
N-grammer: Augmenting Transformers with latent n-grams

Anonymous ACL submission

Abstract

Transformer models have recently emerged001
as one of the foundational models in natu-002
ral language processing, and as a byproduct,003
there has been significant recent interest and004
investment in scaling these models. However,005
the training and inference costs of these large006
Transformer language models are prohibitive,007
thus necessitating more research in identifying008
more efficient variants. In this work, we pro-009
pose a simple yet effective modification to the010
Transformer architecture inspired by the liter-011
ature in statistical language modeling, by aug-012
menting the model with n-grams constructed013
from a discrete latent representation of the014
text sequence. We evaluate our model, the015
N-grammer on language modeling on the C4016
data-set, and find that it outperforms several017
strong baselines such as the Transformer and018
the Primer. We will open-source our model for019
reproducibility purposes upon acceptance.020

1 Introduction021

The area of generative modeling of text has wit-022

nessed rapid and impressive progress driven by the023

adoption of self-attention to neural networks. At-024

tention for machine translation was proposed in025

Bahdanau et al. (2015); Cho et al. (2014); Vaswani026

et al. (2017) and subsequent works such as Rad-027

ford et al. (2018); Devlin et al. (2019) applied028

the learned representations of language to several029

problems in natural language processing. The030

rapid progress has been made possible primar-031

ily by increasing the modeling capacity of these032

Transformer based models to billions of parame-033

ters (Brown et al., 2020) which comes at a large034

computational cost. The computational cost of035

Transformer models is being addressed in the litera-036

ture by exploiting sparsity in self-attention (Ainslie037

et al., 2020; Zaheer et al., 2020; Roy et al., 2021),038

mixtures of experts (Shazeer et al., 2017; Lepikhin039

et al., 2020; Fedus et al., 2021) for sparsity in040

the feed-forward network, sparsity in the softmax041

computation (Correia et al., 2019), and combining 042

depth-wise convolution with attention (Wu et al., 043

2021; So et al., 2021). 044

Motivated by the growing literature in training 045

more efficient variants of Transformers, as well as 046

the classical literature on statistical language mod- 047

eling (Koehn, 2009), we propose a simple modifi- 048

cation to the Transformer architecture termed the 049

N-grammer in this work. The N-grammer layer 050

improves the efficiency of language models by in- 051

corporating latent n-gram representations into the 052

model during training. Since the N-grammer layer 053

only involves sparse operations during training and 054

inference, we find that a Transformer model with 055

the latent N-grammer layer can match the quality 056

of a larger Transformer while being significantly 057

faster at inference. 058

2 Related Work 059

Memory augmented models There has been a 060

long line of work in augmenting sequence mod- 061

els with memory, e.g. the Neural Turing Machine 062

(Graves et al., 2014) and Memory Networks (We- 063

ston et al., 2014). More recent works have pro- 064

posed combining Transformer based models with 065

product key look-up tables (Lample et al., 2019), 066

while Panigrahy et al. (2021) propose memories 067

based on sketches of past activations. There has 068

also been a lot of work on augmenting language 069

models with non-parametric memory, such as the 070

k-nearest neighbor language models of Khandel- 071

wal et al. (2019), and similar retrieval augmented 072

works such as Lewis et al. (2020); Guu et al. (2020); 073

Krishna et al. (2021). In these retrieval augmented 074

models, the model is conditioned on documents 075

from the training corpus or a knowledge base, with 076

the hope that information from related articles can 077

help improve its factual accuracy. 078

Discrete latent models for sequences Discrete la- 079

tent models using Vector Quantization (VQ) have 080

been widely used in speech (van den Oord et al., 081

1

The 🐈 sat on the mat

1. Embeddings
lookups

2. Vector quantization
to codebook IDs

3. Bi-gram IDs
(combine codebook
IDs)

4. Bigram Embedding
lookups

5. Combine both
embeddings

CodebookIDs

[0.1, 0.2, .., 4.0]

[1.0, 0.3, .., 1.2]

[1.1, 3.2, .., 1.1]

[5.5, 0.6, .., 7.0]

Figure 1: The N-grammer layer. It takes as input a sequence of uni-gram embeddings and outputs a parallel se-
quence of N-gram augmented embeddings. The input embeddings are clustered into a discrete latent representation
using PQ, and n-grams (bi-grams) IDs are computed over it. For each n-gram ID, a trainable embedding is looked
up from an embedding table and combined with the input embeddings to produce the output.

2017; Wang et al., 2018; Schneider et al., 2019) to082

learn unsupervised representations of audio signals.083

Their use for modeling text sequences were studied084

in Kaiser et al. (2018); Roy et al. (2018) where the085

motivation was to reduce the inference latency for086

neural machine translation models by decoding in087

the latent space.088

N-gram models for statistical language model-089

ing N-gram models have a long history in statis-090

tical modeling of language, see e.g., Brown et al.091

(1992, 1993); Katz (1987); Kneser and Ney (1995);092

Chen and Goodman (1999). Before the advent of093

word vectors and distributed representations of lan-094

guage via neural networks (Mikolov et al., 2013;095

Wu et al., 2016), n-gram language models were the096

standard in the field of statistical language mod-097

eling. A more recent related work on combining098

neural RNN models with n-gram embedding tables099

is that of Huang et al. (2021) for speech recogni-100

tion. Our work differs from them in that we use an101

n-gram look-up table on a discrete latent represen-102

tation of the sequence which gives it the flexibility103

of being compatible with any intermediate layer of104

the Transformer.105

Product Quantization There has also been a long106

line of work on investigating variants of Vector107

Quantization (VQ) that realize different trade-offs108

in data compression. The most related work in109

this domain is due to Jegou et al. (2011) who intro-110

duce a multi-head version of VQ which is termed111

Product Quantization (PQ). PQ is widely used in112

computer vision, see e.g., Ge et al. (2013); Yu et al.113

(2018). Our approach to learning discrete latent 114

codes use PQ over the attention heads. 115

3 The N-grammer layer 116

At a high level, we introduce a simple layer that 117

augments the Transformer architecture with more 118

memory based on latent n-grams. While the N- 119

grammer layer is general enough for considering 120

arbitrary N-grams, we restrict ourselves to the use 121

of bi-grams. We leave the exploration of higher- 122

order n-grams for future work. The layer consists 123

of three core operations: 124

1. Given a sequence of uni-gram embeddings 125

of a text, infer a sequence of discrete latent 126

representation via PQ. 127

2. Infer the bi-gram representation for the latent 128

sequence. 129

3. Look up trainable bi-gram embeddings via 130

hashing into the bi-gram vocabulary. 131

4. Combine the bi-gram embeddings with the 132

input uni-gram embeddings. 133

We describe each of these operations in more detail 134

in the following sections. For referring to a set of 135

discrete items, we use the notation [m] to mean the 136

set {0, 1, · · · ,m− 1}. 137

3.1 Discrete latent representation of a 138

sequence 139

The first step of the N-grammer layer is to obtain a 140

parallel sequence of discrete latent representations 141

2

with Product Quantization (PQ) (Jegou et al., 2011)142

by learning a codebook from the given sequence143

of input embeddings. The input embedding is a144

sequence of uni-gram embeddings x ∈ Rl×h×d,145

where l is the length of the sequence, h is the num-146

ber of heads, and d is the embedding dimension147

per head. We learn a codebook c in Rk×h×d with k148

code-words with mini-batch k-means (Bottou and149

Bengio, 1995), and in the same step, we form the150

parallel sequence of discrete latent representation151

z ∈ [k]l×h of the sequence x by picking the code-152

book IDs that have the least distance from the input153

embeddings:154

zi,j = argmin
l∈[k]

‖xi,j − cl,j‖2 .155

The advantage of this latent representation z is156

twofold. Firstly, it makes considering all k2 bi-157

grams tractable by mapping uni-gram embeddings158

to share the same code-word embedding based on159

similarity, thereby allowing us to use a smaller160

bi-gram embedding table. Secondly, when using161

a fixed size bi-gram vocabulary, using this latent162

representation allows for a more efficient repre-163

sentation to be learned compared to directly using164

uni-gram IDs. For instance, a uni-gram vocabulary165

of 32, 000 would entail a bi-gram vocabulary of166

roughly 1 billion, which adds a significant memory167

overhead.168

3.2 Bi-gram IDs from discrete latent169

representation170

The second step is to convert the discrete latent rep-171

resentation z computed in Section 3.1 to bi-gram172

IDs b ∈ [k2]l×h. The latent bi-gram IDs are formed173

at each position by combining the uni-gram latent174

IDs z from the previous position as175

bi =

{
zi if i = 0,
zi + kzi−1 otherwise

176

where k is the size of our codebook. This directly177

maps the discrete latent sequence from a vocabu-178

lary space of [k] to the latent bi-gram vocabulary179

space of [k2].180

3.3 Constructing bi-gram representations181

The third step is to construct bi-gram latent rep-182

resentations b of the sequence. We can consider183

all k2 bi-grams and augment the model with an184

embedding for each such bi-gram. In practice, the185

compression for machine translation models with a186

uni-gram vocabulary of 32, 000 involves clustering 187

each token into roughly k = 212 clusters without 188

sacrificing quality (Kaiser et al., 2018; Roy et al., 189

2018). In this instance, to consider all bi-grams 190

would involve constructing an embedding table 191

with 16 million rows. Since this is still large, we 192

map the latent bi-gram IDs to a smaller bi-gram vo- 193

cabulary of size v, by using separate hash functions 194

for each head. 195

More precisely, we have a latent bi-gram em- 196

bedding table B ∈ Rv×h×db , where v is the bi- 197

gram vocabulary and db is the bi-gram embed- 198

ding dimension. The bi-gram embedding y ∈ 199

Rl×h×db of the text sequence is then constructed 200

as yi,j = B [((rjbi,j + sj) mod pj) mod v, j] , 201

where for each head j, we select a random prime 202

pj greater than k2, and rj is chosen randomly in 203

{1, · · · , p−1} and sj is chosen randomly in [p−1]. 204

This scheme is a universal hashing scheme and 205

guarantees a low collision probability for the dis- 206

crete latent codes of each head (Thorup, 2015). 207

Note that the bi-gram embedding vector yi,j is a 208

db-dimensional vector. 209

3.4 Combining the embeddings 210

The final step is to form a new representation of 211

the text sequence which is derived by combining 212

the uni-gram embedding x ∈ Rl×h×d with the la- 213

tent bi-gram embedding y ∈ Rl×h×db obtained in 214

Section 3.3. The bi-gram embedding and uni-gram 215

embedding are both independently layer normal- 216

ized (LN), followed by simply concatenating the 217

two along the embedding dimension to produce 218

w = [LN(x), LN(y)] ∈ Rl×h×(d+db) which is 219

passed as input to rest of the Transformer network. 220

Note that layer normalization (Ba et al., 2016) leads 221

to more stable training. 222

4 Experiments & Results 223

We compare the N-grammer model with the Trans- 224

former architecture (Vaswani et al., 2017) as well 225

as with the recently proposed Primer architecture 226

(So et al., 2021) on the C4 data-set (Raffel et al., 227

2019). To establish a strong baseline for our exper- 228

iments we use a Gated Linear Unit (Dauphin et al., 229

2017) as the feed-forward network with a GELU 230

activation function (Hendrycks and Gimpel, 2016) 231

in all our models, except the Primer. The Primer 232

architecture uses a 3 × 1 depth-wise convolution 233

after the key, query and value projections, and the 234

squared RELU activation function as proposed in 235

3

Model Type Layers Params Vocab size Clusters Dim Inference Ex/sec PP

Transformer 16 234M - - - 402.00 17.06
Transformer-L 20 284M - - - 331.12 16.44

Primer 16 234M - - - 346.32 16.71
Primer-L 18 284M - - - 284.40 16.07

N-grammer 16 246M 196K - 12.5% 379.60 16.73
N-grammer 16 259M 196K - 25.0% 378.64 16.74

N-grammer 16 251M 196K 4K 12.5% 366.80 16.64
N-grammer 16 263M 196K 4K 25.0% 362.40 16.56

N-grammer 16 255M 196K 8K 12.5% 359.52 16.58
N-grammer 16 267M 196K 8K 25.0% 358.96 16.58

N-grammer 16 267M 393K 8K 12.5% 363.60 16.56
N-grammer 16 292M 393K 8K 25.0% 360.16 16.56
N-grammer 16 343M 393K 8K 50.0% 356.94 16.26

Table 1: Ablation results on auto-regressive language modeling on the C4 data-set (Raffel et al., 2019). The
column labeled Vocab Size refers to the bi-gram vocabulary size, while the column labeled Dim refers to the bi-
gram embedding dimension as a percentage of the total model dimension. Models are trained with a batch size of
256 for a total of 500k steps. We report the test perplexity (PP) and as well as the inference speed in examples per
second (Inference Ex/sec) on a TPU-v3 with 8 cores (higher is better).

So et al. (2021). For all experiments, we use the236

rotary position embedding (RoPE) from Su et al.237

(2021), which greatly improves the quality of all238

models.239

We use the Adam optimizer (Kingma and Ba,240

2015) with a learning rate of 10−3 for all the mod-241

els, while for the n-gram embedding tables we use a242

learning rate of 10−2, as we find that a separate LR243

improves the stability of the models. We compare244

the N-grammer, Primer and Transformer models245

in Table 1. The baseline Transformer model has246

16 layers and 8 heads, with a model dimension of247

1024. We train all the models with a batch size248

of 256 and a sequence length of 1024 on a TPU-249

v3. For the N-grammer models, we ablate with250

different sizes for the bi-gram embedding dimen-251

sion ranging from 128 to 512. Since adding n-gram252

embeddings increases the number of trainable pa-253

rameters, we also train two large baselines in Ta-254

ble 1 (Transformer-L and Primer-L) which have the255

same order of parameters as the N-grammer mod-256

els. However, unlike the larger Transformer mod-257

els, the training and inference cost of N-grammer258

does not scale proportional to the number of pa-259

rameters in the embedding layer, since they rely on260

sparse operations (see column Inference Ex/sec in261

Table 1).262

We also examine a simple version of N-grammer263

where we compute the n-grams directly from the 264

uni-gram vocabulary as in Section 3.3 rather than 265

from the latent representation of Section 3.1. This 266

is reported in Table 1 and corresponds to the N- 267

grammer without an entry in the clusters column. 268

Note that in this case, the modulo hashing scheme 269

of Section 3.3 is random and independent of the 270

content of the actual uni-gram embeddings. We 271

inspect the individual cluster assignment in Ap- 272

pendix D and find common themes among the 273

groupings. 274

5 Conclusion 275

We introduced the N-grammer layer for augment- 276

ing the Transformer architecture with latent n- 277

grams, and find that it can match a larger Trans- 278

former while being significantly faster in inference. 279

As part of future work, we would like to explore 280

higher order n-grams, optimizers for embeddings 281

for improved stability and investigate stacking N- 282

grammer layers on top of each other, as well as 283

avenues for reducing the temporal dimension of 284

the latent n-gram sequence which can lead to im- 285

proved inference times without sacrificing quality. 286

4

References287

Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Ko-288
ren, and Cyril Zhang. 2020. Disentangling adaptive289
gradient methods from learning rates. arXiv preprint290
arXiv:2002.11803.291

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-292
clav Cvicek, Zachary Fisher, Philip Pham, Anirudh293
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.294
2020. Etc: Encoding long and structured inputs in295
transformers. arXiv preprint arXiv:2004.08483.296

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-297
ton. 2016. Layer normalization. arXiv preprint298
arXiv:1607.06450.299

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-300
gio. 2015. Neural machine translation by jointly301
learning to align and translate. In 3rd Inter-302
national Conference on Learning Representations,303
ICLR 2015.304

Leon Bottou and Yoshua Bengio. 1995. Convergence305
properties of the k-means algorithms. In Advances306
in neural information processing systems, pages307
585–592.308

Peter F Brown, Stephen A Della Pietra, Vincent J309
Della Pietra, and Robert L Mercer. 1993. The math-310
ematics of statistical machine translation: Parameter311
estimation. Computational linguistics, 19(2):263–312
311.313

Peter F Brown, Vincent J Della Pietra, Peter V Desouza,314
Jennifer C Lai, and Robert L Mercer. 1992. Class-315
based n-gram models of natural language. Compu-316
tational linguistics, 18(4):467–480.317

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie318
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind319
Neelakantan, Pranav Shyam, Girish Sastry, Amanda320
Askell, et al. 2020. Language models are few-shot321
learners. arXiv preprint arXiv:2005.14165.322

Stanley F Chen and Joshua Goodman. 1999. An323
empirical study of smoothing techniques for lan-324
guage modeling. Computer Speech & Language,325
13(4):359–394.326

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-327
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger328
Schwenk, and Yoshua Bengio. 2014. Learning329
phrase representations using rnn encoder–decoder330
for statistical machine translation. In Proceedings of331
the 2014 Conference on Empirical Methods in Nat-332
ural Language Processing (EMNLP), pages 1724–333
1734.334

Gonçalo M Correia, Vlad Niculae, and André FT Mar-335
tins. 2019. Adaptively sparse transformers. arXiv336
preprint arXiv:1909.00015.337

Yann N Dauphin, Angela Fan, Michael Auli, and David338
Grangier. 2017. Language modeling with gated con-339
volutional networks. In International conference on340
machine learning, pages 933–941. PMLR.341

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 342
Kristina Toutanova. 2019. Bert: Pre-training of deep 343
bidirectional transformers for language understand- 344
ing. In NAACL-HLT (1). 345

William Fedus, Barret Zoph, and Noam Shazeer. 2021. 346
Switch transformers: Scaling to trillion parameter 347
models with simple and efficient sparsity. arXiv 348
preprint arXiv:2101.03961. 349

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 350
2013. Optimized product quantization for approxi- 351
mate nearest neighbor search. In Proceedings of the 352
IEEE Conference on Computer Vision and Pattern 353
Recognition, pages 2946–2953. 354

Alex Graves, Greg Wayne, and Ivo Danihelka. 355
2014. Neural turing machines. arXiv preprint 356
arXiv:1410.5401. 357

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu- 358
pat, and Ming-Wei Chang. 2020. Realm: Retrieval- 359
augmented language model pre-training. arXiv 360
preprint arXiv:2002.08909. 361

Dan Hendrycks and Kevin Gimpel. 2016. Gaus- 362
sian error linear units (gelus). arXiv preprint 363
arXiv:1606.08415. 364

W Ronny Huang, Tara N Sainath, Cal Peyser, Shankar 365
Kumar, David Rybach, and Trevor Strohman. 366
2021. Lookup-table recurrent language models 367
for long tail speech recognition. arXiv preprint 368
arXiv:2104.04552. 369

Herve Jegou, Matthijs Douze, and Cordelia Schmid. 370
2011. Product quantization for nearest neighbor 371
search. IEEE transactions on pattern analysis and 372
machine intelligence, 33(1):117–128. 373

Łukasz Kaiser, Aurko Roy, Ashish Vaswani, Niki Pa- 374
mar, Samy Bengio, Jakob Uszkoreit, and Noam 375
Shazeer. 2018. Fast decoding in sequence mod- 376
els using discrete latent variables. arXiv preprint 377
arXiv:1803.03382. 378

Slava Katz. 1987. Estimation of probabilities from 379
sparse data for the language model component of a 380
speech recognizer. IEEE transactions on acoustics, 381
speech, and signal processing, 35(3):400–401. 382

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke 383
Zettlemoyer, and Mike Lewis. 2019. Generalization 384
through memorization: Nearest neighbor language 385
models. arXiv preprint arXiv:1911.00172. 386

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A 387
method for stochastic optimization. In 3rd Inter- 388
national Conference on Learning Representations, 389
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, 390
Conference Track Proceedings. 391

Reinhard Kneser and Hermann Ney. 1995. Improved 392
backing-off for m-gram language modeling. In 1995 393
international conference on acoustics, speech, and 394
signal processing, volume 1, pages 181–184. IEEE. 395

5

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Philipp Koehn. 2009. Statistical machine translation.396
Cambridge University Press.397

Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. 2021.398
Hurdles to progress in long-form question answer-399
ing. arXiv preprint arXiv:2103.06332.400

Guillaume Lample, Alexandre Sablayrolles,401
Marc’Aurelio Ranzato, Ludovic Denoyer, and402
Hervé Jégou. 2019. Large memory layers with403
product keys. arXiv preprint arXiv:1907.05242.404

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,405
Dehao Chen, Orhan Firat, Yanping Huang, Maxim406
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.407
Gshard: Scaling giant models with conditional com-408
putation and automatic sharding. arXiv preprint409
arXiv:2006.16668.410

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio411
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-412
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-413
täschel, et al. 2020. Retrieval-augmented generation414
for knowledge-intensive nlp tasks. arXiv preprint415
arXiv:2005.11401.416

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-417
frey Dean. 2013. Efficient estimation of word418
representations in vector space. arXiv preprint419
arXiv:1301.3781.420

Rina Panigrahy, Xin Wang, and Manzil Zaheer. 2021.421
Sketch based memory for neural networks. In In-422
ternational Conference on Artificial Intelligence and423
Statistics, pages 3169–3177. PMLR.424

Alec Radford, Karthik Narasimhan, Tim Salimans, and425
Ilya Sutskever. 2018. Improving language under-426
standing by generative pre-training. URL https://s3-427
us-west-2. amazonaws. com/openai-assets/research-428
covers/languageunsupervised/language understand-429
ing paper. pdf.430

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine431
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,432
Wei Li, and Peter J Liu. 2019. Exploring the limits433
of transfer learning with a unified text-to-text trans-434
former. arXiv preprint arXiv:1910.10683.435

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and436
David Grangier. 2021. Efficient content-based437
sparse attention with routing transformers. Transac-438
tions of the Association for Computational Linguis-439
tics, 9:53–68.440

Aurko Roy, Ashish Vaswani, Arvind Neelakantan,441
and Niki Parmar. 2018. Theory and experiments442
on vector quantized autoencoders. arXiv preprint443
arXiv:1805.11063.444

Steffen Schneider, Alexei Baevski, Ronan Collobert,445
and Michael Auli. 2019. wav2vec: Unsupervised446
pre-training for speech recognition. arXiv preprint447
arXiv:1904.05862.448

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, 449
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff 450
Dean. 2017. Outrageously large neural networks: 451
The sparsely-gated mixture-of-experts layer. arXiv 452
preprint arXiv:1701.06538. 453

David R So, Wojciech Mańke, Hanxiao Liu, Zihang 454
Dai, Noam Shazeer, and Quoc V Le. 2021. Primer: 455
Searching for efficient transformers for language 456
modeling. arXiv preprint arXiv:2109.08668. 457

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yun- 458
feng Liu. 2021. Roformer: Enhanced transformer 459
with rotary position embedding. arXiv preprint 460
arXiv:2104.09864. 461

Mikkel Thorup. 2015. High speed hashing for integers 462
and strings. arXiv preprint arXiv:1504.06804. 463

Aäron van den Oord, Oriol Vinyals, and Koray 464
Kavukcuoglu. 2017. Neural discrete representation 465
learning. CoRR, abs/1711.00937. 466

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 467
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 468
Kaiser, and Illia Polosukhin. 2017. Attention is all 469
you need. In Advances in neural information pro- 470
cessing systems, pages 5998–6008. 471

Yuxuan Wang, Daisy Stanton, Yu Zhang, RJ-Skerry 472
Ryan, Eric Battenberg, Joel Shor, Ying Xiao, Ye Jia, 473
Fei Ren, and Rif A Saurous. 2018. Style tokens: 474
Unsupervised style modeling, control and transfer 475
in end-to-end speech synthesis. In International 476
Conference on Machine Learning, pages 5180–5189. 477
PMLR. 478

Jason Weston, Sumit Chopra, and Antoine Bor- 479
des. 2014. Memory networks. arXiv preprint 480
arXiv:1410.3916. 481

Haiping Wu, Bin Xiao, Noel Codella, Mengchen 482
Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. 2021. 483
Cvt: Introducing convolutions to vision transform- 484
ers. arXiv preprint arXiv:2103.15808. 485

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V 486
Le, Mohammad Norouzi, Wolfgang Macherey, 487
Maxim Krikun, Yuan Cao, Qin Gao, Klaus 488
Macherey, et al. 2016. Google’s neural machine 489
translation system: Bridging the gap between hu- 490
man and machine translation. arXiv preprint 491
arXiv:1609.08144. 492

Tan Yu, Junsong Yuan, Chen Fang, and Hailin Jin. 493
2018. Product quantization network for fast image 494
retrieval. In Proceedings of the European Confer- 495
ence on Computer Vision (ECCV), pages 186–201. 496

Manzil Zaheer, Guru Guruganesh, Kumar Avinava 497
Dubey, Joshua Ainslie, Chris Alberti, Santiago On- 498
tanon, Philip Pham, Anirudh Ravula, Qifan Wang, 499
Li Yang, et al. 2020. Big bird: Transformers for 500
longer sequences. In NeurIPS. 501

6

http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1711.00937

A Hyperparameters for experiments502

In this section we report the hyper-parameter set-503

tings for all our experiments.504

A.1 Optimizer505

We use the Adam optimizer (Kingma and Ba, 2015)506

and tune the learning rate as well as ε as reported507

in (Agarwal et al., 2020). We find that decreasing ε508

from the standard setting of 10−6 to 10−10 benefits509

the Transformer models while having less of an510

effect on the Primer (So et al., 2021). The final511

choice of the learning rate is 10−3 for all the mod-512

els with the N-grammer models having a higher513

learning rate of 10−2 for the n-gram embedding514

table which we find leads to more stable training.515

We use a β1 = 0.9 and β2 = 0.99 and clip the516

gradient norm to 5.0. We do not use any weight517

decay. We train all models with a global batch size518

of 256 on a TPU-v3 with 32 cores and a sequence519

length of 1024.520

A.2 N-grammer521

For the N-grammer models, we use a discrete la-522

tent vocabulary of k = {4096, 8192} except for the523

baseline N-grammer models which directly com-524

pute n-grams on the uni-gram vocabulary. We use525

a learning rate of 10−3 for training the cluster cen-526

ters. We train the cluster centers with mini-batch527

k-means (Bottou and Bengio, 1995) without us-528

ing any smoothing or exponential moving averages529

for either the counts or the centers, since we find530

empirically that it doesn’t help in our setting.531

B Optimizing the clustering step532

Note that there is a trade-off in computing the dis-533

crete latent representation of the text sequence,534

where it may be faster to cluster the uni-gram vo-535

cabulary directly instead of clustering the embed-536

ded text sequence. If the uni-gram vocabulary is v,537

the sequence length is l and the global batch size is538

b, and the number of cores is c, then we expect that539

clustering the uni-gram vocabulary directly should540

be faster when b×l
c > v

c . Since we use a global541

batch size of 256 and a sequence length of 1024,542

we find that it is significantly faster to cluster the543

uni-gram embedding table rather than the input text544

sequence, since 256× 1024 > 32, 768.545

To obtain the speed-up, we split the embedding546

table across all cores, since otherwise each core547

independently clusters c copies of the table, and548

the threshold point becomes b×l
c > v, which is549

not true in our case, since all experiments use 32 550

cores for training, and thus 256×1024
32 = 8×1024 < 551

32, 768. After clustering the uni-gram vocabulary, 552

the discrete latent representation of the sequence 553

is then inferred by an embedding lookup on the 554

cluster IDs of the uni-gram embedding table. 555

C Convergence comparisons 556

We have included training curve comparisons of the 557

N-grammer with that of the Transformer (Vaswani 558

et al., 2017) and the Primer (So et al., 2021). We 559

compare the three models in Figures 2a and 2b 560

where the x-axis denotes the wall clock time on a 561

TPU-v3 while the y-axis denotes the log perplexity 562

and top-1 accuracy respectively on the C4 data-set 563

(Raffel et al., 2019). From Figure 2 we see that 564

the N-grammer model is roughly 2× faster than 565

the Primer in wall clock time to reach the same 566

perplexity or accuracy. We also compare the actual 567

steps to convergence in Figure 3. 568

D What’s in the latent representations? 569

We inspect the discrete latent representations 570

learned by the N-grammer layer by examining the 571

different uni-gram tokens that are assigned to the 572

same cluster ID. We take a trained N-grammer 573

model with 8192 clusters, n-gram embedding di- 574

mension of 16 and n-gram vocabulary of 196K. We 575

pass the entire set of 32, 000 uni-gram embeddings 576

as input to the N-grammer layer, thereby gathering 577

the cluster assignment of every uni-gram token. We 578

present some of these in Table 2, where we find that 579

the model learns to group related uni-gram tokens 580

together: 581

1. the cluster with head ID 0 and cluster ID 6259 582

corresponds to sports and games, 583

2. the cluster with head ID 2 and cluster ID 5362 584

corresponds to places, 585

3. the cluster with head ID 0 and cluster ID 7468 586

corresponds to animals and fruits, 587

4. the cluster with head ID 2 and cluster ID 8080 588

corresponds to the arts, 589

5. the cluster with head ID 4 and cluster ID 6618 590

also corresponds to the arts. 591

We also observe that several heads independently 592

learn a similar themed grouping, e.g., head 2 and 4 593

both have a cluster dedicated to arts and entertain- 594

ment. 595

7

0 20 40 60 80 100 120
hours

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

lo
g

pp
lx

N-grammer
Primer
Transformer

(a) Log perplexity vs wall-clock time on TPU-v3

0 20 40 60 80 100 120
hours

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

fra
ct

io
n

of
 c

or
re

ct
 n

ex
t s

te
p

pr
ed

ict
io

ns

N-grammer
Primer
Transformer

(b) Top-1 accuracy vs wall-clock time on TPU-v3

Figure 2: Wall-clock time comparisons between Transformer with Gated GELU, Primer and N-grammer on the
C4 data-set (Raffel et al., 2019).

0k 100k 200k 300k 400k 500k
steps

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

lo
g

pp
lx

N-grammer
Primer
Transformer

(a) Log perplexity vs steps

0k 100k 200k 300k 400k 500k
steps

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

fra
ct

io
n

of
 c

or
re

ct
 n

ex
t s

te
p

pr
ed

ict
io

ns

N-grammer
Primer
Transformer

(b) Top-1 accuracy vs steps

Figure 3: Steps to quality comparisons between Transformer with Gated GELU, Primer and N-grammer on the C4
data-set (Raffel et al., 2019).

8

Head ID Cluster ID Uni-gram Tokens

0 6259 Baseball, football, ceramic, Galaxy, hockey, basket-
ball, Cricket, Basketball, guitar, acquisition, athlete,
Soccer, Squid, sports

2 5362 Alchemist, Vegas, hanger, Seinfeld, Kenya, Heroic,
Kurdish, Rodgers, Bolivia, Venom, Qatar, dosage, Ar-
cade, Emperor, becua, Finnish, Taiwanese, Chennai,
hood, dub, flake, Balkan, Psalm, Bueno, Moldova,
flow, mosquito, Filipino, Throne, Siberia, Trout, Fist,
Czech, Boulevard, Azerbaijan, Peru, OW, plaster,
Kashmir, NZ, Priest, Palestinian, Tibetan, stencil,
Aragon, coils, HBO, Iceland, strains, Zimbabwe, fire-
wall, Nepal, Elves, Iranian, Mongol, Traffic, Camilla,
parade, Afghan, hose, Serpent, Tarantino, web, Khal,
Squid, Mala, Syrian, hood

0 7468 Unknown, spoon, Shut, coconut, grapefruit, cran,
Kami, moon, spider, yogurt, perfume, Wine, Skate,
antique, snail, Onion, guinea, puppy, mineral, Rea-
gan, elbow, bark, patio, beneath, snake, lever, bunny,
falcon, rail, ribbon, knob, apples, quarry, corn, nach,
hiking, invoice, Pour, flora, fishing, Paint, olive, vi-
olin, octopus, horizontal, blanket, circular, army,
nickel, cattle, potato, dolphin, mosquito, citrus, shut-
ter

2 8080 Knicks, Shakespeare, SPE, nursing, spells, Alexa,
arrow, vocalist, rehearsal, tunnel, eine, Critical, clar,
BAN, remix, obstacle, musicians, BRO, legislature,
EMS, Manga, piano, sword, vocal, bald, choir, Messi,
Beta, cad, illustrator, organ, conjunction, lunar, bien,
needles, musician, hiking, tad, poe, Pay, violin, Marx-
ist, literary, Theater, gig, poetry, Illustrator, guitar,
Pluto, Camaro, Fog, orbit, dancing, epub

4 6618 Wise, vocalist, actor, cheek, musicians, TION, piano,
tunes, choir, filmmaker, musician, Suzuki, violin,
Theater, gig, Drama, guitar, logic, Entertainment

Table 2: Mapping of uni-gram tokens to cluster IDs for the N-grammer model. The N-grammer model has 8 heads,
8192 clusters, an n-gram embedding dimension of 16 and a n-gram vocabulary of 196K. We report the head index
(Head ID), the cluster index (Cluster ID) and the uni-gram tokens assigned to those IDs for a random subset of
clusters.

9

