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SION MODEL?

Anonymous authors
Paper under double-blind review

ABSTRACT

Image super-resolution (SR) is fundamental to many vision systems—from surveil-
lance and autonomy to document analysis and retail analytics—because recovering
high-frequency details, especially scene-text, enables reliable downstream percep-
tion. scene-text, i.e., text embedded in natural images such as signs, product labels,
and storefronts, often carries the most actionable information; when characters
are blurred or hallucinated, optical character recognition (OCR) and subsequent
decisions fail even if the rest of the image appears sharp. Yet previous SR re-
search has often been tuned to distortion (PSNR/SSIM) or learned perceptual
metrics (LPIPS, MANIQA, CLIP-IQA, MUSIQ) that are largely insensitive to
character-level errors. Furthermore, studies that do address text SR often focus
on simplified benchmarks with isolated characters, overlooking the challenges of
text within complex natural scenes. As a result, scene-text is effectively treated
as generic texture. For SR to be effective in practical deployments, it is therefore
essential to explicitly optimize for both text legibility and perceptual quality. We
present GLYPH-SR, a vision–language-guided diffusion framework that aims to
achieve both objectives jointly. GLYPH-SR utilizes a Text-SR Fusion ControlNet
(TS-ControlNet) guided by OCR data, and a ping-pong scheduler that alternates
between text- and scene-centric guidance. To enable targeted text restoration, we
train these components on a synthetic corpus while keeping the main SR branch
frozen. Across SVT, SCUT-CTW1500, and CUTE80 at ×4 and ×8, GLYPH-SR
improves OCR F1 by up to +15.18 percentage points over diffusion/GAN baselines
(SVT ×8, OpenOCR) while maintaining competitive MANIQA, CLIP-IQA, and
MUSIQ. GLYPH-SR is designed to satisfy both objectives simultaneously—high
readability and high visual realism—delivering SR that looks right and reads right.
We provide code, pretrained models, the synthetic corpus with generation scripts,
and an evaluation suite to support reproducibility.

1 INTRODUCTION

Image super-resolution (SR),1 which reconstructs high-resolution (HR) images from low-resolution
(LR) inputs, is critical for applications like autonomous driving where clear details are paramount.
While conventional SR aims to improve perceptual quality, we argue that for many real-world
scenarios, ensuring the text legibility of scene-text (e.g., on signs, license plates) is equally, if not
more, important. Accurately restoring characters is crucial, as failures in legibility can compromise
downstream tasks like optical character recognition (OCR), regardless of the overall image sharpness.

1.1 AN OVERLOOKED CHALLENGE IN IMAGE SR: ACHIEVING HIGH SCENE-TEXT FIDELITY

However, achieving this level of text fidelity remains an overlooked challenge in most conventional
SR frameworks. Two systemic biases explain why text often degrades in existing SR models (e.g.,

1Throughout this paper, we will use image SR and SR interchangably whenever there is no ambiguity.
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Figure 1: Qualitative and quantitative comparisons of our GLYPH-SR with other competing SR
methods, demonstrating superior text fidelity and OCR F1 score.

StableSR Wang et al. (2024), DiffBIR Lin et al. (2024), InvSR Yue et al. (2025)) despite strong
perceptual scores:

(a) Metric Bias. Standard full-reference distortion metrics (PSNR/SSIM) and learned/no-
reference perceptual metrics (LPIPS, MANIQA, CLIP-IQA, MUSIQ) aggregate quality
globally and are dominated by area; small text regions (often well below 1% of the image)
therefore contribute little, so character corruption is weakly penalized.

(b) Objective Bias. Common training losses prioritize appearance similarity and treat characters
as generic high-frequency texture rather than discrete semantic units required by OCR.

In practice these biases surface as two failure modes (Fig. 1 (a)): (i) Hallucination—methods
optimized for perceptual realism may produce sharp but incorrect characters, harming OCR; (ii)
Conservative restoration—others preserve the blurry input to avoid artifacts, yielding limited SR
gains alongside mediocre perceptual quality. As a result, few approaches simultaneously enhance
visual realism and ensure text legibility—an essential requirement for OCR-dependent applications.

1.2 CONTRIBUTIONS

We address scene-text SR as a bi-objective problem—optimizing both visual quality and text
legibility—and present GLYPH-SR, a vision–language guided diffusion framework that achieves
both. Our key technical contributions and breakthroughs in this work include the followings:

2
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• Bi-Objective Formulation & Dual-Axis Evaluation. We explicitly cast SR in text-rich
scenes as the joint optimization of image quality and readability, and standardize a dual-axis
protocol that reports perceptual SR metrics (MANIQA, CLIP-IQA, MUSIQ) together with
OCR-aware measures (word/character accuracy, edit distance, F1), ensuring that small text
regions are not underweighted.

• Text-SR Fusion ControlNet with Time-Balanced Guidance. We introduce a dual-branch
TS-ControlNet that fuses token-level OCR strings with verbalized locations STXT and a
scene caption SIMG. The SR branch is frozen while the text branch is fine-tuned; residual
mixing injects complementary cues into the LDM without disrupting its generative prior. A
lightweight ping–pong scheduler λt alternates text-centric and image-centric conditioning
along the denoising trajectory, and coherently modulates both embedding fusion and residual
injection.

• Factorized Synthetic Corpus & Comprehensive Validation. We build a four-partition
synthetic corpus that independently perturbs glyph quality and global image quality, enabling
targeted text restoration while keeping the SR branch frozen. Across SVT, SCUT-CTW1500,
and CUTE80 at ×4/× 8, GLYPH-SR improves OCR F1 by up to +15.18 pp over strong
diffusion/GAN baselines while maintaining competitive MANIQA, CLIP-IQA, and MUSIQ.
We release code, pretrained models, data-generation scripts, and an evaluation suite to
support reproducibility.

2 RELATED WORKS

SR via Deep Learning. Early CNN methods such as SRCNN Dong et al. (2015), EDSR Lim et al.
(2017), and RCAN Zhang et al. (2018b), and later transformer models like SwinIR Liang et al. (2021),
substantially advanced distortion-oriented SR; yet they primarily optimize pixel fidelity rather than
semantic fidelity in small, text-bearing regions. Adversarially trained SR has improved perceptual
realism on in-the-wild images; representative examples include BSRGAN Zhang et al. (2021) and
Real-ESRGAN Wang et al. (2021).

General-Purpose SR Models. Diffusion-based SR has recently shown strong stability and real-
ism. Foundational approaches such as DiffBIR Lin et al. (2024), ConsisSR Gu et al. (2024) and
StableSR Wang et al. (2024) couple LR conditioning with powerful diffusion priors, and subsequent
work incorporates richer priors or auxiliary conditions. Some methods exploit text-based prompts:
SeeSR Wu et al. (2024) uses semantic prompts, while PromptSR Chen et al. (2023) directly injects
text prompts to improve performance. SUPIR Yu et al. (2024b) also leverages text prompts, but com-
bines them with large-scale pretrained backbones and restoration-guided sampling. Other approaches
include InvSR Yue et al. (2025), which enables flexible guidance/sampling, and PISA-SR Sun et al.
(2025), which further advances controllability. As illustrated in Fig. 1(b), explicit character-level
integrity is seldom a primary optimization target in general-purpose diffusion SR. Consequently,
as further substantiated by the quantitative benchmarks in Fig. 1(c), there is a notable scarcity of
methods that holistically address both general image fidelity and text-specific restoration metrics.

Text-Focused SR. Text-centric SR aims to enhance readability with text-aware priors or recognition-
aware objectives. Representative methods include TATT Ma et al. (2022), STISR Noguchi et al.
(2024), MARCONetLi et al. (2023; 2025) and Stroke-Aware SR Chen et al. (2022). While effective
on word/line crops, these approaches often assume simplified settings and can underperform on
full natural scenes where text must be preserved together with surrounding content. While recent
works such as Min et al. (2025) address text within scenes, they do not sufficiently address scenarios
involving severe image quality degradation.

Thus, developing a scene text SR method that can simultaneously enhance overall image fidelity and
ensure precise text restoration under severe low-resolution conditions remains a significant and open
challenge.

3
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Figure 2: Overview of the proposed GLYPH-SR architecture.

3 OUR APPROACH: GLYPH-SR

3.1 MODEL ARCHITECTURE

Overview. Fig. 2 depicts the proposed GLYPH-SR pipeline. Given an LR image ILR∈RH×W×C ,
an LR-robust conditioner of a pretrained latent diffusion model (LDM) Rombach et al. (2022) extracts
multi-scale features fLR used for conditioning. Our Text–SR Fusion ControlNet (TS-ControlNet)
then injects complementary restoration cues while preserving the generative prior of the LDM. Finally,
an Elucidated Diffusion Model (EDM) sampler Karras et al. (2022) drives the reverse process in
latent space toward a high-resolution reconstruction. However, when guidance is provided only in a
holistic form, small text regions may still be treated as generic high-frequency textures rather than
semantically meaningful glyphs, which can yield imperfect character restoration.

Condition Decomposition. To address this limitation, we explicitly separate the guidance into
(i) image-oriented and (ii) text-oriented signals.

• Image-Oriented Guidance. A scene-level caption SIMG summarizes global attributes such
as illumination, composition, and depth-of-field, and is used to encourage holistic perceptual
quality.

• Text-Oriented Guidance. A dedicated OCR module detects K text instances and returns
position–text pairs {(Sk

text,Sk
pos)}Kk=1. Each pair is converted into a structured natural-

language prompt, e.g. “HSBC is displayed at the center of the image,”
and passed to the text branch.

As shown in Fig. 3(b), simply separating SIMG and {(Sk
text,Sk

pos)}Kk=1 improves text fidelity but can
degrade non-text regions, motivating our subsequent guidance-fusion strategy and the ping–pong
scheduler that alternates text-centric and scene-centric guidance.

Text–SR Fusion ControlNet. To balance the two objectives—image quality and text legibility—we
introduce the Text-SR Fusion ControlNet (TS-ControlNet), which merges glyph-level semantic priors
with global SR guidance (Fig. 3c). During training, the LDM backbone and the SR branch of TS-
ControlNet are frozen, and only the text branch is updated, improving text legibility while preserving
overall image quality.

Given image data I, we obtain the clean target latent z0 = enc(I) via the VAE encoder. We then
sample a timestep t∼U{1, . . . , T} and noise ε∼N (0, I), and construct the noised latent by the
standard DDPM forward process Ho et al. (2020):

zt =
√
ᾱt z0 +

√
1− ᾱt ε, ᾱt =

∏t
s=1(1− βs).

The diffusion model Dθ predicts the noise residual conditioned on two control streams: (i) CSR, a
spatial condition from a frozen SR-ControlNet that guides the overall structure based on the low-
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Figure 3: Text-centric fine-tuning framework: (a) trade-off between scene-text fidelity and overall
image quality according to guidance; (b) four synthetic training subsets with matched prompts; (c)
TS-ControlNet architecture.

resolution input image SIMG, and (ii) CTXT, a textual condition from a trainable Text-ControlNet
that controls the rendering of text based on a set of OCR-derived text-position pairs STXT.

At inference, we start from zT and use the EDM sampler Karras et al. (2022) with the same conditions
to obtain the HR latent, which is then decoded to the image domain.

Diffusion Loss with Residual Injection. The frozen SR-ControlNet and the trainable Text-
ControlNet produce residual hierarchies. We blend them before injection via

c =
1

2
sCTRL

[
CSR

(
zt; ϕimg(SIMG + P )

)
+ CTXT

(
zt; ϕtxt(STXT + P )

)
]. (1)

where sCTRL is a global scaling factor and P denotes the restoration guide prompt.

The diffusion backbone Dθ then predicts the residual noise, and we optimize TS-ControlNet with the
standard ε-prediction objective:

Ltext = Ez0, t, ε

∥∥ε−Dθ(zt, t, c)
∥∥2
2
. (2)

Synthetic Fine-Tuning Dataset. To disentangle text legibility from holistic perceptual quality, we
synthesize four mutually exclusive subsets

{
IposHQ, I

pos
LQ , I

neg
HQ, I

neg
LQ

}
. All synthetic data are generated

from the same raw text, but for training purposes, the image quality is intentionally reduced or only
the text within the images is distorted. As shown in Fig. 3 (b). To train TS-ControlNet, we defined the
following guide prompt.

• Positive–Text / High-Quality (P pos
HQ ). Perfect image quality with perfectly preserved

character outlines and precise positioning.
• Negative–Text / High-Quality (P neg

HQ ). Intentionally damaged character outlines and precise
positioning, but good image quality.

• Positive–Text / Low-Quality (P pos
LQ ). Poor image quality, but preserved character outlines

and precise positioning.
• Negative–Text / Low-Quality (P neg

LQ ). Image quality is poor and character outlines and
exact positions are intentionally damaged.

Each sample is encoded into a composite conditioning tuple for the TS-ControlNet:

z⋄⋆︸︷︷︸
image latent

⊕ ψ
(
SIMG

)︸ ︷︷ ︸
scene caption

⊕ ψ
(
{(Sk

text,Sk
pos)}Kk=1

)︸ ︷︷ ︸
text cues

⊕ P ⋄
⋆︸︷︷︸

guide prompt

, ⋄∈{pos,neg}, ⋆∈{HQ,LQ}.

Here, z⋄⋆ = Enc
(
I⋄⋆
)

is the first-stage latent of the synthetic image I⋄⋆, and ψ(·) denotes the frozen
CLIP text encoder. Note that, to explicitly inform the model when incorrect text has been generated,
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the text-position pairs {(Sk
text,Sk

pos)}Kk=1 are always extracted from the positive-text, high-quality
image dataset.

3.2 TEXT–IMAGE BALANCING SCHEDULER

Although the dedicated TS-ControlNet injects glyph-centric features, the temporal allocation between
text and image guidance along the diffusion trajectory is critical. We therefore introduce a scheduler
Tsched : {0, . . . , T} → [0, 1] that dynamically reweights the two guidance streams via a time-
dependent coefficient λt.

Step update with mixed guidance. Let zt be the latent at diffusion step t (sampling proceeds
from t=T down to 0). Given a mixed embedding e t (Eq. 4), we form a classifier-free guided noise
estimate (Eq. 5) and then update

zt−1 = zt − ηt ϵ̂t, (3)
where ηt is a step size (a function of the noise level σt in our EDM-based solver). At inference we
initialize zT ∼N (0, σ2

T I) and apply the EDM sampler Karras et al. (2022) with the same conditions
over T steps.

We encode scene-level and text-level prompts separately and fuse them as

eimg=Wimg ϕimg(SIMG), etxt=Wtxt ϕtxt
(
{(Sk

text,Sk
pos)}Kk=1

)
, e t = (1−λt) etxt + λt eimg,

(4)
where ϕimg and ϕtxt are text encoders (kept frozen), and Wimg,Wtxt are linear projections to a
shared embedding space. The guided residual is computed via classifier-free guidance:

ϵ̂t = (1 + ω)Dθ(zt, t, e
t) − ωDθ(zt, t,∅), (5)

with guidance scale ω. Consistently, the same λt also modulates residual injection (cf. Eq. 1) as a
time-varying blend r̃l(t) = sCTRL

[
(1− λt) r

TXT
l + λt r

SR
l

]
.

Binary Ping-Pong Policy. We found that a binary schedule that alternates between text-centric
(λt=0) and image-centric (λt=1) guidance is effective:

λt =

{
0, if

⌊
t−t0
τ

⌋
mod 2 = 0,

1, otherwise,
(6)

where τ ∈N is the toggle period (default τ = 1) and t0 is an optional offset. Intuitively, the text-
focused phases inject precise glyph cues, while the image-focused phases stabilize global structure
and appearance. We also experimented with continuous ramps λt = g(σt) (e.g., noise-level monotone
schedules), but the square-wave “ping–pong” yielded the best OCR F1 at similar perceptual quality
(see Appendix C).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our method along two axes: semantic text restoration and perceptual SR quality. We
report OCR-based F1 scores Chng et al. (2019) to quantify semantic correctness. Pixel-wise fidelity
is measured by MANIQA Yang et al. (2022), CLIP-IQA Wang et al. (2023), and MUSIQ Ke et al.
(2021) (see Sec. A.1). Experiments are conducted on three representative scene-text benchmarks
(details in Sec. B.2.1): SCUT-CTW1500 Liu et al. (2019), CUTE80 Risnumawan et al. (2014), and
SVT Wang et al. (2011). We adopt Juggernaut-XL as the LDM backbone and fine-tune it on our
synthetic corpus generated with LLaVA-NeXT Liu et al. (2024), Nunchaku Cruanes et al. (2016), and
SUPIR Yu et al. (2024b). Full data-generation pipelines and hyper-parameters and setup are detailed
in Appendix B.

4.2 EVALUATION RESULTS

As presented in Table 1, prior methods typically sacrifice one objective for the other due to the trade-
off between text fidelity and perceptual quality. For instance, DiffBIR achieves high perceptual scores

6
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Table 1: Quantitative comparison of OCR F1-scores and SR quality metrics across datasets and
models. Red and blue indicate the best and second-best scores, respectively. Real-ESRGAN has been
included to match the full benchmark results.

Dataset Model OpenOCR GOT-OCR LLaVA-NeXT MANIQA CLIP-IQA MUSIQ

×4 ×8 ×4 ×8 ×4 ×8 ×4 ×8 ×4 ×8 ×4 ×8

SVT

LR 48.65 8.49 66.89 27.78 70.08 42.79 20.45 19.81 17.06 44.07 26.31 22.96
BSRGAN 53.96 14.61 58.66 13.12 68.50 25.56 38.16 37.14 39.63 37.58 66.25 62.83
DiffBIR 38.73 16.70 42.33 18.55 45.19 22.32 47.82 45.54 58.66 53.20 71.18 64.11
DiffTSR 19.35 10.28 22.51 10.72 29.23 15.87 21.34 21.39 27.69 26.39 46.24 43.96
InvSR 57.79 17.12 60.96 21.15 65.00 21.54 46.78 32.51 57.30 50.83 70.81 51.69
MARCONet 0.00 0.00 0.25 0.00 0.00 0.00 30.92 30.84 24.43 24.76 27.26 27.02
MARCONet++ 50.05 10.28 59.88 13.97 65.90 22.32 29.31 20.97 19.82 8.44 49.20 38.06
PiSA-SR 63.30 17.53 65.23 24.05 67.75 37.76 37.41 34.02 44.30 18.39 61.87 30.24
Real-ESRGAN 59.15 17.73 67.32 23.29 72.53 30.83 31.16 28.38 28.58 17.86 51.14 43.01
SwinIR 54.61 14.61 63.53 20.75 73.03 30.48 26.32 22.05 44.50 26.68 34.55 30.33
StableSR 59.88 20.95 63.76 24.43 73.91 43.24 24.75 23.16 32.18 23.38 24.44 16.22
SUPIR 58.41 33.61 61.90 35.96 62.14 36.78 42.36 40.17 48.42 45.06 67.55 65.20
TAIR 27.23 21.54 30.13 23.48 32.58 26.68 31.99 31.99 29.12 29.49 54.34 54.27
GLYPH-SR 67.54 48.79 71.72 56.16 73.22 58.54 47.75 47.40 59.40 56.78 70.99 69.93

SCUT-CTW1500

LR 14.63 0.53 23.55 4.76 47.23 10.18 28.92 16.39 31.16 26.19 25.82 17.71
BSRGAN 24.67 3.37 21.86 3.54 35.10 3.88 51.41 46.21 47.44 37.83 67.52 66.05
DiffBIR 24.71 4.76 23.82 5.10 30.71 4.64 62.37 54.75 61.90 49.89 71.19 63.16
DiffTSR 19.77 2.95 15.98 2.86 23.69 2.90 35.39 35.49 30.59 31.88 55.83 50.43
InvSR 29.57 2.09 26.41 2.17 34.50 2.43 57.75 29.65 55.94 29.62 69.25 40.29
MARCONet 0.13 0.13 0.57 0.61 0.22 0.26 33.34 33.56 16.54 16.20 28.78 28.95
MARCONet++ 22.72 2.35 20.63 2.60 33.10 2.60 34.65 14.75 19.58 8.06 43.61 30.27
PiSA-SR 37.46 7.61 34.14 6.92 44.11 9.43 56.31 41.77 53.05 36.75 68.19 58.95
Real-ESRGAN 31.31 5.02 26.94 5.64 43.25 7.74 40.81 28.37 43.43 20.95 52.66 39.99
SwinIR 23.10 3.67 23.21 4.68 39.44 5.27 33.85 19.00 46.07 24.14 39.36 25.64
StableSR 25.55 3.33 19.95 4.43 45.86 7.49 31.04 20.93 43.61 20.92 24.92 16.62
SUPIR 18.26 5.43 17.61 6.26 24.37 7.00 57.35 55.46 51.68 47.02 66.96 65.55
TAIR 33.98 10.74 29.44 9.23 41.67 12.14 65.38 63.60 47.05 36.57 67.08 66.38
GLYPH-SR 38.26 11.09 36.96 14.71 42.90 14.67 70.33 61.94 57.88 48.21 70.31 63.43

CUTE80

LR 65.80 39.38 50.58 36.31 80.47 67.18 28.93 17.29 36.80 22.58 37.64 17.32
BSRGAN 73.09 55.21 56.02 46.57 83.97 71.18 44.22 42.07 55.73 54.31 69.13 67.33
DiffBIR 68.88 59.56 48.82 44.71 81.84 70.53 51.04 47.53 72.64 62.09 69.06 64.62
DiffTSR 61.08 54.39 47.48 42.33 73.71 63.30 33.94 33.55 38.47 42.95 58.74 57.46
InvSR 72.46 56.42 55.62 45.18 84.75 72.46 50.30 37.66 67.78 62.43 70.66 57.69
MARCONet 2.31 3.07 4.56 4.56 3.82 3.82 33.58 33.66 26.69 26.69 31.06 30.88
MARCONet++ 69.21 50.58 54.39 45.18 81.02 71.50 31.88 21.03 34.90 22.72 54.15 44.24
PiSA-SR 72.77 52.72 54.80 42.33 82.65 75.24 45.82 30.71 61.81 30.80 66.18 45.16
Real-ESRGAN 73.71 59.18 58.79 49.27 84.23 74.33 38.20 35.17 48.71 36.46 60.65 56.55
SwinIR 73.71 52.30 55.62 45.18 82.92 72.46 31.87 22.72 59.32 40.40 47.94 39.44
StableSR 72.14 57.81 57.22 45.18 82.92 73.87 36.26 26.00 49.74 40.42 60.09 34.48
SUPIR 70.85 58.01 51.87 42.81 82.11 70.20 47.50 46.38 62.62 61.67 68.26 67.04
TAIR 55.21 42.81 43.77 40.87 69.87 62.20 58.25 37.11 49.76 36.84 72.06 55.06
GLYPH-SR 73.09 63.66 55.62 45.65 85.01 73.71 49.77 47.75 65.93 65.85 69.96 68.85

Model GLYPH-SR DiffBIR TAIR Real-ESRGAN PiSA-SR StableSR SwinIR BSRGAN InvSR SUPIR DiffTSR MARCONet MARCONet++

1st Rank 20 6 4 3 1 1 1 0 0 0 0 0 0
2nd Rank 8 6 4 2 3 3 0 4 4 3 0 0 0

(6 first-place rankings mostly in SR metrics) via hallucination but suffers from low OCR accuracy
(e.g., SVT ×4). Conversely, StableSR preserves legibility through conservative restoration but yields
poor perceptual quality. Notably, DiffTSR, MATRCONet, and MARCONet++ underperform across
the board, failing to secure any top rankings, as their exclusive focus on local text features limits their
capacity for global scene restoration.

GLYPH-SR reconciles these conflicting objectives. As summarized in the ranking statistics at the
bottom of Table 1, our model demonstrates overwhelming dominance, securing 20 first-place and
8 second-place rankings across 36 metric comparisons. This stands in stark contrast to the nearest
competitor, DiffBIR, which achieved only 6 first-place rankings.

Our advantage is most prominent under extreme degradation (×8 scale). On the challenging SVT ×8
benchmark, GLYPH-SR outperforms the strongest competitor by a remarkable margin of +15.18 pp
in OpenOCR F1, while maintaining superior perceptual metrics. This confirms that our token-wise
guidance effectively prevents both the textual hallucination of GANs and the over-smoothing of
generic diffusion models.

Fig. 4 shows that GLYPH-SR successfully harmonizes precise glyph recovery with holistic scene re-
construction. Our model accurately restores the coherent text string “CARROLL STREET BAKERY”
without suffering from the severe hallucination (e.g., spurious characters in DiffBIR) or blurring seen
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Figure 4: Visualizing the simultaneous achievement of the bi-objective: high-fidelity text restoration
and authentic global texture preservation.

in baselines. Crucially, this text fidelity does not compromise the background; GLYPH-SR preserves
realistic surface details (e.g., the tiled wall) where competitors introduce mosaic artifacts or fake
cracks, confirming that our method avoids the trade-off between text clarity and global image fidelity.

Figure 5: Qualitative examples illustrating the trade-off between SR metrics (e.g., MANIQA, CLIP-
IQA, MUSIQ) and OCR metrics (F1, Accuracy) in scene-text images. While some methods improve
perceptual SR scores, they may degrade OCR performance, and vice versa.

Fig. 5 concretizes the two failure modes introduced earlier (Fig. 1). The examples on the left illustrate
hallucination—sharp strokes that alter glyphs, raising IQA scores but breaking legibility. In contrast,
those on the right exhibit conservative restoration. This issue stems from insufficient SR, a cautious
approach to prevent hallucination. While this allows an OCR module to recognize the low-quality
text, it results in blurry, low-contrast images with minimal SR gains. By preserving glyph topology
while restoring realistic textures, GLYPH-SR avoids both pitfalls, yielding images that are both
high-quality and OCR-readable. This outcome underscores why evaluations must report SR and OCR
metrics jointly for a comprehensive assessment.

Taken together, the results confirm that our method yields a balanced architecture that advances the
SOTA by resolving the conflict between text recognition and perceptual SR.

Fig. 6 visually demonstrates how our model uniquely preserves text structure and legibility across
severe degradations (×4 to ×8). Competing methods exhibit clear failure modes. Diffusion models
like DiffBIR, despite high perceptual scores, frequently hallucinate incorrect characters (e.g., ‘EANK
OF ENUNAL’). Conversely, GAN-based methods like BSRGAN’s high contrast produces jagged,
geometrically distorted glyphs that harm human readability.

This confirms the trade-off between perceptual quality and OCR accuracy observed in Table 1.
Methods that excel in one metric often fail in the other. GLYPH-SR consistently reconciles both
objectives, delivering coherent and legible results even at the extreme ×8 scale where other models
collapse.
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Figure 6: Comparison of SR results against different methods (DiffBIR, Real-ESRGAN, BSRGAN,
and GLYPH-SR) on various degraded LR images.

Figure 7: Four prompt settings using combinations of texts (Stext) and its spatial positions (Spos).

4.2.1 ABLATION STUDIES

Fig. 7 shows the effect of selectively removing the two of guidance used by GLYPH-SR: (i) the
OCR string Stext and (ii) its spatial positions Spos. We evaluate four combinations—both, text-only,
position-only and none.

1) Full guidance ( Stext+Spos ): The top-left quadrants reconstruct the text pattern without distortions,
retaining stroke width, inter-letter spacing, and global geometry.

2) Text-only guidance ( Stext /̸Spos ): When positional guidance is removed, the model hallucinates
irregular kerning and warped baselines (e.g. “STASHOES COFFEE”), indicating that semantics alone
cannot anchor glyph layout.

3) Position-only guidance (̸ Stext / Spos ): Conversely, supplying bounding boxes but no textual
content yields partial or incorrect spellings (“STABHOUES SOFFCE”), showing that location cues
without semantics lead to character-level ambiguity.
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4) No guidance (̸Stext+̸Spos ): Removing both priors produces the worst outcomes—severe hallucina-
tions and geometric distortions reminiscent of generic diffusion SR.

Figure 8: Visual comparison of DiffBIR and GLYPH-SR on non-Latin scripts (Chinese and Hindi).

To validate cross-lingual generalization, we evaluated GLYPH-SR on Chinese (LSVT Sun et al.
(2019)) and Devanagari (IndicSTR Mathew et al. (2017)) scripts by simply replacing the default
English-centric guider with a multilingual VLM (Gemini 2.5 Flash). As shown in Fig. 8, the GYLPH-
SR recovers complex glyph geometries and stroke patterns that differ significantly from Latin scripts.
This confirms that our TS-ControlNet learns to correct generic structural degradation rather than
language-specific rules. Consequently, our modular design—decoupling semantic guidance from the
frozen generative backbone—enables effective restoration across diverse languages without the need
to retrain the core model.

5 CONCLUSIONS

Super-resolution research has traditionally prioritized perceptual quality, often neglecting a critical
aspect of text-rich scenes: legibility. This creates a persistent gap where models produce sharp-
looking images that still cannot be read correctly, as text is underweighted by standard SR objectives.
To resolve this, GLYPH-SR reframes the task as a bi-objective problem that optimizes both visual
realism and text legibility. We introduce a practical recipe featuring a VLM-guided diffusion model
with a dual-branch TS-ControlNet, which fuses spatial OCR cues and a global caption. To properly
evaluate this balance, we provide a factorized synthetic corpus and a dual-axis protocol pairing OCR
F1 with perceptual IQA metrics. On challenging benchmarks (SVT, SCUT-CTW1500, CUTE80 at
×4/×8), GLYPH-SR improves OCR F1 by up to +15.18 pp over strong baselines while maintaining
top-tier perceptual quality. Future work will explore multilingual scripts, stronger geometric priors,
and tighter integration with end-to-end recognition systems.

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our work. The complete source code, pretrained models,
synthetic data generation scripts, and evaluation suite for our GLYPH-SR framework are provided as
supplementary material, with direct links available in Appendix B. Details of the model architectures,
pre-trained backbones, and key hyper-parameters are described in Section 4.1 and extensively in Ap-
pendix B, which also specifies the hardware and software environment used for all experiments. Our
dual-axis evaluation protocol, including all benchmark datasets (SVT, SCUT-CTW1500, CUTE80)
and the specific OCR and perceptual metrics, is documented in Section 4.1 and Appendix A.1. The
core components of our method, including the Text-SR Fusion ControlNet, condition decomposition,
and the ping-pong scheduler, are detailed in Section 3. The data generation and fine-tuning workflow,
serving as a practical guide, is outlined in Appendix B. Extended experimental results, comprehensive
ablation studies, sensitivity analyses, and a discussion of the computational footprint are reported in
Appendix C to ensure full transparency of our findings. These resources provide a comprehensive
toolkit for the faithful reproduction and independent verification of our results.
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