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ABSTRACT

Image super-resolution (SR) is fundamental to many vision systems—from surveil-
lance and autonomy to document analysis and retail analytics—because recovering
high-frequency details, especially scene-text, enables reliable downstream percep-
tion. scene-text, i.e., text embedded in natural images such as signs, product labels,
and storefronts, often carries the most actionable information; when characters
are blurred or hallucinated, optical character recognition (OCR) and subsequent
decisions fail even if the rest of the image appears sharp. Yet previous SR re-
search has often been tuned to distortion (PSNR/SSIM) or learned perceptual
metrics (LPIPS, MANIQA, CLIP-IQA, MUSIQ) that are largely insensitive to
character-level errors. Furthermore, studies that do address text SR often focus
on simplified benchmarks with isolated characters, overlooking the challenges of
text within complex natural scenes. As a result, scene-text is effectively treated
as generic texture. For SR to be effective in practical deployments, it is therefore
essential to explicitly optimize for both text legibility and perceptual quality. We
present GLYPH-SR, a vision—language-guided diffusion framework that aims to
achieve both objectives jointly. GLYPH-SR utilizes a Text-SR Fusion ControlNet
(TS-ControlNet) guided by OCR data, and a ping-pong scheduler that alternates
between text- and scene-centric guidance. To enable targeted text restoration, we
train these components on a synthetic corpus while keeping the main SR branch
frozen. Across SVT, SCUT-CTW 1500, and CUTESO at x4 and x8, GLYPH-SR
improves OCR F; by up to +15.18 percentage points over diffusion/GAN baselines
(SVT x8, OpenOCR) while maintaining competitive MANIQA, CLIP-IQA, and
MUSIQ. GLYPH-SR is designed to satisfy both objectives simultaneously—high
readability and high visual realism—delivering SR that looks right and reads right.
We provide code, pretrained models, the synthetic corpus with generation scripts,
and an evaluation suite to support reproducibility.

1 INTRODUCTION

Image super-resolution (SR)E] which reconstructs high-resolution (HR) images from low-resolution
(LR) inputs, is critical for applications like autonomous driving where clear details are paramount.
While conventional SR aims to improve perceptual quality, we argue that for many real-world
scenarios, ensuring the text legibility of scene-text (e.g., on signs, license plates) is equally, if not
more, important. Accurately restoring characters is crucial, as failures in legibility can compromise
downstream tasks like optical character recognition (OCR), regardless of the overall image sharpness.

1.1 AN OVERLOOKED CHALLENGE IN IMAGE SR: ACHIEVING HIGH SCENE-TEXT FIDELITY

However, achieving this level of text fidelity remains an overlooked challenge in most conventional
SR frameworks. Two systemic biases explain why text often degrades in existing SR models (e.g.,

'Throughout this paper, we will use image SR and SR interchangably whenever there is no ambiguity.
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Figure 1: Qualitative and quantitative comparisons of our GLYPH-SR with other competing SR
methods, demonstrating superior text fidelity and OCR F; score.

StableSR [Wang et al.| (2024), DiffBIR |Lin et al.| (2024), InvSR [Yue et al.| (2025)) despite strong

perceptual scores:

(a) Metric Bias. Standard full-reference distortion metrics (PSNR/SSIM) and learned/no-
reference perceptual metrics (LPIPS, MANIQA, CLIP-IQA, MUSIQ) aggregate quality
globally and are dominated by area; small text regions (often well below 1% of the image)
therefore contribute little, so character corruption is weakly penalized.

(b) Objective Bias. Common training losses prioritize appearance similarity and treat characters
as generic high-frequency texture rather than discrete semantic units required by OCR.

In practice these biases surface as two failure modes (Fig. |I| (a)): (i) Hallucination—methods
optimized for perceptual realism may produce sharp but incorrect characters, harming OCR; (ii)
Conservative restoration—others preserve the blurry input to avoid artifacts, yielding limited SR
gains alongside mediocre perceptual quality. As a result, few approaches simultaneously enhance
visual realism and ensure text legibility—an essential requirement for OCR-dependent applications.

1.2 CONTRIBUTIONS

We address scene-text SR as a bi-objective problem—optimizing both visual quality and text
legibility—and present GLYPH-SR, a vision—language guided diffusion framework that achieves
both. Our key technical contributions and breakthroughs in this work include the followings:
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* Bi-Objective Formulation & Dual-Axis Evaluation. We explicitly cast SR in text-rich
scenes as the joint optimization of image quality and readability, and standardize a dual-axis
protocol that reports perceptual SR metrics (MANIQA, CLIP-IQA, MUSIQ) together with
OCR-aware measures (word/character accuracy, edit distance, F;), ensuring that small text
regions are not underweighted.

* Text-SR Fusion ControlNet with Time-Balanced Guidance. We introduce a dual-branch
TS-ControlNet that fuses token-level OCR strings with verbalized locations StxT and a
scene caption Styig. The SR branch is frozen while the text branch is fine-tuned; residual
mixing injects complementary cues into the LDM without disrupting its generative prior. A
lightweight ping—pong scheduler )\, alternates text-centric and image-centric conditioning
along the denoising trajectory, and coherently modulates both embedding fusion and residual
injection.

* Factorized Synthetic Corpus & Comprehensive Validation. We build a four-partition
synthetic corpus that independently perturbs glyph quality and global image quality, enabling
targeted text restoration while keeping the SR branch frozen. Across SVT, SCUT-CTW 1500,
and CUTESO at x4/ x 8, GLYPH-SR improves OCR F; by up to +15.18 pp over strong
diffusion/GAN baselines while maintaining competitive MANIQA, CLIP-IQA, and MUSIQ.
We release code, pretrained models, data-generation scripts, and an evaluation suite to
support reproducibility.

2 RELATED WORKS

SR via Deep Learning. Early CNN methods such as SRCNN Dong et al.|(2015), EDSR [Lim et al.
(2017), and RCAN |Zhang et al.|(2018b), and later transformer models like SwinIR [Liang et al.|(2021),
substantially advanced distortion-oriented SR; yet they primarily optimize pixel fidelity rather than
semantic fidelity in small, text-bearing regions. Adversarially trained SR has improved perceptual
realism on in-the-wild images; representative examples include BSRGAN [Zhang et al.|(2021]) and
Real-ESRGAN |Wang et al.|(2021]).

Diffusion-based SR has recently shown strong stability and realism. Foundational approaches such
as DiffBIR [Lin et al.| (2024)) and StableSR [Wang et al.| (2024) couple LR conditioning with powerful
diffusion priors, and subsequent work incorporates richer priors or auxiliary conditions: SeeSR [Wu
et al.| (2024) exploits semantic prompts, InvSR |Yue et al.| (2025)) enables flexible guidance/sampling,
SUPIR [Yu et al.|(2024b) leverages large-scale pretrained backbones with restoration-guided sampling,
and PISA-SR |Sun et al.| (2025) further advances controllability. As illustrated in Fig. [I{b), explicit
character-level integrity is seldom a primary optimization target in general-purpose diffusion SR.
Consequently, as further substantiated by the quantitative benchmarks in Fig.[T|c), there is a notable
scarcity of methods that holistically address both general image fidelity and text-specific restoration
metrics.

Text-Focused SR. Text-centric SR aims to enhance readability with text-aware priors or recognition-
aware objectives. Representative methods include TATT Ma et al.| (2022), STISR [Noguchi et al.
(2024), and Stroke-Aware SR |Chen et al.[(2022). While effective on word/line crops, these approaches
often assume simplified settings and can underperform on full natural scenes where text must be
preserved together with surrounding content.

3 OUR APPROACH: GLYPH-SR

3.1 MODEL ARCHITECTURE

Overview. Fig. [2|depicts the proposed GLYPH-SR pipeline. Given an LR image Ip.g € RF*WxC,
an LR-robust conditioner of a pretrained latent diffusion model (LDM)Rombach et al.|(2022) extracts
multi-scale features fi,r used for conditioning. Our Text-SR Fusion ControlNet (TS-ControlNet)
then injects complementary restoration cues while preserving the generative prior of the LDM. Finally,
an Elucidated Diffusion Model (EDM) sampler Karras et al.| (2022) drives the reverse process in
latent space toward a high-resolution reconstruction. However, when guidance is provided only in a
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Figure 2: Overview of the proposed GLYPH-SR architecture.
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(b) Four synthetic subsets with controlled text and image quality variations used for fine-tuning.  (c) Text-SR Fusion ControlNet architecture.

Figure 3: Text-centric fine-tuning framework: (a) trade-off between scene-text fidelity and overall
image quality according to guidance; (b) four synthetic training subsets with matched prompts; (c)
TS-ControlNet architecture.

holistic form, small text regions may still be treated as generic high-frequency textures rather than
semantically meaningful glyphs, which can yield imperfect character restoration.

Condition Decomposition. To address this limitation, we explicitly separate the guidance into
(i) image-oriented and (ii) text-oriented signals.

* Image-Oriented Guidance. A scene-level caption Spyig summarizes global attributes such
as illumination, composition, and depth-of-field, and is used to encourage holistic perceptual
quality.

* Text-Oriented Guidance. A dedicated OCR module detects K text instances and returns
position—text pairs {(Sf, Sk )} . Each pair is converted into a structured natural-
language prompt, e.g. “HSBC is displayed at the center of the image,”
and passed to the text branch.

As shown in Fig.b), simply separating Sty and {(Sg, ., Sk,) }/—, improves text fidelity but can
degrade non-text regions, motivating our subsequent guidance-fusion strategy and the ping—pong
scheduler that alternates text-centric and scene-centric guidance.

Text-SR Fusion ControlNet. To balance the two objectives—image quality and text legibility—we
introduce the Text—SR Fusion ControlNet (TS-ControlNet), which merges glyph-level semantic priors
with global SR guidance (Fig.[3k). During training, the LDM backbone and the SR branch of TS-
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ControlNet are frozen, and only the text branch is updated, improving text legibility while preserving
overall image quality.

Given image data I, we obtain the clean target latent zp = enc(I) via the VAE encoder. We then
sample a timestep ¢t ~U{1,...,T} and noise € ~ N (0,I), and construct the noised latent by the
standard DDPM forward process |Ho et al.[ (2020):

zZt = \/O_[tZO —+ \/1—0_[1557 dt:Hi:l(l_ﬁs)'

The diffusion model Dy predicts the noise residual conditioned on two control streams: (i) Csg, a
spatial condition from a frozen SR-ControlNet that guides the overall structure based on the low-
resolution input image Spvia, and (i) Crxr, a textual condition from a trainable Text-ControlNet
that controls the rendering of text based on a set of OCR-derived text-position pairs Stxr.

At inference, we start from z7 and use the EDM sampler Karras et al.|(2022) with the same conditions
to obtain the HR latent, which is then decoded to the image domain.

Diffusion Loss with Residual Injection. The frozen SR-ControlNet and the trainable Text-
ControlNet produce residual hierarchies. We blend them before injection via

1
€= 5Scm {CSR(Zﬁ Gimg(Stma + P)) + Crxr(2e; duxt (Stxr + P))]. (D

where scrrp 1S a global scaling factor and P denotes the restoration guide prompt.

The diffusion backbone Dy then predicts the residual noise, and we optimize TS-ControlNet with the
standard e-prediction objective:

‘Ctext :]EZ(),t,EHE_D0(2t7t7c)||§. (2)

Synthetic Fine-Tuning Dataset. To disentangle text legibility from holistic perceptual quality, we
synthesize four mutually exclusive subsets {hy IE(ZQS., s IS } All synthetic data are generated
from the same raw text, but for training purposes, the image quality is intentionally reduced or only
the text within the images is distorted. As shown in Fig. E](b). To train TS-ControlNet, we defined the

following guide prompt.

* Positive-Text / High-Quality (PgOQS). Perfect image quality with perfectly preserved
character outlines and precise positioning.

* Negative-Text / High-Quality (Pﬁag). Intentionally damaged character outlines and precise
positioning, but good image quality.

* Positive-Text / Low-Quality (Py;). Poor image quality, but preserved character outlines
and precise positioning.

* Negative-Text / Low-Quality (P} ). Image quality is poor and character outlines and
exact positions are intentionally damaged.

Each sample is encoded into a composite conditioning tuple for the TS-ControlNet:

Zi 3] "/J(SIMG) S2] w({(s‘fext78§os)}kkzl) @ Pf ) oe{pos,neg}, *E{HQ7LQ}'
~~ —— ~~
image latent scene caption text cues guide prompt

Here, z$ = Enc(Ii) is the first-stage latent of the synthetic image I¢, and ¢ (-) denotes the frozen
CLIP text encoder. Note that, to explicitly inform the model when incorrect text has been generated,
the text-position pairs {(Sf.,, Sk ;) }1—, are always extracted from the positive-text, high-quality
image dataset.

3.2 TEXT-IMAGE BALANCING SCHEDULER

Although the dedicated TS-ControlNet injects glyph-centric features, the temporal allocation between
text and image guidance along the diffusion trajectory is critical. We therefore introduce a scheduler
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Tschea : {0,...,T} — [0,1] that dynamically reweights the two guidance streams via a time-
dependent coefficient \;.

paragraphStep update with mixed guidance. Let z; be the latent at diffusion step ¢ (sampling proceeds
from t =T down to 0). Given a mixed embedding e (Eq. , we form a classifier-free guided noise
estimate (Eq. [5) and then update

21 = 2t — M€y 3
where 7, is a step size (a function of the noise level o; in our EDM-based solver). At inference we
initialize 27~ N (0, 02I) and apply the EDM sampler Karras et al. (2022) with the same conditions
over T steps.

We encode scene-level and text-level prompts separately and fuse them as

€img = VVimg ¢img(SIMG), etxt = Wixt ¢txt({(8tkext7 Sﬁos)}f:1)7 et = (1—)\t> eixt + A¢ €img,

4)
where ¢ime and ¢y are text encoders (kept frozen), and Wipye, Wiyt are linear projections to a
shared embedding space. The guided residual is computed via classifier-free guidance:

gt = (1+W)D0(Zt,t,€t) - WDQ(Zt,t,Q), (5)

with guidance scale w. Consistently, the same \; also modulates residual injection (cf. Eq.[1)) as a
time-varying blend 7;(t) = scerac[(1 — A) 1 X7 + A rPR].

Binary Ping-Pong Policy. We found that a binary schedule that alternates between text-centric
(A¢=0) and image-centric (\; =1) guidance is effective:

0, if [©=%] mod2 = 0,
At = (6)

1, otherwise,

where 7 € N is the toggle period (default 7 = 1) and ¢, is an optional offset. Intuitively, the text-
focused phases inject precise glyph cues, while the image-focused phases stabilize global structure
and appearance. We also experimented with continuous ramps A\; = g(o;) (e.g., noise-level monotone
schedules), but the square-wave “ping—pong” yielded the best OCR F; at similar perceptual quality
(see Appendix C).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our method along two axes: semantic text restoration and perceptual SR quality. We
report OCR-based F; scores (Chng et al.| (2019) to quantify semantic correctness. Pixel-wise fidelity
is measured by MANIQA |Yang et al.|(2022), CLIP-IQA [Wang et al.|(2023)), and MUSIQ [Ke et al.
(2021)) (see Sec.[A.T). Experiments are conducted on three representative scene-text benchmarks
(details in Sec.[B.2.1): SCUT-CTW 1500 Liu et al (2019), CUTE80 Risnumawan et al.| (2014), and
SVT Wang et al.[(2011). We adopt Juggernaut-XL as the LDM backbone and fine-tune it on our
synthetic corpus generated with LLaVA-NeXT |Liu et al.|(2024), Nunchaku [Cruanes et al.[(2016)), and
SUPIR |Yu et al.[(2024b)). Full data-generation pipelines and hyper-parameters and setup are detailed
in Appendix B.

4.2 EVALUATION RESULTS

As shown in Table[I] many baseline methods improve Super-Resolution (SR) scores at the cost of
Optical Character Recognition (OCR) performance. For instance, on SVT x4, DiffBIR achieves
excellent SR metrics (47.82 MANIQA /71.18 MUSIQ) but suffers from text hallucination, leading to
a low OpenOCR F1 score of 38.73. Conversely, StableSR attains a high LLaVA-NeXT F1 (73.91)
through conservative restoration, which results in a poor MUSIQ score of 24.44. This pattern repeats
on SCUT-CTW1500x4. In contrast, our method consistently mitigates this trade-off. It achieves
the best OpenOCR F1 score in 5/6 settings and the best GOT-OCR F1 in 4/6, all while maintaining
top-tier SR performance. Notably, on SVT x8, it is the best across all six metrics, and on CUTE80x 8§,
it leads all SR metrics while also securing the top OpenOCR F1 score (63.66).
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Table 1: quantitative comparison of OCR Fl-scores and SR quality metrics across datasets and
models. red and blue indicate the best and second-best scores, respectively.

OCR metric F1 SR metric
Dataset Model OpenOCR  GOT-OCR LLaVA-NeXT MANIQA CLIP-IQA MUSIQ
BSRGAN 53.96 58.66 68.50 38.16 39.63 66.25
DiffBIR 38.73 42.33 45.19 47.82 58.66 71.18
DiffTSR 19.35 22.51 29.23 21.34 27.69 46.24
InvSR 57.79 60.96 65.00 46.78 57.30 70.81
SVT (x4) PiSA-SR 63.30 65.23 67.75 37.41 44.30 61.87
Real-ESRGAN 59.15 67.32 72.53 31.16 28.58 51.14
StableSR 59.88 63.76 73.91 24.75 32.18 24.44
SUPIR 58.41 61.90 62.14 42.36 48.42 67.55
GLYPH-SR (ours) 67.54 71.72 73.22 47.75 59.40 70.99
BSRGAN 24.67 21.86 35.10 51.41 47.44 67.52
DiffBIR 24.71 23.82 30.71 62.37 61.90 71.19
Diff TSR 19.77 15.98 23.69 35.39 30.59 55.83
InvSR 29.57 26.41 34.50 57.75 55.94 69.25
SCUT-CTW1500 (x4) PiSA-SR 37.46 34.14 44.11 56.31 53.05 68.19
Real-ESRGAN 31.31 26.94 43.25 40.81 4343 52.66
StableSR 25.55 19.95 45.86 31.04 43.61 24.92
SUPIR 18.26 17.61 24.37 57.35 51.68 66.96
GLYPH-SR (ours) 38.26 36.96 42.90 70.33 57.88 70.31
BSRGAN 73.09 56.02 83.97 44.22 55.73 69.13
DiffBIR 68.88 48.82 81.84 51.04 72.64 69.06
Diff TSR 61.08 47.48 73.71 33.94 38.47 58.74
InvSR 72.46 55.62 84.75 50.30 67.78 70.66
CUTESO (x4) PiSA-SR 72.77 54.80 82.65 45.82 61.81 66.18
Real-ESRGAN 73.71 58.79 84.23 38.20 48.71 60.65
StableSR 72.14 57.22 82.92 36.26 49.74 60.09
SUPIR 70.85 51.87 82.11 47.50 62.62 68.26
GLYPH-SR (ours) 73.09 55.62 85.01 49.77 65.93 69.96
BSRGAN 14.61 13.12 25.56 37.14 37.58 62.83
DiffBIR 16.70 18.55 22.32 45.54 53.20 64.11
DiffTSR 10.28 10.72 15.87 21.39 26.39 43.96
InvSR 17.12 21.15 21.54 32.51 50.83 51.69
SVT (x38) PiSA-SR 17.53 24.05 37.76 34.02 18.39 30.24
Real-ESRGAN 17.73 23.29 30.83 28.38 17.86 43.01
StableSR 20.95 24.43 43.24 23.16 23.38 16.22
SUPIR 33.61 35.96 36.78 40.17 45.06 65.20
GLYPH-SR (ours) 48.79 56.16 58.54 47.40 56.78 69.93
BSRGAN 3.37 3.54 3.88 46.21 37.83 66.05
DiffBIR 4.76 5.10 4.64 54.75 49.39 63.16
DiffTSR 2.95 2.86 2.90 35.49 31.88 50.43
InvSR 2.09 2.17 243 29.65 29.62 40.29
SCUT-CTW1500 (x8) PiSA-SR 7.61 6.92 9.43 41.77 36.75 58.95
Real-ESRGAN 5.02 5.64 7.74 28.37 20.95 39.99
StableSR 3.33 4.43 7.49 20.93 20.92 16.62
SUPIR 5.43 6.26 7.00 55.46 47.02 65.55
GLYPH-SR (ours) 11.09 14.71 14.67 61.94 48.21 63.43
BSRGAN 55.21 46.57 71.18 42.07 54.31 67.33
DiffBIR 59.56 44.71 70.53 47.53 62.09 64.62
DiffTSR 54.39 42.33 63.30 33.55 42.95 57.47
InvSR 56.42 45.18 72.46 37.66 62.43 57.69
CUTES0 (x8) PiSA-SR 52.72 4233 75.24 30.71 30.80 45.16
Real-ESRGAN 59.18 49.27 74.33 35.17 36.46 56.55
StableSR 57.81 45.18 73.87 26.00 40.42 34.48
SUPIR 58.01 42.81 70.20 46.38 61.67 67.04
GLYPH-SR (ours) 63.66 45.65 73.71 47.75 65.85 68.85

Fig. [ concretizes the two failure modes introduced earlier (Fig.[T). The examples on the left illustrate
hallucination—sharp strokes that alter glyphs, raising IQA scores but breaking legibility. In contrast,
those on the right exhibit conservative restoration. This issue stems from insufficient SR, a cautious
approach to prevent hallucination. While this allows an OCR module to recognize the low-quality
text, it results in blurry, low-contrast images with minimal SR gains. By preserving glyph topology
while restoring realistic textures, GLYPH-SR avoids both pitfalls, yielding images that are both
high-quality and OCR-readable. This outcome underscores why evaluations must report SR and OCR
metrics jointly for a comprehensive assessment.
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Figure 4: Qualitative examples illustrating the trade-off between SR metrics (e.g., MANIQA, CLIP-
IQA, MUSIQ) and OCR metrics (F1, Accuracy) in scene-text images. While some methods improve
perceptual SR scores, they may degrade OCR performance, and vice versa.

Superior OCR Fidelity. GLYPH-SR consistently achieves top-two Fy scores across all datasets and
OCR engines. On the most challenging benchmarks, it surpasses competitors by a large margin (e.g.,
+12.0 pp on CUTESO0, x8), confirming the efficacy of our proposed token-wise guidance.

Competitive Perceptual Quality. While prioritizing text, GLYPH-SR maintains excellent global
fidelity, ranking first or second in 26 out of 30 test cases across MANIQA, CLIP-IQA, and MUSIQ.
It frequently outperforms other diffusion models like DiffBIR and SUPIR in these metrics.

Robustness Under Severe Degradation. The performance gap widens at x8 scale, where our
model avoids the textual hallucination of GANs and the over-smoothing of generic diffusion methods.
GLYPH-SR maintains high OCR scores without sacrificing perceptual quality, demonstrating its
robustness to extreme degradation.

Taken together, the results confirm that our method yields a balanced architecture that advances the
SOTA by resolving the conflict between text recognition and perceptual SR.
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Figure 5: Comparison of SR results against different methods (DiffBIR, Real-ESRGAN, BSRGAN,
and GLYPH-SR) on various degraded LR images.

Fig.[5] visually demonstrates how our model uniquely preserves text structure and legibility across
severe degradations (x4 to x8). Competing methods exhibit clear failure modes. Diffusion models
like DiffBIR, despite high perceptual scores, frequently hallucinate incorrect characters (e.g., ‘EANK
OF ENUNAL’). Conversely, GAN-based methods like BSRGAN’s high contrast produces jagged,
geometrically distorted glyphs that harm human readability.
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This confirms the trade-off between perceptual quality and OCR accuracy observed in Table [T}
Methods that excel in one metric often fail in the other. GLYPH-SR consistently reconciles both
objectives, delivering coherent and legible results even at the extreme x8 scale where other models
collapse.

4.2.1 ABLATION STUDIES
W/ Siexts W/ Spos

W/ Siexts W/ Spos W/ Sext, WIO Spos W/ Siext, WIO S5

| STARBUCKS COFFEE

STARBUCKS COFFEE

w/o Stextr w/ Spos
A

BOUES SOFFCE

Figure 6: Four prompt settings using combinations of texts (Stext) and its spatial positions (Spos)-

Fig. [6] shows the effect of selectively removing the two of guidance used by GLYPH-SR: (i) the
OCR string Siex; and (ii) its spatial positions Spos. We evaluate four combinations—both, text-only,
position-only and none.

1) Full guidance ( Siex+Spos ): The top-left quadrants reconstruct the text pattern without distortions,
retaining stroke width, inter-letter spacing, and global geometry.

2) Text-only guidance ( Siexi /Bpos ): When positional guidance is removed, the model hallucinates
irregular kerning and warped baselines (e.g. “STASHOES COFFEE”), indicating that semantics alone
cannot anchor glyph layout.

3) Position-only guidance (Siexi / Spos): Conversely, supplying bounding boxes but no textual
content yields partial or incorrect spellings (“STABHOUES SOFFCE”), showing that location cues
without semantics lead to character-level ambiguity.

4) No guidance (SiextSpos ): Removing both priors produces the worst outcomes—severe hallucina-
tions and geometric distortions reminiscent of generic diffusion SR.

5 CONCLUSIONS

Super-resolution research has traditionally prioritized perceptual quality, often neglecting a critical
aspect of text-rich scenes: legibility. This creates a persistent gap where models produce sharp-
looking images that still cannot be read correctly, as text is underweighted by standard SR objectives.
To resolve this, GLYPH-SR reframes the task as a bi-objective problem that optimizes both visual
realism and text legibility. We introduce a practical recipe featuring a VLM-guided diffusion model
with a dual-branch TS-ControlNet, which fuses spatial OCR cues and a global caption. To properly
evaluate this balance, we provide a factorized synthetic corpus and a dual-axis protocol pairing OCR
F; with perceptual IQA metrics. On challenging benchmarks (SVT, SCUT-CTW 1500, CUTESO at
x4/x8), GLYPH-SR improves OCR F; by up to +15.18 pp over strong baselines while maintaining
top-tier perceptual quality. Future work will explore multilingual scripts, stronger geometric priors,
and tighter integration with end-to-end recognition systems.
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REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our work. The complete source code, pretrained models,
synthetic data generation scripts, and evaluation suite for our GLYPH-SR framework are provided as
supplementary material, with direct links available in Appendix B. Details of the model architectures,
pre-trained backbones, and key hyper-parameters are described in Section 4.1 and extensively in Ap-
pendix B, which also specifies the hardware and software environment used for all experiments. Our
dual-axis evaluation protocol, including all benchmark datasets (SVT, SCUT-CTW 1500, CUTESO0)
and the specific OCR and perceptual metrics, is documented in Section 4.1 and Appendix A.1. The
core components of our method, including the Text-SR Fusion ControlNet, condition decomposition,
and the ping-pong scheduler, are detailed in Section 3. The data generation and fine-tuning workflow,
serving as a practical guide, is outlined in Appendix B. Extended experimental results, comprehensive
ablation studies, sensitivity analyses, and a discussion of the computational footprint are reported in
Appendix C to ensure full transparency of our findings. These resources provide a comprehensive
toolkit for the faithful reproduction and independent verification of our results.
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A METRIC-BASED EVALUATION

A.1 EVALUATION METRICS

We evaluate our method along two primary axes: (1) the semantic integrity of textual content, and (2)
the perceptual quality of the reconstructed images. Accordingly, we organize the metrics into two
groups.

OCR Metrics. To assess text restoration performance, we report:

e F; score, Precision, Recall and Accuracy (1), : character-level measures of OCR correct-
ness; higher is better.

* Normalized Edit Distance (1-NED) (1): inverse of edit distance, scaled to [0, 100]; higher
values indicate closer agreement with the ground truth.

Image-Quality Metrics. For perceptual fidelity, we adopt:

* Peak Signal-to-Noise Ratio (PSNR) (1): log-scaled pixel-level similarity to the reference
image.

* Structural Similarity Index (SSIM) (1): evaluates luminance, contrast, and structural
consistency in line with human perception, scaled to 0—100.

* Learned Perceptual Image Patch Similarity (LPIPS |Zhang et al.[ (2018a)) ({): deep-
feature distance reflecting perceptual differences, scaled to 0—100.

¢ Multi-Dimension Attention Network for No-Reference IQA (MANIQA Yang et al.
(2022)) (1): no-reference quality score based on attention-driven features, scaled to 0—100.

¢ CLIP-based Image Quality Assessment (CLIP-IQA Wang et al. (2023)) (1): semantic
fidelity metric leveraging CLIP embeddings, scaled to 0—100.

¢ Multi-Scale Image Quality Transformer (MUSIQ Ke et al. (2021)) (1): transformer-based
no-reference IQA that aggregates multi-resolution cues.

A.2 MISALIGNMENT BETWEEN METRICS AND HUMAN PERCEPTION

SR papers still default to PSNR, SSIM, and LPIPS. Although convenient, these scores often drift
from what people actually perceive—especially when the low-resolution input is heavily degraded.
Fig. /] offers four counter-examples that highlight three recurring failure modes.

Perceptual vs. Semantic Fidelity. In Figure[7] the “HOMER BREWING COMPANY” sign is recon-
structed cleanly by GLYPH-SR yet receives lower PSNR and SSIM than Real-ESRGAN, whose
output contains aliasing and hallucinated glyphs.

Metrics Can Be Misleading. Across multiple benchmarks we frequently observe visually superior
outputs that score lower on PSNR/SSIM/LPIPS (see red vs. blue values in Figure[7). This misalign-
ment—echoed by prior studies Blau & Michaeli| (2018); Jinjin et al.| (2020); |Gu et al.| (2022); |Yu
et al.|(2024a)—underscores the danger of metric-only evaluation. For text-aware SR, side-by-side
inspection or user studies remain indispensable.
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Figure 7: Each triplet shows (left) the input LR image, (middle) a strong baseline, and (right) GLY PH-
SR. Despite GLYPH-SR producing visibly sharper text, its PSNR/SSIM/LPIPS scores (blue) are
often lower than those of the baseline (red). The gap exposes a growing consensus: traditional metrics
alone do not capture human perception of text-laden imagery.
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B EXPERIMENT DETAILS

B.1 REPRODUCIBILITY STATEMENT

Synth Dataset:

https://drive.google.

usp=drive_link

Pretrained Model:

https://drive.google.

usp=drive_link

Code:

https://drive.google.

usp=drive_link

Results:

https://drive.google.

usp=drive_link

com/drive/folders/1eYMvZQg-930kI2v1Y1dXLPHDycBkuvdu?

com/drive/folders/1hrZ5JRbVLcRSFpbL-uPxe9iLddylAFgk?

com/drive/folders/1A75nhOQEG1hcEhzUJx075X8LETO71R3K?

com/drive/folders/1CArNuMOAI50z3TGsR66u218RLV5UdHYa?

Data Generation & Fine-Tuning Workflow

1. Stage 1 — Scene Description Extraction
dataset_generater/make_dataset_get_desc.py
./datasets/descriptions/ containing: {id, image_path, ocr_text, caption}.

2. Stage 2 — Augmented Prompt Synthesis
third_party/make_dataset_with_nunchaku/
make_dataset_with_augmentation.py
Invokes the Nunchaku augmentation engine to expand each record with synthetic corruptions
(blur, noise, JPEG artifacts) and with diversity-enhanced textual prompts. The output is a
paired folder structure: . /datasets/aug/{hqg, 1q}.

3. Stage 3 — Negative/HQ Pairing
dataset_generater/make_dataset_Neg_ HQ.py
Generates explicit (LQ, HQ) pairs and the associated prompt metadata required by GLYPH-
SR. Final training files are placed under . /datasets/final/.

4. Stage 4 — Fine-Tuning
train_GLYPH_SR.py

python3 train_ GLYPH_SR.py \

——data_

——cfg

Inference Workflow

root ./datasets/ \
GLYPH-SR/ model_configs/model_config.yaml

1. Create the checkpoint directory.
Download every model file from the Pre-trained Checkpoints link and place them in a newly
created folder named CKPT_PTH at the project root.

2. Patch all path references.
Edit the three files listed below so that each points to the new directory, e.g.
CKPT_PTH/<checkpoint_name>.pth:

* GLYPH-SR/model_configs/model_config.yaml
* GLYPH-SR/run_GLYPHgR.py
* GLYPH-SR/CKPT_PTH.py

3. Run command.

Verify correct loading by launching a single-image run:

python3 run_GLYPH_SR.py ——img_path ./image.jpg
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Successful execution confirms that all checkpoints are discovered and that GLYPH-SR is
ready for inference.

B.2 SETUP

All experiments were conducted on a workstation equipped with three NVIDIA RTX 6000 Ada GPUs
(48 GB each), all utilized concurrently for training and inference, an Intel Xeon W9-3475X CPU (36
cores, 72 threads), and 256GB RAM. The system runs Ubuntu 24.04.2 LTS and uses a 3.7TB NVMe
SSD for storage. The models were implemented in PyTorch 2.5.1 with CUDA 11.8.

B.2.1 EVALUATION DATASETS

ICDAR2017 (International Conference on Document Analysis and Recognition). The IC-
DAR2017 Robust Reading Challenge dataset consists of scene-text images designed to test text
detection and recognition systems under real-world conditions. It includes both high- and low-quality
images that exhibit various degradations such as blur, low resolution, and noise. This diversity makes
it well-suited for fine-tuning vision-language models to enhance OCR robustness. In our pipeline,
ICDAR2017 is used to fine-tune LLaVA-NeXT, enabling it to better handle degraded scene-text
images and produce more accurate token-level guidance.

SCUT-CTW1500 (Curved Text in the Wild). SCUT-CTW1500 is a large-scale scene-text de-
tection benchmark featuring 1,500 images with over 10,000 annotated curved text instances. The
dataset includes a wide variety of natural scenes such as street views, signboards, and shop names,
with text appearing in arbitrary orientations, lengths, and curvature. It is especially known for its
high diversity in text shape and layout, which makes it well-suited for evaluating the robustness of
text detection and SR models in processing long and curved text lines. SCUT-CTW1500 is widely
used for benchmarking models designed to process irregular and multi-oriented scene-text under
real-world conditions.

CUTESO (Curve Text). CUTESO0 is a compact yet challenging dataset containing 80 high-resolution
images, specifically curated to evaluate curved text detection and recognition systems. The dataset
features a range of naturally curved and perspective-distorted text instances embedded in complex
backgrounds such as logos, signs, and posters. Despite its small size, CUTES0 is frequently used in
literature to benchmark the generalization ability of text-focused models on non-horizontal and non-
linear text structures. Its emphasis on difficult geometric deformations makes it a useful supplement
to larger datasets for testing text-specific visual models under challenging conditions.

SVT (Street View Text). SVT is a benchmark dataset collected from Google Street View, consisting
of 647 images with approximately 2,000 annotated text instances. It features naturally occurring
scene-text with various distortions, backgrounds, lighting conditions, and orientations. Despite its
relatively small size, SVT is widely used in the literature for benchmarking the performance of
OCR and text SR models under real-world conditions. Its challenging scenarios make it suitable for
evaluating model generalization and robustness in unconstrained environments.

B.2.2 PRE-TRAINED MODELS

LLaVA-NeXT. We employ LLaVA-NeXT Liu et al.|(2024) as the vision—language front-end that
extracts semantic context from low-resolution inputs. LLaVA-NeXT couples a CLIP-ViT visual
encoder with a 7-B parameter LLM and is instruction-tuned on a large multimodal corpus, yielding
state-of-the-art performance in fine-grained grounding, captioning, and region-level reasoning. Within
our pipeline it automatically produces (i) image-level captions (IMG prompts) and (ii) spatially aligned
OCR strings (OCR prompts); both streams are fed as high-level conditions to the diffusion backbone.

JuggernautXL (SDXL-based). For image generation we adopt JuggernautXL, a publicly released
checkpoint built on SDXL-base 1.0 and further fine-tuned for improved sharpness and color fidelity.
The underlying SDXL architecture is trained on billions of image—text pairs and natively supports
1024 x 1024 resolution.
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B.2.3 KEY HYPER-PARAMETERS

* Vision-Language Encoder. A frozen LLaVA-NeXT produces 2 048-dimensional multi-
modal embeddings that act as cross-attention keys; because the encoder is not fine-tuned, it
adds zero trainable parameters.

* First Stage (VAE). A 256 x 256 auto-encoder (4 latent channels, 4 x down-sampling) maps
RGB images to a 64 x 64 x 4 latent grid.

* Denoising and Sampling. We use the standard 1000-step DDPM schedule wrapped
by RESTORE-EDM sampling (default: 50 inference steps, classifier-free guidance scale
annealed from 7.5 to 4.0).

B.2.4 SYNTHETIC TRAINING DATA

To train the TS-ControlNet, we curate a purpose-built synthetic dataset with four mutually exclusive
partitions: Positive/High-Quality, Positive/Low-Quality, Negative/High-Quality, and Negative/Low-
Quality. Each split is created by selectively degrading either global content or localized glyph
regions while keeping spatial layout and annotations intact. This design lets the network disentangle
text-specific cues from general image priors.

...................................................................................

“id": "/SVT_image_x4/00_18.jpg"
: "OCR": "Days Inn & Suites"

- "prompt": "The image depicts a street scene with a focus on a

: sign for a hotel named **Days Inn & Suites.** ..... The image has
: a casual, everyday quality to it, likely intended to show the
location of the hotel for travelers or passersby."

{ «jd": "/SVT_image_x4/00_19.jpg“

o
.

"OCR": "Comfort Inn"

: "prompt": "The image shows a sign for a hotel or motel named
**Comfort Inn.** The sign is rectangular with rounded corners

: and is mounted on a vertical pole. ..... The focus is on the sign,
: and the image is taken from a slightly lower angle, which makes

Figure 8: Step 1: JSONL metadata—id, OCR text, and scene prompt—generated by LLAVA-NEXT.

Step 1: Prompt-Metadata Extraction. Using a pretrained LLAVA-NEXT encoder and YAML-
defined prompt templates, we batch-process scene-text images and record three fields in JSONL:
image 1d, OCR text, and a scene-level prompt. Figure[]illustrates the resulting metadata, produced
by make_dataset_get_desc.py.

Step 2: Stylistic Augmentation. We prepend each prompt with a style token (e.g., sunset glow,
cinematic bokeh) viamake_dataset_with_augmentation.py. The enriched prompts drive
a Flux-based diffusion model equipped with ControlNet and LoRA modules to generate visually
diverse high-quality samples (Fig.[9).
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"prompt": "Fujifilm Pro 400H color palette , The text
**Quality Hotel™ is displayed in white capital letters on
a light blue awning above the entrance to the hotel
building. The awning is supported by wooden brackets
and casts a slight shadow on the facade of the building,
creating a clear contrast against the beige stone wall.
Flanking the entrance are two rectangular, realistic

: photograph, 35 mm film style, soft natural lighting.”

"prompt": "sunset glow , The text **Quality Hotel** is
displayed in white capital letters on a light blue awning
above the entrance to the hotel building. The awning is
supported by wooden brackets and casts a slight
shadow on the facade of the building, creating a clear
contrast against the beige stone wall. Flanking the
entrance are two ) istic pl graph, 35

: mm film style, soft natural lighting."

QUALITY/
HOTEL

QUALITY, " QUALITY
HOTEL - |MYTEL

Positive High Quality Image Negative High Quality Image

"prompt": "golden hour warmth , The text **MARIL
BORO** appears as a green, block-capital sign affixed
to the storefront of a brick building, bathed by sunlight,
and surrounded by a clear blue sky, realistic
photograph, 35 mm film style, soft natural lighting.”

"prompt": "Fujifilm Pro 400H color palette , The text
**MARIL BORO** appears as a green, block-capital sign
affixed to the storefront of a brick building, bathed by
sunlight, and surrounded by a clear blue sky, realistic
photograph, 35 mm film style, soft natural lighting.”

Positive High Quality Image Negative High Quality Image

Positive High Quality Image

mage

Negativengh Quality |

Figure 10: Step 3: Positive vs. intentionally corrupted (negative) high-quality pairs.

Step 3: Negative High-Quality Pairs. The make_dataset_Neg_HQ.py script corrupts text

regions at the glyph level while leaving global detail untouched, yielding hard negative examples.

Corruptions are verified with the SUPIR pipeline

=

(20245) Fig T0)
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QUATITY/ 3 ALI §/ Ol

ALY
HOTEL W EER

Positive High Quality Image Positive Low Quality Image NegativeHigh Quality Image Negative Low Quality Image

Figure 11: Step 4: Four synthetic subsets used for text-aware SR training.

Step 4: Final Dataset Assembly. All positive and negative images are merged into the four target
splits shown in Fig.[T1]
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C EXPERIMENT RESULTS
C.1 COMPARE CHARACTER GENERATION TO OTHER MODELS.

Table 2: Quantitative comparison of OCR performance on images degraded by various factors and
restored using six SR models, evaluated across three benchmark datasets and three OCR systems.
Red and blue denote the best and second-best results, respectively.

| OpenOCR | GOT-OCR | LLaVA-NeXT

| Precision Recall Fjscore 1-NED  Accuracy | Precision Recall Fjscore I-NED  Accuracy | Precision Recall Fjscore 1-NED  Accuracy
SVT(x4)
BSRGAN 57.03 5119 5396 2804 3695 69.63 5068 5866 3129 4150 84.60 5755 6850 1582  52.09
DiffBIR 4149 3631 3873 2021 2401 4834 37.65 4233 2447 2685 6320 3516 4519 1334 29.19
DiffTSR 39.55 1281 1935 1427 1071 5176 1439 2251 1597 12,68 7898 1794 2923 549 17.12
InvSR 5556 6022 5779 2753 40.64 6544 5705 6096  31.65  43.84 7867 5538 6500 1595  48.15
PiSA-SR 60.16 6679 6330 2671 4631 6684 6370 6523 3374 4840 8320  57.14 6775 1544 5123
Real-ESRGAN 5941 5889 5915  30.16  42.00 7505 61.04 6732 3350  50.74 8370 6399 7253 1625  56.90
StableSR 6208 5783  59.88 3032 4273 7379 5613 6376 3471 46.80 8470 6556 7391 1681  58.62
SUPIR 5816 58.67 5841 2017 4126 6454 5948 6190 2681  44.83 7454 5328 6214 1586  45.07
GLYPH-SR (ours) 6133 7514 6754 2217  50.99 68.07 7579 7172 2837 5591 7922 6807 7322 1949 5776
SCUT-CTW1500(x4)
BSRGAN 4641 1680 2467 2986  14.07 5671 13.54 2186 2370 1227 7896 2256 3510 1725 2128
DiffBIR 3818 1826 2471 3385  14.09 3643 1770 2382 3071 1352 5493 2131 3071 2094 1814
DiffTSR 4586 1260 1977 2583 1097 50.84 948 1598  18.64 8.69 7282 1414 2369 1130 1343
InvSR 4537 2193 2957 3439 1735 4740 1831 2641 2817 1522 66.15 2333 3450 1834 2084
PiSA-SR 49.11 3027 3746 4032 23.04 5625 2450 3414 3347 2058 7118 3196 4411 2323 2830
Real-ESRGAN 5295 2222 3131 3369 1856 5950 1741 2694 2649 1557 7994 2965 4325 2012 2759
StableSR 5358 1677 2555 3002 14.64 57.67 1206 1995 2218  11.08 7931 3225 4586 2107 2975
SUPIR 3995 1184 1826 2573 1005 4516 1093 17.61 2140 9.65 6260 1513 2437 1432 1387
GLYPH-SR (ours) 4882 3146 3826 3775 23.66 4745 3027 3696 3609  22.67 6359 3237 4290 2586 2731
CUTE(x4)
BSRGAN 68.84  77.89  73.09 5463 5759 69.44 4695 5602 4537 3891 9254 7686 8397  39.00 7237
DiffBIR 6490 7337 6888 4801 5253 6148 4049 4882 4345 3230 88.12 7639  81.84 3853  69.26
DiffTSR 6494 5765 6108 5195 4397 6780 3653 4748 4554 3113 9259 6122 7371 3066 5837
InvSR 7019 7487 7246 5354 56381 7279 4500 5562 4391 3852 90.87 7941 8475 3715 7354
PiSA-SR 7136 7424 7277 5028 5720 7029 4491 5480 4270 3774 9330 7418 8265 3800 7043
Real-ESRGAN 7143 7614 7371 5332 5837 7181 4977 5879 4531 41.63 93.03 7695 8423 3637 7276
StableSR 69.71 7474 7214 5176 5642 7464 4640 5722 4236 40.08 89.66  77.12 8292 3802  70.82
SUPIR 6878  73.06 7085 4943  54.86 6338 4390 5187 4238 3502 89.05 7617 8211 4024  69.65
GLYPH-SR (ours) 69.48 7708 73.09 4700 5759 6828 4692 5562 3827 3852 90.05  80.51 8501  39.78  73.93
SVT(x8)
BSRGAN 3575 908 1461  13.02 7.88 36.54 799 1302 1468 7.02 7677 1534 2556 625 14.66
DiffBIR 2500 1254 1670 1656 9.11 2923 1358 1855 1851 1022 4416 1493 2232 1021 12.56
DiffTSR 2803 629 1028 1136 542 3151 646 1072 1498 5.67 6250 9.09 1587  4.60 8.62
InvSR 2934 1208 17.12 1854 936 3780 1468 2115 1987 1182 5000 1373 2154 820 12.07
PiSA-SR 3611 1157 17.53 1453 9.61 4784 1606 2405 1983  13.67 7941 2477 3776 172 238
Real-ESRGAN 3450 1193 1773 1617 9.73 4820 1535 2329 1945 138 7668 1930 3083 7.14 18.23
StableSR 4113 1405 2095 1750 1170 5045 1612 2443 1905 1392 7943 2971 4324 996 27.59
SUPIR 4282 27.66 3361 1529 2020 4300 3090 3596 1880  21.92 5922 2668 3678 1128 2254
GLYPH-SR (ours) 4852 49.06 4879 1916 3227 5732 5503 5616  23.17  39.04 69.57 5053 5854  17.99 4138
SCUT-CTW1500(x8)
BSRGAN 2910 179 337 7.67 172 3106 188 354 731 1.80 6475 200 3.8 2.10 1.98
DiffBIR 1566 281 476 17.18 244 1146 328 510  16.05 262 2126 260 464 9.28 237
DiffTSR 2810 155 295 6.94 1.50 2833 151 2.86 6.44 145 5194 149 290 237 147
InvSR 21.15 L10 2.09 7.13 1.06 1866 115 217 7.17 1.10 55.45 124 243 178 1.23
PiSA-SR 2550 448 761 1741 3.96 2921 392 692 1326 3.58 5045 520 943 6.82 4.95
Real-ESRGAN 3277 272 502 9.82 257 3474 307 564 9.91 2.90 6630 411 774 3.81 4.02
StableSR 3990 174 333 5.63 1.69 4055 234 443 7.41 226 7137 395 749 3.68 3.89
SUPIR 1991 315 543 1412 2.79 2241 364 626 1313 323 3347 391 7.00 7.13 3.63
GLYPH-SR (ours) 2261 735 1109 2054 5.87 2524 1038 1471  20.10 7.94 3412 934 1467 1385 792
CUTE(x8)
BSRGAN 5833 5241 5521 4756 38.13 6842 3529 4657 4281 3035 91.61 5820 7118 2840 5525
DiffBIR 6158 5767 5956 4510 4241 5873 3610 4471 3897 2879 88.61 5858  70.53  30.10 5447
DiffTSR 60.76 4923 5439 4820 3735 6216 3209 4233 4104 2685 8623 5000 6330 2795 4630
InvSR 5580 5706 5642 4728 3930 6098 3589 4518 3950  29.18 8743 6186 7246 3541 5681
PiSA-SR 5823 48.17 5272 5139 35.80 61.61 3224 4233 4176 2685 9226 6352 7524 3023 6031
Real-ESRGAN 60.67 5775 5918 5053 4202 70.00 3801 4927 4281  32.68 9325 6179 7433 3111 59.14
StableSR 60.06 5573  57.81 5168  40.66 6122 3580 4518 4335 2918 8879 6324 7387 3252 5856
SUPIR 57.69 5833 5801 4346  40.86 59.83 3333 4281 3598 2724 8225 6123 7020 3516  54.09
GLYPH-SR (ours) 6349  63.83  63.66 4240  46.69 5891 3725 4565 3680 2957 8380 6579 7371 3512 5837

We compare our model’s character generation ability against standard OCR models across difficulty
levels. The results in Table 2] show significant improvements, especially under hard conditions. For
evaluation, LLaVA-NeXT and our model were prompted using the following instructions: "Please
perform OCR on this image." Additionally, both predicted and ground truth texts were normalized by
removing non-alphabetic characters and ignoring case sensitivity before computing the metrics.
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Table 3: Quantitative comparison of SR models on three scene-text datasets (SVT, SCUT-CTW 1500,
CUTESO) at x4 and x8 upscaling factors. Metrics include distortion-based (PSNR, SSIM, LPIPS|)
and perceptual quality scores (MANIQA, CLIP-IQA, MUSIQ). Red and blue denote the best and
second-best results, respectively.

Dataset SR model PSNR SSIM LPIPS] MANIQA CLIP-IQA MUSIQ
BSRGAN 28.09 83.16 3534 38.16 39.63 66.25
DiffBIR 2196 6394 4355 47.82 58.66 71.18
DiffTSR 26.06 7842 4495 21.34 27.69 46.24
InvSR 2478  76.58 38.61 46.78 57.30 70.81
SVT(x4) PiSA-SR 26.58 82.04  34.13 37.41 44.30 61.87
Real-ESRGAN 29.67 88.58  30.68 31.16 28.58 51.14
StableSR 30.54 87.00  33.73 24.75 32.18 24.44
SUPIR 2276  67.15 45.14 42.36 48.42 67.55
GLYPH-SR (ours) 22.89 67.19 4220 47.75 59.40 70.99
BSRGAN 2022 6459 3212 51.41 4744 67.52
DiffBIR 1791  56.34  36.20 62.37 61.90 71.19
DiffTSR 1899 5859  41.34 35.39 30.59 55.83
InvSR 18.32  60.71 32.99 57.75 55.94 69.25
SCUT-CTW1500(x4)  PiSA-SR 2007 6399  31.18 56.31 53.05 68.19
Real-ESRGAN 20.85 67.46  36.81 40.81 43.43 52.66
StableSR 19.24 5545 49.03 31.04 43.61 24.92
SUPIR 13.61 3298 52.15 57.35 51.68 66.96
GLYPH-SR (ours) 18.19  54.67 37.15 70.33 57.88 70.31
BSRGAN 2735 7976 31.83 44.22 55.73 69.13
DiffBIR 22.60  66.07 37.74 51.04 72.64 69.06
DiffTSR 2406 72.66 4274 33.94 38.47 58.74
InvSR 2441 7555 32.93 50.30 67.78 70.66
CUTE80(x4) PiSA-SR 2583  77.41 31.49 45.82 61.81 66.18
Real-ESRGAN 28.14 8230 3201 38.20 48.71 60.65
StableSR 2623  79.51 30.45 36.26 49.74 60.09
SUPIR 2242 6620 3933 47.50 62.62 68.26
GLYPH-SR (ours) 23.03 69.54  37.03 49.77 65.93 69.96
BSRGAN 25.13 7371 45.64 37.14 37.58 62.83
DiffBIR 22.89 6520  50.07 45.54 53.20 64.11
DiffTSR 2445 7619 4632 21.39 26.39 43.96
InvSR 2282 7134 41.84 32.51 50.83 51.69
SVT(x8) PiSA-SR 2612 77.64  50.83 34.02 18.39 30.24
Real-ESRGAN 2569 80.28  41.92 28.38 17.86 43.01
StableSR 26.38 7815  50.20 23.16 23.38 16.22
SUPIR 2123  59.08 51.46 40.17 45.06 65.20
GLYPH-SR (ours) 21.77 6136  47.85 47.40 56.78 69.93
BSRGAN 17.32 4850  47.86 46.21 37.83 66.05
DiffBIR 1578 4347  50.05 54.75 49.89 63.16
DiffTSR 14.83  40.25 54.50 35.49 31.88 50.43
InvSR 11.81  30.68 65.88 29.65 29.62 40.29
SCUT-CTW1500(x8)  PiSA-SR 1722  47.63 48.90 41.77 36.75 58.95
Real-ESRGAN 17.65 5234 5214 28.37 20.95 39.99
StableSR 17.00 4350  66.02 20.93 20.92 16.62
SUPIR 1263  26.51 58.63 55.46 47.02 65.55
GLYPH-SR (ours) 1627  41.31 52.58 61.94 48.21 63.43
BSRGAN 23.84 7255  39.14 42.07 54.31 67.33
DiffBIR 2277 6536  41.79 47.53 62.09 64.62
DiffTSR 22.67 70.41 42.80 33.55 42.95 57.47
InvSR 21.83 7076  38.05 37.66 62.43 57.69
CUTES0(x8) PiSA-SR 2336 7052 4771 30.71 30.80 45.16
Real-ESRGAN 2401 7558  39.60 35.17 36.46 56.55
StableSR 794 3566  79.75 26.00 40.42 34.48
SUPIR 20.64 61.31 43.76 46.38 61.67 67.04
GLYPH-SR (ours) 21.19 65.15  42.31 47.75 65.85 68.85
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Figure 12: Qualitative comparison of scene-text SR under various degradation scales (x4, x6, x8).
While prior methods often blur or hallucinate characters, GLYPH-SR accurately restores readable,
coherent text. Zoom in for detail.
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Figure 13: Qualitative comparison of text-centric SR results at x4, x8 and x 16 scales.

Fig.[I3]provides a qualitative comparison between GLYPH-SR and baselines at magnification factors
of x4, x8, and an extreme x 16. GLYPH-SR continuously reconstructs glyph outlines, stroke widths,
and kerning while remaining true to the underlying truth, while harmonizing color and brightness with
the surrounding background area. This visual evidence corroborates the quantitative gap observed in
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Table[T} models that optimize solely for perceptual metrics (e.g. DiffBIR, Real-ESRGAN) or for edge
contrast fall short on OCR fidelity once the scale factor exceeds x8. GLYPH-SR achieves coherent
integration of text and imagery even under x16 SR.

C.2 ABLATION STUDY ON PING-PONG SCHEDULE
Table [] presents results for the CUTE80 benchmark at x4 and x8 scales under two evaluation

Table 4: Ablation on the scheduler policy evaluated on the CUTESO dataset.

(a) CUTESO (LR x 4) (b) CUTESO (LR x 8)
Scheduler Policy MANIQA CLIP-IQA MUSIQ OCRF; Scheduler Policy MANIQA CLIP-IQA MUSIQ OCRF;
Binary ping—pong 49.77 65.93 69.96 85.01 Binary ping—pong 47.75 65.85 68.85 73.71
Mixing (A\; = 0.1) 49.95 70.64 70.67 81.57 Mixing (\; = 0.1) 48.89 67.65 69.56 66.49
Mixing (\; = 0.3) 49.04 69.56 69.75 83.18 Mixing (\; = 0.3) 47.44 68.31 68.86 69.87
Mixing (A, = 0.5) 47.57 65.47 68.95 84.23 Mixing (A, = 0.5) 46.57 64.07 67.35 73.40
Mixing (A = 0.7) 47.86 68.91 68.83 81.84 Mixing (A = 0.7) 45.80 67.98 67.19 66.84
Mixing (\; = 0.9) 48.85 69.11 69.13 82.65 Mixing (A = 0.9) 45.58 67.66 67.18 68.88

protocols. The binary strategy yields higher CLIP-IQA and MUSIQ scores—reflecting superior
perceptual quality—while simultaneously boosting the OCR F; score (LLaVA-NeXT), supporting its
effectiveness at balancing text readability and image fidelity.

C.3 SENSITIVITY TO UPSTREAM VLM/OCR ERRORS

We assess how errors in upstream text guidance (OCR/VLM) propagate to GLYPH-SR. Because our
method deliberately conditions on tokenlevel strings and locations, corrupted guidance could degrade
both readability and overall perceptual quality. We simulate three error modes and measure their
impact on OCR and IQA metrics.

1. Random Character Corruption: Replace n% € {30, 50,90} of characters in the OCR string
with uniformly sampled alternatives (random noise).

2. Plausible Character Swaps (“Swap”’): Systematically replace characters with visually confusable
counterparts from a curated set (e.g., 0<>0, I+>1, T<>7).

3. Missed Detections (“Drop”): Remove a portion of OCRrecognized characters to emulate detec-
tion/recognition failures.

Table[3reports OpenOCR/GOTOCR F; and MANIQA/CLIPIQA. Parentheses show absolute changes
w.r.t. the uncorrupted baseline.

Table 5: Sensitivity to OCR/VLM guidance errors. Values in parentheses are absolute deltas from
the baseline (lower is worse).

Error rate/ Type  OpenOCR F} GOT-OCR F; MANIQA CLIP-IQA
Baseline 48.82 38.36 62.01 79.69
30% 38.36 (—10.46)  28.67(—9.69) 45.87(—16.14) 63.65 (—16.04)
50% 32.03 (—16.79) 26.35(—12.01) 4539(—16.62) 64.88 (—14.81)
90% 27.52(—21.30) 26.35(—12.01) 45.61(—16.40) 66.00 (—13.59)
Swap 39.88 (—8.94) 33.12(—5.24) 45.81(—16.20) 66.00 (—13.69)
Drop 41.85 (—6.97) 32.03(—6.33) 44.82(—17.19) 65.30(—14.39)

All error modes substantially hurt both axes: readability (OpenOCR/GOTOCR F7) and perceived
image quality (MANIQA/CLIPIQA). Even moderate noise (50%) reduces OpenOCR Fj by 16.79 pp
and MANIQA by 16.62 points. Plausible swaps and missed detections also trigger large drops,
indicating that quantity (how many tokens are wrong), nature (plausible vs. random), and absence
(drops) all impair glyph integrity and global appearance. This validates our design choice to use a
strong, LRaware OCR/VLM and to treat guidance quality as a firstorder factor in textaware SR.
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Figure 14: Failure cases where GLYPH-SR produces visually plausible SR outputs but incorrectly
generates text in non-textual regions.

As illustrated in Fig.[T4] GLYPH-SR can deliver visually plausible SR results yet still hallucinates
glyphs in regions that were originally non-textual. This deficiency in text-region localization means
the reconstructed text may be ambiguous, incomplete, or entirely spurious. Furthermore, when
multiple words are present, the model tends to enhance only the most visually salient word and
overlook the rest. These failure cases underline the necessity for finer-grained attention mechanisms
and explicit supervision of glyph positions in future work.

C.4 COMPUTATIONAL FOOTPRINT AND PRACTICAL EFFICIENCY

Setup. We benchmark inference on a 4x SR task with 512x512 inputs. Times are mean =+ std.
over repeated runs. For methods that require a large VLM (SUPIR and GLYPH-SR), we used two
NVIDIA A6000 GPUs; reported peak VRAM is the sum across both devices.

Table 6: Compute comparison. For VLMguided methods, #Params lists (restoration, VLM) in
millions.

Method #Params (M) Inference (s/sample) Peak VRAM (GB)
StableSR 153 79.98 £+ 0.22 10.10
DiffBIR 385 53.14 £ 1.41 9.64
SUPIR 18,152 25.25 + 0.86 46.21
GLYPH-SR 13, 225 38.25 +1.28 43.56

GLYPH-SR trades extra parameters and memory for markedly better text fidelity: it couples a
restoration backbone with a powerful OCR/VLM to reason about lowresolution text. This design
improves accuracy but introduces a computational bottleneck. To mitigate the cost while keeping
readability gains, we will pursue:

 Lighter VLM Guidance. Replace the current generalpurpose VLM with a compact, LRtextspe-
cialized guider (or distill the guider), reducing parameter count and latency with minimal loss in
guidance quality.
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¢ Inference Optimization (“Block Caching’). Cache and reuse guidance features that repeat
across diffusion steps/tiles (e.g., projected text embeddings and crossattention KV maps), skipping
redundant compute and lowering endtoend runtime.

These directions aim to preserve GLYPH-SR’s strengths (“looks right and reads right”) while
improving deployability under realistic compute budgets.

Trainable parameters. Although the full model size is large due to the VLM, our fine-tuning

recipe is lightweight. We freeze the diffusion backbone and update only two components:

1. TS-ControlNet branch (~=54.8M parameters) that handles text-guidance fusion.

2. VLM LoRA adapter (=5.9M parameters) with low rank (r=8), lora_alpha of 32, and
dropout of 0.05.

To minimize memory further, the large frozen VLM is loaded in 4-bit quantization (nf4 with double
quantization via BitsAndBytes).

Table 7: Trainable parameter counts (millions). Despite using a VLM, GLYPH-SR keeps trainable
parameters modest via freezing and LoRA.

Metric GLYPH-SR PiSA-SR SeeSR StableSR DiffBIR SUPIR DiffTSR

Trainable (M) 60.7 0.38 489.04 152.67 378.95  3865.64 55.31

Inference latency. The OCR/VLM guider is the main overhead driver. Out of a total per-image
latency of 38.25 + 1.28 seconds (Sec. @, the VLM component accounts for ~ 8.46 seconds.
Notably, while integrating the VLM increases total parameter count, the latency impact is not
proportional. In practice, we retain training practicality with only 60.7M trainable parameters and
observe that the rise in inference time is moderate relative to the parameter growth, yielding a
favorable trade-off between accuracy (readability and IQA) and compute.

Implication. These results align with our compute study (Table [): GLYPH-SR deliberately
expends parameters on guidance quality to secure text fidelity, yet its fine-tuning footprint remains
compact and deployable. Further efficiency gains are compatible with our design (e.g., lighter LR-text
guiders and block caching for reusable guidance features).
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