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Abstract

Reinforcement learning utilizing kernel ridge regression to predict the expected
value function represents a powerful method with great representational capac-
ity. This setting is a highly versatile framework amenable to analytical results.
We consider kernel-based function approximation for RL in the infinite horizon
average reward setting, also referred to as the undiscounted setting. We propose
an optimistic algorithm, similar to acquisition function based algorithms in the
special case of bandits. We establish novel no-regret performance guarantees for
our algorithm, under kernel-based modelling assumptions. Additionally, we derive
a novel confidence interval for the kernel-based prediction of the expected value
function, applicable across various RL problems.

1 Introduction

Reinforcement learning (RL) has demonstrated substantial practical success across a variety of
application domains, including gaming [1, 2, 3], autonomous driving [4], microchip design [5], robot
control [6], and algorithmic search [7]. This empirical success has prompted deeper investigations
into the analytical understanding of RL, especially in complex environments. Over the past decade,
significant advances have been made in establishing theoretically grounded algorithms for various
settings. In this work, we focus on the infinite horizon average reward setting, also known as the
undiscounted setting [8, 9]. The infinite horizon setting is particularly well-suited for applications
that involve continuing operations not divided into episodes such as load balancing and stock market
operations. In contrast to the episodic setting [10] and the discounted setting [11], theoretical under-
standing of RL algorithms is relatively limited for the average reward setting. For the infinite horizon
setting, we develop a computationally efficient algorithm and establish its theoretical performance
guarantees.

There is a natural progression in the complexity of RL models corresponding to the structural
complexity of the Markov Decision Process (MDP). This progression ranges from tabular models to
linear, kernel-based, and deep learning-based models. The kernel-based structure is an extension of
linear structure to an infinite-dimensional linear model in the feature space of a positive definite kernel,
resulting in a highly versatile model with great representational capacity for nonlinear functions. In
addition, the closed-form expressions for the prediction and the uncertainty estimate in kernel-based
models allow the development of algorithms based on nonlinear function approximation that are
amenable to theoretical analysis. Kernel-based models also serve as an intermediate step towards
understanding the deep learning-based models [see, e.g., 12] based on the Neural Tangent (NT) kernel
approach [13].

The infinite-horizon average-reward setting has been extensively explored under the tabular struc-
ture [14, 8, 15]. Under the performance measure of regret, defined as the difference in the total reward
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achieved by a learning algorithm over T steps and that of the optimal stationary policy, performance
bounds of O(poly(|S|, |A|)

√
T ) have been established [see, e.g., 16], where S and A represent the

state and action spaces, respectively, and the regret grows polynomial with their sizes. It is assumed
for these results that the MDP is weakly communicating, a condition necessary for achieving sublinear
regret [17]. Averaged over T steps, the regret diminishes as T increases, thereby offering what is
known as a no-regret performance guarantee. The applicability of the tabular setting is limited, as
many real-world problems feature very large or potentially infinite state-action spaces. Consequently,
recent literature has explored the use of function approximation in RL, particularly through linear
models [18, 19, 20, 9]. This approach represents the value function or the transition model via a
linear transformation applied to a predefined feature mapping. In the linear setting, regret bounds of
O((dT )

3
4 ) have been established [9], where d represents the ambient dimension of the linear feature

map. Kernel-based models can be considered as linear models in the feature space of the kernel.
That, however, is often infinite dimensional (d = ∞). As such, the results with linear models do not
translate to the kernel-based settings, necessitating novel analytical techniques. Also, for a discussion
on further limitations of the linear models, see [21].

In this work, we propose the first RL algorithm in the infinite horizon average reward setting with
non-linear function approximation using kernel-ridge regression. This is one of the most flexible
models that lends well to theoretical analysis. Our algorithm, referred to as Kernel-based Upper
Confidence Bound (KUCB-RL), utilizes kernel ridge regression to build predictor and uncertainty
estimates for the expected value function. Inspired by the principle of optimism in the face of
uncertainty and equipped with these statistics, KUCB-RL builds an upper confidence bound on the
state-action value function over a future window of w steps. This bound serves as a proxy qt, at
each step t, for the state-action value function over this future window. At each step t with the
current state st, the action is selected greedily with respect to this proxy: at = arg maxa∈A qt(st, a).
This approach resembles the acquisition function based algorithms such as GP-UCB and GP-TS,
using Upper Confidence Bound and Thompson sampling, respectively, in the context of kernel-based
bandits, also known as Bayesian optimization [22, 23]. Kernel-based bandit setting corresponds to
the degenerate case of |S| = 1. In comparison, in the RL setting, the action is selected based on
the current state, and the reward depends on both the state and the action. A kernel-based model
is used to provide predictions for the expected value function, which varies due to the Markovian
nature of the temporal dynamics. This makes the RL problem significantly more challenging than the
bandit problem where the predictions are derived for a fixed reward function. To address this latter
challenge, we derive a novel kernel-based confidence interval that is applicable across RL problems.

1.1 Contributions

To summarize, our contributions are as follows. We develop a kernel based optimistic al-
gorithm for the infinite horizon average reward setting, referred to as KUCB-RL. We estab-
lish no-regret guarantees for the proposed learning algorithm, which is the first for this set-
ting to the best of our knowledge. Specifically, in Theorem 2, we prove a regret bound of

O
(

T
w +

(
w + w√

ρ

√
γ(T ; ρ) + log(Tδ )

)√
ρTγ(T ; ρ) + ρ2w2γ(T ; ρ)γ(T/w; ρ)

)
, at a 1 − δ con-

fidence level, where ρ is the parameter of kernel ridge regression and γ(T ; ρ) is the maximum
information gain, a kernel specific complexity term (see Section 2). This regret bound translates to
O
(
d

1
2T

3
4

)
in the special case of a linear model, recovering the best existing results [9] in depen-

dence on T and improving by a factor of d
1
4 . When applied to very smooth kernels with exponential

eigendecay such as the Squared Exponential (SE) kernel, we obtain a regret of Õ(T
3
4 ), with the

notation Õ hiding logarithmic factors. For one of the most general cases, the kernels with polynomial
eigendecay with parameter p > 1 (See Definition 1), that includes, for example, the Matérn family
and NT kernels, we show that our regret bound translates to Õ(T

3p+5
4p+4 ), which constitutes a no-regret

guarantee. To highlight the significance of this result, we point out that no-regret guarantees for
GP-UCB in the degenerate case of bandits were established only recently in [24], while the initial
studies of GP-UCB (as well as GP-TS) [22, 23] did not provide no-regret guarantees for the case
of polynomial eigendecay. As part of our analysis, in Theorem 1, we develop a novel confidence
interval applicable across kernel-based RL problems that contributes to the eventual improved results.
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1.2 Related Work

The vast RL literature can be categorized across various dimensions. In addition to the average
reward, episodic, and discounted settings, as well as tabular, linear, and kernel-based structures
mentioned above, other notable distinctions among settings include model-based versus model-free
approaches, and offline versus online versus settings where the existence of a generative model is
assumed (allowing the learning algorithm to sample the state-action of its choice at each step, rather
than following the Markovian trajectory). Covering the entire breadth of RL literature is challenging.
Here, we will focus on highlighting and providing comparisons with the most closely related works,
particularly in terms of their setting and structure.

The kernel-based MDP structure has been considered in several recent works under the episodic
setting [12, 25, 26, 27]. The regret bound proven in [12] for the episodic setting applies only to
very smooth kernels such as SE kernel. [25] addressed this limitation by extending the results to
Matérn and NT families of the kernels, albeit with a sophisticated algorithm that actively partitions
the state-action domain into possibly many subdomains, using only the observations within each
subdomain to obtain kernel-based prediction and uncertainty estimates. Their work is also based on a
particular assumption that relates the kernel eigenvalues to the size of the domain. The work of [26]
is most closely related to ours in terms of kernel-related assumptions. Specifically, our Assumption 4
is identical to Assumption 1 of [26]. They establish a regret bound of O(Hγ(N ; ρ)

√
N) for the

episodic MDP setting, where N is the number of episodes, γ(N ; ρ) is the maximum information
gain, a kernel-related complexity term, H is the episode length and the value of ρ is a fixed constant
close to 1. However, their regret bounds do not apply to general families of kernels, such as those
with polynomially decaying eigenvalues (see Section 2.2 for the definition) including Matérn and NT
kernels, as for this family of kernels γ(N ; ρ) possibly grows faster than

√
N . As a result, a no-regret

guarantee cannot be established in many cases of interest. In comparison, the infinite horizon setting
considered in this work is more challenging than the episodic setting as evident when comparing these
settings with linear modeling. For this more challenging setting, we establish no-regret guarantees.
A key element of our improved results is the novel confidence interval we utilize in our analysis
(Theorem 1). This result is general and can be used across RL problems, for example, improving the
results of [26] as well.

In the tabular case, a lower bound of Ω(
√
D|S||A|T ) on regret was established in [14] in the

infinite-horizon average-reward setting, where D is the diameter of the MDP. For ergodic MDPs,
[8] shows a regret bound of Õ(

√
t3mix|S||A|T ), where tmix is the mixing time of an ergodic MDP.

Furthermore, under the broader assumption of weakly communicating MDPs, which is necessary
for low regret [28], the best existing regret bound of model-free algorithms is Õ(|S|5|A|2

√
T ),

achieved by the recent work of [15]. Several works have studied linear function approximation in the
infinite horizon average reward setting under strong assumptions of uniformly mixing and uniformly
excited feature conditions [18, 19, 20]. Notably, [20] achieved a regret bound of Õ

(
1
σ

√
t3mixT

)
under the linear bias function assumption, where σ is the smallest eigenvalue of policy-weighted
covariance matrix. Under the much less restrictive setting of Bellman optimality equation assumption
(Assumption 1) for linear MDP, [9] provides an algorithm with regret guarantee of Õ((dT )3/4). We
also consider our kernel-based approach under this general assumption on MDP. Furthermore, for
examples of infeasible algorithms in the literature, see [9], Algorithm 1. There also exists a separate
model-based approach to the problem where the transition probability distribution (model) is learned
and used for planning, usually requiring high memory and computational complexity and utilizing
substantially different techniques and assumptions. While this approach is studied under tabular
settings [17, 14] and linear settings [29], it is not clear whether model-based approaches can be
feasibly constructed in the kernel-based setting, due to the space complexity of a kernel-based model.

Our work is also related to the simpler problem of kernelized bandits [22, 23, 30, 31]. Our construction
of the confidence interval for the RL setting has been inspired the previous works on bandits, utilizing
novel analysis introduced in [24]. Bandit settings can be considered a degenerate case of the RL
framework with |S| = 1. In comparison, the temporal dependencies of MDP introduce substantial
challenges, and the confidence intervals used in the bandit setting cannot be directly applied.

We summarize the most closely related work with a focus on model-free feasible algorithms in Table 1.
We present the existing regret bounds for feasible algorithms under various assumptions on MDP
and its structure (tabular, linear, kernel-based). The assumptions include weakly communicating
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MDP [See 32, Section 8.3.1], Bellman optimality equation (our Assumption 1), and uniform mixing
assumption [see 9, Assumption 3]. For a formal definition of linear MDP, see [9], Assumption 2, and
for the linear bias function case, see [9], Assumption 4.

Table 1: Summary of the existing regret bounds in the infinite horizon average reward setting under
various cases with respect to MDP structure (tabular, linear, kernel based) and assumptions.

Algorithm Regret MDP Assumption Structure

UCB-AVG [15] Õ(|S|5|A|2
√
T ) Weakly Communicating Tabular

OLSVI.FH [9] Õ((dT )3/4) Bellman Optimality Eq. Linear
MDP-Exp2 [9] Õ(

√
t3mix|S||A|T ) Uniform Mixing Linear Bias Func.

KUCB-RL (Algorithm 1) O
(
T

3p+5
4p+4

)
Bellman Optimality Eq. Kernel-based

2 Problem Formulation

In this section, we overview the background on infinite horizon average reward (undiscounted) MDPs
and kernel based modelling.

2.1 Infinite Horizon Average Reward MDP

An undiscounted MDP is described by the tuple (S,A, r, P ) where S is a state space with a possibly
infinite number of elements, A is a finite action set, r : S ×A → [0, 1] is the reward function, and
P (·|s, a) is the unknown transition probability distribution over S of the next state when action a is
selected at state s. Throughout the paper we use the notation z = (s, a) for the state-action pairs, and
Z = S ×A.

The learner interacts with the MDP through T steps, starting from an arbitrary initial state s1 ∈ S.
At each step t, the learner observes state st and takes an action at resulting in a reward r(st, at).
The next state st+1 is revealed as a sample drawn from the transition probability distribution:
st+1 ∼ P (·|st, at).
The goal of the learner is to compete against any fixed stationary policy. A stationary policy
π : S → A is a possibly random mapping from the states to actions. The long-term average reward
of a stationary policy π, starting from state s ∈ S, is defined as:

Jπ(s) = lim inf
T→∞

1

T
E

[
T∑

t=1

r(st, at)

∣∣∣∣∣ s1 = s,∀t ≥ 1, at = π(st), st+1 ∼ P (·|st, at)

]
.

We assume that the MDP belongs to the broad class of MDPs where the following form of Bellman
optimality equation holds:

Assumption 1 (Bellman optimality equation) There exists J⋆ ∈ R and bounded measurable func-
tions v⋆ : S → R and q⋆ : S ×A → R such that the following conditions are satisfied for all states
s ∈ S and actions a ∈ A :

J⋆ + q⋆(s, a) = r(x, a) + Es′∼P (·|s,a) [v
⋆(s′)] , v⋆(s) = max

a∈A
q⋆(s, a). (1)

This assumption was also used for the linear MDP case in [9]. By applying the Bellman optimality
equation, it can be shown that a policy π⋆(s) = arg maxa∈A q

⋆(s, a), which deterministically selects
actions that maximize q⋆ in the current state, is the optimal policy, with Jπ⋆

(s) = J⋆, for all s [9].

It was shown in ([32], Chapter 9), that for finite state setting Assumption 1 follows from the weakly
communicating MDP assumption. Also, Assumption 1 holds under several other common conditions
([33], Section 3.3).

The learner’s performance is measured by regret, which is defined as the loss in total reward compared
to the optimal stationary policy for the total reward of the learner. Specifically, let π⋆ = arg maxπ J

π .
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The regret is defined as

R(T ) =

T∑
t=1

(J⋆ − r(st, at)). (2)

We emphasize that under Assumption 1, for any initial state s1 ∈ S, Jπ⋆

(s1) = J⋆, that is reflected
in our regret definition.

For any value function v : S → R, throughout the paper, we use the notation
[Pv](z) = Es′∼P (·|z)[v(s

′)]

for the expected value function of the next state.

2.2 Kernel-Based Models And The RKHS

Consider a positive definite kernel k : Z × Z → R. Let Hk be the reproducing kernel Hilbert
space (RKHS) induced by k, where Hk contains a family of functions defined on Z . Let ⟨·, ·⟩Hk

:
Hk ×Hk → R and ∥ · ∥Hk

: Hk → R denote the inner product and the norm of Hk, respectively.
The reproducing property implies that for all f ∈ Hk, and z ∈ Z , ⟨f, k(·, z)⟩Hk

= f(z). Mercer
theorem implies that k can be represented using a possibly infinite dimensional feature map:

k(z, z′) =

∞∑
m=1

λmφm(z)φm(z′), (3)

where λm > 0, and
√
λmφm ∈ Hk form an orthonormal basis of Hk. In particular, any f ∈ Hk can

be represented using this basis and weights wm ∈ R as

f =

∞∑
m=1

wm

√
λmφm,

where ∥f∥2Hk
=
∑∞

m=1 w
2
m. A formal statement and the details are provided in Appendix 8. We

refer to λm and φm as (Mercer) eigenvalues and eigenfunctions of kernel k, respectively.

2.3 Kernel-Based Prediction

Kernel-based models provide powerful predictors and uncertainty estimators which can be leveraged
to guide the RL algorithm. In particular, consider a fixed unknown function f ∈ Hk. Assume a t× 1
vector of noisy observations yt = [yi = f(zi) + εi]

t
i=1 at observation points {zi}ti=1 is provided,

where εi are independent zero mean noise terms. Kernel ridge regression provides the following
predictor and uncertainty estimate, respectively [see, e.g., 34],

f̂t(z) = k⊤t (z)(Kt + ρI)−1yt,

σ2
t (z) = k(z, z)− k⊤t (z)(Kt + ρI)−1kt(z), (4)

where kt(z) = [k(z, z1), . . . , k(z, zt)]
⊤ is a t× 1 vector of the kernel values between z and observa-

tions, Kt = [k(zi, zj)]
t
i,j=1 is the t× t kernel matrix, I is the identity matrix appropriately sized to

math Kt, and ρ > 0 is a free regularization parameter.

Confidence bounds of the form |f(z)− f̂t(z)| ≤ β(δ)σt(z) are established, for a confidence interval
width multiplier β(δ) at a confidence level 1− δ, which depends on the assumptions on the setting
and the noise. We will establish such confidence interval specific to the RL setting, in Theorem 1,
and utilize it in our regret analysis.

2.4 Kernel-Based Modelling in RL

In our RL setting, we use a kernel-based model to predict the expected value function. In particular,
for a given transition probability distribution P (s′|·, ·) and a value function v : S → R, we define
f = [Pv] and use past observations to form predictions and uncertainty estimates for f , as detailed
in the following section. The value functions vary due to the Markovian nature of the temporal
dynamics. To effectively use the confidence intervals established by the kernel-based models on f ,
we require the following assumption.

Assumption 2 We assume P (s′|·, ·) ∈ Hk, for some positive definite kernel k, and ∥P (s′|·, ·)∥Hk
≤

1 for all s′ ∈ S.
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2.5 Eigendecay and Information Gain

Our regret bounds are presented in terms of maximum information gain which is a kernel-specific
complexity term. Specifically, for a kernel k and a set of observation points {zi}ti=1, we define the
maximum information gain γ(t; ρ) as follows

γ(t; ρ) = sup
{zi}t

i=1⊂Z

1

2
log det

(
I +

Kt

ρ

)
,

where Kt is the kernel matrix defined in Section 2.3. Several works have established upper bounds
on γ(t; ρ). In the special case of a d-dimensional linear kernel, we have γ(t; ρ) = O(d log(t)).
For kernels with exponential eigendecay, including SE, γ(t; ρ) = O(polylog(t)). For kernels with
polynomial eigendecay, which represent a crucial case due to challenges in establishing no-regret
guarantees in RL and bandits, and include kernels of both practical and theoretical interest such as
the Matérn family and NT kernels, we first provide the definition below and then the bound on γ.

Definition 1 A kernel k is said to have a p-polynomial eigendecay if ∀m ≥ 1, λm ≤ Cm−p, for
some p > 1, C > 0 where λm are the Mercer eigenvalues of the kernel in decreasing order.

For kernels with p-polynomial eigendecay, we have [35, Corollary 1]:

γ(t; ρ) = O

((
t

ρ

) 1
p
(
log

(
1 +

t

ρ

))1− 1
p

)
.

3 KUCB-RL Algorithm

In this section, we introduce our main algorithm, Kernel-based Upper Confidence Bound in Reinforce-
ment Learning (KUCB-RL). The algorithm’s structure is similar to acquisition-based kernel bandit
algorithms such as GP-UCB [22], where each action is chosen as the maximizer of an acquisition
function. We construct an optimistic proxy qt for the state-action value function. At each step t,
given the current state st, the action at is selected as the maximizer of qt(st, a) over a. This proxy
qt is derived using past observations of transitions, employing kernel ridge regression to provide a
prediction and uncertainty estimate for the state-action value function over a future window of size
w ∈ N. The proxy is established as an upper confidence bound, following the principle of optimism
in the face of uncertainty. The value functions are computed in batches of w steps, and the derived
policies are unrolled over the subsequent w steps. The details are presented next.

We define a fixed window size, w ∈ N, which represents the future interval that the algorithm will
consider. For a given t0 where (t0 mod w) = 0, including t0 = 0, we initialize vt0+w+1(s) =
0,∀s ∈ S , reflecting the algorithm’s consideration of the reward within this future window of size w.
Subsequently, we recursively obtain proxies qt and vt for all steps t ∈ {t : t0 + 1 ≤ t ≤ t0 + w}.
Let ft denote [Pvt+1], f̂t represent the kernel ridge predictor of [Pvt+1], and σt be its uncertainty
estimator. The predictor and the uncertainty estimator are derived using the data set Dt0 , which
contains observations of past transitions up to t0. We use the notation Dt = {(sj , aj , sj+1)}j≤t

for the past transitions, and also define vt+1,t0 = [vt+1(s2), vt+1(s3), · · · , vt+1(st0+1)]
⊤, for the

values of the proxy value function at the history of state observations. We then have

f̂t(z) = k⊤t0(z) (Kt0 + ρI)
−1

vt+1,t0 ,

σ2
t (z) = k(z, z)− k⊤t0(z) (Kt0 + ρI)

−1
kt0(z),

where kt(z) = [k(z, z1), k(z, z2), · · · , k(z, zt))]⊤ denotes the vector of kernel values between z
and (zj = (sj , aj))j≤t in the history of observations, and Kt = [k(zi, zj)]

t
i,j=1 denotes the kernel

matrix.

Equipped with the kernel ridge predictor and uncertainty estimator, we define qt as an upper confi-
dence bound for f , as follows:

qt = Π[0,w]

(
r + f̂t + β(δ)σt

)
, (5)

where 1 − δ represents a confidence level, and β(δ) is a confidence interval width multiplier; the
specific value of which is given in Theorem 2. The notation Π[a,b](·) is used for projection on [a, b]
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Algorithm 1 Kernel-based Upper Confidence Bound Reinforcement Learning (KUCB-RL)
Require: Regularization parameter ρ, window size w, confidence interval width multiplier β, confi-

dence level 1− δ, S,A, r.
1: for t = 0, 1, 2, · · · do
2: if (t mod w) = 0 then
3: Let vt+w+1 = 0;
4: for h = 1, 2, · · · , w do
5: Compute qt+w+1−h and vt+w+1−h using equations (5) and (6).
6: end for
7: end if
8: Select at = arg maxa∈A qt(st, a); Observe st+1 ∼ P (·|st, at) and receive r(st, at).
9: end for

interval. This step is natural since with the assumption r : Z → [0, 1] the value over a window of
size w can not be more than w. We also define

vt(s) = max
a∈A

qt(s, a), ∀s ∈ S. (6)

By iteratively updating from t = t0 + w to t = t0 + 1, we compute the values of qt and vt for all t
from t0 + 1 to t0 + w. Then, we unroll the learned policy over the subsequent w steps, as the greedy
policy with respect to qt:

at = arg max
a∈A

qt(st, a). (7)

A pseudocode is provided in Algorithm 1.

4 Regret Bounds for KUCB-RL

In this section, we provide analytical results on the performance of KUCB-RL. We prove the first
sublinear regret bounds in undiscounted RL setting under general assumptions based on kernel-based
modelling. We first derive a novel confidence interval that is broadly applicable to the kernel-based
RL problems. We then utilize this result to establish bounds on the regret of KUCB-RL.

4.1 Confidence Intervals for Kernel Based RL

The analysis of our algorithm utilizes confidence intervals of the form |ft(z)− f̂t(z)| ≤ β(δ)σt(z),
where ft = [Pvt] denotes the expected value of a value function vt, and f̂t and σt represent the
kernel ridge predictor and the uncertainty estimate of ft. Here, β(δ) represents the width multiplier
for the confidence interval at a 1− δ confidence level. Similar confidence intervals are established
in kernel ridge regression for a fixed function f in the RKHS of a specified kernel k [see, e.g.,
36, 22, 23, 37, 24]. In the RL context, specific considerations are required as both ft = [Pvt] and
the observation noise depend on the value function vt that varies due to the Markovian nature of
the temporal dynamics. We note that in this setting, for a given value function v : S → R, the
observation noise is captured by v(st+1) − [Pv](st, at). A possible approach involves deriving
confidence intervals that apply to a class V of value functions. Such results appear in some of the
existing work [26, 25]. The result most closely related to our is [26], which derives its confidence
interval under the exact same kernel related assumptions as our work, but for the episodic MDP
setting. With the same assumptions, the confidence interval that we establish is different from the
one in [26]. In particular, their confidence interval is applicable to a specific value of kernel ridge
regression parameter ρ, constrained by their proof techniques. Inspired by [24], which established a
confidence interval for kernel ridge regression (not within the RL context) but allowed for a judicious
selection of ρ, we prove a new confidence interval suitable for the RL setting that allows tuning
parameter ρ. As a result, we obtain the first improved no-regret algorithms in this setting.

Theorem 1 (Confidence Bound) Consider v : S → R, a conditional probability distribution
P (s|z), s ∈ S , z ∈ Z , and two positive definite kernels k : Z ×Z → R and k′ : S ×S → R, where
Z = S × A is compact subset of Rd. Let f = [Pv] and assume ∥v∥Hk′ ≤ Cv, v(s) ≤ w,∀s ∈ S,
and ∥f∥Hk

≤ Cf , for some Cv, w, Cf > 0. A dataset {(zi, s′i)}ni=1 ⊂ (Z × S)n is provided such
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that s′i ∼ P (·|zi). Let λm, m = 1, 2, · · · denote the Mercer’s eigenvalues of k′ in a decreasing order
and ψm denote the corresponding eigenfunctions, with ψm ≤ ψmax for some ψmax > 0.

Let f̂n and σn be the kernel ridge predictor and the uncertainty estimate of f using the observations:

f̂n(z) = k⊤n (z)(ρI +Kn)
−1vn, σ2

n(z) = k(z, z)− k⊤n (z)(ρI +Kn)
−1kn(z),

where vn = [v(s′1), v(s
′
2), · · · , v(s′n))]⊤ is the vector of observations.

For all z ∈ Z and v : ∥v∥Hk′ ≤ Cv , the following holds, with probability at least 1− δ,

|f(z)− f̂n(z)| ≤ β(δ)σn(z),

with

β(δ) = Cf +
w
√
ρ

(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

+
2Cvψmax√

ρ

(
n

∞∑
m=M+1

λm

) 1
2

.

We can simplify the presentation of β under the following assumption.

Assumption 3 For kernel k′, we assume M
∑∞

m=M+1 λm = o(1) for any M ∈ N.

This is a mild assumption. For example p-polynomial eigendecay profile with p > 1, that applies to a
large class of common kernels including SE, Matérn and NT kernels satisfies this assumption.

Remark 1 Under Assumption 3, the expression of β in Theorem 2 can be simplified as

β(δ) = O
(
Cf +

w
√
ρ

√
log(

n

δ
) + γ(ρ;n)

)
.

Remark 1 can be observed by selecting M = n in the expression of β(δ), which provides a
straightforward presentation of the confidence interval width multiplier. The proof of Theorem 1
involves the Mercer representation of v in terms of ψm. The expression of the prediction error
|f(z) − f̂v(z)| is then decomposed into error terms corresponding to each ψm. We derive a high-
probability error bound for the first M elements, which corresponds to the second term in the
expression of β(δ), and bound the remaining m > M elements based on Mercer eigenvalues. This
corresponds to the third term in the expression of β(δ). A detailed proof is provided in Appendix 6.

Theorem 1 is presented in a self-contained way, making it broadly applicable across various RL
settings. In the following section, we apply this theorem within the analysis of the infinite horizon
average reward setting to obtain a no-regret algorithm that is the first no-regret algorithm within this
setting and under general kernel-related assumptions.

4.2 Regret Analysis of KUCB-RL

The weakest assumption regarding value functions is realizability, which suggests that the optimal
value function v⋆ either belong to the an RKHS or are at least well-approximated by its elements.
In the degenerate case of bandits with |S| = 1, realizability alone is sufficient for provably efficient
algorithms [22, 23, 37]. However, for general MDPs, realizability is inadequate, necessitating stronger
assumptions [10, 38, 26]. Building on these works, our main assumption involves a closure property
for all value functions within the following class:

V =

{
s→ min

{
w,max

a∈A

{
r(s, a) + ϕ⊤(s, a)θ + β

√
ϕ⊤(s, a)Σ−1ϕ(s, a)

}}}
, (8)

where β ∈ R and β > 0, ∥θ∥ ≤ ∞, and Σ is an ∞×∞ matrix operator such that Σ ⪰ ρI for some
ρ > 0, and ϕ = [ϕ1, ϕ2, · · · ], where ϕm =

√
λmφm, and λm and φm are the Mercer eigenvalues

and eigenfunctions corresponding to a kernel k defined on Z ×Z . We assume V is a subset of the
RKHS of a kernel k′ defined on S × S .

Assumption 4 (Optimistic Closure) For any v ∈ V and for some positive constant Cv, we have
∥v∥k′ ≤ Cv .

8



This technical assumption is the same as Assumption 1 in [26]. The optimistic closure assumption in
the kernel-based setting is strictly weaker than the ones explored in the context of generalized linear
function approximation [39].

Theorem 2 Consider the undiscounted MDP setting described in Section 2. Run KUCB-RL given
in Algorithm 1 for T steps. Under Assumptions 1, 2, 3, and 4, the regret of KUCB-RL, defined in
Equation (2), satisfies, with probability at least 1− δ

R(T ) = O

(
T

w
+

(
w +

w
√
ρ

√
γ(T ; ρ) + log

(
T

δ

))√
ρTγ(T ; ρ) + ρ2w2γ(T ; ρ)γ(T/w; ρ)

)
.

The proof of Theorem 2 utilizes standard methods from the analysis of optimistic algorithms in
RL and bandits, such as the elliptical potential lemma, leverages the confidence interval proven in
Theorem 1, and also incorporates novel techniques. For example, Algorithm 1 updates the observation
set every w steps, requiring us to characterize and bound the effect of this delay in the proof. A
straightforward application of the elliptical potential lemma results in loose bounds that do not
guarantee no-regret. We establish a tighter bound on this term, contributing to the improved regret
bounds. The details are provided in Appendix 7.

We next instantiate our regret bounds for some special cases. In the linear case, with a choice
of w = T

1
4 d

−1
4 and replacing the bound on γ(T ; ρ), we obtain R(T ) = Õ(d

1
2T

3
4 ), recovering

the existing results in their dependence on T and improving by a factor of d
1
4 . For kernels with

exponential eigendecay, with a choice of w = T
1
4 and replacing the bound on γ(T ; ρ), we obtain

R(T ) = Õ(T
3
4 ). We formalize the result with p-polynomial kernels in the following remark as it

may be of broader interest.

Remark 2 Under the setting of Theorem 2, with a p-polynomial kernel, with the choice of parameters,
w = T

p−1
4p+4 and ρ = T

1
p+1 , we obtain the following no-regret guarantee R(T ) = Õ(T

3p+5
4p+4 ).

In the case of a Matérn kernel with smoothness parameter ν, where p = 1 + 2ν
d , the regret bound

translates to R(T ) = O
(
T

3ν+4d
4ν+4d

)
.

5 Discussion and Limitations

We proposed KUCB-RL in the infinite horizon average reward setting and proved no-regret guarantees
with general kernels, including those with polynomial eigendecay such as Matérn and NT kernels.
To highlight the significance of our results, we note that in the case of episodic MDPs, the existing
work of [12, 26] do not provide no-regret guarantees with general kernels. The work of [25] utilizes
sophisticated domain partitioning techniques and relies on a specific assumption about the scaling of
kernel eigenvalues with the size of the domain. We achieve improved rates on regret leveraging a
confidence interval proven in Theorem 1, which is applicable across various RL problems. We next
point out two main limitations of our work.

Regarding optimality, we can juxtapose our results with the Ω(T
ν+d
2ν+d ) lower bounds proven in [40],

for the degenerate case of bandits with Matérn kernel. Sophisticated algorithms, such as the sup
variation of optimistic algorithms and those based on sample or domain partitioning [41, 31, 30],
achieve this lower bound up to logarithmic factors in the case of bandits. However, a no-regret
Õ(T

ν+2d
2ν+2d ) guarantee, though suboptimal, for standard acquisition-based algorithms like GP-UCB

has been provided only recently [24]. While we offer the first no-regret Õ(T
3ν+4d
4ν+4d ) guarantee in the

much more complex setting of RL, we cannot determine whether our results are improvable. This
remains an area for future investigation.

Although RKHS elements of common kernels can approximate almost all continuous functions on
compact subsets of Rd [22], the optimistic closure assumption is somewhat limiting. A rigorous
approach involves relaxing this assumption and finding an RKHS element that serves as an upper
confidence bound on a function of interest f within the same RKHS. While this method appears to rea-
sonably address the assumption, it is a technically involved problem that invites further contributions
from researchers in the field.
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6 Proof of Theorem 1

In this section, we prove the confidence bound. Let us use the notation

αn(z) = k⊤n (z)(ρI +Kn)
−1, (9)

and εi = v(s′i)− f(zi), εn = [ε1, ε2, · · · , εn]⊤, fn = [f(z1), f(z2), · · · , f(zn)]⊤.

This allows us to rewrite the prediction error as

f(z)− f̂n(z) = f(z)− α⊤
n (z)vn

= f(z)− α⊤
n (z)(fn + εn)

=
(
f(z)− α⊤

n (z)fn

)
− α⊤

n (z)εn. (10)
The first term on the right-hand side represents the prediction error from noise-free observations, and
the second term is the prediction error due to noise. The first term is deterministic (not random) and
can be bounded following the standard approaches in kernel-based models, for example using the
following result from [37]:

Lemma 1 (Proposition 1 in [37]) We have

σ2
n(z) = sup

f :∥f∥H≤1

(f(z)− α⊤
n (z)fn)

2 + ρ ∥αn(z)∥2ℓ2 .

Based on this lemma, the first term on the right hand side of (10) can be deterministically bounded by
Cfσn(z) :

|f(z)− α⊤
n (z)fn| ≤ Cfσn(z).

The challenging part in Equation (10) is the second term, which is the noise-dependent term α⊤
n (z)εn.

Next, we provide a high probability bound on this term.

We leverage the Mercer representation of v and write:

v(s) =

∞∑
m=1

wmλ
1
2
mψm(s).

We rewrite the observation vector vn as the sum of a noise term and the noise-free part f :
v(s′i) = (v(s′i)− f(zi))︸ ︷︷ ︸

Observation noise

+ f(zi)︸ ︷︷ ︸
Noise-free observation

Using the notation ψm(z) = Es′∼P (·|z)ψ(s
′), we can rewrite f(zi) as follows:

f(zi) = Es∼P (·|z′
i)
[v(s)]

= Es∼P (·|zi)

[ ∞∑
m=1

wmλ
1
2
mψm(s)

]

=

∞∑
m=1

wmλ
1
2
mEs∼P (·|zi)[ψm(s)]

=

∞∑
m=1

wmλ
1
2
mψm(zi). (11)

Using this representation, we can rewrite the second term of 10) as follows
n∑

i=1

αi(z)εi =

n∑
i=1

αi(z)

( ∞∑
m=1

wmλmψm(s′i)−
∞∑

m=1

wmλmψm(zi)

)

=

∞∑
m=1

wmλm

n∑
i=1

αi(z)
(
ψm(s′i)− ψm(zi)

)
=

M∑
m=1

wmλm

n∑
i=1

αi(z)
(
ψm(s′i)− ψm(zi)

)
+

∞∑
m=M+1

wmλm

n∑
i=1

αi(z)
(
ψm(s′i)− ψm(zi)

)
.
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We decomposed the noise-related error term into an infinite series corresponding to each eigenfunction
ψm, m = 1, 2, · · · , and partitioned that into the first M elements and the rest. We now can use
Corollary 1 in [24] that is a confidence interval for kernel ridge regression. In particular, with
probability at least 1− δ/M , we have

n∑
i=1

αi(z)(ψm(s′i)− ψm(zi)) ≤
ψmaxσn(z)√

ρ

(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

.

Summing up over the first M elements, and using a probability union bound, with probability at least
1− δ, we have

M∑
m=1

wmλm

n∑
i=1

ζi(z)(ψm(s′i)− ψm(zi)) ≤
M∑

m=1

wmλm
ψmaxσn(z)√

ρ

(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

≤ wσn(z)√
ρ

(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

.

For the rest of the elements m > M , we have

∞∑
m=M+1

wmλ
1
2
m

n∑
i=1

αi(z)
(
ψm(s′i)− ψm(zi)

)
≤ 2ψmax

∞∑
m=M+1

wmλ
1
2
m

n∑
i=1

αi(z)

≤ 2ψmax

∞∑
m=M+1

wmλ
1
2
m

(
n

n∑
i=1

α2
i (z)

) 1
2

≤ 2σn(z)ψmax
√
n

√
ρ

∞∑
m=M+1

wmλ
1
2
m

≤ 2σn(z)ψmax
√
n

√
ρ

(( ∞∑
m=M+1

w2
m

)( ∞∑
m=M+1

λm

)) 1
2

≤ 2Cvσn(z)ψmax√
ρ

(
n

∞∑
m=M+1

λm

) 1
2

.

The first inequality holds by definition of ψmax. The second inequality is based on the Cauchy-
Schwarz inequality. The third inequality uses Lemma 1. The fourth inequality utilizes the Cauchy-
Schwarz inequality again, and the last inequality results from the upper bound on the RKHS norm
of v.

Putting all the terms together, with probability 1− δ,

|f(z)− f̂n(z)| ≤Cf +
w
√
ρ

(
2 log

(√
M

δ
det(I + ρ−1Kn)

)) 1
2

+
2Cvψmax√

ρ

(
n

∞∑
m=M+1

λm

) 1
2

σn(z),

that completes the proof.

7 Proof of Theorem 2

To analyze the performance of KUCB-RL, we first define an event E that all the confidence intervals
used in the algorithm hold true.

E =
{
|ft(z)− f̂t(z)| ≤ β(δ)σt(z), ∀t ∈ [T ]

}
, (12)
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where

β(δ) = O
(
w +

w
√
ρ

√
log(

n

δ
) + γ(ρ;T )

)
.

By Theorem 1, we have Pr[E ] ≥ 1− δ/2. We note the under Assumption 4, ∥v∥ ≤ Cv .

For a bounded function v : S → R, we define its span as span(v) = sups,s′∈S |v(s)− v(s′)|.

Under Assumption 2, we have ∥Pv∥Hk
= O(span(v)). See [42], Lemma 3. Since vt is upper

bounded by w by construction, we have ∥Pvt∥ = O(w) that replaces Cf in Theorem 1.

We condition the rest of the proof on event E .

Consider t0 such that (t0 mod w) = 0 we bound the regret over window t ∈ [t0 + 1, t0 + w],
denoted by Rt0(w). In addition let V ⋆

w(s) denote the optimum achievable total reward over a window
of size w starting with initial state s, and V π

w (s) denote the total reward over a window of size w
achieved by KUCB-RL starting with initial state s.

Rt0(w) = wJ⋆ −
t0+w∑

t=t0+1

r(st, at) = wJ⋆ − V ⋆
w(st0+1) + V ⋆

w(st0+1)−
t0+w∑

t=t0+1

r(st, at).

The first term is bounded by the span of v∗.

Lemma 2 For any s, |wJ⋆ − V ⋆
w(s)| ≤ span(v∗).

Proof follows the exact same lines as in the proof of Lemma 13 in [9].

We next bound the second term in Rt0(w). We first prove that V ⋆
w(s) ≤ vt0(s).

Lemma 3 Under event E , we have V ⋆
w(s) ≤ vt0(s), ∀s ∈ S.

Proof 1 (Proof of Lemma 3) We can prove this by induction. Note that V ⋆
0 (s) = vt0+w+1(s) = 0.

For any j ∈ [w], we have

V ⋆
j (s)− vt0+w+1−j = max

a∈A
Q⋆

j (s, a)−max
a∈A

qt0+w+1−j(s, a)

≤ max
a∈A

{Q⋆
j (s, a)− qt0+w+1−j(s, a)}

= max
a∈A

{[PV ⋆
j+1](s, a)− [Pvt0+w−j ](s, a)}

= max
a∈A

{Es′∼P (·|s,a)[V
⋆
j+1(s

′)− vt0+w−j(s
′)]}

≤ 0.

The first inequality is due to rearrangement of max, and the second inequality is by the induction
assumption. We thus have V ⋆

w(s) ≤ vt0(s).

We now bound the difference between vt0(st0+1) and sum of the reward over the window starting at
step t0 + 1: vt0+1(st0+1)− V π

w (st0+1). We note that vt0+w(st0+w) = V π
0 (st0+w) = 0 and

vt0+j(st0+j)− V π
w−j(st0+j) = qt0+j(st0+j , at0+j)−Qπ

w−j(st0+j , at0+j)

≤ [Pvt0+j+1](st0+j , at0+j)− [PV π
w−j ](st0+j , at0+j) + 2β(δ)σt0(st0+j , at0+j)

= vt0+j+1(st0+j+1)− V π
w−j−1(st0+j+1) + 2β(δ)σt0(st0+j , at0+j)

+ ([Pvt0+j+1](st0+j , at0+j)− vt0+j+1(st0+j+1))

+
(
V π
w−j−1(st0+j+1)− [PV π

w−j ](st0+j , at0+j)
)
.

The inequality holds under event E . We obtained a recursive relationship for vt0+j(st0+j) −
V π
w−j(st0+j). Iterating over j = w to j = 1, we get
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vt0+1(st0+1)− V π
w (st0+1) ≤

t0+w∑
t=t0+1

2β(δ)σt0(st, at) +

t0+w∑
t=t0+1

([Pvt+1](st, at)− vt+1(st+1))

+

t0+w∑
t=t0+1

(
V π
w+t0−t−1(st+1)− [PV π

w+t0−t](st, at)
)
.

The second and third terms are zero mean martingales with a span of 2w, which are Gaussian random
variables with parameter w. Therefore, by Azuma-Hoeffding inequality [43], with probability at least
1− δ/2,

T∑
t=1

([Pvt+1](st, at)− vt+1(st+1)) +

T∑
t=1

(
V π
w+⌊t/w⌋−t−1(st+1)− [PV π

w+⌊t/w⌋−t](st, at)
)

≤ w

√
2T log

(
2

δ

)
.

We note that for each t ∈ [T ], we can present the corresponding t0 with t0 = ⌊t/w⌋. Summing up
the regret over all windows of size w up to time t, we have, with probability 1− δ,

R(T ) ≤ T span(v∗)
w

+ w

√
2T log

(
2

δ

)
+

T∑
t=1

σ⌊t/w⌋(zt). (13)

It thus remains to bound
∑T

t=1 σ⌊t/w⌋(zt).

The sum of sequential standard deviations of a kernel based model is often bounded using the
following result from [22] that is similar to the elliptical potential lemma in linear bandits [44].

T∑
t=1

σ2
t−1(zt) ≤

2γ(T ; ρ)

log(1 + 1/ρ)
. (14)

This result however is not directly applicable here due to the ⌊t/w⌋ subscript in σ⌊t/w⌋ rather σt−1.
A loose approach would be to partition the sequence into w sequences, each for one j ∈ [w] of the
form σwi+j , i = 1, 2, · · ·T/w. For each of those sequences, (14) is applicable and we get

T/w∑
i=1

σ2
w(i−1)+j(zwi+j) ≤

2γ(T/w; ρ)

log(1 + 1/ρ)
. (15)

Using this bound we have

T∑
t=1

σ2
⌊t/w⌋(zt) =

w∑
j=1

T/w∑
i=1

σ2
w(i−1)+j(zwi+j)

≤ 2wγ(T/w; ρ)

log(1 + 1/ρ)
. (16)

We use this loose bound and the following lemma to obtain a tight bound on the sum of standard
deviations.

Lemma 4 (Proposition A.1 in [45]) For any sequence of points {zj}Tj=1, for any z and t′ < t

1 ≤ σ2
t′(z)

σ2
t (z)

≤ 1 +

t∑
j=t′+1

σ2
t′(zj).
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We thus can write

T∑
t=1

σ⌊t/w⌋(st, at) ≤
T∑

t=1

σt(st, at)

√√√√1 +

t∑
j=[t/w]+1

σ2
[t/w](sj , aj)

≤

√√√√ T∑
t=1

σ2
t (st, at)

√√√√T + w

T∑
t=1

σ2
⌊t/w⌋(st, at)

≤

√
2γ(T ; ρ)

log(1 + 1/ρ)

(
T +

2w2γ(T/w; ρ)

log(1 + 1/ρ)

)
(17)

The first inequality is by Lemma 4. The second inequality is by Cauchy-Schwarz inequality.

Replacing this bound on standard deviations in (13), we get

R(T ) = O
(
T

w
+

(
w +

w
√
ρ

√
γ(T ; ρ) + log

(n
δ

))√
ρTγ(T ; ρ) + ρ2w2γ(T ; ρ)γ(T/w; ρ)

)
.

(18)

The proof of the regret bound is complete.

8 Mercer Theorem and the RKHSs

Mercer theorem [46] provides a representation of the kernel in terms of an infinite dimensional
feature map [e.g., see, 47, Theorem 4.49]. Let Z be a compact metric space and µ be a finite Borel
measure on Z (we consider Lebesgue measure in a Euclidean space). Let L2

µ(Z) be the set of
square-integrable functions on Z with respect to µ. We further say a kernel is square-integrable if∫

Z

∫
Z
k2(z, z′) dµ(z)dµ(z′) <∞.

Theorem 3 (Mercer Theorem) Let Z be a compact metric space and µ be a finite Borel measure
on Z . Let k be a continuous and square-integrable kernel, inducing an integral operator Tk :
L2
µ(Z) → L2

µ(Z) defined by

(Tkf) (·) =
∫
Z
k(·, z′)f(z′) dµ(z′) ,

where f ∈ L2
µ(Z). Then, there exists a sequence of eigenvalue-eigenfeature pairs {(λm, φm)}∞m=1

such that λm > 0, and Tkφm = λmφm, form ≥ 1. Moreover, the kernel function can be represented
as

k (z, z′) =

∞∑
m=1

λmφm(z)φm (z′) ,

where the convergence of the series holds uniformly on Z × Z .

According to the Mercer representation theorem [e.g., see, 47, Theorem 4.51], the RKHS induced
by k can consequently be represented in terms of {(λm, φm)}∞m=1.

Theorem 4 (Mercer Representation Theorem) Let {(λm, φm)}∞i=1 be the Mercer eigenvalue
eigenfeature pairs. Then, the RKHS of k is given by

Hk =

{
f(·) =

∞∑
m=1

wmλ
1
2
mφm(·) : wm ∈ R, ∥f∥2Hk

:=

∞∑
m=1

w2
m <∞

}
.

Mercer representation theorem indicates that the scaled eigenfeatures {
√
λmφm}∞m=1 form an

orthonormal basis for Hk.

17


	Introduction
	Contributions
	Related Work

	Problem Formulation
	Infinite Horizon Average Reward MDP
	Kernel-Based Models And The RKHS
	Kernel-Based Prediction
	Kernel-Based Modelling in RL
	Eigendecay and Information Gain

	KUCB-RL Algorithm
	Regret Bounds for KUCB-RL
	Confidence Intervals for Kernel Based RL
	Regret Analysis of KUCB-RL

	Discussion and Limitations
	Proof of Theorem 1
	Proof of Theorem 2
	Mercer Theorem and the RKHSs

