
Continuous and Interactive Factual Knowledge
Learning in Verification Dialogues

Sahisnu Mazumder †, Bing Liu †, Nianzu Ma †, Shuai Wang ‡∗
†Department of Computer Science, University of Illinois at Chicago, USA

‡Amazon AI
sahisnumazumder@gmail.com, liub@uic.edu

jingyima005@gmail.com, shuaiwanghk@gmail.com

Abstract

Knowledge bases (KBs) used in applications such as dialogue systems need to be
continuously expanded in order to serve the users well. This process is known
as knowledge base completion (KBC). A piece of knowledge or a fact is often
represented as a triple (s, r, t), meaning that the entity s and the entity t have the
relation r or are linked by r. KBC builds a model to infer missing facts from the
existing ones in a given KB. Existing KBC research typically makes the closed-
world assumption that to infer a new fact (s, r, t), it assumes that s, r and t are
already in the KB, but are not linked. Clearly, this assumption is a serious limitation.
In this paper, we eliminate this assumption and allow s, r and/or t to be unknown
to the KB, which we call open-world knowledge base completion (OKBC). We
focus on solving OKBC via user interactions, which enables the proposed system
to potentially serve as an engine for learning new knowledge during dialogue.
Experimental results show the effectiveness of the proposed approach.

1 Introduction

Knowledge bases (KBs) are instrumental to many AI applications, e.g., question answering [5], dia-
logues [18, 56, 29, 59]. Although many large KBs exist like Freebase [6] and WordNet [34], they miss
a large percentage of facts about common entities [52], which is also true for numerous application
specific KBs. In recent years, researchers have studied ways of expanding KBs automatically. This
area is called knowledge base completion (KBC) [24, 16]. This paper studies this problem further, but
unlike most existing studies, we study the problem in the open-world setting (to be defined shortly).

The type of knowledge that we focus on is the fact triples commonly used in knowledge graphs, (s, r,
t), which means that the source entity s and the target entity t can be linked by the relation r. For
example, (Obama, CitizenOf, USA), meaning that Obama is a citizen of USA. Traditional KBC infers
new facts (s, r, t) from existing ones in the KB, which is often defined as a binary classification
problem: Given a (query) triple (s, r?, t), it predicts whether s and t can be linked by r, where ?
indicates a query. Existing work typically makes the closed-world assumption that s, r and t are all
known to exist in the KB [24, 11, 9, 37]. This paper removes this assumption and allows s, r and/or t
not to exist in the KB. We call this open-world KBC (OKBC). The main existing approach to solving
OKBC is to extract facts from documents and add them to the KB [35, 21, 3, 54, 14, 45, 44]. This
paper proposes a dialogue-based approach, which makes it naturally suitable for dialogue systems.

The motivation for proposing an interactive approach to solving OKBC came from the need of
dialogue systems or chatbots like Siri, Amazon Alexa, Google Assistant, not to mention numerous
customer support bots used by large companies. Chatbots often use KBs to answer user questions.

∗Work done while author was at the University of Illinois at Chicago.

Preprint. Under review.

USER: (Obama, CitizenOf?, USA) “Is Obama a citizen of USA?” [Query]
IKAI: I do not know what “CitizenOf” means? Can you provide me an example? [Ask for Clue]
USER: (David Cameron, CitizenOf, UK). “David Cameron is a citizen of UK.” [SF1]
IKAI: Got it. Can you tell me how “Obama” and “Honolulu” are related? [CLQ]
USER: (Obama, BornIn, Honolulu). “Obama was born in Honolulu.” [SF2]
IKAI: Got it. Can you tell also me how “Honolulu” and “Hawaii” are related? [MLQ]
USER: (Honolulu, CapitalOfState, Hawaii). “Honolulu is the state capital of Hawaii.” [SF3]
IKAI: (Obama, CitizenOf?, USA) holds. “Yes, Obama is a US citizen." [Answer]

Figure 1: An example of interactive learning and inference. Each triple above is assumed to be extracted from
the sentence after it. Ask for Clue, CLQ and MLQ are interaction query types, discussed in Sec 3.

Many deep learning methods now use KBs too [18, 56, 29, 59]. However, the incompleteness [52] of
the KBs limits the scope of their applications. It is desirable for a chatbot to learn new knowledge in
the dialogue process to expand its KB to make it more and more knowledgeable over time [12, 27].

There are many opportunities to learn during a dialogue. For example, we can directly extract
knowledge from user utterances using information extraction methods [28, 19]. We do not study
that in this paper. This paper focuses on another opportunity, i.e., when the user asks the chatbot a
factual verification (yes/no) question that the chatbot cannot answer. To learn from the user in this
new setting is challenging because it not only involves extraction but also asking user questions and
making inference. Note that this is the second part of our work on continuously learning factual
knowledge during conversation. The first part (called CILK) is presented in [31], which studies how
to interactively learn new knowledge when the user asks a WH-question that the system is unable to
answer. A more general framework of lifelong/continual learning in dialogues is given in [27].

KBC does not form a suitable model for this dialogue-based knowledge learning because in a
conversation the user may ask or say anything, which may include entities and/or relations that are
not in the KB. We thus need OKBC in the dialogue or conversation context. This paper proposes a
novel interactive method to solve OKBC, called Interactive Knowledge Acquisition and Inference
(IKAI), which involves two tasks: (1) Interactive acquisition of supporting facts, i.e., formulating
an inference strategy to ask the user suitable questions to convert an OKBC query to a KBC query.
Those user answers, which are supporting facts, are also added to the KB. (2) Knowledge inference,
building a predictive model using the (acquired) supporting facts and the (existing) knowledge in
the KB to infer the answer (i.e. whether the converted KBC query is true or not) of the original user
query. Fig. 1 shows an example. Here, IKAI acquires supporting facts SF1, SF2, SF3 to accomplish
the interactive knowledge acquisition and then, utilizes these pieces of knowledge along with existing
KB facts to infer over the query relation “CitizenOf " to answer the user query. The new knowledge
(which are supporting facts) is also added to the KB for future use.

This paper only focuses on developing the core learning engine. It does not study fact or relation
extraction from user utterances, entity linking, etc., which have been studied before. Thus, IKAI only
works with structured fact verification query triples (s, r?, t), where ? indicates a query, e.g., (Obama,
CitizenOf?, USA) meaning “Is Obama a citizen of USA?” and assumes that a relation extraction (e.g.,
OpenIE [2]) system is available to convert natural language queries or statements from the user into
query triples (s, r?, t) or (supporting) fact triples (s, r, t). It is also assumed that the user has good
intentions, i.e., user answers are 100% correct, but we do not assume that the user can answer all
questions as opposed to the teacher-student setup, where the teacher is assumed to know everything.
See [27] for strategies on how to deal with incorrect knowledge from users.

IKAI is implemented with a Finite State Machine (FSM) and a Predictor. The FSM dynamically
formulates an inference strategy for a given OKBC query. While executing the strategy, IKAI
processes the query and acquires the supporting facts by asking the user and thereby, transforms
an OKBC problem to a KBC one (i.e., all s, r and t become known to the KB). The Predictor is
invoked for knowledge inference to solve the transformed KBC problem. We evaluated IKAI using
two real-world KBs: Freebase and WordNet. Experimental results demonstrate its effectiveness.

2 Related Work
KBC has been studied extensively [36, 13, 11, 8, 16]. The work in [36] partially deals with OKBC,
but it cannot handle unknown entities. The work in [45, 44] solves OKBC using an external text
corpus to perform inference on unknown entities. They cannot handle unknown relations. They or
other existing methods do not perform KBC or OKBC through user interactions like IKAI.

2

IKAI is also related to interactive language learning (ILL) [51, 50], but ILL does not grow KB.
Among dialogue systems [48, 25, 26, 10, 53, 57], the work in [26] allows the learner to ask questions.
However, it learns only about whether to ask. The what to ask aspect is manually designed. More
importantly, unlike IKAI, its learning is for building a dialogue system in the Teacher-Student setup.

The most closely related works to IKAI are those in [31, 28, 19]. [31] proposed a method CILK
to acquire knowledge when a WH-question is asked by the user. CILK’s method of dealing with
WH-questions by trying everything in the KB is entirely different from dealing with yes/no questions
in IKAI. IKAI’s inference model is comparatively more interpretable and only requires learning
of embeddings of relations rather than that of both entities and relations as in CILK and thus, do
not need to acquire many facts per query entity in a given dialogue session. [28, 19] are based on
extraction of facts directly from user utterances. IKAI is based on answering user queries and it
formulates a strategy to ask and also perform inference. [38, 39] studied lexical knowledge acquisition
in dialogues, whereas IKAI is about interactive factual knowledge learning and inference.

Recently, many conversational systems have been proposed, e.g., Conversational Recommender
Systems [46, 1, 58] and Information-seeking Conversation [55, 40]. However, they do not acquire
new knowledge to deal with OKBC in conversation. There are also works on KB question-answering
(KBQA) [22, 7, 4, 42, 41], open-vocabulary semantic parsing [15, 47], information extraction [43, 2],
and KB updating using facts extracted from the Web [35]. We do not do KBQA, semantic parsing
or Web fact extraction, which is complementary to our work. Rather, we focus on solving OKBC
interactively, i.e., learning through interactions with the user.

3 IKAI: The Proposed System

As discussed in the introduction, IKAI performs the following two main tasks:

Task 1 : Converting OKBC to KBC. Given an OKBC query (s, r?, t) [e.g., (Obama, CitizenOf ?,
USA) - Is Obama is citizen of USA?], IKAI formulates some relevant questions to ask the user (see
Fig. 1) to acquire supporting facts (SFs), addition of which (in KB) convert an OKBC query (s, r?, t)
to a KBC query. The KBC query is also (s, r?, t) except that all components, s, r, and t, must already
exist in the current KB. OKBC allows any of s, r and t to be unknown or not in the KB.

The conversion involves the following two cases- (1) If r is unknown, IKAI asks the user to provide
a clue [an example triple r]. In Fig. 1, IKAI asks the user to provide an example for the unknown
relation “CitizenOf " and the user gave the clue (David Cameron, CitizenOf, UK), meaning David
Cameron is a citizen of UK. With this clue added to the KB, the relation “CitizenOf " becomes known.
If “David Cameron” or “UK” is not in the KB, the clue may need to be further processed, i.e., using
the case below. (2) If s or t is unknown, IKAI asks the user to provide a link (relation) to connect
the unknown entity s or t with an automatically selected existing entity (discussed in “Actions" in
Sec. 4) in the KB. In Fig. 1, IKAI asks the user to provide a relation to connect the unknown entity
“Obama" with an existing KB entity “Honolulu" [Can you tell me how “Obama" and “Honolulu" are
related?] (discussed later). The acquired knowledge (the two user answers) reduces OKBC to KBC
as all r, s and t are now in the KB. We deal with the case when the user is unable to answer later.

Task 2: Solving KBC by Building a Predictor. With the resulting KBC query, (s, r?, t), IKAI uses
a path-ranking (PR) approach [24, 23, 17, 36] to build the predictive model (Predictor) to predict if
(s, r?, t) is true. We choose PR due to its better performance and interpretability [49]. PR enumerates
relation paths between two entities (s, t) in a KB (encoded as a multi-relation graph) and uses those
relation paths as features to train the predictive model for relation r. Given a sequence of entities and
relations 〈s, r1, e1, r2, e2.., rl, t〉 linking s to t in the KB, we use the term path feature to refer to the
relation path 〈r1, r2, .., rl〉 and the full sequence 〈s, r1, e1, r2, e2.., rl, t〉 as simply path onwards. An
entity ei appearing in the path excluding the source and target entities is termed as an intermediate
entity for the path. A path feature is extracted from a path by just excluding the entities in the sequence.
To enumerate a set of path features for entity pair (s, t), PR performs random walks over KB to find
paths starting from s (or t) and ending at t (or s). Once relation paths (features) are extracted for a
set of positively labeled (linked by r) and a set of negatively labeled (not linked by r) entity-pairs, a
binary classifier (Predictor) is trained for relation r using those features. The trained classifier for r is
then used to predict if a given test entity pair (not linked by r in the KB) can be linked by r.

In this work, we adopt the PR method, C-PR [30], which can leverage the context relatedness of
the source s and target t during path enumeration to make more accurate prediction. Given s and t,

3

C-PR performs context-aware bidirectional random walk to enumerate path features. In particular,
C-PR enumerates a forward path starting from s and a backward path starting from t such that the
intermediate entities appearing in a path (forward or backward) have high contextual similarity with
respect to both s and t. The contextual similarity between any two entities is computed as the cosine
similarity between the corresponding entity embedding vectors learned from text documents using
neural word embedding [32, 33]. C-PR treats entities in the KB as words and learns and leverages
their embeddings to guide the path exploration process. If a common entity appears in both forward
and backward path at any time step during exploration, C-PR stops exploration, merges the forward
and backward paths into a single path from s to t, and returns the relation sequence in the merged
path as a contextual relation path feature from s to t, which is then used for inference.

Note, in bidirectional path exploration, C-PR may get stuck with ef (eb) being the last forward
(backward) node without being linked to form a full path. Unlike C-PR, in IKAI, we connect the
forward and backward path sequence by linking ef and eb with a template (fake) relation “-?-" to
create a full path (called a incomplete path). We call “-?-" the missing link marker. For an incomplete
path, IKAI asks the user to provide a relation/link to connect (ef , eb) for path completion. We refer
to such a query as a missing link query (MLQ) (see Sec. 3.1 for more details).

IKAI manages the aforementioned two tasks and also data collection for building the predictive
model for task 2 (discussed in Sec 3.2) using a Finite State Machine (FSM) as discussed below.

3.1 Finite State Machine of IKAI

IKAI manages everything using a Finite State Machine (FSM). It formulates and simultaneously
executes an inference strategy. That is, at each state Si, FSM chooses an action aj to execute. An
action can be a processing action or an interaction action. A processing action advances the reasoning
(like searching query entities and relation in the KB, extracting path features etc.). An interaction
action asks and acquires knowledge from the user. After an action is executed, FSM goes to a new
state Si+1. In the process, an OKBC problem is transformed to a KBC problem. Additionally, the
process also performs path feature extraction (processing actions) for a clue triple or a query triple
for training the Predictor. When FSM transits into its final state, the Predictor is invoked to train to
solve the reduced KBC problem to answer the original user query. Table 1 gives a description of the
parameters of IKAI referred on-wards.

IKAI’s FSM is (S,A,S0,SF ,∆), where S is the finite set of states, A the set of actions, S0 the set
of initial states, SF the set of terminal states and ∆ : (S,A)→ S the state transition function. We
denote a triple (s, r, t) under processing as d on-wards. Note, d can be the OKBC query (denoted
as q) from the user or a clue triple (denoted as c+) given by the user for an unknown relation (e.g.,
CitizenOf in Fig. 1). As one or both of the entities [e.g., “David Cameron” and/or “UK” in the clue
(David Cameron, CitizenOf, UK)] may be unknown, IKAI also process clues just like OKBC queries.

Table 1: Parameters of IKAI.
Para. Description
δp Minimum number of complete paths in extracted feature set

per query as a requirement for the feature set to be qualified
as complete and used for training/inference.

δIL Interaction limit, i.e., maximum number of questions that
IKAI is allowed to ask the user per query.

ηp Maximum path length for C-PR
ηw Number of random walks per query for C-PR
l, h Low and high contextual similarity threshold respectively
ρ % of learned tasks (relations) selected for additional clue

acquisition.

Table 2: State bits (SBs) and their meanings.
SB Name Description

QERS
Query entities and
relation searched Whether the query source (s) and target (t) entities

and query relation (r) have been searched in KB.
SEF Source Entity Found Whether the source entity (s) has been found in

KB.
TEF Target Entity Found Whether the target entity (t) has been found in KB.
QRF Query Relation Found Whether the query relation (r) has been found in

KB.
CLUE Clue bit set Whether the triple (to be processed) is a clue from

user.
ILO Interaction Limit Over Whether the interaction limit is over for the query.
PFE Path Feature Extracted Whether path feature extraction has been done.
CPF Complete Path Found Whether the extracted path features are complete.
INFI Inference model Invoked Whether inference model should be invoked.

Whenever IKAI receives a clue from the user,
it postpones the processing of the OKBC query
and initiates the strategy formulation for each
clue triple consecutively. Once all clue triples
are processed (i.e., strategies are formulated and
executed), the unknown query relation is now
in the KB and IKAI can then infer the OKBC
query. Thus, the strategy formulation for OKBC
query resumes. A Processing Stack (PS) is used
to manage the process, which basically holds the
triples to be processed by IKAI along with FSM
state information. Whenever IKAI receives d
(a query or a clue) from the user, it pushes d
and the initial state (S0) corresponding to d [see
“States" below] onto PS as a pair (d, S0). FSM
processes the stack top PS[top] and PS[top]
gets modified on a state transition due to execu-
tion of some action aj . After the processing of d
finishes, i.e., PS[top] = (d, SF) with SF being
a terminal state, the pair (d, SF) is popped out
of PS and processing of new stack top resumes.

4

Figure 2: IKAI state transitions for the example in Fig. 1 [q is OKBC query and c+ (c−) is +ve (-ve) clue]

Table 3: Transition Conditions and corresponding Actions and their descriptions.

State Transition Conditions (for current state bits Sj [.]) Action Id : Operation
QERS = 0 a0 : Search source (s), target (t) entities and query relation (r) in KB.
ILO = 0 ∧ CLUE = 0 ∧ QERS = 1 ∧ QRF = 0 a1 : Ask user to provide an clue/example for query relation r.
PFE = 1 ∧ ILO = 0 ∧ CPF = 0 a2 : Ask user to provide a missing link for path feature completion.
QERS = 1 ∧ (SEF = 0 ∨ TEF = 0) ∧ ILO = 0 a3 : Ask user to provide a connecting link to add a new entity to KB.
QERS = 1 ∧ PFE = 0 ∧ SEF = 1 ∧ TFE = 1 a4 : Extract path features between source (s) and target (t) entities using C-PR.
QRF = 1 ∧ CPF = 1 a5 : Invoke prediction model for inference.

Since clues are received from user after the OKBC query (q) is issued in a given dialogue session,
they always become stack top and get processed first, postponing the processing of q.

States (S): A state S ∈ S is defined by 9 bits (binary variables) (Table 2), each of which keeps track
of the results of an action a ∈ A taken by IKAI and thus, records the progress of the inference. For
example, S0 ∈ S0 is the initial state with all state bits set as 0. Similarly, if Si[QERS] = 1 and other
bits are all 0, it denotes that IKAI has searched the KB to check for the existence of query entities (s
or t) and relation (r), and found all of them as unknown. If d is a clue, the CLUE bit of S0 is set as 1.

Actions (A): There are six actions in IKAI: {a0, . . . , a5}. They function to convert an OKBC query
into a KBC query and also, enumerate relation path features for training the Predictor. We discuss the
actions one by one below. Fig. 2 shows the state transitions and actions executed at various FSM
states for processing the example conversation in Fig. 1 along with the changes in PS. In Fig. 2, the
state bits are shown next to each state ID Si and the content of PS is shown below Si.

• a0 - Search query entities and relation. This action searches for whether s, r, and t of d are
already in the KB and then, sets appropriate bits of the current state (Table 2) and as a result, the
FSM moves to a new state. For example, in Fig. 2, IKAI executes a0 at S0 [at PS[top] = (q, S0)]
and detects that entity “Obama" and relation “CitizenOf " are unknown and the FSM transits to S1

[PS[top] = (q, S1)]. If d is a clue and s, t ∈ KB, a0 also updates the KB with d and its inverse
triple (t, r−1, s). E.g., (UK, CitizenOf−1, David Cameron) is the inverse of triple (David Cameron,
CitizenOf, UK). Adding inverse triple helps path enumeration to collect more path features [30].

• a1 - Ask for a clue. This action asks the user to provide a clue (+ve example) c+ for an unknown
relation r. For example, in Fig. 1, a1 is executed to acquire clue (SF1) for unknown relation
“CitizenOf " from the user, who answers (David Cameron, CitizenOf, UK). For learning the predictive
model for unseen query relation r, a1 also corrupts s and t of the clue triple c+ once at a time to
generate -ve clue triple(s) c− by randomly sampling a node from the KB and pairing it with either
s or t, [e.g., (David Cameron, CitizenOf, Microsoft) and (Chicago, CitizenOf, UK)] such that the
generated corrupted triples c−(s) do not exist in the current KB.

Considering the Fig. 1 example and state transitions in Fig. 2, after executing a1 for query q, IKAI
receives the +ve clue triple c+ (David Cameron, CitizenOf, UK) and first pushes the generated two
-ve clues (c−, S0) pairs and then, (c+, S0) into PS. Now, c+ being PS[top], strategy formulation
for q postpones and that for c+ begins. The strategy formulation for query q again resumes from
“〈a0, a1〉" [at PS[top] =(q, S2)] when all (+ve as well as -ve) clues finish their processing and
consecutively popped out of the stack. Considering Fig. 1, the formulated strategy for each clue triple
here is “〈a0, a4, a5〉" (assuming both David Cameron and UK are already in the KB).

• a2 - Ask missing link query (MLQ). This action formulates a missing link query (MLQ) to ask
the user. That is, IKAI selects an incomplete path p̃ (see Sec. 3, Task 2) from the extracted path set
(by action a4) with the highest context similarity (computed using the same embedding based method
as used in C-PR (discussed in Sec. 3, Task 2) sim(ef , eb), where ef and eb are the two entities

5

directly connected by -?- (missing link marker). A high contextual similarity indicates that ef and eb
are more likely to possess a relation [30] and so, is a good candidate for generating a meaningful
MLQ. Note, we don’t want to ask the user too many questions by processing all incomplete paths.

Considering the Figure 1 example, let IKAI choose an incomplete path “Obama − BornIn →
Honolulu−?−Hawaii − StateOf → USA" from the extracted path set (see action a4) and
with missing link (“-?-") between entity pair (Honolulu, Hawaii). Then, this missing link is
used to formulate a MLQ: “Can you also tell me how “Honolulu” and “Hawaii” are related?”.
On receiving the answer from the user, i.e., (Honolulu, CapitalOfState, Hawaii) - “Honolulu is
the state capital of Hawaii”, IKAI fills the missing link in the path as “Obama − BornIn →
Honolulu− CapitalOfState→ Hawaii− StateOf → USA”. This complete path is then used
to extract path feature as “BornIn→ CapitalOfState→ StateOf” to be used by the prediction
model for inference. In Fig. 2, a2 for query q is executed at state S4 [i.e., when PS[top] = (q, S4)]].

If the user does not respond to MLQ, a guessing mechanism is employed. Since entity pairs with
high contextual similarity are likely to possess a relation, IKAI divides the similarity range [-1, 1]
into three segments, using a low (l) and a high (h) similarity thresholds to replace the missing link in
p̃ with rg to make it complete as follows- given an entity pair (s′, t′), if h ≥ sim(s′, t′) ≥ l, rg=“-
LooselyRelatedTo-”; else if sim(s′, t′) ≤ l, rg =“-NotRelatedTo-”; Otherwise, rg=“-RelatedTo-”.

• a3 - Ask connecting link query (CLQ). This action asks the user to connect unknown entities s
and/or t with the KB by selecting the most contextually relevant node/entity (wrt s or t) from the KB
and asking the user to provide a relation/link for s (or r) and the node. The contextual similarity of
two entities is computed based on the same idea as in [30] using neural word embedding [33] and
cosine similarity. In Fig. 1, IKAI asks CLQ for “Obama" with the chosen contextually relevant entity
"Honolulu" and acquires SF2. In Fig. 2, a3 for query q is executed at state S2 [i.e., at PS[top] = (q,
S2)]] when the strategy formulation of q resumes after all clue triples finish their processing.

• a4 - Enumerate path features. This action extracts path feature set P between (s, t) for training the
Predictor. P involves both complete and incomplete paths. However, IKAI always trains the Predictor
with complete path features Pc ⊆ P . The incomplete paths (see Sec. 3, Task 2) corresponding to
the path features in (P − Pc) are used as candidates for formulating and asking MLQs (see a2) until
|Pc| = δp (see Table 1) or δIL decrements to 0. δIL denotes the maximum number of questions that
IKAI can ask the user per OKBC query and is set to limit the number of interactions with user. In Fig.
1, a4 for query q gets executed after a0, a1, a3 [i.e., at PS[top] = (q, S3) in Fig. 2].

• a5 - Invoke Predictor. This action first checks whether the OKBC query has been reduced to a
KBC one. The Predictor can only work, iff (1) all r, s and t exist in the KB (OKBC is reduced to
KBC), and (2) features (relation sequences corresponding to each path in Pc) have been extracted
between s and t for building the predictor. If the conditions are met, IKAI adds d (the KBC query
triple or the clues) along with Pc in a data buffer D and invokes the Predictor for either training (on
clue triples) or inference/prediction (on the reduced KBC query) by executing a5. Note that, as clues
involving query relation r get processed before the OKBC query, when the predictor is invoked as
part of the inference strategy for the query (involving r), the predictor is already trained to perform
inference over query triples involving r. In Fig. 2, a5 for query q gets executed at PS[top] = (q, S5).

Considering the Figure 1 example, the formulated inference strategy by FSM for OKBC query q
(Obama, CitizenOf?, USA) is: “〈a0, a1, a3, a4, a2, a5〉" [see Fig. 2].

State Transition Function (∆): The transition function ∆ is characterized by a set of unique state
transition conditions specified in terms of state bits. Table 3 gives all the state transition conditions.
Given a state Si, if Si satisfies a transition condition C, an action corresponding to C is fired. For
example, if in Si, ILO = 0, CLUE = 0, QERS = 1, QRF = 0, action a1 is invoked and on
executing a1, bits in Si get updated and state transition occurs. Note that, following these conditions
in Table 3, only a2 can repeat up to δIL (see Table 1) number of times. It is not meaningful to execute
any other action more than once for each d (OKBC query or clue from the user) in a given trail of
state transitions from the initial state to a terminal state. Thus, if the current state of the FSM remains
the same for δIL times, it means that inference is in-feasible for the current query (e.g., when no
complete path feature is found) and the query remains unanswered.

3.2 IKAI Relation Prediction Model
Inferring the correctness of the resulting KBC query is performed by the relation Predictor (a neural
network). It learns a single model (F) with trainable parameters Θ for all relations. The model is

6

trained continuously with streaming clue triples. Note, the triples (in the KB) acquired via CLQs (by
a3) and MLQs (by a2) in past user interactions are also used as training examples, besides the clue
triples obtained in the current interactive session with the user.

Given a relation r, IKAI uses the clue triples involving r (including the generated negative examples
for them) stored in data buffer D to train F . When a query involving r is encountered at time j, IKAI
randomly samples k examples of r from D (we sample max. 500 examples per class label to train
F with a very small number of training epochs (to ensure real-time training of F). For an already
learned relation, this is like a quick recollection of the past learned knowledge before the query is
answered. For a new r, only the acquired clues of r take part in training, where the learned weights
Θj−1 of F at time j − 1 acts as the prior knowledge for learning Θj .

Often for a (new) relation r learned recently, the number of clue triples acquired in D may not be
sufficient to learn r. Thus, to improve F continuously on poorly learned tasks (relations), IKAI
acquires additional clues for such r. Here, a poorly learned task denotes the task (relation) for which
the validation performance of the Predictor at a given point in time is low compared to that on other
tasks, as measured by an evaluation metric. In our work, we use macro-F1 score to judge the overall
learning performance of F on a given task. IKAI ranks all learned tasks based on validation macro-F1
scores and chooses ρ% (see Table 1) relations with lowest macro-F1 to acquire more clues for them.
In this process, while executing a0 (see Sec. 3.1), besides the search operation, if the query relation r
is evaluated as a poorly learned task, IKAI randomly sets QRF = 0 to fire a1 for clue acquisition.

Our Predictor is based on the compositional vector space model [36, 13]. The model composes
the implication of a relation path (feature) using RNN that takes as inputs the vector embeddings
of relations in the relation path and outputs a vector in the semantic neighborhood of the test
(i.e. query) relation. For a training instance i ∈ D, IKAI uses a LSTM [20] to compose the
vector representation of each path p ∈ Pc as vp and vector representation of r as vr. Next, IKAI
computes the prediction value, P(r|s, t) as sigmoid of the mean cosine similarity of all vp with vr:
P(r|s, t) = sigmoid(1

|Pc|
∑
p∈Pc

cos(vr, vp)). F is trained by maximizing the log-likelihood. While

predicting a query q involving r, the predictor infers q as +ve (true) if P(r|h, t) ≥ 0.5 and -ve (not
true) otherwise.

4 Experiments
We evaluate IKAI in terms of its predictive performance and strategy formulation ability. IKAI is
designed for a multi-user chatting environment. Thus, it is natural for IKAI to observe many query
triples (and hence, accumulate more clues) for a relation from different users over time. Presently
IKAI only adds the supporting facts into the KB. The predicted query triples are not added as they
are unverified knowledge. In practice, IKAI can store these predicted triples in the KB as well after
cross-verification by asking other users later. Similar cross-verification strategy can also be used to
deal with (intentional or unintentional) incorrect knowledge injection by user to the system’s KB.

4.1 Evaluation Setup
Evaluating IKAI with real users in a crowd-source environment would be prohibitively time-
consuming because both training and testing need a large number of real-time interactions between
users and the system. Thus, we design a simulated interactive environment for the IKAI evaluation.

Table 4: Data statistics [kwn: known, unk: unknown, rel: rela-
tion]

KB Statistics Freebase (FB) WordNet (WN)
Relations (Korg / Kb) 1,345 / 1,273 18 / 12
Entities (Korg / Kb) 13, 871 / 13, 223 13, 595 / 13, 150
Triples (Korg / Kb) 854, 362 / 652, 790 107, 146 / 66, 338
Test relations (kwn / unk) 25 (17 / 8) 18 (12 / 6)
Train / valid / test instances 11,260 / 1223 / 7083 6628 / 711 / 3500
Entity statistics in Test query triples [s = source entity; t = target entity]
Avg. % triples per rel with
only s unk

16.28 13.29

Avg. % triples per rel with
only t unk

16.29 10.94

Avg. % triples per rel both s
and t unk

4.69 4.17

In the simulated environment, a simu-
lated user (a program) is created to inter-
act with IKAI. The (simulated) user has
(1) a knowledge base (Ku) for answering
questions from IKAI, and (2) an OKBC
query dataset (Dq) from which the user
issues queries to IKAI. Here, Dq con-
sists of a set of structured OKBC query
triples q of the form (s, r?, t) readable
by IKAI. In practice, the user only issues
OKBC queries to IKAI, but cannot evalu-
ate the performance of the system unless
the user knows the answer. To evaluate
the performance of IKAI on Dq , we also label Dq while preparing the dataset (see Supplementary).

7

Table 5: Comparison of predictive performance of various versions of IKAI .

Dataset Models Rel - K / Ent -K Rel - K / Ent -UNK Rel - UNK / Ent - K Rel - UNK / Ent -UNK Overall
F1(+) Macro-F1 F1(+) Macro-F1 F1(+) Macro-F1 F1(+) Macro-F1 F1(+) Macro-F1

Freebase
BG 0.584 0.629 0.494 0.569 0.432 0.532 0.388 0.501 0.508 0.579
w/o PTL 0.555 0.652 0.533 0.620 0.528 0.419 0.525 0.418 0.538 0.584
IKAI 0.587 0.671 0.493 0.591 0.525 0.616 0.440 0.577 0.532 0.627

WordNet
BG 0.548 0.466 0.532 0.525 0.486 0.476 0.498 0.484 0.526 0.482
w/o PTL 0.666 0.741 0.561 0.624 0.461 0.281 0.485 0.323 0.556 0.588
IKAI 0.655 0.694 0.552 0.604 0.612 0.659 0.509 0.506 0.612 0.653

As IKAI performs continuous online knowledge acquisition and learning, we evaluate its performance
over time at different temporal checkpoints. We assume that, IKAI has already interacted with some
users up to the evaluation start time teval and gathered a knowledge base (Kb) (called the base KB),
which includes its initial knowledge base and the knowledge obtained in its past interactions with
users. Apart from Kb, we also assume that at teval, IKAI’s predictor model has already been trained
to perform inference over a set of query relations seen so far. Recall our single predictor covers
all past learned relations. We call these relations the known query relations. The query relations in
dataset Dq not belonging to the set of known query relations are called unknown query relations.
Note, Dq consists of query triples involving both known and unknown query relations.

Evaluation KB Datasets. We create the simulated user’s KB (Ku), IKAI’s base KB (Kb) and the
OKBC query dataset (Dq) along with the training and validation datasets (used in IKAI’s initial
training phase) from two standard KB datasets (see Table 4): (1) Freebase FB15k and (2) WordNet
WN18 [9]. From each KB dataset, we build a large knowledge graph and use it as the original KB
(Korg). We also augment Korg with inverse triples (t, r−1, s) for each (s, r, t) in Korg to increase
graph connectivity following the existing KBC methods. Here, r−1 refers to the inverse relation of r
that connects t to s (see “Actions" in Sec. 3.1). We provide details about the creation of simulated
user’s KB (Ku), base KB (Kb) and the OKBC query dataset (Dq) from Korg and Hyper-parameter
Settings in Supplementary Material.

Compared Models. Since no existing KBC method can solve the proposed OKBC problem, we
compare various versions of IKAI: (1) IKAI: The proposed full version of IKAI.
(2) BG (Blind Guessing). To evaluate the guessing mechanism (see action a2 in Sec. 3.1), BG fills
all the missing or connecting links blindly with “-RelatedTo-" (the user has no answer). Note that, if
no guessing is used and the user does not answer an OKBC query, IKAI will reject the query.
(3) w/o PTL (without Past Task Learning): IKAI does not ask for additional clues for poorly
learned tasks and retrain F on past learned tasks. Only training of F on new tasks is enabled.

Note that although [45, 44] deal with OKBC, they infer facts using a text corpus, while we do through
user interactions. The two approaches are complementary and not comparable.

Evaluation Metrics. We use positive (+) F1 score and Macro F1 score for evaluation. To evaluate
the correctness of strategy formulation, we introduce Coverage (C), the fraction of total query triples
answered by IKAI. Note, C depends on the parameter δIL and δp.

4.2 Results and Analysis
For evaluation on a given KB (Freebase or WordNet), we first train IKAI using training and validation
instances (see Table 4) from base KB Kb so that we get initial relation prediction model for all known
tasks (relations). Once this initial training phase is over, we randomly generate a chronological
ordering of all test instances (OKBC queries) in Dq , which are fed to IKAI one by one in a streaming
fashion, and then, evaluate IKAI online. The avg. test query processing time of IKAI for Freebase
is 0.24 sec and for WordNet is 0.15 sec (on a Nvidia Titan RTX GPU).

Predictive Performance. Table 5 shows the +ve F1 and Macro F1 scores of various versions of
IKAI. We present the overall performance on the whole test query dataset as well as performance on
subsets of test query dataset, denoted as (Rel-X, Ent-Y), where X and Y can be either known (‘K’) or
unknown (‘UNK’) and ‘Rel’ denotes query relation and ‘Ent’ denotes query entities. So, here, (Rel-K,
Ent-UNK) denotes the subset of the test dataset having query triples involving known relations, but
unknown entities (either s or t is unknown) with respect to the base KB Kb. From Table 5, IKAI
performs the best among all variants on both KB datasets. Due to the use of contextual similarity of
entity-pairs, IKAI’s guessing mechanism also works better than blind guessing (BG). The past task
selection and learning mechanism of IKAI also improves its performance over that for w/o PTL, as it
acquires and learns more clues during testing for poorly performed tasks (evaluated on validation set).

8

Table 6: Performance (+ve-F1 scores) of IKAI on (filtered)
test queries observed over time [% TTO = % of Test Triples
Observed]. Number in [] shows the test triples count for TTO =
100%. “all" denotes overall performance.

% TTO Freebase WordNet
kwn [9] unk [293] all [302] kwn [21] unk [105] all [126]

50% 0.0 0.492 0.507 0.947 0.799 0.819
100% 0.545 0.580 0.578 0.950 0.870 0.884

Table 7: Performance (+ve F1) of IKAI on user’s responses to
CLQs and MLQs evaluated on Full (100%) test data.

Response Freebase WordNet
kwn unk Overall kwn unk overall

No 0.594 0.483 0.529 0.664 0.564 0.612
Yes 0.587 0.496 0.532 0.655 0.571 0.612

Table 6 shows the result of IKAI per-
formance improvement over time at var-
ious temporal checkpoints for known
(kwn) [corresponds to (Rel-K, Ent-K)],
unknown (unk) [corresponds to queries
for which either Rel-UNK or Ent-UNK]
and overall queries. We noted in our
experiments that, the simulated user’s
query satisfaction rate (proportions of
queries that can be answered by the sim-
ulated user) is very low (1% MLQs and
11% CLQs). Thus, to fairly evaluate the
performance improvement of IKAI over
time, we report the results (in Table 6) in
filtered setting, where we only consider
test queries for which the user is able to answer (provide supporting facts) at least one CLQ or MLQ
(when asked by IKAI). From Table 6, we see that the IKAI performance improves significantly as it
see more test queries, and gain more knowledge (whenever user is able to respond) over time.

Table 7 shows the results of IKAI on user responses to MLQ’s and CLQ’s on the full test data.
Answering MLQ’s and CLQ’s is hard for the simulated user as Ku often lacks the required triples.
Thus, we analyze how the performance is affected if the user does not respond at all. The results show
a trend in overall performance gain when the user responds (also, supported by Table 6). However,
the improvement is not large as the simulated user’s query satisfaction rate (1% MLQs and 11%
CLQs) is very small. But, the analysis shows the effectiveness of IKAI’s guessing mechanism despite
such minimal knowledge acquisition by IKAI (see performance gain of IKAI over BG in Table 5).

Inference Strategy Formulation. We use WordNet test query dataset to illustrate various inference
strategies formulated by IKAI (see Table 8) with varying δIL and δp values (column 2 follows
collomn 1 in Table 8). When δIL = 0, IKAI cannot interact with user and thus, can only solve
KBC queries from user and rejects all queries involving unknown s, r or t. Thus, coverage C drops
significantly (0.5). The only formulated strategy here is 〈a0, a4, a5〉, which involves only processing
actions. None of the interactive actions a1, a2, a3 was invoked by the FSM here.

Table 8: IKAI’s Inference strategies (ordered by frequency).

δIL = 0, δp = 3 [C: 0.50] 〈a0, a4, a2, a2, a5〉 δIL = 5, δp = 1 [C: 1.0]
〈a0, a4, a5〉 〈a0, a4, a2, a5〉 〈a0, a4, a2, a5〉
δIL = 1, δp = 3 [C: 0.97] 〈a0, a4, a5〉 〈a0, a4, a5〉
〈a0, a4, a2, a5〉 〈a0, a3, a4, a2, a2, a5〉 〈a0, a3, a4, a2, a5〉
〈a0, a1, a4, a5〉 〈a0, a3, a4, a2, a5〉 〈a0, a3, a4, a5〉
〈a0, a3, a4, a5〉 〈a0, a3, a4, a5〉 〈a0, a1, a3, a4, a2, a5〉
〈a0, a4, a5〉 〈a0, a1, a3, a4, a2, a5〉 〈a0, a1, a4, a5〉
δIL = 3, δp = 3 [C: 1.0] 〈a0, a1, a4, a2, a2, a5〉 〈a0, a1, a3, a4, a5〉
〈a0, a4, a2, a2, a2, a5〉 〈a0, a1, a4, a2, a5〉 〈a0, a1, a4, a2, a5〉

When δIL = 1, IKAI can only in-
teract once with the user per query
for knowledge acquisition. In such
a case, IKAI acquires knowledge
well for instances where either of
an entity or relation is unknown.
However, as one unknown entity
or relation may appear in multiple
future test triples, once it becomes
known, IKAI doesn’t need to ask
for it again (knowledge accumulation). Thus, C increases significantly (0.97). Each of the formulated
strategies (4 strategies in Table 8) has only one interactive action [one of {a1, a2, a3}].

When δIL = 3, IKAI is able to perform inference on all test queries and coverage C becomes 1.
For δp = 1, IKAI uses a2 only once (as only one MLQ satisfies δp) compared to at most 3 MLQs
in formulated strategies for δp = 3. In summary, IKAI’s FSM module can correctly formulate
query-specific inference strategies based on specified parameter values.

5 Conclusions

This paper proposed to solve the open-world knowledge base completion (OKBC) problem through
user interactions and inference. The work is motivated by the need to learn new knowledge in
human-machine dialogues. IKAI (and together with our earlier work CILK [28]) can potentially
serve as a chatbot knowledge learning engine. Our experimental results demonstrated both IKAI’s
predictive quality and strategy formulation ability. In our future work, we plan to learn other forms of
knowledge to make learning during conversation more complete. It is also critical to implement this
learning capability in a practice chatbot to test its validity and to improve it in the process.

9

Acknowledgments

This work was supported in part by a research gift from Northrop Grumman, a research contract from
DARPA (HR001120C0023), and two research grants from National Science Foundation (IIS-1910424
and IIS-1838770).

References
[1] Vito Walter Anelli, Pierpaolo Basile, Derek Bridge, Tommaso Di Noia, Pasquale Lops, Cataldo

Musto, Fedelucio Narducci, and Markus Zanker. Knowledge-aware and conversational recom-
mender systems. In ACM RecSys, 2018.

[2] Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D Manning. Leveraging
linguistic structure for open domain information extraction. In ACL-IJCNLP, 2015.

[3] Michele Banko, Michael J Cafarella, Stephen Soderland, Matthew Broadhead, and Oren Etzioni.
Open information extraction from the web. In IJCAI, 2007.

[4] Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and Tiejun Zhao. Constraint-based question
answering with knowledge graph. In COLING, 2016.

[5] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In EMNLP. 2013.

[6] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In SIGMOD, 2008.

[7] Antoine Bordes, Sumit Chopra, and Jason Weston. Question answering with subgraph embed-
dings. In EMNLP, 2014.

[8] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale simple question
answering with memory networks. arXiv preprint arXiv:1506.02075, 2015.

[9] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, 2013.

[10] Antoine Bordes and Jason Weston. Learning end-to-end goal-oriented dialog. arXiv preprint
arXiv:1605.07683, 2016.

[11] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning structured
embeddings of knowledge bases. In AAAI, 2011.

[12] Zhiyuan Chen and Bing Liu. Lifelong machine learning. Morgan & Claypool Publishers, 2018.

[13] Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum. Chains of
reasoning over entities, relations, and text using recurrent neural networks. arXiv preprint
arXiv:1607.01426, 2016.

[14] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open information
extraction. In EMNLP, 2011.

[15] Matt Gardner and Jayant Krishnamurthy. Open-vocabulary semantic parsing with both distribu-
tional statistics and formal knowledge. In AAAI, 2017.

[16] Matt Gardner and Tom M Mitchell. Efficient and expressive knowledge base completion using
subgraph feature extraction. In EMNLP, 2015.

[17] Matt Gardner, Partha Pratim Talukdar, Jayant Krishnamurthy, and Tom Mitchell. Incorporating
vector space similarity in random walk inference over knowledge bases. In ACL, 2014.

[18] Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jianfeng Gao, Wen-Tau
Yih, and Michel Galley. A knowledge-grounded neural conversation model. In AAAI, 2018.

[19] Ben Hixon, Peter Clark, and Hannaneh Hajishirzi. Learning knowledge graphs for question
answering through conversational dialog. In NAACL-HLT, 2015.

10

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
1997.

[21] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum. Yago2: A
spatially and temporally enhanced knowledge base from wikipedia. Artificial Intelligence, 2013.

[22] Yoji Kiyota, Sadao Kurohashi, and Fuyuko Kido. Dialog navigator: A question answering
system based on large text knowledge base. In COLING, 2002.

[23] Ni Lao, Einat Minkov, and William W Cohen. Learning relational features with backward
random walks. In ACL, 2015.

[24] Ni Lao, Tom Mitchell, and William W Cohen. Random walk inference and learning in a large
scale knowledge base. In EMNLP, 2011.

[25] Jiwei Li, Alexander H Miller, Sumit Chopra, Marc’Aurelio Ranzato, and Jason Weston. Dia-
logue learning with human-in-the-loop. In ICLR, 2017.

[26] Jiwei Li, Alexander H Miller, Sumit Chopra, Marc’Aurelio Ranzato, and Jason Weston. Learn-
ing through dialogue interactions by asking questions. In ICLR, 2017.

[27] Bing Liu and Sahisnu Mazumder. Lifelong and continual learning dialogue systems:learning
during conversation. In Proceedings of AAAI-2021, 2021.

[28] Bing Liu and Chuhe Mei. Lifelong knowledge learning in rule-based dialogue systems. arXiv
preprint arXiv:2011.09811, 2020.

[29] Yinong Long, Jianan Wang, Zhen Xu, Zongsheng Wang, Baoxun Wang, and Zhuoran Wang. A
knowledge enhanced generative conversational service agent. In DSTC6 Workshop, 2017.

[30] Sahisnu Mazumder and Bing Liu. Context-aware path ranking for knowledge base completion.
In IJCAI, 2017.

[31] Sahisnu Mazumder, Bing Liu, Shuai Wang, and Nianzu Ma. Lifelong and interactive learning
of factual knowledge in dialogues. In SIGDIAL, 2019.

[32] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In ICLR Workshop, 2013.

[33] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In NIPS, 2013.

[34] George A Miller. Wordnet: a lexical database for english. In Communications of the ACM,
1995.

[35] Tom M Mitchell, William W Cohen, Partha Pratim Talukdar, Justin Betteridge, Andrew Carlson,
Matthew Gardner, Bryan Kisiel, Jayant Krishnamurthy, et al. Never ending learning. In AAAI,
2015.

[36] Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Compositional vector space
models for knowledge base completion. In ACL, 2015.

[37] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of
relational machine learning for knowledge graphs. arXiv preprint arXiv:1503.00759, 2015.

[38] Kohei Ono, Ryu Takeda, Eric Nichols, Mikio Nakano, and Kazunori Komatani. Lexical
acquisition through implicit confirmations over multiple dialogues. In SIGDIAL, 2017.

[39] Tsugumi Otsuka, Kazunori Komatani, Satoshi Sato, and Mikio Nakano. Generating more
specific questions for acquiring attributes of unknown concepts from users. In SIGDIAL, 2013.

[40] Chen Qu, Liu Yang, W Bruce Croft, Johanne R Trippas, Yongfeng Zhang, and Minghui Qiu.
Analyzing and characterizing user intent in information-seeking conversations. In SIGIR, 2018.

11

[41] Amrita Saha, Vardaan Pahuja, Mitesh M Khapra, Karthik Sankaranarayanan, and Sarath Chandar.
Complex sequential question answering: Towards learning to converse over linked question
answer pairs with a knowledge graph. In AAAI, 2018.

[42] Denis Savenkov and Eugene Agichtein. When a knowledge base is not enough: Question
answering over knowledge bases with external text data. In SIGIR, 2016.

[43] Michael Schmitz, Robert Bart, Stephen Soderland, Oren Etzioni, et al. Open language learning
for information extraction. In EMNLP and CoNLL, 2012.

[44] Haseeb Shah, Johannes Villmow, Adrian Ulges, Ulrich Schwanecke, and Faisal Shafait. An
open-world extension to knowledge graph completion models. In AAAI, 2019.

[45] Baoxu Shi and Tim Weninger. Open-world knowledge graph completion. In AAAI, 2018.

[46] Y. Sun and Yi Zhang. Conversational recommender system. In SIGIR, 2018.

[47] Patrick Verga, Arvind Neelakantan, and Andrew McCallum. Generalizing to unseen entities
and entity pairs with row-less universal schema. In EACL, 2017.

[48] Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint arXiv:1506.05869,
2015.

[49] Quan Wang, Jing Liu, Yuanfei Luo, Bin Wang, and C Lin. Knowledge base completion via
coupled path ranking. In ACL, 2016.

[50] Sida I Wang, Samuel Ginn, Percy Liang, and Christoper D Manning. Naturalizing a program-
ming language via interactive learning. ACL, 2017.

[51] Sida I Wang, Percy Liang, and Christopher D Manning. Learning language games through
interaction. ACL, 2016.

[52] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta, and Dekang
Lin. Knowledge base completion via search-based question answering. In WWW, 2014.

[53] Jason E Weston. Dialog-based language learning. In NIPS, 2016.

[54] Fei Wu and Daniel S Weld. Open information extraction using wikipedia. In ACL, 2010.

[55] Liu Yang, Minghui Qiu, Chen Qu, Jiafeng Guo, Yongfeng Zhang, W Bruce Croft, Jun Huang,
and Haiqing Chen. Response ranking with deep matching networks and external knowledge in
information-seeking conversation systems. In SIGIR, 2018.

[56] Tom Young, Erik Cambria, Iti Chaturvedi, Hao Zhou, Subham Biswas, and Minlie Huang.
Augmenting end-to-end dialog systems with commonsense knowledge. In AAAI, 2018.

[57] Haichao Zhang, Haonan Yu, and Wei Xu. Listen, interact and talk: Learning to speak via
interaction. arXiv preprint arXiv:1705.09906, 2017.

[58] Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W Bruce Croft. Towards conversational
search and recommendation: System ask, user respond. In CIKM, 2018.

[59] Hao Zhou, Tom Young, Minlie Huang, Haizhou Zhao, Jingfang Xu, and Xiaoyan Zhu. Com-
monsense knowledge aware conversation generation with graph attention. In IJCAI, 2018.

12

Supplementary Material

A Simulated User Creation and Test Dataset Generation

To simulate the inital interactions and knowledge learning process of IKAI up to time step teval, we
create a training and validation dataset (in addition to the test query dataset Dq) involving triples of
known query relations and entities. We assume that IKAI has already been trained on these training
and validation dataset triples (in the past) before the evaluation on Dq starts. We call this training
process the initial training phase of IKAI. Once the initial training phase is over, IKAI is ready to
perform the online training (with clues to be acquired) and evaluation process (with Dq) at teval.

Given the original KB graph (Korg) (Freebase or WordNet), we create the simulated user’s knowledge
base (Ku), the base KB (Kb), the OKBC test query dataset (Dq) and the training and validation
datasets for initial training phase from Korg (Table 4 in main paper shows the statistics), as discussed
below.

For Freebase, we found 86 relations with ≥ 1000 triples and randomly selected 25 from various
domains. We randomly shuffle the list of 25 relations, select 34% of them as unknown relations and
consider the rest (66%) as known relations.

For each known relation r, we randomly shuffle the list of distinct triples for r, choose (maximum)
500 triples and split them into 60% training, 10% validation and 20% test. Rest 10% along with the
leftover (not included in the list of 500) triples are added to the user knowledge base Ku. The training
and validation triples are used in IKAI’s initial training phase and the test triples constitute Dq .

For each unknown relation r, we remove all triples of r from Korg , and then, randomly choose 20%
triples among these triples as test queries for unknown r. Rest of the triples (80%) for unknown
relation r are added to user’s KB Ku. In this process, we also make sure that the test query triples
involving unknown relation r are excluded from Ku. Thus, the user cannot provide the query triple
itself as a clue to IKAI (during inference) and also, to simulate the case that the user does not know
the answer of its issued query.

Note that, at this point, Ku has at least 10% of triples for each r (known and unknown to IKAI) and
thus, the user is always able to provide clues for OKBC queries involving both known and unknown
relations. Note, if the user cannot provide a clue for an unknown relation (not likely), the OKBC
query cannot be converted to a KBC query and thus, IKAI will not be able to answer the query.

To create queries involving unknown entities, we first randomly choose 10% of the entities present in
the test query triples, and then, remove all triples involving those entities from Korg and add them to
user’s KB Ku. At this point, Korg gets reduced to Kb (the base KB) for IKAI.

Note that, due to the removal of a significant amount of triples, the base KB Kb becomes sparser
(see “# triples" row in Table 4 in main paper), making the inference task much harder. The WordNet
dataset being small, we use all its 18 relations for evaluation and then, create the OKBC test query
dataset, training and validation dataset, Ku and Kb following the above procedure used for Freebase.

Although the simulated user may provide clues 100% of the time (otherwise, the query is not
answerable), it often cannot respond to MLQs and CLQs due to lack of the required triples/facts.
Thus, we further enrich Ku with external KB triples. Due to a fair amount of entity overlapping, we
choose NELL2 for enriching Ku in case of Freebase, and ConceptNet 3 for enriching Ku in case of
WordNet.

B Dataset Labeling

We now discuss labeling of the test query dataset (Dq) and training and validation datasets. Given a
relation r and a triple (s, r, t) in the training, validation or test query dataset, each pair (s, t) in them
is regarded as a +ve triple (instance) for r. Thus, (s, r?, t) represents a +ve OKBC query (i.e., the
true answer of the query is "YES"). For each +ve instance (s, t), we generate a negative instance,
either by randomly corrupting the source s, or by corrupting the target t (same as in action a1 in

2http://rtw.ml.cmu.edu/rtw/kbbrowser/
3http://conceptnet.io/

13

Sec. 3.1). The corrupted triple corresponding to each +ve triple are treated as -ve OKBC query (i.e.,
the true answer of the query is "NO") and added to the corresponding dataset (training / validation /
test). These datasets are thus expanded with negative instances.

Note, the test triples are not inKb orKu. Also, each triple/instance in training or testing is represented
with its relation path features extracted while executing the inference strategy.

C Hyper-parameter Settings

Unless specified, the empirically set parameters (Table 1 in main paper) of IKAI are: δIL = 5 set for
each test query and δIL = 2 set for each training queries / clues, δp = 3, ηπ = 7, ηw = 20, l = 0.07,
h = 0.2, ρ = 25%. For initial training phrase, number of training epochs is set as 10. For online
training, training epoch as 2 (3) for learned (unlearned) task for each query processing, batch-size is
set as 128, dropout is set as 0.1, hidden units and embedding size are set as 300, learning rate is 1e-4
and regularization parameter 0.001. Adam optimizer is used for optimization.

14

	Introduction
	Related Work
	IKAI: The Proposed System
	Finite State Machine of IKAI
	IKAI Relation Prediction Model

	Experiments
	Evaluation Setup
	Results and Analysis

	Conclusions
	Simulated User Creation and Test Dataset Generation
	Dataset Labeling
	Hyper-parameter Settings

