the restoration guide prompt.

The diffusion backbone Dθ then predicts the residual noise, and we optimize TS-ControlNet with the
standard ε-prediction objective:

Ltext = Ez0, t, ε

∥∥ε−Dθ(zt, t, c)
∥∥2
2
. (2)

Synthetic Fine-Tuning Dataset. To disentangle text legibility from holistic perceptual quality, we
synthesize four mutually exclusive subsets

{
IposHQ, I

pos
LQ , I

neg
HQ, I

neg
LQ

}
. All synthetic data are generated

from the same raw text, but for training purposes, the image quality is intentionally reduced or only
the text within the images is distorted. As shown in Fig. 3 (b). To train TS-ControlNet, we defined the
following guide prompt.

• Positive–Text / High-Quality (P pos
HQ ). Perfect image quality with perfectly preserved

character outlines and precise positioning.

• Negative–Text / High-Quality (P neg
HQ ). Intentionally damaged character outlines and precise

positioning, but good image quality.

• Positive–Text / Low-Quality (P pos
LQ ). Poor image quality, but preserved character outlines

and precise positioning.

• Negative–Text / Low-Quality (P neg
LQ ). Image quality is poor and character outlines and

exact positions are intentionally damaged.

Each sample is encoded into a composite conditioning tuple for the TS-ControlNet:

z⋄⋆︸︷︷︸
image latent

⊕ ψ
(
SIMG

)︸ ︷︷ ︸
scene caption

⊕ ψ
(
{(Sk

text,Sk
pos)}Kk=1

)︸ ︷︷ ︸
text cues

⊕ P ⋄
⋆︸︷︷︸

guide prompt

, ⋄∈{pos,neg}, ⋆∈{HQ,LQ}.

Here, z⋄⋆ = Enc
(
I⋄⋆
)

is the first-stage latent of the synthetic image I⋄⋆, and ψ(·) denotes the frozen
CLIP text encoder. Note that, to explicitly inform the model when incorrect text has been generated,
the text-position pairs {(Sk

text,Sk
pos)}Kk=1 are always extracted from the positive-text, high-quality

image dataset.

3.2 TEXT–IMAGE BALANCING SCHEDULER

Although the dedicated TS-ControlNet injects glyph-centric features, the temporal allocation between
text and image guidance along the diffusion trajectory is critical. We therefore introduce a scheduler

5
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Tsched : {0, . . . , T} → [0, 1] that dynamically reweights the two guidance streams via a time-
dependent coefficient λt.

paragraphStep update with mixed guidance. Let zt be the latent at diffusion step t (sampling proceeds
from t=T down to 0). Given a mixed embedding e t (Eq. 4), we form a classifier-free guided noise
estimate (Eq. 5) and then update

zt−1 = zt − ηt ϵ̂t, (3)
where ηt is a step size (a function of the noise level σt in our EDM-based solver). At inference we
initialize zT ∼N (0, σ2

T I) and apply the EDM sampler Karras et al. (2022) with the same conditions
over T steps.

We encode scene-level and text-level prompts separately and fuse them as

eimg=Wimg ϕimg(SIMG), etxt=Wtxt ϕtxt
(
{(Sk

text,Sk
pos)}Kk=1

)
, e t = (1−λt) etxt + λt eimg,

(4)
where ϕimg and ϕtxt are text encoders (kept frozen), and Wimg,Wtxt are linear projections to a
shared embedding space. The guided residual is computed via classifier-free guidance:

ϵ̂t = (1 + ω)Dθ(zt, t, e
t) − ωDθ(zt, t,∅), (5)

with guidance scale ω. Consistently, the same λt also modulates residual injection (cf. Eq. 1) as a
time-varying blend r̃l(t) = sCTRL

[
(1− λt) r

TXT
l + λt r

SR
l

]
.

Binary Ping-Pong Policy. We found that a binary schedule that alternates between text-centric
(λt=0) and image-centric (λt=1) guidance is effective:

λt =

{
0, if

⌊
t−t0
τ

⌋
mod 2 = 0,

1, otherwise,
(6)

where τ ∈N is the toggle period (default τ = 1) and t0 is an optional offset. Intuitively, the text-
focused phases inject precise glyph cues, while the image-focused phases stabilize global structure
and appearance. We also experimented with continuous ramps λt = g(σt) (e.g., noise-level monotone
schedules), but the square-wave “ping–pong” yielded the best OCR F1 at similar perceptual quality
(see Appendix C).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our method along two axes: semantic text restoration and perceptual SR quality. We
report OCR-based F1 scores Chng et al. (2019) to quantify semantic correctness. Pixel-wise fidelity
is measured by MANIQA Yang et al. (2022), CLIP-IQA Wang et al. (2023), and MUSIQ Ke et al.
(2021) (see Sec. A.1). Experiments are conducted on three representative scene-text benchmarks
(details in Sec. B.2.1): SCUT-CTW1500 Liu et al. (2019), CUTE80 Risnumawan et al. (2014), and
SVT Wang et al. (2011). We adopt Juggernaut-XL as the LDM backbone and fine-tune it on our
synthetic corpus generated with LLaVA-NeXT Liu et al. (2024), Nunchaku Cruanes et al. (2016), and
SUPIR Yu et al. (2024b). Full data-generation pipelines and hyper-parameters and setup are detailed
in Appendix B.

4.2 EVALUATION RESULTS

As shown in Table 1, many baseline methods improve Super-Resolution (SR) scores at the cost of
Optical Character Recognition (OCR) performance. For instance, on SVT×4, DiffBIR achieves
excellent SR metrics (47.82 MANIQA / 71.18 MUSIQ) but suffers from text hallucination, leading to
a low OpenOCR F1 score of 38.73. Conversely, StableSR attains a high LLaVA-NeXT F1 (73.91)
through conservative restoration, which results in a poor MUSIQ score of 24.44. This pattern repeats
on SCUT-CTW1500×4. In contrast, our method consistently mitigates this trade-off. It achieves
the best OpenOCR F1 score in 5/6 settings and the best GOT-OCR F1 in 4/6, all while maintaining
top-tier SR performance. Notably, on SVT×8, it is the best across all six metrics, and on CUTE80×8,
it leads all SR metrics while also securing the top OpenOCR F1 score (63.66).
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Table 1: quantitative comparison of OCR F1-scores and SR quality metrics across datasets and
models. red and blue indicate the best and second-best scores, respectively.

OCR metric F1 SR metric

Dataset Model OpenOCR GOT-OCR LLaVA-NeXT MANIQA CLIP-IQA MUSIQ

SVT (×4)

BSRGAN 53.96 58.66 68.50 38.16 39.63 66.25
DiffBIR 38.73 42.33 45.19 47.82 58.66 71.18
DiffTSR 19.35 22.51 29.23 21.34 27.69 46.24
InvSR 57.79 60.96 65.00 46.78 57.30 70.81
PiSA-SR 63.30 65.23 67.75 37.41 44.30 61.87
Real-ESRGAN 59.15 67.32 72.53 31.16 28.58 51.14
StableSR 59.88 63.76 73.91 24.75 32.18 24.44
SUPIR 58.41 61.90 62.14 42.36 48.42 67.55
GLYPH-SR (ours) 67.54 71.72 73.22 47.75 59.40 70.99

SCUT-CTW1500 (×4)

BSRGAN 24.67 21.86 35.10 51.41 47.44 67.52
DiffBIR 24.71 23.82 30.71 62.37 61.90 71.19
DiffTSR 19.77 15.98 23.69 35.39 30.59 55.83
InvSR 29.57 26.41 34.50 57.75 55.94 69.25
PiSA-SR 37.46 34.14 44.11 56.31 53.05 68.19
Real-ESRGAN 31.31 26.94 43.25 40.81 43.43 52.66
StableSR 25.55 19.95 45.86 31.04 43.61 24.92
SUPIR 18.26 17.61 24.37 57.35 51.68 66.96
GLYPH-SR (ours) 38.26 36.96 42.90 70.33 57.88 70.31

CUTE80 (×4)

BSRGAN 73.09 56.02 83.97 44.22 55.73 69.13
DiffBIR 68.88 48.82 81.84 51.04 72.64 69.06
DiffTSR 61.08 47.48 73.71 33.94 38.47 58.74
InvSR 72.46 55.62 84.75 50.30 67.78 70.66
PiSA-SR 72.77 54.80 82.65 45.82 61.81 66.18
Real-ESRGAN 73.71 58.79 84.23 38.20 48.71 60.65
StableSR 72.14 57.22 82.92 36.26 49.74 60.09
SUPIR 70.85 51.87 82.11 47.50 62.62 68.26
GLYPH-SR (ours) 73.09 55.62 85.01 49.77 65.93 69.96

SVT (×8)

BSRGAN 14.61 13.12 25.56 37.14 37.58 62.83
DiffBIR 16.70 18.55 22.32 45.54 53.20 64.11
DiffTSR 10.28 10.72 15.87 21.39 26.39 43.96
InvSR 17.12 21.15 21.54 32.51 50.83 51.69
PiSA-SR 17.53 24.05 37.76 34.02 18.39 30.24
Real-ESRGAN 17.73 23.29 30.83 28.38 17.86 43.01
StableSR 20.95 24.43 43.24 23.16 23.38 16.22
SUPIR 33.61 35.96 36.78 40.17 45.06 65.20
GLYPH-SR (ours) 48.79 56.16 58.54 47.40 56.78 69.93

SCUT-CTW1500 (×8)

BSRGAN 3.37 3.54 3.88 46.21 37.83 66.05
DiffBIR 4.76 5.10 4.64 54.75 49.89 63.16
DiffTSR 2.95 2.86 2.90 35.49 31.88 50.43
InvSR 2.09 2.17 2.43 29.65 29.62 40.29
PiSA-SR 7.61 6.92 9.43 41.77 36.75 58.95
Real-ESRGAN 5.02 5.64 7.74 28.37 20.95 39.99
StableSR 3.33 4.43 7.49 20.93 20.92 16.62
SUPIR 5.43 6.26 7.00 55.46 47.02 65.55
GLYPH-SR (ours) 11.09 14.71 14.67 61.94 48.21 63.43

CUTE80 (×8)

BSRGAN 55.21 46.57 71.18 42.07 54.31 67.33
DiffBIR 59.56 44.71 70.53 47.53 62.09 64.62
DiffTSR 54.39 42.33 63.30 33.55 42.95 57.47
InvSR 56.42 45.18 72.46 37.66 62.43 57.69
PiSA-SR 52.72 42.33 75.24 30.71 30.80 45.16
Real-ESRGAN 59.18 49.27 74.33 35.17 36.46 56.55
StableSR 57.81 45.18 73.87 26.00 40.42 34.48
SUPIR 58.01 42.81 70.20 46.38 61.67 67.04
GLYPH-SR (ours) 63.66 45.65 73.71 47.75 65.85 68.85

Fig. 4 concretizes the two failure modes introduced earlier (Fig. 1). The examples on the left illustrate
hallucination—sharp strokes that alter glyphs, raising IQA scores but breaking legibility. In contrast,
those on the right exhibit conservative restoration. This issue stems from insufficient SR, a cautious
approach to prevent hallucination. While this allows an OCR module to recognize the low-quality
text, it results in blurry, low-contrast images with minimal SR gains. By preserving glyph topology
while restoring realistic textures, GLYPH-SR avoids both pitfalls, yielding images that are both
high-quality and OCR-readable. This outcome underscores why evaluations must report SR and OCR
metrics jointly for a comprehensive assessment.

7
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Figure 4: Qualitative examples illustrating the trade-off between SR metrics (e.g., MANIQA, CLIP-
IQA, MUSIQ) and OCR metrics (F1, Accuracy) in scene-text images. While some methods improve
perceptual SR scores, they may degrade OCR performance, and vice versa.

Superior OCR Fidelity. GLYPH-SR consistently achieves top-two F1 scores across all datasets and
OCR engines. On the most challenging benchmarks, it surpasses competitors by a large margin (e.g.,
+12.0 pp on CUTE80, ×8), confirming the efficacy of our proposed token-wise guidance.

Competitive Perceptual Quality. While prioritizing text, GLYPH-SR maintains excellent global
fidelity, ranking first or second in 26 out of 30 test cases across MANIQA, CLIP-IQA, and MUSIQ.
It frequently outperforms other diffusion models like DiffBIR and SUPIR in these metrics.

Robustness Under Severe Degradation. The performance gap widens at ×8 scale, where our
model avoids the textual hallucination of GANs and the over-smoothing of generic diffusion methods.
GLYPH-SR maintains high OCR scores without sacrificing perceptual quality, demonstrating its
robustness to extreme degradation.

Taken together, the results confirm that our method yields a balanced architecture that advances the
SOTA by resolving the conflict between text recognition and perceptual SR.

Figure 5: Comparison of SR results against different methods (DiffBIR, Real-ESRGAN, BSRGAN,
and GLYPH-SR) on various degraded LR images.

Fig. 5 visually demonstrates how our model uniquely preserves text structure and legibility across
severe degradations (×4 to ×8). Competing methods exhibit clear failure modes. Diffusion models
like DiffBIR, despite high perceptual scores, frequently hallucinate incorrect characters (e.g., ‘EANK
OF ENUNAL’). Conversely, GAN-based methods like BSRGAN’s high contrast produces jagged,
geometrically distorted glyphs that harm human readability.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

This confirms the trade-off between perceptual quality and OCR accuracy observed in Table 1.
Methods that excel in one metric often fail in the other. GLYPH-SR consistently reconciles both
objectives, delivering coherent and legible results even at the extreme ×8 scale where other models
collapse.

4.2.1 ABLATION STUDIES

Figure 6: Four prompt settings using combinations of texts (Stext) and its spatial positions (Spos).

Fig. 6 shows the effect of selectively removing the two of guidance used by GLYPH-SR: (i) the
OCR string Stext and (ii) its spatial positions Spos. We evaluate four combinations—both, text-only,
position-only and none.

1) Full guidance ( Stext+Spos ): The top-left quadrants reconstruct the text pattern without distortions,
retaining stroke width, inter-letter spacing, and global geometry.

2) Text-only guidance ( Stext /̸Spos ): When positional guidance is removed, the model hallucinates
irregular kerning and warped baselines (e.g. “STASHOES COFFEE”), indicating that semantics alone
cannot anchor glyph layout.

3) Position-only guidance (̸ Stext / Spos ): Conversely, supplying bounding boxes but no textual
content yields partial or incorrect spellings (“STABHOUES SOFFCE”), showing that location cues
without semantics lead to character-level ambiguity.

4) No guidance (̸Stext+̸Spos ): Removing both priors produces the worst outcomes—severe hallucina-
tions and geometric distortions reminiscent of generic diffusion SR.

5 CONCLUSIONS

Super-resolution research has traditionally prioritized perceptual quality, often neglecting a critical
aspect of text-rich scenes: legibility. This creates a persistent gap where models produce sharp-
looking images that still cannot be read correctly, as text is underweighted by standard SR objectives.
To resolve this, GLYPH-SR reframes the task as a bi-objective problem that optimizes both visual
realism and text legibility. We introduce a practical recipe featuring a VLM-guided diffusion model
with a dual-branch TS-ControlNet, which fuses spatial OCR cues and a global caption. To properly
evaluate this balance, we provide a factorized synthetic corpus and a dual-axis protocol pairing OCR
F1 with perceptual IQA metrics. On challenging benchmarks (SVT, SCUT-CTW1500, CUTE80 at
×4/×8), GLYPH-SR improves OCR F1 by up to +15.18 pp over strong baselines while maintaining
top-tier perceptual quality. Future work will explore multilingual scripts, stronger geometric priors,
and tighter integration with end-to-end recognition systems.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our work. The complete source code, pretrained models,
synthetic data generation scripts, and evaluation suite for our GLYPH-SR framework are provided as
supplementary material, with direct links available in Appendix B. Details of the model architectures,
pre-trained backbones, and key hyper-parameters are described in Section 4.1 and extensively in Ap-
pendix B, which also specifies the hardware and software environment used for all experiments. Our
dual-axis evaluation protocol, including all benchmark datasets (SVT, SCUT-CTW1500, CUTE80)
and the specific OCR and perceptual metrics, is documented in Section 4.1 and Appendix A.1. The
core components of our method, including the Text-SR Fusion ControlNet, condition decomposition,
and the ping-pong scheduler, are detailed in Section 3. The data generation and fine-tuning workflow,
serving as a practical guide, is outlined in Appendix B. Extended experimental results, comprehensive
ablation studies, sensitivity analyses, and a discussion of the computational footprint are reported in
Appendix C to ensure full transparency of our findings. These resources provide a comprehensive
toolkit for the faithful reproduction and independent verification of our results.
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A METRIC-BASED EVALUATION

A.1 EVALUATION METRICS

We evaluate our method along two primary axes: (1) the semantic integrity of textual content, and (2)
the perceptual quality of the reconstructed images. Accordingly, we organize the metrics into two
groups.

OCR Metrics. To assess text restoration performance, we report:

• F1 score, Precision, Recall and Accuracy (↑), : character-level measures of OCR correct-
ness; higher is better.

• Normalized Edit Distance (1-NED) (↑): inverse of edit distance, scaled to [0, 100]; higher
values indicate closer agreement with the ground truth.

Image-Quality Metrics. For perceptual fidelity, we adopt:

• Peak Signal-to-Noise Ratio (PSNR) (↑): log-scaled pixel-level similarity to the reference
image.

• Structural Similarity Index (SSIM) (↑): evaluates luminance, contrast, and structural
consistency in line with human perception, scaled to 0–100.

• Learned Perceptual Image Patch Similarity (LPIPS Zhang et al. (2018a)) (↓): deep-
feature distance reflecting perceptual differences, scaled to 0–100.

• Multi-Dimension Attention Network for No-Reference IQA (MANIQA Yang et al.
(2022)) (↑): no-reference quality score based on attention-driven features, scaled to 0–100.

• CLIP-based Image Quality Assessment (CLIP-IQA Wang et al. (2023)) (↑): semantic
fidelity metric leveraging CLIP embeddings, scaled to 0–100.

• Multi-Scale Image Quality Transformer (MUSIQ Ke et al. (2021)) (↑): transformer-based
no-reference IQA that aggregates multi-resolution cues.

A.2 MISALIGNMENT BETWEEN METRICS AND HUMAN PERCEPTION

SR papers still default to PSNR, SSIM, and LPIPS. Although convenient, these scores often drift
from what people actually perceive—especially when the low-resolution input is heavily degraded.
Fig. 7 offers four counter-examples that highlight three recurring failure modes.

Perceptual vs. Semantic Fidelity. In Figure 7, the “HOMER BREWING COMPANY” sign is recon-
structed cleanly by GLYPH-SR yet receives lower PSNR and SSIM than Real-ESRGAN, whose
output contains aliasing and hallucinated glyphs.

Metrics Can Be Misleading. Across multiple benchmarks we frequently observe visually superior
outputs that score lower on PSNR/SSIM/LPIPS (see red vs. blue values in Figure 7). This misalign-
ment—echoed by prior studies Blau & Michaeli (2018); Jinjin et al. (2020); Gu et al. (2022); Yu
et al. (2024a)—underscores the danger of metric-only evaluation. For text-aware SR, side-by-side
inspection or user studies remain indispensable.
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Figure 7: Each triplet shows (left) the input LR image, (middle) a strong baseline, and (right) GLYPH-
SR. Despite GLYPH-SR producing visibly sharper text, its PSNR/SSIM/LPIPS scores (blue) are
often lower than those of the baseline (red). The gap exposes a growing consensus: traditional metrics
alone do not capture human perception of text-laden imagery.
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B EXPERIMENT DETAILS

B.1 REPRODUCIBILITY STATEMENT

Synth Dataset:
https://drive.google.com/drive/folders/1eYMvZQq-93okI2v1YldXLPHDycBkuvdu?
usp=drive_link

Pretrained Model:
https://drive.google.com/drive/folders/1hrZ5jRbVLcRSFpbL-uPxe9iLddylAFgk?
usp=drive_link

Code:
https://drive.google.com/drive/folders/1A75nhOQEG1hcEhzUJxO75X8LfTO7lR3K?
usp=drive_link

Results:
https://drive.google.com/drive/folders/1CArNuM0AI50z3TGsR66u218RLV5UdHYa?
usp=drive_link

Data Generation & Fine-Tuning Workflow

1. Stage 1 – Scene Description Extraction
dataset_generater/make_dataset_get_desc.py
./datasets/descriptions/ containing: {id, image_path, ocr_text, caption}.

2. Stage 2 – Augmented Prompt Synthesis
third_party/make_dataset_with_nunchaku/
make_dataset_with_augmentation.py
Invokes the Nunchaku augmentation engine to expand each record with synthetic corruptions
(blur, noise, JPEG artifacts) and with diversity-enhanced textual prompts. The output is a
paired folder structure: ./datasets/aug/{hq,lq}.

3. Stage 3 – Negative/HQ Pairing
dataset_generater/make_dataset_Neg_HQ.py
Generates explicit (LQ, HQ) pairs and the associated prompt metadata required by GLYPH-
SR. Final training files are placed under ./datasets/final/.

4. Stage 4 – Fine-Tuning
train_GLYPH_SR.py

python3 train_GLYPH_SR . py \
−− d a t a _ r o o t . / d a t a s e t s / \
−− c f g GLYPH−SR / m o d e l _ c o n f i g s / m o d e l _ c o n f i g . yaml

Inference Workflow

1. Create the checkpoint directory.
Download every model file from the Pre-trained Checkpoints link and place them in a newly
created folder named CKPT_PTH at the project root.

2. Patch all path references.
Edit the three files listed below so that each points to the new directory, e.g.
CKPT_PTH/<checkpoint_name>.pth:

• GLYPH-SR/model_configs/model_config.yaml
• GLYPH-SR/run_GLYPHSR.py

• GLYPH-SR/CKPT_PTH.py

3. Run command.
Verify correct loading by launching a single-image run:

py thon3 run_GLYPH_SR . py −− img_pa th . / image . j p g
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Successful execution confirms that all checkpoints are discovered and that GLYPH-SR is
ready for inference.

B.2 SETUP

All experiments were conducted on a workstation equipped with three NVIDIA RTX 6000 Ada GPUs
(48 GB each), all utilized concurrently for training and inference, an Intel Xeon W9-3475X CPU (36
cores, 72 threads), and 256GB RAM. The system runs Ubuntu 24.04.2 LTS and uses a 3.7TB NVMe
SSD for storage. The models were implemented in PyTorch 2.5.1 with CUDA 11.8.

B.2.1 EVALUATION DATASETS

ICDAR2017 (International Conference on Document Analysis and Recognition). The IC-
DAR2017 Robust Reading Challenge dataset consists of scene-text images designed to test text
detection and recognition systems under real-world conditions. It includes both high- and low-quality
images that exhibit various degradations such as blur, low resolution, and noise. This diversity makes
it well-suited for fine-tuning vision-language models to enhance OCR robustness. In our pipeline,
ICDAR2017 is used to fine-tune LLaVA-NeXT, enabling it to better handle degraded scene-text
images and produce more accurate token-level guidance.

SCUT-CTW1500 (Curved Text in the Wild). SCUT-CTW1500 is a large-scale scene-text de-
tection benchmark featuring 1,500 images with over 10,000 annotated curved text instances. The
dataset includes a wide variety of natural scenes such as street views, signboards, and shop names,
with text appearing in arbitrary orientations, lengths, and curvature. It is especially known for its
high diversity in text shape and layout, which makes it well-suited for evaluating the robustness of
text detection and SR models in processing long and curved text lines. SCUT-CTW1500 is widely
used for benchmarking models designed to process irregular and multi-oriented scene-text under
real-world conditions.

CUTE80 (Curve Text). CUTE80 is a compact yet challenging dataset containing 80 high-resolution
images, specifically curated to evaluate curved text detection and recognition systems. The dataset
features a range of naturally curved and perspective-distorted text instances embedded in complex
backgrounds such as logos, signs, and posters. Despite its small size, CUTE80 is frequently used in
literature to benchmark the generalization ability of text-focused models on non-horizontal and non-
linear text structures. Its emphasis on difficult geometric deformations makes it a useful supplement
to larger datasets for testing text-specific visual models under challenging conditions.

SVT (Street View Text). SVT is a benchmark dataset collected from Google Street View, consisting
of 647 images with approximately 2,000 annotated text instances. It features naturally occurring
scene-text with various distortions, backgrounds, lighting conditions, and orientations. Despite its
relatively small size, SVT is widely used in the literature for benchmarking the performance of
OCR and text SR models under real-world conditions. Its challenging scenarios make it suitable for
evaluating model generalization and robustness in unconstrained environments.

B.2.2 PRE-TRAINED MODELS

LLaVA-NeXT. We employ LLaVA-NeXT Liu et al. (2024) as the vision–language front-end that
extracts semantic context from low-resolution inputs. LLaVA-NeXT couples a CLIP-ViT visual
encoder with a 7-B parameter LLM and is instruction-tuned on a large multimodal corpus, yielding
state-of-the-art performance in fine-grained grounding, captioning, and region-level reasoning. Within
our pipeline it automatically produces (i) image-level captions (IMG prompts) and (ii) spatially aligned
OCR strings (OCR prompts); both streams are fed as high-level conditions to the diffusion backbone.

JuggernautXL (SDXL-based). For image generation we adopt JuggernautXL, a publicly released
checkpoint built on SDXL-base 1.0 and further fine-tuned for improved sharpness and color fidelity.
The underlying SDXL architecture is trained on billions of image–text pairs and natively supports
1024× 1024 resolution.
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B.2.3 KEY HYPER-PARAMETERS

• Vision–Language Encoder. A frozen LLaVA-NeXT produces 2 048-dimensional multi-
modal embeddings that act as cross-attention keys; because the encoder is not fine-tuned, it
adds zero trainable parameters.

• First Stage (VAE). A 256× 256 auto-encoder (4 latent channels, 4× down-sampling) maps
RGB images to a 64× 64× 4 latent grid.

• Denoising and Sampling. We use the standard 1 000-step DDPM schedule wrapped
by RESTORE-EDM sampling (default: 50 inference steps, classifier-free guidance scale
annealed from 7.5 to 4.0).

B.2.4 SYNTHETIC TRAINING DATA

To train the TS-ControlNet, we curate a purpose-built synthetic dataset with four mutually exclusive
partitions: Positive/High-Quality, Positive/Low-Quality, Negative/High-Quality, and Negative/Low-
Quality. Each split is created by selectively degrading either global content or localized glyph
regions while keeping spatial layout and annotations intact. This design lets the network disentangle
text-specific cues from general image priors.

Figure 8: Step 1: JSONL metadata—id, OCR text, and scene prompt—generated by LLAVA-NEXT.

Step 1: Prompt-Metadata Extraction. Using a pretrained LLAVA-NEXT encoder and YAML-
defined prompt templates, we batch-process scene-text images and record three fields in JSONL:
image id, OCR text, and a scene-level prompt. Figure 8 illustrates the resulting metadata, produced
by make_dataset_get_desc.py.

Step 2: Stylistic Augmentation. We prepend each prompt with a style token (e.g., sunset glow,
cinematic bokeh) via make_dataset_with_augmentation.py. The enriched prompts drive
a Flux-based diffusion model equipped with ControlNet and LoRA modules to generate visually
diverse high-quality samples (Fig. 9).
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Figure 9: Step 2: Prompt augmentation with stylistic keywords to boost visual diversity.

Figure 10: Step 3: Positive vs. intentionally corrupted (negative) high-quality pairs.

Step 3: Negative High-Quality Pairs. The make_dataset_Neg_HQ.py script corrupts text
regions at the glyph level while leaving global detail untouched, yielding hard negative examples.
Corruptions are verified with the SUPIR pipeline Yu et al. (2024b)(Fig. 10).
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Figure 11: Step 4: Four synthetic subsets used for text-aware SR training.

Step 4: Final Dataset Assembly. All positive and negative images are merged into the four target
splits shown in Fig. 11.
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C EXPERIMENT RESULTS

C.1 COMPARE CHARACTER GENERATION TO OTHER MODELS.

Table 2: Quantitative comparison of OCR performance on images degraded by various factors and
restored using six SR models, evaluated across three benchmark datasets and three OCR systems.
Red and blue denote the best and second-best results, respectively.

OpenOCR GOT-OCR LLaVA-NeXT

Precision Recall F1 score 1-NED Accuracy Precision Recall F1 score 1-NED Accuracy Precision Recall F1 score 1-NED Accuracy

SVT(x4)
BSRGAN 57.03 51.19 53.96 28.04 36.95 69.63 50.68 58.66 31.29 41.50 84.60 57.55 68.50 15.82 52.09
DiffBIR 41.49 36.31 38.73 20.21 24.01 48.34 37.65 42.33 24.47 26.85 63.20 35.16 45.19 13.34 29.19
DiffTSR 39.55 12.81 19.35 14.27 10.71 51.76 14.39 22.51 15.97 12.68 78.98 17.94 29.23 5.49 17.12
InvSR 55.56 60.22 57.79 27.53 40.64 65.44 57.05 60.96 31.65 43.84 78.67 55.38 65.00 15.95 48.15
PiSA-SR 60.16 66.79 63.30 26.71 46.31 66.84 63.70 65.23 33.74 48.40 83.20 57.14 67.75 15.44 51.23
Real-ESRGAN 59.41 58.89 59.15 30.16 42.00 75.05 61.04 67.32 33.50 50.74 83.70 63.99 72.53 16.25 56.90
StableSR 62.08 57.83 59.88 30.32 42.73 73.79 56.13 63.76 34.71 46.80 84.70 65.56 73.91 16.81 58.62
SUPIR 58.16 58.67 58.41 20.17 41.26 64.54 59.48 61.90 26.81 44.83 74.54 53.28 62.14 15.86 45.07
GLYPH-SR (ours) 61.33 75.14 67.54 22.17 50.99 68.07 75.79 71.72 28.37 55.91 79.22 68.07 73.22 19.49 57.76

SCUT-CTW1500(x4)
BSRGAN 46.41 16.80 24.67 29.86 14.07 56.71 13.54 21.86 23.70 12.27 78.96 22.56 35.10 17.25 21.28
DiffBIR 38.18 18.26 24.71 33.85 14.09 36.43 17.70 23.82 30.71 13.52 54.93 21.31 30.71 20.94 18.14
DiffTSR 45.86 12.60 19.77 25.83 10.97 50.84 9.48 15.98 18.64 8.69 72.82 14.14 23.69 11.30 13.43
InvSR 45.37 21.93 29.57 34.39 17.35 47.40 18.31 26.41 28.17 15.22 66.15 23.33 34.50 18.34 20.84
PiSA-SR 49.11 30.27 37.46 40.32 23.04 56.25 24.50 34.14 33.47 20.58 71.18 31.96 44.11 23.23 28.30
Real-ESRGAN 52.95 22.22 31.31 33.69 18.56 59.50 17.41 26.94 26.49 15.57 79.94 29.65 43.25 20.12 27.59
StableSR 53.58 16.77 25.55 30.02 14.64 57.67 12.06 19.95 22.18 11.08 79.31 32.25 45.86 21.07 29.75
SUPIR 39.95 11.84 18.26 25.73 10.05 45.16 10.93 17.61 21.40 9.65 62.60 15.13 24.37 14.32 13.87
GLYPH-SR (ours) 48.82 31.46 38.26 37.75 23.66 47.45 30.27 36.96 36.09 22.67 63.59 32.37 42.90 25.86 27.31

CUTE(x4)
BSRGAN 68.84 77.89 73.09 54.63 57.59 69.44 46.95 56.02 45.37 38.91 92.54 76.86 83.97 39.00 72.37
DiffBIR 64.90 73.37 68.88 48.01 52.53 61.48 40.49 48.82 43.45 32.30 88.12 76.39 81.84 38.53 69.26
DiffTSR 64.94 57.65 61.08 51.95 43.97 67.80 36.53 47.48 45.54 31.13 92.59 61.22 73.71 30.66 58.37
InvSR 70.19 74.87 72.46 53.54 56.81 72.79 45.00 55.62 43.91 38.52 90.87 79.41 84.75 37.15 73.54
PiSA-SR 71.36 74.24 72.77 50.28 57.20 70.29 44.91 54.80 42.70 37.74 93.30 74.18 82.65 38.00 70.43
Real-ESRGAN 71.43 76.14 73.71 53.32 58.37 71.81 49.77 58.79 45.31 41.63 93.03 76.95 84.23 36.37 72.76
StableSR 69.71 74.74 72.14 51.76 56.42 74.64 46.40 57.22 42.36 40.08 89.66 77.12 82.92 38.02 70.82
SUPIR 68.78 73.06 70.85 49.43 54.86 63.38 43.90 51.87 42.38 35.02 89.05 76.17 82.11 40.24 69.65
GLYPH-SR (ours) 69.48 77.08 73.09 47.00 57.59 68.28 46.92 55.62 38.27 38.52 90.05 80.51 85.01 39.78 73.93

SVT(x8)
BSRGAN 35.75 9.18 14.61 13.02 7.88 36.54 7.99 13.12 14.68 7.02 76.77 15.34 25.56 6.25 14.66
DiffBIR 25.00 12.54 16.70 16.56 9.11 29.23 13.58 18.55 18.51 10.22 44.16 14.93 22.32 10.21 12.56
DiffTSR 28.03 6.29 10.28 11.36 5.42 31.51 6.46 10.72 14.98 5.67 62.50 9.09 15.87 4.60 8.62
InvSR 29.34 12.08 17.12 18.54 9.36 37.80 14.68 21.15 19.87 11.82 50.00 13.73 21.54 8.20 12.07
PiSA-SR 36.11 11.57 17.53 14.53 9.61 47.84 16.06 24.05 19.83 13.67 79.41 24.77 37.76 7.72 23.28
Real-ESRGAN 34.50 11.93 17.73 16.17 9.73 48.20 15.35 23.29 19.45 13.18 76.68 19.30 30.83 7.14 18.23
StableSR 41.13 14.05 20.95 17.50 11.70 50.45 16.12 24.43 19.15 13.92 79.43 29.71 43.24 9.96 27.59
SUPIR 42.82 27.66 33.61 15.29 20.20 43.00 30.90 35.96 18.80 21.92 59.22 26.68 36.78 11.28 22.54
GLYPH-SR (ours) 48.52 49.06 48.79 19.16 32.27 57.32 55.03 56.16 23.17 39.04 69.57 50.53 58.54 17.99 41.38

SCUT-CTW1500(x8)
BSRGAN 29.10 1.79 3.37 7.67 1.72 31.06 1.88 3.54 7.31 1.80 64.75 2.00 3.88 2.10 1.98
DiffBIR 15.66 2.81 4.76 17.18 2.44 11.46 3.28 5.10 16.05 2.62 21.26 2.60 4.64 9.28 2.37
DiffTSR 28.10 1.55 2.95 6.94 1.50 28.33 1.51 2.86 6.44 1.45 51.94 1.49 2.90 2.37 1.47
InvSR 21.15 1.10 2.09 7.13 1.06 18.66 1.15 2.17 7.17 1.10 55.45 1.24 2.43 1.78 1.23
PiSA-SR 25.50 4.48 7.61 17.41 3.96 29.21 3.92 6.92 13.26 3.58 50.45 5.20 9.43 6.82 4.95
Real-ESRGAN 32.77 2.72 5.02 9.82 2.57 34.74 3.07 5.64 9.91 2.90 66.30 4.11 7.74 3.81 4.02
StableSR 39.90 1.74 3.33 5.63 1.69 40.55 2.34 4.43 7.41 2.26 71.37 3.95 7.49 3.68 3.89
SUPIR 19.91 3.15 5.43 14.12 2.79 22.41 3.64 6.26 13.13 3.23 33.47 3.91 7.00 7.13 3.63
GLYPH-SR (ours) 22.61 7.35 11.09 20.54 5.87 25.24 10.38 14.71 20.10 7.94 34.12 9.34 14.67 13.85 7.92

CUTE(x8)
BSRGAN 58.33 52.41 55.21 47.56 38.13 68.42 35.29 46.57 42.81 30.35 91.61 58.20 71.18 28.40 55.25
DiffBIR 61.58 57.67 59.56 45.10 42.41 58.73 36.10 44.71 38.97 28.79 88.61 58.58 70.53 30.10 54.47
DiffTSR 60.76 49.23 54.39 48.20 37.35 62.16 32.09 42.33 41.04 26.85 86.23 50.00 63.30 27.95 46.30
InvSR 55.80 57.06 56.42 47.28 39.30 60.98 35.89 45.18 39.50 29.18 87.43 61.86 72.46 35.41 56.81
PiSA-SR 58.23 48.17 52.72 51.39 35.80 61.61 32.24 42.33 41.76 26.85 92.26 63.52 75.24 30.23 60.31
Real-ESRGAN 60.67 57.75 59.18 50.53 42.02 70.00 38.01 49.27 42.81 32.68 93.25 61.79 74.33 31.11 59.14
StableSR 60.06 55.73 57.81 51.68 40.66 61.22 35.80 45.18 43.35 29.18 88.79 63.24 73.87 32.52 58.56
SUPIR 57.69 58.33 58.01 43.46 40.86 59.83 33.33 42.81 35.98 27.24 82.25 61.23 70.20 35.16 54.09
GLYPH-SR (ours) 63.49 63.83 63.66 42.40 46.69 58.91 37.25 45.65 36.80 29.57 83.80 65.79 73.71 35.12 58.37

We compare our model’s character generation ability against standard OCR models across difficulty
levels. The results in Table 2 show significant improvements, especially under hard conditions. For
evaluation, LLaVA-NeXT and our model were prompted using the following instructions: "Please
perform OCR on this image." Additionally, both predicted and ground truth texts were normalized by
removing non-alphabetic characters and ignoring case sensitivity before computing the metrics.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 3: Quantitative comparison of SR models on three scene-text datasets (SVT, SCUT-CTW1500,
CUTE80) at ×4 and ×8 upscaling factors. Metrics include distortion-based (PSNR, SSIM, LPIPS↓)
and perceptual quality scores (MANIQA, CLIP-IQA, MUSIQ). Red and blue denote the best and
second-best results, respectively.

Dataset SR model PSNR SSIM LPIPS↓ MANIQA CLIP-IQA MUSIQ

SVT(x4)

BSRGAN 28.09 83.16 35.34 38.16 39.63 66.25
DiffBIR 21.96 63.94 43.55 47.82 58.66 71.18
DiffTSR 26.06 78.42 44.95 21.34 27.69 46.24
InvSR 24.78 76.58 38.61 46.78 57.30 70.81
PiSA-SR 26.58 82.04 34.13 37.41 44.30 61.87
Real-ESRGAN 29.67 88.58 30.68 31.16 28.58 51.14
StableSR 30.54 87.00 33.73 24.75 32.18 24.44
SUPIR 22.76 67.15 45.14 42.36 48.42 67.55
GLYPH-SR (ours) 22.89 67.19 42.20 47.75 59.40 70.99

SCUT-CTW1500(x4)

BSRGAN 20.22 64.59 32.12 51.41 47.44 67.52
DiffBIR 17.91 56.34 36.20 62.37 61.90 71.19
DiffTSR 18.99 58.59 41.34 35.39 30.59 55.83
InvSR 18.32 60.71 32.99 57.75 55.94 69.25
PiSA-SR 20.07 63.99 31.18 56.31 53.05 68.19
Real-ESRGAN 20.85 67.46 36.81 40.81 43.43 52.66
StableSR 19.24 55.45 49.03 31.04 43.61 24.92
SUPIR 13.61 32.98 52.15 57.35 51.68 66.96
GLYPH-SR (ours) 18.19 54.67 37.15 70.33 57.88 70.31

CUTE80(x4)

BSRGAN 27.35 79.76 31.83 44.22 55.73 69.13
DiffBIR 22.60 66.07 37.74 51.04 72.64 69.06
DiffTSR 24.06 72.66 42.74 33.94 38.47 58.74
InvSR 24.41 75.55 32.93 50.30 67.78 70.66
PiSA-SR 25.83 77.41 31.49 45.82 61.81 66.18
Real-ESRGAN 28.14 82.30 32.01 38.20 48.71 60.65
StableSR 26.23 79.51 30.45 36.26 49.74 60.09
SUPIR 22.42 66.20 39.33 47.50 62.62 68.26
GLYPH-SR (ours) 23.03 69.54 37.03 49.77 65.93 69.96

SVT(x8)

BSRGAN 25.13 73.71 45.64 37.14 37.58 62.83
DiffBIR 22.89 65.20 50.07 45.54 53.20 64.11
DiffTSR 24.45 76.19 46.32 21.39 26.39 43.96
InvSR 22.82 71.34 41.84 32.51 50.83 51.69
PiSA-SR 26.12 77.64 50.83 34.02 18.39 30.24
Real-ESRGAN 25.69 80.28 41.92 28.38 17.86 43.01
StableSR 26.38 78.15 50.20 23.16 23.38 16.22
SUPIR 21.23 59.08 51.46 40.17 45.06 65.20
GLYPH-SR (ours) 21.77 61.36 47.85 47.40 56.78 69.93

SCUT-CTW1500(x8)

BSRGAN 17.32 48.50 47.86 46.21 37.83 66.05
DiffBIR 15.78 43.47 50.05 54.75 49.89 63.16
DiffTSR 14.83 40.25 54.50 35.49 31.88 50.43
InvSR 11.81 30.68 65.88 29.65 29.62 40.29
PiSA-SR 17.22 47.63 48.90 41.77 36.75 58.95
Real-ESRGAN 17.65 52.34 52.14 28.37 20.95 39.99
StableSR 17.00 43.50 66.02 20.93 20.92 16.62
SUPIR 12.63 26.51 58.63 55.46 47.02 65.55
GLYPH-SR (ours) 16.27 41.31 52.58 61.94 48.21 63.43

CUTE80(x8)

BSRGAN 23.84 72.55 39.14 42.07 54.31 67.33
DiffBIR 22.77 65.36 41.79 47.53 62.09 64.62
DiffTSR 22.67 70.41 42.80 33.55 42.95 57.47
InvSR 21.83 70.76 38.05 37.66 62.43 57.69
PiSA-SR 23.36 70.52 47.71 30.71 30.80 45.16
Real-ESRGAN 24.01 75.58 39.60 35.17 36.46 56.55
StableSR 7.94 35.66 79.75 26.00 40.42 34.48
SUPIR 20.64 61.31 43.76 46.38 61.67 67.04
GLYPH-SR (ours) 21.19 65.15 42.31 47.75 65.85 68.85
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Figure 12: Qualitative comparison of scene-text SR under various degradation scales (×4, ×6, ×8).
While prior methods often blur or hallucinate characters, GLYPH-SR accurately restores readable,
coherent text. Zoom in for detail.

Figure 13: Qualitative comparison of text-centric SR results at ×4, ×8 and ×16 scales.

Fig. 13 provides a qualitative comparison between GLYPH-SR and baselines at magnification factors
of ×4, ×8, and an extreme ×16. GLYPH-SR continuously reconstructs glyph outlines, stroke widths,
and kerning while remaining true to the underlying truth, while harmonizing color and brightness with
the surrounding background area. This visual evidence corroborates the quantitative gap observed in
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Table 1: models that optimize solely for perceptual metrics (e.g. DiffBIR, Real-ESRGAN) or for edge
contrast fall short on OCR fidelity once the scale factor exceeds ×8. GLYPH-SR achieves coherent
integration of text and imagery even under ×16 SR.

C.2 ABLATION STUDY ON PING-PONG SCHEDULE

Table 4 presents results for the CUTE80 benchmark at x4 and x8 scales under two evaluation

Table 4: Ablation on the scheduler policy evaluated on the CUTE80 dataset.

(a) CUTE80 (LR × 4)

Scheduler Policy MANIQA CLIP-IQA MUSIQ OCR F1

Binary ping–pong 49.77 65.93 69.96 85.01
Mixing (λt = 0.1) 49.95 70.64 70.67 81.57
Mixing (λt = 0.3) 49.04 69.56 69.75 83.18
Mixing (λt = 0.5) 47.57 65.47 68.95 84.23
Mixing (λt = 0.7) 47.86 68.91 68.83 81.84
Mixing (λt = 0.9) 48.85 69.11 69.13 82.65

(b) CUTE80 (LR × 8)

Scheduler Policy MANIQA CLIP-IQA MUSIQ OCR F1

Binary ping–pong 47.75 65.85 68.85 73.71
Mixing (λt = 0.1) 48.89 67.65 69.56 66.49
Mixing (λt = 0.3) 47.44 68.31 68.86 69.87
Mixing (λt = 0.5) 46.57 64.07 67.35 73.40
Mixing (λt = 0.7) 45.80 67.98 67.19 66.84
Mixing (λt = 0.9) 45.58 67.66 67.18 68.88

protocols. The binary strategy yields higher CLIP-IQA and MUSIQ scores—reflecting superior
perceptual quality—while simultaneously boosting the OCR F1 score (LLaVA-NeXT), supporting its
effectiveness at balancing text readability and image fidelity.

C.3 SENSITIVITY TO UPSTREAM VLM/OCR ERRORS

We assess how errors in upstream text guidance (OCR/VLM) propagate to GLYPH–SR. Because our
method deliberately conditions on tokenlevel strings and locations, corrupted guidance could degrade
both readability and overall perceptual quality. We simulate three error modes and measure their
impact on OCR and IQA metrics.

1. Random Character Corruption: Replace n% ∈ {30, 50, 90} of characters in the OCR string
with uniformly sampled alternatives (random noise).

2. Plausible Character Swaps (“Swap”): Systematically replace characters with visually confusable
counterparts from a curated set (e.g., O↔0, I↔1, T↔7).

3. Missed Detections (“Drop”): Remove a portion of OCRrecognized characters to emulate detec-
tion/recognition failures.

Table 5 reports OpenOCR/GOTOCR F1 and MANIQA/CLIPIQA. Parentheses show absolute changes
w.r.t. the uncorrupted baseline.

Table 5: Sensitivity to OCR/VLM guidance errors. Values in parentheses are absolute deltas from
the baseline (lower is worse).

Error rate / Type OpenOCR F1 GOT-OCR F1 MANIQA CLIP-IQA

Baseline 48.82 38.36 62.01 79.69
30% 38.36 (−10.46) 28.67 (−9.69) 45.87 (−16.14) 63.65 (−16.04)
50% 32.03 (−16.79) 26.35 (−12.01) 45.39 (−16.62) 64.88 (−14.81)
90% 27.52 (−21.30) 26.35 (−12.01) 45.61 (−16.40) 66.00 (−13.59)
Swap 39.88 (−8.94) 33.12 (−5.24) 45.81 (−16.20) 66.00 (−13.69)
Drop 41.85 (−6.97) 32.03 (−6.33) 44.82 (−17.19) 65.30 (−14.39)

All error modes substantially hurt both axes: readability (OpenOCR/GOTOCR F1) and perceived
image quality (MANIQA/CLIPIQA). Even moderate noise (50%) reduces OpenOCR F1 by 16.79 pp
and MANIQA by 16.62 points. Plausible swaps and missed detections also trigger large drops,
indicating that quantity (how many tokens are wrong), nature (plausible vs. random), and absence
(drops) all impair glyph integrity and global appearance. This validates our design choice to use a
strong, LRaware OCR/VLM and to treat guidance quality as a firstorder factor in textaware SR.
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Figure 14: Failure cases where GLYPH-SR produces visually plausible SR outputs but incorrectly
generates text in non-textual regions.

As illustrated in Fig. 14, GLYPH-SR can deliver visually plausible SR results yet still hallucinates
glyphs in regions that were originally non-textual. This deficiency in text-region localization means
the reconstructed text may be ambiguous, incomplete, or entirely spurious. Furthermore, when
multiple words are present, the model tends to enhance only the most visually salient word and
overlook the rest. These failure cases underline the necessity for finer-grained attention mechanisms
and explicit supervision of glyph positions in future work.

C.4 COMPUTATIONAL FOOTPRINT AND PRACTICAL EFFICIENCY

Setup. We benchmark inference on a 4× SR task with 512×512 inputs. Times are mean ± std.
over repeated runs. For methods that require a large VLM (SUPIR and GLYPH–SR), we used two
NVIDIA A6000 GPUs; reported peak VRAM is the sum across both devices.

Table 6: Compute comparison. For VLMguided methods, #Params lists (restoration, VLM) in
millions.

Method #Params (M) Inference (s / sample) Peak VRAM (GB)

StableSR 153 79.98± 0.22 10.10
DiffBIR 385 53.14± 1.41 9.64
SUPIR 18, 152 25.25± 0.86 46.21
GLYPH–SR 13, 225 38.25± 1.28 43.56

GLYPH–SR trades extra parameters and memory for markedly better text fidelity: it couples a
restoration backbone with a powerful OCR/VLM to reason about lowresolution text. This design
improves accuracy but introduces a computational bottleneck. To mitigate the cost while keeping
readability gains, we will pursue:

• Lighter VLM Guidance. Replace the current generalpurpose VLM with a compact, LRtextspe-
cialized guider (or distill the guider), reducing parameter count and latency with minimal loss in
guidance quality.
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• Inference Optimization (“Block Caching”). Cache and reuse guidance features that repeat
across diffusion steps/tiles (e.g., projected text embeddings and crossattention KV maps), skipping
redundant compute and lowering endtoend runtime.

These directions aim to preserve GLYPH–SR’s strengths (“looks right and reads right”) while
improving deployability under realistic compute budgets.

Trainable parameters. Although the full model size is large due to the VLM, our fine-tuning
recipe is lightweight. We freeze the diffusion backbone and update only two components:

1. TS-ControlNet branch (≈54.8M parameters) that handles text-guidance fusion.
2. VLM LoRA adapter (≈5.9M parameters) with low rank (r=8), lora_alpha of 32, and

dropout of 0.05.

To minimize memory further, the large frozen VLM is loaded in 4-bit quantization (nf4 with double
quantization via BitsAndBytes).

Table 7: Trainable parameter counts (millions). Despite using a VLM, GLYPH–SR keeps trainable
parameters modest via freezing and LoRA.

Metric GLYPH-SR PiSA-SR SeeSR StableSR DiffBIR SUPIR DiffTSR

Trainable (M) 60.7 0.38 489.04 152.67 378.95 3865.64 55.31

Inference latency. The OCR/VLM guider is the main overhead driver. Out of a total per-image
latency of 38.25 ± 1.28 seconds (Sec. C.4), the VLM component accounts for ≈ 8.46 seconds.
Notably, while integrating the VLM increases total parameter count, the latency impact is not
proportional. In practice, we retain training practicality with only 60.7M trainable parameters and
observe that the rise in inference time is moderate relative to the parameter growth, yielding a
favorable trade-off between accuracy (readability and IQA) and compute.

Implication. These results align with our compute study (Table 6): GLYPH–SR deliberately
expends parameters on guidance quality to secure text fidelity, yet its fine-tuning footprint remains
compact and deployable. Further efficiency gains are compatible with our design (e.g., lighter LR-text
guiders and block caching for reusable guidance features).
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