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ABSTRACT

Current LLM-driven approaches using test-time computing to generate PDE
solvers execute a large number of solver samples to identify high-accuracy solvers.
These paradigms are especially costly for complex PDEs requiring substantial
computational resources for numerical evaluation. We introduce PDE-SHARP, a
framework to reduce computational costs by replacing expensive scientific com-
putation by cheaper LLM inference that achieves superior solver accuracy with
60-75% fewer computational evaluations. PDE-SHARP employs three stages:
(1) Analysis: mathematical chain-of-thought analysis including PDE classifica-
tion, solution type detection, and stability analysis; (2) Genesis: solver generation
based on mathematical insights from the previous stage; and (3) Synthesis: col-
laborative selection-hybridization tournaments in which LLM judges iteratively
refine implementations through flexible performance feedback. To generate high-
quality solvers, PDE-SHARP requires fewer than 13 solver evaluations on aver-
age compared to 30+ for baseline methods, improving accuracy uniformly across
tested PDEs by 4 x on average, and demonstrates robust performance across LLM
architectures, from general-purpose to specialized reasoning models.

1 INTRODUCTION

Partial Differential Equations (PDEs) are fundamental to scientific modeling across physics, en-
gineering, and computational sciences, yet writing robust numerical solvers requires specialized
numerical analysis expertise for PDE-specific implementation and tuning, with limited flexibility as
each solver targets specific PDE types. The success of deep learning has motivated the develop-
ment of neural PDE solvers, with Physics-Informed Neural Networks (PINNs) (Raissi et al.| 2019;
Karniadakis et al.| [2021)) and operator learning methods (Li et al., 2020) emerging as promising al-
ternatives that leverage neural networks to approximate PDE solutions. However, these approaches
require extensive training data, lack interpretability, suffer from generalization limits across PDE
families, and offer limited accuracy (Rahaman et al.l [2019; [Wang et al., |2022) The result is an
ecosystem of specialized PDE solvers that address particular failure modes without a systematic un-
derstanding of underlying limitations (Cuomo et al., 2022; Krishnapriyan et al., [2021}; [Zhang et al.,
2021; Wang et al.,|2021a).

Meanwhile, large language models (LLMs) have demonstrated remarkable aptitude for complex
mathematical and scientific challenges (Romera-Paredes et al., 2024} Tian et al., 2024). Sophisti-
cated code generation frameworks employ Chain-of-Thought (CoT) reasoning (Welleck et al.,[2024;
Wei et al., 2023} [Kojima et al. [2023), Mixture-of-Agents (MoA) strategies (Sharma) 2024} Wang
et al., 2024a), and advanced inference-time scaling techniques (Snell et al., 2024) to achieve state-
of-the-art performance across programming tasks. LLM-as-a-judge frameworks (Jiang et al.,|2025a;
Zheng et al}[2023) typically employ predetermined evaluation rubrics. However, PDE solver evalua-
tion presents unique challenges requiring assessment of mathematical correctness, numerical stabil-
ity, computational efficiency, and domain-specific accuracy, factors that demand context-dependent
evaluation criteria rather than static rubrics, as optimal trade-offs and performance standards vary
significantly across PDE families and application domains. The task of creating reliable solver codes
for PDE:s sits at the intersection of applied mathematics, numerical analysis, and code generation,
making it an ideal testbed to evaluate LLMs’ mathematical and technical capabilities. Current ap-
proaches fall into two general categories. 1) Fine-tuning methods specialize models for mathemat-
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ical reasoning (Lu et al.,|2024) and subsequent domain-specific adaptation to particular PDE fami-
lies (Soroco et al.,[2025)). These require substantial computational resources for multi-stage training
and offer limited generalizability across PDE types. 2) Inference-only frameworks using general-
purpose LLMs and techniques such as automated debugging (Chen et al., [2023), self-refinement
(Madaan et al., 2023), and test-time scaling (Snell et al.| [2024). CodePDE (Li et al.| [2025) avoids
fine-tuning but relies on brute-force sampling strategies, generating and executing 30+ solver can-
didates to identify optimal solutions. This paradigm becomes especially costly for complex PDEs
requiring high-performance computing resources for numerical evaluation.

To address these limitations, we introduce PDE-SHARP, an LLM-driven PDE solver generation
framework that achieves superior accuracy with 60-75% fewer computational evaluations — through
intelligent generation rather than exhaustive sampling — in three stages: (1) Analysis analyzes the
PDE through structured questions to develop a numerically-stable solver plan; (2) Genesis generates
solver candidates without immediate execution; (3) Synthesis uses LLM judges to iteratively select,
execute, and refine solvers based on provided performance feedback in each round. With this ap-
proach, PDE-SHARP swaps inexpensive LLM inference for expensive scientific computation, only
executing refined solvers each round. This exchange is worthwhile for computationally intensive
PDEs for which GPU/HPC resources dominate costs.
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Figure 1: PDE-SHARP framework overview. The three core stages are Analysis, Genesis, and
Synthesis. Optional components (Translator, Reporter) enhance usability as explained in section 3]
PDE-SHARP generates higher accuracy solvers with 60-75% fewer solver evaluations compared to
tested baselines.

Contributions. The experimental results highlight PDE-SHARP’s key contributions:

* Computational Efficiency. PDE-SHARP reduces expensive solver evaluations by 60-75%
(requiring fewer than 13 solver evaluations on average compared to 30+ in best-of-n base-
lines) while achieving superior solution accuracy, demonstrating considerable resource sav-
ings for complex simulations.

* Mathematical Analysis. PDE-specific mathematical chain-of-thought reasoning with tar-
geted stability analysis produces mathematically-informed solver strategies, leading to
higher initial code quality compared to generic template-based generation.

* Collaborative LLM Tournaments. PDE-SHARP’s synthesis phase improves on standard
test-time computing approaches by 4 x on average using fewer evaluations.

* Enhanced Implementation Quality. Experiments indicate PDE-SHARP solvers achieve
bug-free execution in 63-67% fewer debugging iterations (0.33 vs. 0.9-1.4 iterations per
solver) and enjoy superior numerical convergence properties.

* Robustness to LLM Choice. PDE-SHARP achieves more consistent performance across
diverse LLM types (general-purpose, coding-specific, reasoning models) compared to the
baselines, showing robustness to the underlying code generator LLM choice.

¢ Flexible Feedback Integration. PDE-SHARP can improve solvers using several feedback
mechanisms — solution-based metrics (relative error), physics-based metrics (PDE resid-
ual), and no feedback — to adapt to research scenarios from benchmark validation with
known solutions to real-world cases with limited simulation data or physics-only assess-
ments.



Under review as a conference paper at ICLR 2026

2 BACKGROUND & RELATED WORK

Classical Solvers & Neural Methods. Traditional numerical methods for PDE solving, e.g. finite
difference, finite element, and spectral methods, require considerable domain expertise for effective
implementation (Strang, 2007} |LeVeque, |2007). Modern scientific computing frameworks such as
FEniCS (Alnaes et al.,[2015)), deal.IT (Arndt et al., 2021)) for finite element, and PETSc (Balay et al.,
2025)) have facilitated access to these methods for broad PDE classes. However, 1) considerable nu-
merical analysis knowledge is still required for optimal performance; and 2) general approaches fail
at exploiting PDE-specific mathematical structure to achieve superior performance. The key chal-
lenge is thus identifying which approach suits a particular PDE without extensive domain expertise.

The success of deep learning has motivated extensive research into neural PDE solvers. PINNs vari-
ants (Raissi et al.| 2019; [Wang et al.| 2022)) approximate PDE solutions through residual minimiza-
tion. Physics-informed operator learning methods (Li et al.l |2020; [Lu et al.l |2021)) learn solution
operators rather than individual solutions, offering improved generalization. Feature engineering
techniques such as random Fourier features (Wang et al., [2021b; [Fazliani et al., |2025), residual-
based attention (Anagnostopoulos et al.| [2023)), and radial basis functions (Zeng et al., 2024) have
further enhanced neural solver capabilities. Foundation models leverage transformer architectures
for multiphysics problems (McCabe et al., 2024} Hao et al.| [2024; [Shen et al.| [2024; [Herde et al.,
2024). These neural approaches, however, require extensive training data, lack transparency and
interpretability regarding solution generation processes, and have generalization limits.

Custom solver generation offers several advantages over neural surrogates and black-box library us-
age: full algorithmic transparency enables targeted PDE-specific optimization, simplified debugging
and modification, and direct control over every detail. This is crucial when solver behavior needs
explanation or when problem-specific modifications are required.

LLM-Driven Code Generation for PDEs. The integration of LLMs into scientific computing
has emerged along two primary paradigms. First is fine-tuning models pretrained on mathemati-
cal tasks for domain-specific applications. MathCoder2 (Lu et al., |2024) demonstrates improved
mathematical reasoning through continued training. PDE-Controller (Soroco et al., [2025) continues
this approach by fine-tuning MathCoder2-DeepSeekMath on specific PDE families such as heat and
wave equations. While effective for targeted applications, this paradigm requires substantial compu-
tational resources for multi-stage training and limits generalizability across diverse PDE types. Sec-
ond is leveraging inference-time optimization techniques to enhance performance. CodePDE (Li
et al.l 2025) implements automated debugging and test-time sampling for diverse solver genera-
tion. Frameworks such as OptiLLM (Sharma, 2024) integrate multiple inference optimization strate-
gies including Chain-of-Thought (CoT), Mixture-of-Agents (MoA), self-reflection, PlanSearch, etc.
These approaches typically rely on computationally expensive best-of-n sampling strategies, gener-
ating and evaluating large numbers of solver candidates to identify optimal solutions, which becomes
prohibitive for complex PDEs requiring substantial evaluation resources.

Both paradigms face fundamental limitations in balancing solution quality with computational ef-
ficiency, motivating the need for more intelligent synthesis approaches that leverage mathematical
reasoning without exhaustive sampling or extensive fine-tuning requirements.

3 PDE-SHARP FRAMEWORK

Stage 1: Analysis. PDE-SHARP conducts a systematic five-step mathematical analysis to guide
solver generation. The process begins with PDE classification (order, linearity, type, boundary con-
ditions) that informs all subsequent decisions. Sequential checks determine if analytical solutions
exist, whether transformations can simplify the problem, and if operator decomposition (e.g., sepa-
rating diffusion and reaction terms) is viable. Each step either directs the framework toward special-
ized solution strategies in Stage 2 or continues to the next analysis step as shown in Figure 2] The
final stability analysis computes symbolic time-step bounds and selects numerically stable schemes,
performed before hybrid/numerical solver generation to ensure robustness. Ablation studies (Ap-
pendix [B.2) demonstrate the effectiveness of this multi-step paradigm over other alternatives.

Stage 2: Genesis. PDE solver code is generated using information from the Analysis stage.
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Figure 2: PDE-SHARP Analysis and Genesis stages.

Stage 3: Synthesis This stage uses Selection—Hybridization Tournaments with LLM judges to
iteratively refine solver implementations. Numerical accuracy of the solver can inform judge deci-
sions through a configurable feedback mechanism. Synthesis consists of two main steps:

<& Cgnerated /igfi Tnitial Judgnent Hybridization Hybridization _, (2
/19 & Selection Round (1) Round (1)
! ¢ Initial Judgment 0 Hybridization ® Hybridization
l_’ (\ & selection iC Round (1) lie Round (1)
N lethe[ Tnitial Judgment Hybridization Hybridization
@Feisg?k \\ & Selection Round (1) Round (1)

Figure 3: PDE-SHARP Synthesis. This stage can be repeated to address performance saturation.

(i) Initial Judgment & Selection: Given the n generated initial solvers and a specified feedback
type, each judge LLM produces a selection of its top 5 choices from the initial list with reasoning
behind each choice (prompt format detailed in Appendix[E.3)). Each judge also designates one solver
from its top % list as a nominee for execution and evaluation using the allowed feedback.

(ii) Hybridization Rounds: The three nominated base solvers are executed and their performance
results are shared with all judges. Each judge then proposes modifications to their base solver using a
diff/patch format to ensure incremental changes that preserve working code structure and encourage
local fixes, with technical justification for each modification. The modified solvers are executed and
results again shared with all judges. This process repeats until performance improvements saturate
across consecutive rounds or as specified by the user.

When performance improvements saturate or the maximum number of hybridization rounds is
reached, the framework initiates another judging cycle that repeats steps (i) and (ii) with an ex-
panded solver set including all previously generated hybrids, their technical justifications, and per-
formance feedback from previous rounds. Judges maintain context within each cycle but reset be-
tween cycles, evaluating the expanded set from scratch, to encourage exploration of new strategies.

Feedback Types. The Synthesis stage can incorporate different performance metrics to guide judge
decisions during tournaments. We discuss three feedback types: (1) nRMSE: normalized root mean
squared error against reference solutions; (2) PDE residual feedback: physics-based residual compu-
tation that requires no reference data; and (3) no feedback: judges rely purely on code analysis. The
choice of feedback type allows adaptation to different research scenarios — from benchmark vali-
dation with known solutions to real-world cases with limited reference data. PDE-specific feedback
types and their combinations could also be employed for domain-specific optimization. Additional
discussions and results appear in Appendix [B.2.6]

Optional Stages. PDE-SHARP includes two optional components for enhanced usability (Fig-
ure [T): Translator converts natural language PDE descriptions into the structured mathematical
templates required by the Analysis stage. When user input lacks necessary detail, it requests addi-
tional information before proceeding. Users can alternatively bypass this stage by directly providing
pre-formatted templates. Reporter generates detailed reports on solver evolution throughout the
tournament process, enhancing framework interpretability. These reports can serve as feedback for
subsequent runs on the same problem, enabling iterative refinement strategies.
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4 EXPERIMENTS

4.1 BASELINES

We compare PDE-SHARP against multiple baseline methods across five representative PDE tasks
from PDEBench (Takamoto et al.,2024)) (Table[T)). Discussions on neural methods and some LLM-
driven approaches (agentic workflows, fine-tuned mathematical models, etc.) appear in Appendix
[A] In our experiments, we focus on LLM-driven baselines using test-time computing for code gen-
eration that directly compete with PDE-SHARP’s approach. CodePDE (Li et al., [2025)) generates
solvers using chain-of-thought prompting and executes all samples to report the best performance.
A refined variant, CodePDE-R, is also tested as a baseline. OptiLLM (Sharma, 2024) implements
inference optimization techniques including Chain-of-Thought (CoT), Mixture-of-Agents (MoA),
and Cerebras Planning and Optimization (CePO). Experimental details appear in Appendix [A]

Experimental Setup: All methods generate n = 32 initial solver candidates for fair comparison
(Appendix [B.2.4). Baselines execute all candidates (CodePDE-R executes 44 with refinements).
PDE-SHARP uses three judge LLMs (Appendix[B.2.5)) in collaborative tournaments, executing only
refined candidates per hybridization round. For Section 4] experiments, PDE-SHARP uses nRMSE
on 100 validation samples as tournament feedback. All methods are evaluated on a separate test set
of 100 random PDEBench samples per PDE task (Table [2). Additional feedback types and judge
configurations appear in Appendix [B.2]

Table 1: Tested PDEs; details in Appendix |C| Dimension column indicates the spatial dimension
and NL stands for non-linear in the table.

PDE Dimension Type State Solution Behavior
Advection 1D Linear Time-dependent Smooth
Burgers 1D Highly NL  Time-dependent Shock-forming
Reaction-Diffusion 1D Mildly NL  Time-dependent Smooth
Navier-Stokes 1D Highly NL. Time-dependent Shock-forming
Darcy Flow 2D Mildly NL Steady-state Smooth

4.2 RESULTS & ANALYSIS

4.2.1 ACCURACY & INTERPRETABILITY

Table [2| shows solver accuracy across all PDEs and baselines.

PDE-SHARP is more robust to code generator LLM selection. Table 2| shows that the solution
quality for baseline methods depends strongly on the LLM. In contrast, PDE-SHARP performs more
consistently across all tested LLMs; results for more LLMs are appear Appendix [B.1] This uniform
performance indicates PDE-SHARP’s tournament hybridization stage effectively mitigates the lim-
itations of individual code generators, producing higher-quality solvers that are largely independent
of the underlying LLM.

PDE-SHARP significantly improves solver accuracy for specific PDEs. PDE-SHARP im-
proves accuracy by over 4x overall (geometric mean), with particularly impressive performance
on the reaction-diffusion and advection tasks. For reaction-diffusion, PDE-SHARP’s Analysis stage
immediately identifies that the reaction component admits an analytical solution, directing all 32 ini-
tial solver candidates toward hybrid analytical-numerical approaches that achieve superior numerical
stability. Baseline methods rarely discover this hybrid strategy, as shown in Figure 4a]
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Table 2: PDE-SHARP improves solver accuracy and is robust to choice of LLM. Solution accuracy
is measured by nRMSE relative to the reference solution from PDEBench. Cell colors use a col-
ormap log-normalized independently within each PDE column to highlight per-task variation.
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Figure 4: (a) Other frameworks tend to choose the less accurate purely-numerical approach for
the reaction-diffusion PDE, while PDE-SHARP always goes with the superior hybrid approach.
(b) PDE-SHARP transitions from first-order discretized analytical to second-order finite-volume
approaches through performance-informed tournaments.
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For advection, PDEBench reference solutions are generated using finite volume methods (Takamoto
et al.l [2024), reflecting standard shock-safe computational practice. PDE-SHARP and all other
baselines initially attempt analytical solutions, and the baselines keep their analytical approach even
through refinement (e.g. in CodePDE-R). PDE-SHARP’s performance-informed tournaments, on
the other hand, encourage PDE-SHARP to adapt to the data, as demonstrated in Figure #b] When
persistent 102 errors reported as feedback indicate a mismatch between analytical and reference
solutions, the judge LLMs converge on second-order finite-volume schemes that better match the
dataset characteristics. This adaptation occurs through feedback alone, without manual intervention,
demonstrating how collaborative tournaments can optimize for evaluation criteria while maintaining
computational efficiency. This adaptive behavior varies with different feedback types as users can
choose an optimization target to reflect available data (Figure [5). A study on advection solvers

appears in Appendix
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Figure 6: Ablation study of PDE-SHARP components across five PDE tasks. Four variants: (1)
Default: full PDE-SHARP with both stability analysis and synthesis, (2) No Stability Analysis:
PDE-SHARP with the stability analysis step removed from the Analysis stage, (3) No Synthesis:
PDE-SHARP with best-of-32 sampling instead of the Synthesis stage, and (4) No Stability Analysis
& No Synthesis. Results show both components contribute to accuracy improvements, with each
component being more critical for different PDE types, e.g. stability analysis is more critical for
reaction-diffusion, while synthesis contributes more to the Darcy flow task.

Figures [ [5] [6| highlight how PDE-SHARP’s Analysis and Synthesis stages leverage mathematical
insight and performance feedback, both playing significant roles in PDE-SHARP’s performance.
Detailed ablation studies in Appendix [B.2] quantify each component’s contribution in more detail.

4.2.2 CODE QUALITY & INSIGHTS

Figure [/|demonstrates PDE-SHARP reduces the number of debugging iterations required and pro-
duces solvers with competitive execution times. PDE-SHARP averages 0.33 debugging iterations
per solver execution (approximately 1 in 3 generated solvers requires debugging in a hybridization
round), significantly outperforming baseline methods that require 0.9-1.4 debugging iterations per
generated solver. This reduction shows that PDE-SHARP’s Analysis stage produces more robust
initial implementations, and that the synthesis stage efficiently eliminates implementation errors.

Figure [4b|demonstrates the distribution of empirical convergence orders (definition in Appendix [A)
— showing solver improvements with grid refinement — across methods for the advection PDE.
PDE-SHARP generates solvers with superior convergence properties, leading to higher accuracy in
this case (Table . In addition, Figureindicates that on average, PDE-SHARP’s solvers use less
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Figure 7: (a) Average number of debugging iterations required per solver execution across different
methods. (b) Average execution times across PDE tasks. PDE-SHARP achieves lower execution
times than the average baseline in 4/5 cases. For reaction-diffusion, higher execution time reflects the
rigorous numerical methods selected by stability analysis as expected, which produce significantly
higher accuracy solvers (Table @)

PyTorch (down to /~25-33 % of library calls) and more SciPy + NumPy + JAX (up to ~60-75 %),
whereas the baselines keep PyTorch at roughly 50-67% and SciPy below 7% on average. Using JAX
for computational kernels is highly encouraged in PDE-SHARP prompts in particular as evident in
the library usage proportions across all methods and PDE tasks. Additional empirical convergence
rate results all PDEs as well as library usage proportions for each baseline appear in Appendix

Cost. We analyze the efficiency and cost of each method by calculating the average cost for GPU
and LLM API calls for the experiments in this section. Table[2]shows among the tested LLMs, GPT-
40 as the code generation LLM yields higher accuracy results on average. Table [3| shows the total
average API cost of the results for GPT-40 in Table[2] Details of the calculations appear in Appendix
GPU usage depends on the number of solver executions, code complexity, and implementation
efficiency. The number of solver executions to get the best result for each PDE in PDE-SHARP
depends on the number of hybridization rounds required, averaging 13.2 evaluations across all test
cases (9-12 evaluations for most PDEs, with advection requiring 24 to better match data as discussed
in Section[4.2). Figure[8|shows nRMSE vs. total average cost (API call + GPU usage) for three PDE
tasks.

Table 3: Cost comparison of input, output, and total API usage per method using GPT-40 as the
code generating LLM

Framework $ Inputs  $ Output $ Total
OptiLLM-CoT 0.10 0.48 0.58
OptiLLM-MoA 0.53 2.12 2.65
OptiLLM-CePO 0.96 8.27 9.23
CodePDE 0.07 0.68 0.75
CodePDE-R 0.41 0.88 1.29
PDE-SHARP 1.12 2.89 4.01

4.3 DISCUSSION & LIMITATIONS

Discussion: PDE-SHARP uses numerical feedback to improve the generated solver. This extra
information can be easy to compute — such as the (data-free) PDE residual — or may require col-
lecting data, such as distance to the solution at a sampled set of times and locations. PDE-SHARP
can also use problem-specific constraints like the CFL condition (LeVeque, 2007) as feedback, or
can run without feedback if no information is available. Results for PDE-SHARP using residual
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Figure 8: Trade-off between solution accuracy (nRMSE) and total cost for LLM-driven PDE solver
generation methods across three PDE tasks of varying computational complexity. From Navier-
Stokes (hours per solver evaluation) to Reaction-Diffusion (moderate) to Advection (lightweight,
seconds per evaluation), PDE-SHARP demonstrates consistent cost-effectiveness.

feedback and no numerical feedback appear in Appendix [B.2] LLM agents can also suggest feed-
back types. As seen in Appendix (examples of LLM-suggested feedback types for each tested
PDE), an additional LLLM agent could be used to determine optimal problem-specific metrics before
Synthesis begins. This is particularly beneficial for complex PDEs requiring specialized feedback,
and represents important future work. Additional promising directions include scaling to higher-
dimensional problems with complex geometries where traditional numerical methods face greater
challenges. Finally, hybrid approaches combining PDE-SHARP’s interpretable numerical solvers
with neural PDE methods could leverage the strengths of both paradigms for problems requiring
both accuracy and computational efficiency.

Limitations: Our evaluation establishes PDE-SHARP’s effectiveness on moderate-complexity
PDEs from established benchmarks, with high-fidelity computational simulations representing a nat-
ural extension constrained by current LLM training data coverage. LLM-driven PDE solver genera-
tion using test-time computing approaches rely on LLM mathematical reasoning capabilities, which
means performance may degrade for cutting-edge PDE formulations that are not well-represented
in training data or require highly specialized domain knowledge beyond current model capabilities.

5 CONCLUSION

PDE-SHARP demonstrates that intelligent LLM-driven solver generation can dramatically improve
efficiency over brute-force sampling approaches. Our three-stage framework reduces computational
evaluations by 60-75% while achieving superior accuracy on average across five representative
PDEs. The mathematical chain-of-thought analysis in the Analysis stage produces more robust
initial implementations, requiring on average 67% fewer debugging iterations compared to base-
line methods. The hybrid tournaments in the Synthesis stage efficiently refines solvers through
performance-informed feedback, with flexible type, demonstrating consistent robust improvements
across diverse LLM models.
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APPENDIX

A  ADDITIONAL INFORMATION & EXPERIMENTAL SETUPS

A.1 MATHEMATICAL METRICS

nRMSE. For S test cases, each with true solution u(*) (z, t) and solver prediction @) (z, t):

5
L [t (@) = al) (2, )|
nRMSE = —
52 @0,
where || - ||2 denotes the L2 norm. This metric normalizes the root mean squared error by the

magnitude of the true solution, enabling fair comparison across problems with different solution
scales.

Convergence Rate. To evaluate numerical correctness, we assess solver convergence behavior
across multiple grid resolutions. A robust solver should exhibit predictable error reduction follow-
ing E(h) ~ ChP, where E(h) is the solution error on grid spacing h, C' is a problem-dependent
constant, and p is the convergence order.

We estimate the empirical convergence order using two grid resolutions:
E(h1)
bg(Emb)
PR ——
log (%)

For each generated solver, we evaluate performance on progressively refined grids (typically h, h/2,
h/4) and compute the average convergence order. Expected theoretical orders vary by numerical
method: first-order schemes (p ~ 1), second-order finite difference/volume methods (p ~ 2), and
spectral methods (exponential convergence). Most LLM-generated solvers achieve first-order con-
vergence, with occasional higher-order behavior depending on the chosen discretization scheme and
implementation quality.

A.2 NEURAL NETWORKS & FOUNDATION MODELS

Limitations of Cross-Paradigm Comparisons. Direct comparison between LLM-generated
solvers using traditional numerical methods and neural PDE solvers involves inherent methodolog-
ical challenges. Neural network baselines are drawn from prior literature with different experi-
mental conditions while our LLM approach benefits from extensive inference-time optimization
(debugging, refinement, best-of-n sampling) not applied to these baselines. Additionally, the com-
putational budgets differ fundamentally: neural methods require training time and data preparation,
while numerical methods require implementation and parameter tuning effort. These paradigmatic
differences make it difficult to establish truly equivalent experimental conditions. Our results should
be interpreted as demonstrating the promise of LLM-based solver generation rather than definitive
superiority over alternative approaches. Future work should focus on controlled comparisons with
standardized evaluation protocols across all methods.

We thus include the following reported numbers verbatim from the original papers of FNO (Li et al.|
2020), PirateNets (Wang et al.l 2024b), PINNsFormer (Zhao et al., [2023), and UPS (Shen et al.,
2024])) as examples of neural and foundation models only for the sake of completeness and to give
readers an at-a-glance sense of scale (parameters, memory, time/epoch) and accuracy on overlapping
PDE families, however, as each method utilizes distinct settings, we do not provide a direct ranking
between them. The following is intended only to document the resource scale and the published
accuracy on broadly overlapping PDE families.

FNO Reports results for 1D Burgers and 2D Navier—Stokes (space—time operator learning). Hard-
ware noted by the authors: single NVIDIA V100 16 GB.
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Table 4: FNO on /D Burgers (relative £5 error at different spatial resolutions s).

Method 5=256 512 1024 2048 4096 8192
FNO 0.0149 0.0158 0.0160 0.0146 0.0142 0.0139

Notes. Table reproduced from the paper; parameters, GPU memory, and time/epoch were not reported for the
Burgers experiment. See Table [5]for Navier—Stokes resource numbers as reported by the authors.

Table 5: FNO on 2D Navier—Stokes (relative 5 error over different viscosities v and dataset sizes
N; per-epoch time reported by the authors).

Method Params Time/epoch  v=1073, T=50, N=1000 v=10"%, T=30, N=1000 v=10"* T=30, N=10000 v»=10"°, T=20, N=1000
FNO-3D 6,558,537 38.99s 0.0086 0.1918 0.0820 0.1893
FNO-2D 414,517 127.80s 0.0128 0.1559 0.0973 0.1556
U -Net 24,950,491 48.67s 0.0245 0.2051 0.1190 0.1982
TF -Net 7,451,724 47.21s 0.0225 0.2253 0.1168 0.2268
ResNet 266,641 78.47s 0.0701 0.2871 0.2311 0.2753

Notes. Reported at 64 x 64 spatial resolution; FNO-3D convolves in space—time while FNO-2D uses 2D
convolutions with an RNN in time.

PirateNets has PINN backbone with physics-informed residual adaptive blocks. The paper empha-
sizes accuracy comparisons and ablations; it does not tabulate parameter counts, GPU memory, or
wall-clock per epoch. Below we list the state-of-the-art test errors the authors report.

Table 6: PirateNets: reported relative /5 test errors across PDEs (paper’s Table 1).

Benchmark Error (PirateNet) Params GPU Mem Time/epoch
Allen—Cahn (1D) 2.24x107° — — —
Korteweg—De Vries (1D) 4.27x107% — — —
Grey—Scott (2D) 3.61x1073 — — —
Ginzburg-Landau (2D) 1.49x10~2 — — —
Lid-driven cavity (2D) 4.21x1072 — — —
Notes. Architecture details (e.g., depth/width) and training pipelines are provided, but resource metrics are not
tabulated.

PINNsFormer is a transformer-style PINN variant. The authors report parameter counts and train-
ing overhead (V100), and test errors on overlapping 1D PDE:s.

Table 7: PINNsFormer: model size and training overhead (Appendix Table 4-5 in the paper).

Model Params GPU Mem (MiB) Time/epoch (s)

PINNsFormer (pseudo-seq. length k=5) 454,000 2,827 2.34
Notes. Reported on a single NVIDIA Tesla V100; overheads shown for £=5.

Table 8: PINNsFormer: reported test errors on 1D PDEs used widely in PINN literature.

PDE (dimension) Metric (paper) Error Params Time/epoch / GPU Mem
Convection (1D) rRMSE (= rel. £5) 0.027 454k 2.34s /2,827 MiB
Reaction (1D) rRMSE (= rel. /5) 0.030 454k 2.34s/2,827MiB

Notes. Errors are taken directly from the paper’s main results tables; rRMSE is the paper’s standard relative ¢
metric. The reaction/convection formulations and sampling follow the setups specified inZhao et al.|(2023)).

UPS learns to map symbolic PDE specifications and initial/boundary conditions to numerical so-
lutions. The architecture combines Fourier Neural Operators and transformers with autoregressive
decoding over space-time grids.
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The model was trained on ~20k PDE trajectories using a single NVIDIA A6000 GPU. Training
was run for 60,000 steps and completed in under 100 GPU-hours. UPS achieves strong sample
efficiency, outperforming baselines with 4 x less data and 26 x less compute.

Table 9: UPS: test errors on PDEBench benchmarks (relative /5 or nRMSE as reported).

PDE Metric  Error (UPS) Training Steps  GPU  Total GPU Hours
Advection (1D) nRMSE  2.20x1073 60,000 A6000 ;100
Burgers (1D) nRMSE  3.73x10~2 60,000 A6000 ;100
Reaction-Diffusion (2D) nRMSE 5.57x1072 60,000 A6000 100
Navier—Stokes (2D) nRMSE  4.50x1073 60,000 A6000 ;100

Notes. Errors and training configuration are from the paper’s PDEBench experiments. Training used ~20k
PDE samples across equations; GPU time and steps refer to total training, not per-PDE.

A.3 LLM-DRIVEN ARCHITECTURES

A.3.1 LLM MODELS USED IN SECTION [@]FOR CODE GENERATION

Table 10: LLM models used in Section E]for solver generation; more LLMs — including the coding
and math-aware variants of these — are tested in Appendix

LLM Type Access
Gemma 3 Non-reasoning  Open Source
LLama 3.3 Non-reasoning  Open Source
Qwen3 Non-reasoning  Open Source
DeepSeek-R1  Reasoning Open Source
GPT-40 Non-reasoning  API Service
03 Reasoning API Service

A.3.2 AGENTIC WORKFLOWS

Frameworks like FunSearch (Romera-Paredes et al |[2023) and AIDE (Jiang et al., 2025b) wrap
an LLM in an iterative search/refinement loop. They treat the LLM as an agent that can branch, try
multiple approaches, and refine code via feedback.

FunSearch (DeepMind, 2023) pairs a pre-trained code-generating LLM with an automated eval-
uator in a loop. The LLM proposes candidate programs/solutions, an evaluator (a test or objective
function) checks them, and then the process generates new candidates (mutations, combinations)
based on feedback. FunSearch features algorithm discovery based on a program database. The pro-
gram database consists of a few “islands” of programs. The experimental setup is the same as (L1
et al.,|2025)). The number of islands is set to 4 and the island reset period to 3600s. The FunSearch
process runs for 32 iterations. In each iteration, the language model decoding temperature is set to
0.7.

AIDE (Weco Al 2025) formulates code generation as a tree search problem. For a given high-level
task (like “build an ML pipeline that achieves X accuracy on Y dataset”), AIDE would have the LLM
propose a solution. Then it measures how good that solution is (it runs the code and sees accuracy).
If not satisfied, AIDE can either refine the current solution (edit some parts of the code via another
LLM call) or try a different approach (branch out in the search tree). Over multiple iterations, it
explores the space of programs. The experimental setup is the same as (Li et al.| 2025). AIDE
runs for 96 steps and the max debug depth, debug probability, and number of drafts are set to 5, 0.9,
and 24, respectively. The language model decoding temperature is set to 0.5 for code generation
following the original paper (Jiang et al.,|[2025b).
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Table 11: nRMSE values for Agentic Workflows on different PDEs. Results from|Li et al.| (2025)

Advection Burgers Reaction-Diffusion Navier-Stokes Darcy

AIDE 1.03e-3 1.05e-4 5.07e-2 5.77e-2 4.78e-3
FunSearch 1.05e-3 1.13e-4 3.72e-2 5.86¢-2 4.78e-3

A.3.3 OTHER RELATED WORK

Recent work (Soroco et al.| (2025)) introduces PDE-Controller, a framework that fine-tunes LLMs
specifically for PDE control problems. Their approach trains specialized models for autoformaliza-
tion (converting natural language to formal specifications), program synthesis, and multi-step rea-
soning through reinforcement learning from human feedback (RLHF). While demonstrating strong
performance on their target domains, this approach differs from PDE-SHARP in several key aspects.

Table 12: PDE-Controller: Training Requirements and Performance

Metric Value
Training Data

Heat equation samples 867,408
Wave equation samples 845,088
Total training samples 1,712,496
Evaluation Data

Synthetic test samples 426,432
Manual test problems 34
Performance (Synthetic)

Autoformalization accuracy (IoU) 99.2%
Code executability 97.99%
Performance (Manual)

Autoformalization accuracy (IoU) 68.0%
Code executability 91.2%
Scope

PDE types covered 2 (heat, wave)
Spatial dimensions 1D

While effective for specific classes of PDEs, the fine-tuning approach presents several limitations
compared to LLM-driven approaches using test-time computing: (1) Computational overhead:
Requires extensive fine-tuning of multiple specialized models (translator, controller, coder) with
over 1.7M training samples; (2) Domain specificity: Limited to only heat and wave equations in
1D, requiring retraining for new PDE types; (3) Data requirements: Needs large-scale synthetic
data generation and manual curation by domain experts; (4) Scalability constraints: Each new PDE
family would require collecting new training data and retraining models; (5) Generalization gap:
Performance drops significantly on manual problems (99.2% to 68.0% accuracy), indicating limited
robustness to real-world variations.

PDE-SHARP offers more flexibility across PDE types without domain-specific training, though
potentially at the cost of specialized performance on specific equation families. The fundamental
trade-off lies between the specialized efficiency of fine-tuned approaches versus the broader appli-
cability and reduced computational overhead of general prompting strategies.

A.3.4 OpTILLM

We use the OptiLLM framework from github.com/codelion/optillm as a baseline to test
PDE-SHARP. OptiLLM is an optimizing inference proxy that implements 20+ state-of-the-art tech-
niques to improve LLM accuracy and performance on reasoning tasks without requiring any model
training or fine-tuning. We test three of OptiLLM’s implemented techniques in our study.
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CoT (Chain-of-Thought) with Reflection. Implements chain-of-thought reasoning with struc-
tured <thinking>, <reflection> and <output> sections to enhance reasoning quality through ex-
plicit self-evaluation. The approach generates intermediate reasoning steps in the thinking phase,
critically reviews the reasoning in the reflection phase, and produces the final output, enabling im-
proved accuracy on complex reasoning tasks without requiring model fine-tuning.

MoA (Mixture-of-Agents). Combines responses from multiple model critiques in a collaborative
framework where 3 different agent perspectives are aggregated to produce higher-quality solutions.

CePO (Cerebras Planning and Optimization). Combines Best-of-n sampling (without code ex-
ecution), Chain-of-Thought reasoning, Self-Reflection, and Self-Improvement in a four-stage pro-
cess: plan generation with confidence scoring, initial solution development, plan refinement through
inconsistency analysis, and final solution production. The method applies Best-of-n to multiple so-
lution candidates with optional plan diversity, using parameters like planning_n proposals and
planning.m maximum attempts to generate robust solutions for complex reasoning tasks. The
following are the default parameters used in this study.

Table 13: Default configuration values for CePO planning and verification stages

Parameter Description Default Value
-—cepo-bestofn.n Number of responses to be generated in best of n stage 3
——cepo_bestofn_temperature Temperature for verifier in best of n stage 0.1
-—cepo_bestofn_max_tokens Max tokens for verifier in best of n stage 4096
-—cepo.bestofn_rating_type Rating type ("absolute” or "pairwise”) "absolute"
--cepo_planning.n Number of plans generated in planning stage 3
--cepo-planning.m Attempts to generate n plans in planning stage 6
-—-cepo_planning_temperature_stepl Temperature in step 1 of planning stage 0.55
——cepo.planning_temperature_step2 Temperature in step 2 of planning stage 0.25
—-—-cepo.-planning_temperature_step3 Temperature in step 3 of planning stage 0.1
--cepo_planning_temperature_step4 Temperature in step 4 of planning stage 0
—-—cepo_planningmax_tokens_stepl Max tokens in step 1 of planning stage 4096
-—cepo.-planning.max_tokens_step2 Max tokens in step 2 of planning stage 4096
-—cepo._planning.max_tokens_step3 Max tokens in step 3 of planning stage 4096
—-—cepo_planning max_tokens_step4 Max tokens in step 4 of planning stage 4096
—-—-cepo_print_output Whether to print the output of each stage False
——cepo.-config._file Path to CePO configuration file None
—-—cepo.use_plandiversity Use additional plan diversity step False
-—cepo-ratingmodel Rating model (if different from completion) None

A.3.5 CoDEPDE ( (LIET AL.,|2025))

CodePDE. CodePDE is an inference framework for LLM-driven PDE solver generation that
frames PDE solving as a code generation task. The framework operates through a five-step pro-
cess: (1) Task Specification converts PDE problems into natural language descriptions including
governing equations, domain specifications, boundary conditions, and initial conditions; (2) Code
Generation uses chain-of-thought prompting to instruct models to generate complete solver imple-
mentations with predefined function signatures; (3) Debugging performs iterative self-debugging for
up to 4 rounds when solvers encounter execution errors, feeding error traces back to the LLM for
autonomous correction; and (4) Evaluation assesses solver performance using normalized root mean
squared error (nRMSE), convergence tests, and execution time; For our comparison, we use Code-
PDE with the same setup as (Li et al.,[2025) with steps 1-4 (reasoning + debugging), generating 32
solver samples with best-of-32 selection, using up to 4 debugging iterations per solver.

CodePDE-R. CodePDE-R extends the base CodePDE framework by incorporating the solver re-
finement step (step 5). This variant selects the 5 best-performing programs from the reasoning +
debugging stage as “seed” programs for refinement. The refinement process provides the nRMSE
obtained during evaluation along with the solver implementation back to the LLM, instructing it to
analyze execution results, identify numerical instabilities and bottlenecks, and generate improved
implementations accordingly. For each seed program, the framework generates 4 refined versions
across different refinement configurations (using 3, 4, or 5 seed implementations), resulting in 12 re-
fined programs total. The final result reports the best nRMSE among these 12 refined samples. This
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iterative feedback-driven optimization enables models to systematically improve solver accuracy
and efficiency beyond the initial generation and debugging phases.

A.4 ADDITIONAL INFORMATION ON FRAMEWORK COST

Table [3] shows the average API call cost for each framework using GPT-40 as the code generator
LLM. GPT-4o input cost is $2.50 per 1M tokens, and the output cost is $10.00 per 1M tokens. Table
shows the average input-output counts for each framework from Section[d] An NVIDIA T4 GPU
costs $0.35 per hour, which is used to calculate the total average costs in Figure

Table 14: Approximation of the total input-output counts for running each framework once

Framework # Inputs  # Output

OptiLLM (CoT) 48,000 105,600
OptiLLM (MoA) 200,000 422,400
OptiLLM (CePO) 600,000 105,600
CodePDE 102,400 294,400
PDE-SHARP 600,000 450,800
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 RESULTS WITH DIFFERENT LLMS

The following additional LLM models are tested for code generation in addition to the results of
Table[2l

Table 15: Additional LLMs

LLM Type Access
Qwen3-Coder (Team), [2025) Coding-specific Open Source
Code Llama (Roziere et al., [2024) Coding-specific Open Source
GPT-5 Non-reasoning API Service
DeepSeekMath (Shao et al., [2024) Mathematical reasoning Open Source
DeepSeek-Coder (Guo et al.,2024) Coding-specific Open Source

MathCoder2-DeepSeekMath (Lu et al.,[2024) Math aware Coding-specific ~ Open Source

Table 16: nRMSE comparison of the baseline frameworks using different LLMs.

Advection  Burgers Reaction-Diffusion Navier-Stokes ~ Darcy

Qwen3-Coder 4.67e-03  1.52¢-03 9.38e-01 2.63e-01 6.34e-01
GPT-5 5.36e-03  1.88e-03 1.04e+00 2.83e-01 7.18e-01
OptiLLM-CoT DeepSeekMath 4.89¢-03  3.12e-04 2.38e-01 8.51e-02 5.22e-03
DeepSeek-Coder 4.89e-03  3.04e-04 2.41e-01 8.72e-02 5.11e-03
MathCoder2-DeepSeekMath ~ 4.89e-03  3.27e-04 2.43e-01 8.66e-02 5.29e-03
Qwen3-Coder 1.01e-03  3.45e-04 9.68e-02 1.79e-02 5.12e-03
GPT-5 4.18¢-03  4.11e-04 1.14e-01 2.02e-02 1.89e-02
OptiLLM-MoA  DeepSeekMath 1.32e-03  2.66e-04 3.57e-02 1.72e-02 5.23e-03
DeepSeek-Coder 1.32e-03  3.04e-04 1.55e-01 1.78e-02 5.18e-03
MathCoder2-DeepSeekMath ~ 1.01e-03  2.66e-04 4.07e-02 1.74e-02 5.22e-03
Qwen3-Coder 1.01e-03  3.23e-04 8.91e-02 1.97e-02 1.83e-02
GPT-5 3.17e-03  3.89e-04 1.03e-01 2.24e-02 4.72e-02
OptiLLM-CePO  DeepSeckMath 9.98e-04  2.55e-04 2.45e-02 1.85e-02 4.92e-03
DeepSeek-Coder 1.01e-03  2.66e-04 1.47e-01 1.91e-02 4.92e-03
MathCoder2-DeepSeekMath ~ 9.98e-04  3.04e-04 3.56e-02 1.93e-02 4.33e-03
Qwen3-Coder 4.89¢-03  1.35e-03 9.55e-01 2.59¢-01 6.57e-01
GPT-5 5.75e-03  1.63e-03 1.08e-01 2.82e-01 7.91e-01
CodePDE DeepSeekMath 5.10e-03  2.87e-04 2.45e-02 7.91e-02 4.97e-03
DeepSeek-Coder 4.69e-03  2.87e-04 2.78e-01 7.82e-02 5.02e-03
MathCoder2-DeepSeekMath ~ 5.10e-03  3.15e-04 2.32e-02 7.84e-02 4.97e-03
Qwen3-Coder 9.74e-04  3.60e-04 9.13e-02 9.67e-02 4.90e-02
GPT-5 1.14e-03  4.41e-04 1.07e-01 7.93e-02 5.81e-02
CodePDE-R DeepSeekMath 9.8%e-04  2.62e-04 1.47e-02 3.63e-02 5.01e-03
DeepSeek-Coder 9.89%-04  3.15e-04 1.47e-02 2.67e-02 6.01e-03
MathCoder2-DeepSeekMath ~ 9.74e-04  2.62e-04 1.47e-02 1.65e-02 4.97e-03
Qwen3-Coder 9.74e-04  2.97e-04 5.39¢-03 2.80e-02 7.80e-03
GPT-5 1.01e-03  3.45e-04 7.78e-03 3.19e-02 9.93e-03
PDE-SHARP DeepSeekMath 7.46e-04  1.55e-04 2.39e-03 1.47e-02 4.78e-03
DeepSeek-Coder 7.46e-04  2.53e-04 3.67e-03 2.76e-02 4.78e-03
MathCoder2-DeepSeekMath ~ 5.54e-04  1.38e-04 2.99¢-03 1.47e-02 3.93e-03

B.2 PDE-SHARP ABLATION STUDIES
In this section, we present ablation study results on PDE-SHARP. Note that we take the default

PDE-SHARP framework to be one used in Sectiond] The ablation studies of this section each target
a different aspect of PDE-SHARP’s design.

B.2.1 ANALYSIS PROMPTING STRATEGY
We compare the following prompting strategies for the Analysis stage.

* Multi-Step prompting (PDE-SHARP default)
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* Single Prompt (all the PDE-SHARP steps merged into one)
* LLM-generated multi-step prompting
* LLM-generated single prompt

For the LLM-generated alternatives, the LLM, GPT-40 in this ablation, is first asked to generate
either a series of prompts or a single prompt to run as the analysis stage for a give PDE before
proceeding to the code generation stage. The Synthesis stage is done exactly as in Section[d Table
[[7lsummarizes these results.

Table 17: nRMSE comparison of the baseline frameworks using different Analysis prompting strate-
gies.

Advection  Burgers  Reaction-Diffusion Navier-Stokes ~ Darcy

Gemma 3 1.01e-03  5.60e-04 3.01e-03 3.14e-02 1.72e-02
LLaMA 3.3 9.98e-04  4.61e-04 3.61e-03 5.06e-02 1.72e-02
Multi-Step Prompting (Default) Qwen 3 7.76e-04  2.97e-04 2.32e-03 2.80e-02 4.80e-03
DeepSeek-R1  5.24e-04  1.48e-04 2.29e-03 1.37e-02 4.74e-03
GPT-40 6.11e-04  2.31e-04 2.29¢-03 1.51e-02 3.97e-03
03 9.74e-04  3.42¢-04 5.78e-03 1.89¢-02 7.78e-03
Gemma 3 1.03e-03  4.89e-04 1.18e-02 4.31e-02 8.11e-03
LLaMA 3.3 1.05e-03  4.79¢-04 1.75e-02 7.32e-02 1.79e-02
Single Prompt (Default merged into one) Qwen 3 8.0le-04  3.11e-04 2.41e-03 4.94e-02 491e-03
DeepSeek-R1  6.53e-04  1.56e-04 2.37e-03 1.41e-02 4.83e-03
GPT-40 7.39e-04  3.48e-04 3.33e-03 2.62e-02 4.13e-03
03 8.70e-04  4.54e-04 3.89¢-03 2.96e-02 4.87e-03
Gemma 3 1.02e-03  4.82¢-04 9.21e-02 7.27e-02 7.93e-03
LLaMA 3.3 1.04e-03  4.72e-04 8.69¢-02 7.24e-02 1.77e-02
LLM-Generated Multi-Step Prompting  Qwen 3 1.89e-03  6.05e-04 3.39¢-02 3.89¢-02 4.85e-03
DeepSeek-R1 ~ 8.37e-04  5.30e-04 1.33e-02 3.40e-02 4.85e-03
GPT-40 7.27e-04  4.15e-04 1.31e-02 2.59-02 4.05e-03
03 6.96e-04  7.48e-04 1.84e-02 3.93e-02 4.85e-03
Gemma 3 1.04e-03  4.95¢-04 1.29¢-01 5.42e-02 8.19¢-03
LLaMA 3.3 1.06e-03  6.87e-04 1.81e-01 6.43e-02 1.81e-02
LLM-Generated Single Prompt Qwen 3 1.13e-03  6.19¢-04 8.47¢-02 3.98¢-02 3.95¢-03
DeepSeek-R1  9.59¢-04  4.95e-04 1.39¢-02 4.43e-02 4.85e-03
GPT-40 247e-03  7.22e-04 2.36e-02 3.65e-02 4.85e-03
03 9.19¢-04  7.48e-04 3.91e-02 3.01e-02 5.92e-03

Our experiments demonstrate that the Multi-Step Prompting strategy consistently yields the best
performance across all LLMs and PDEs. When all the PDE-SHARP Analysis prompts are merged
together into a single prompt, LLMs tend to not follow the instructions thoroughly as they become
too long to follow. Moreover, when the LLM is tasked with generating the prompts for the anal-
ysis stage, it is observed that many details, such as checking for hybrid approaches or doing a
rigorous numerical stability analysis is overlooked. Analyzing the strategies used in the generated
solvers (Table[I7) for the reaction-diffusion task is a great demonstration of this shortcoming as re-
action diffusion is more sensitive to method choice and stability analysis (Figure[I7). Naturally, the
most pronounced impact is observed on the Reaction-Diffusion PDE, where the default multi-step
approach achieves the lowest average nRMSE of 2.88e-03 across all LLMs. In contrast, the av-
erage nRMSE rises to 6.88e-03 with Single Prompting, 4.30e-02 with LLM-Generated Multi-Step
Prompting, and peaks at 7.86e-02 with LLM-Generated Single Prompting. This corresponds to a
27 x increase in error from the best case to the worst, highlighting the critical role of well-structured
multi-step analysis in improving solution accuracy for complex PDEs.

B.2.2 THE EFFECTS OF STABILITY ANALYSIS

To evaluate the individual contributions of PDE-SHARP’s key components — the stability anal-
ysis in the Analysis stage and the tournaments in the Synthesis stage — we conduct an ablation
study examining four variants: (1) the default framework with both mathematical stability analysis
and tournaments, (2) tournaments without stability analysis, (3) stability analysis without tourna-
ments (best-of-32 sampling with stability analysis), and (4) neither component (best-of-32 sampling
without stability analysis). Figure[0]demonstrates that mathematical stability analysis provides sub-
stantial accuracy improvements across all tested PDEs. Removing stability analysis while main-
taining tournaments increases average nRMSE by 2-8x depending on the PDE complexity. The
tournaments component shows mixed but generally positive effects, with the largest improvements
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observed for reaction-diffusion and Darcy flow problems. Most critically, removing both compo-
nents results in significant performance degradation, with nRMSE increases of 5-45x for complex
PDE:s like Darcy flow. These results confirm that PDE-SHARP’s mathematical analysis stage is
essential for generating numerically stable solvers, while the tournament-based refinement provides
additional accuracy gains particularly for challenging nonlinear problems.
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Figure 9: Ablation study of PDE-SHARP components across five PDE tasks. Results show that
mathematical stability analysis is critical for solver accuracy, while tournaments provide additional
improvements. Removing both components leads to significant performance degradation, particu-
larly for complex PDEs like Darcy flow.

The stability analysis component of PDE-SHARP plays a crucial role in guiding solver strategy
selection. Figure [T8]illustrates the percentage of hybrid analytical-numerical versus purely numer-
ical approaches chosen by each PDE-SHARP variant for the reaction-diffusion equation. The de-
fault framework and the variant without tournaments both achieve 100% hybrid approach selection,
demonstrating that mathematical stability analysis consistently identifies the superiority of hybrid
methods for this PDE. In contrast, removing stability analysis results in predominantly numerical
approaches (87-93%), as the framework lacks the mathematical insight to recognize that the reac-
tion component admits an analytical solution. This strategic difference directly explains the accu-
racy improvements observed in the previous ablation study, as hybrid approaches achieve superior
numerical stability and precision for reaction-diffusion problems.

B.2.3 REASONING VS. NON-REASONING LLMS FOR CODE GENERATION IN GENESIS

Experiments indicate that in PDE-SHARP, there is negligible difference between the final results
using reasoning, non-reasoning, coding-specific, and mathematical LLM models (Tables [10] &
as the code generator in the Genesis stage. See Tables [2]and [16] for nRMSE results.

B.2.4 TEST-TIME SCALING FOR PDE-SHARP

Based on our test-time scaling study (Figure[I0) for PDE-SHARP and to be consistent with findings
from (Li et al., [2025) on the same PDE tasks, we use n = 32 initial solver candidates in our
experiments. This choice balances computational efficiency with sufficient diversity for effective
solver selection in the subsequent Synthesis stage.
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Figure 10: Varying the number of solver samples generated for each LLM and each PDE family in
PDE-SHARP.

B.2.5 STRUCTURE OF THE TOURNAMENTS

In this ablation study, we keep the default PDE-SHARP strategy from Sectionf]for the Analysis and
Genesis stages and replace the Synthesis stage with various strategies to study its effectiveness. In
PDE-SHARP’s default Synthesis stage in Section 4] three LLM instances, which we call “judges”,
are tasked with the selection and hybridization tournaments. To achieve the best performance (Table
) — i.e. fewer tournament rounds to get the highest performing PDE solver codes — these three
judges are taken to be a mixture of reasoning and non-reasoning LLMs (03, DeepSeek-R1, and GPT-
40) in Section ] This set of LLM judges are chosen to balance efficient code generation and code
stability details with the detailed reasoning and attention to numerical implementation details that
the reasoning models bring in. In this section, we consider other possibilities for the three judges
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to justify our choice of LLM judges. Tables [2]and [I6]demonstrate that using different LLM models
to generate 32 samples of solver codes leads to overall negligible difference in the final results in
PDE-SHARP as the tournaments lead to solvers robust to LLM choice. Thus, we stick to the default
GPT-4o0 for code generation in this ablation study and use the same 32 samples generated by GPT-
40 for all of the stage 3 strategies studied. Note that in these tournaments, feedback type is set
to be nRMSE similar to Section ] Results for different feedback types are presented later in this
section. Since numerous LLM configurations exist, we select a minimal representative subset from
each category. Current models have sufficient input capacity for tournament solver lists; future work
could incorporate summarizer agents to compress information for smaller models.

We test six tournament structure categories:

1. Mixed Judges (Default): Combines reasoning and non-reasoning models to balance code genera-
tion efficiency with detailed numerical reasoning:

* 03 + GPT-40 + DeepSeek-R1 (Section[z_f] default)

* 03 + GPT-40 + GPT-40

* DeepSeek-R1 + GPT-40 + GPT-40

2. All Reasoning Judges: Uses only reasoning-capable models:

*03+03+03
* DeepSeek-R1 + DeepSeek-R1 + DeepSeek-R1
* 03 + 03 + DeepSeek-R1

3. All Non-Reasoning Judges: Uses only standard language models:
* GPT-40 + GPT-40 + GPT-40

4. Best-of-32 Baseline: Executes all 32 solvers from Analysis and Genesis stages without tourna-
ments.

5. Fixed Criteria Judging: Applies categories 1-3 with predetermined evaluation criteria:

* Numerical stability and convergence properties
» Computational efficiency and scalability

* Mathematical correctness and precision

* Implementation robustness and error handling

* Solution accuracy on benchmark problems

6. Self-Generated Criteria: Applies categories 1-3 where judges first generate their own evaluation
criteria before selection.

All strategies use identical 32 solver samples from GPT-40 code generation to ensure fair compari-
son.
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B.2.6 HYBRIDIZATION FEEDBACK TYPE
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Figure 11: Impact of feedback type on PDE-SHARP solver accuracy across five PDE tasks. Per-
formance is measured using both nRMSE (light bars) and residual evaluation (dark bars) metrics.
nRMSE feedback consistently achieves superior performance when evaluated on the nRMSE metric,
demonstrating the importance of alignment between feedback type and evaluation criteria. Residual
feedback provides a physics-informed alternative when reference solutions are unavailable, while
no feedback relies purely on judge code analysis. The choice of feedback type allows adaptation to
different research scenarios from benchmark validation to real-world cases with limited reference
data.

Remark: LLM-suggested Feedback Types. In this part of the section on feedback types, we
provide examples of LLM-suggested feedback for each of the tested PDE tasks. The results are
generated using GPT-40 as follows.

(1) Advection: O;u + 50,u = 0 (periodic; 3 constant)
General feedback types:

* nRMSE

¢ PDE residual L?: ||7||y with r := 0,u + 8 0,u, discretized consistently with the scheme.
* BC/IC mismatch: ||u(to, ) — uo(+)||2, and periodic-wrap mismatch at boundaries.

* Empirical convergence order p via two grids (h, h/2):

o oB(E0)/B(h/2)

log 2
¢ CFL ratio monitor: A
t
CFL0x = max 1A
z Az

(used as a stability penalty when > target).
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PDE-specific feedback types:

* Phase-error (Fourier) metric — detects dispersive drift from exact shift:
For any wavenumber k, let @y, (¢) be the DFT of (-, ¢). The analytic evolution is

g (1) = g (0) e~ .
Define

efikﬁt)

) 1/2
6phase(t) = <Z Wi ) .
kel

arg y,(t) — arg(ay(0)

(Choose K = dominant modes; wy, normalize by spectral energy.)
Why: linear advection is phase-exact; any phase drift degrades solution even when L? error
is small.

Amplitude-damping metric — detects artificial diffusion:

1/2
amp (1) = (Z wi] ()] — |ak<o>|12> .

kex

Why: upwinding or overly diffusive fluxes damp modes; useful when the reference data
were generated by a specific finite-volume scheme and you want to “match” it. (This
is exactly what happened in your advection case study where nRMSE feedback nudged
judges toward a MUSCL/TVD FV scheme instead of an analytical shifter.)

Invariant-conservation drift — detects systematic bias:
Mass and L? are constant for periodic, constant-3 advection:

Sunnt) = ‘fol u(z,t) de — fol uo () dac‘

Why: catches subtle dissipation or numerical pumping even when nRMSE is small.

()2 = [luoll
, 5L2(t) = ||u0||2 .

(2) Burgers:  Oyu + 0, (u?/2) = v 0p,u (periodic; v = 0.01)

General feedback types:

» nRMSE, PDE residual L? with 7 := 0;u + 0, (u?/2) — v, u.

* Convergence order p (as above).

At

* Max CFL monitor with characteristic speed Amax = |t[oo - -

* Boundary/periodicity mismatch.

PDE-specific feedback types:

* Entropy inequality violation (integrated) — penalizes non-admissible shocks/oscilla-
tions:
With entropy 7(u) = 2u2, viscous Burgers satisfies:

d 1

1
pn %uz dxz—l// (&Cu)zdx < 0.
0 0

Define

1 1
(I)entropy = Zmax <07/0 %UQ(xatn-‘rl) dr — /0 %UQ(JZ,tn) dl‘) .

Why: any net increase flags spurious energy injection near steep gradients.
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* Total variation (TV) growth — damps Gibbs and enforces TVD behavior:

TV(u) = Z [ujp1 — uyl, Dy = Zmax (0, TV(u"*) = TV(u™)) .
7 n
Why: shocks should not create oscillations; TV growth is a crisp signal.

* Mean (mass) conservation drift — periodic Burgers conserves [ u dx:
‘fol u(x,t) dx — fol ug () dm’
5mean(t) = .
‘fol uo(x) dx’

Why: catches subtle bias from asymmetric limiters or boundary handling.

(3) Reaction-Diffusion (Fisher—-KPP form): 0;u—v0,,u—pu(l—u) =0 (periodic; v = 0.5,
p=1

General feedback types:

* nRMSE, PDE residual L? with 7 := 9,u — v0,,u — pu(1l — u).
» Convergence order p.

At
¢ Diffusive CFL monitor (for explicit pieces): max %
x

PDE-specific feedback types:

* Maximum-principle / positivity violation — enforces physically meaningful range:
For logistic reaction, the continuous solution stays in [0, 1] when ug € [0, 1]. Define

Bap = (/01 (max(0, u))de) + (/01 (max(0, u — 1))2dx)

Why: catches overshoot/undershoot from aggressive time steps or limiters.

1/2 1/2

* Split-step (hybrid) consistency error — encourages the analytically-integrated reaction
that your analysis stage favors:
If Strang/IMEX or analytical-reaction is used, compare the reaction sub-update to the exact
ODE update:
wePAt

- 14+ u(erdt — 1)

Define renct = Hu"+% — Rat(u™)||2 (or analogous placement per scheme).
Why: rewards the hybrid analytical-numerical strategy your framework discovers for this
PDE.

* Stiffness-aware step safety — keeps reaction eigenvalue under control for explicit parts:

RAt (u)

Spectral radius for reaction J = p(1 — 2u) = |p(J)| < p. Penalize max,, max,

1.
Why: prevents overshoot/explosions when reaction is treated explicitly.

Pexact

(4) Compressible Navier—Stokes (I' = 5/3):

Op + 0z (pv) =0,
p (D0 +v0,0) = =p+ 320+ (C+ 1) 0:(0,v),
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2 2
pY [ W] __p r_ 4
8t(e+ 2)+8m{(e+p+ 2>v va]—O, €= U—(C+37]>8mv.

General feedback types:

* nRMSE on chosen state(s) (p, v, p, or conservative variables).

* Vector PDE residual (mass, momentum, energy) in normalized L? (sum of per-equation
residual norms).

¢ Convergence order p.
¢ Maximum acoustic CFL:

max W, c=+/Tp/p.

* BC/periodicity mismatch.
PDE-specific feedback types:

¢ Conservation-law drift — ensures discrete conservation:
5 () = |f p(x,t)dz — [ p(z,0) dx|
mass f p(CL', 0) dx )
(e 55) o= e 257)
[ (co+252) o

Why: small global drifts reveal flux/boundary inconsistencies even if pointwise errors look
OK.

Positivity violations — hard physical constraints:
®,p = [lmin(0, p)[|1 + [ min(0, p) ;.

Why: avoids catastrophic instabilities (negative density/pressure).

_ |fpvd:z:—fp0v0dx|
I lpovol dx:

6mom (t)

5energy (t) =

Entropy production sign check — flags nonphysical dissipation/oscillations:
For ideal gas, specific entropy s = In(p) — I'In(p). Define

U(t) = /pS dLU, q)entropy = Zmax(o, _<0'n+1 — O'n)>

Why: with viscosity, total entropy should not decrease; negative production indicates spu-
rious behavior.

Rankine-Hugoniot defect (interface balance) — shock-consistency check in conserva-

tive form:

For each interface 7 4 % and conserved vector U = (p, pv, E), flux F, penalize the discrete

jump

A T
At Ax

Oru =

n,t

1
Why: targets the exact property your solver should satisfy at shocks/contacts.

(5) Darcy flow (steady, Dirichlet): —V - (a(z)Vu) =75, wul|sq =0
General feedback types:

* PDE residual norms at steady state:
||TH2 = HB +V. (a’vuh)||L2(Q)-
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* Boundary condition residual: |luy| z2(90) (often ~ 0 if enforced strongly; still useful
with FV).

* Grid-refinement check using energy-norm proxy below.
PDE-specific feedback types:

* Residual-jump a-posteriori estimator (energy-norm surrogate) — standard for ellip-
tics; localizes errors cheaply:
For each cell K with diameter hy,

rg =08+ V- (aVuy Jeo = aVuy, - n. on edge e,

N>

=) (h%(”rId%?(K) + > hel‘]e"%?(e)) :

K eCOK

Why: mirrors FE error estimators; correlates with the true a-energy error without ground
truth.

* Local mass balance (cell-wise) — ensures flux consistency:

q)mass: /ﬁdx‘i‘/ aVuy) -nds
3| s [ v

Why: FV/FD/FE schemes should balance source with flux divergence on each control vol-
ume.

* Global compatibility check — sanity for data/boundary handling:

/Qﬂd:z: + /m(avuh) ‘nds

Why: catches solver or BC mishandling even when ||7||2 looks small.
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B.2.7 NUMBER OF ROUNDS & CYCLES

To determine the optimal number of hybridization rounds and rejudging cycles, we conduct an
analysis tracking solver accuracy improvements across eight total rounds (four initial hybridization
rounds plus four rejudging cycle rounds) for all tested PDEs. Figure[I2]demonstrates the round-by-
round progression of best achieved nRMSE in that round (among the tested three), with a vertical
dashed line separating the initial hybridization cycle from the rejudging cycle.

The results reveal different patterns across different PDE types. Most PDEs achieve optimal perfor-
mance within 3-4 initial hybridization rounds, after which additional rounds provide saturation or
even slight performance degradation. Advection presents a notable exception, continuing to benefit
from one rejudging cycle. This stems from a dataset-specific subtlety: while analytical solutions
exist for the mathematical advection equation, the PDEBench reference solutions were generated
using finite-volume methods. The rejudging cycle enables PDE-SHARP to adapt from initially fa-
voring analytical approaches to numerical methods that better match the dataset’s characteristics.
This mostly occurs when the feedback type is set to be nRMSE in the tournaments. See Figure
for results using other feedback types (residual feedback, no feedback) for the advection PDE.

Advection Burgers Reaction-Diffusion
" o 1 Rejudgifg ) 1 Rejudgi
; Cycle 1 i Cycle Cycle 1 | ejclﬂi”g
w 1077 4 1 1 10-2 1
I I 1 I
= -4
% 9x10 Cycle 1 I Rejudging 1077 4 I I
I .
= 8x107 4 ! Cycle ! !
] I ] I
a I I I
o 7x10™* I L |
I | I
6x10f L 1. R ———— L
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Round Round Round
Navier-Stokes Darcy
6x1072 ' Rejud '
vcle I ejudging -2 | 1
w Cycle 1 i Cycle 10 Cycle 1 | Rejudging
2 4x10? I I Cycle
o ] I
= -2 | |
3x10
o] 1 6%1073 1
@ I I
2x1072 1 1
| |
1 4x1073 1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Round Round

Vertical dashed line separates initial hybridization rounds from rejudging cycle

Figure 12: Progression of the best nRMSE of each hybridization round for each PDE task

Table 18: Average number of Hybridization Rounds, Rejudging Cycles, and total evaluations

PDE # Hybrid. Rounds # Rejudging Cycles # Total Evals
Advection 444 1 24
Burgers 3 0 9
Reaction-Diffusion 4 0 12
Navier-Stokes 3 0 9
Darcy 4 0 12

For four out of five tested PDEs, PDE-SHARP achieves optimal results using fewer than 13 solver
evaluations on average (Table [I8)), with most improvement occurring in the initial 3-4 rounds, re-
sulting in a computational advantage over baseline methods requiring 30+ evaluations, while the
rejudging cycle provides additional benefits only for specific cases.

B.3 ANALYSIS OF THE GENERATED SOLVER CODE QUALITY
Beyond solution accuracy, we analyze the computational and numerical properties of generated

solver code across all methods. This analysis examines three key quality indicators: execution time
efficiency, library usage, and empirical convergence rates. These metrics reveal whether frameworks
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generate production-ready code with proper numerical characteristics, not merely code that produces
correct outputs through inefficient or unstable implementations.
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Figure 13: Average execution times across PDE tasks. PDE-SHARP achieves lower execution times
than the average baseline in 4/5 cases. For reaction-diffusion, higher execution time reflects the
rigorous numerical methods selected by stability analysis as expected, which produce significantly
higher accuracy solvers (Table E[)
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Figure 14: Convergence order distribution across different PDEs. The convergence order distribu-
tion for the advection PDE appears in Figure b}
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Figure 15: Solver library usage across different PDEs.

PDE Method SciPy JAX NumPy PyTorch
Advection PDE-SHARP 10% 17%  48% 25%
Burgers PDE-SHARP 10% 32% 25% 33%
Reaction-Diffusion PDE-SHARP 8% 1% 49% 25%
Comp. Navier-Stokes PDE-SHARP 7%  37% 30% 26%
Darcy PDE-SHARP 43% 15% 15% 27%

Table 19: PDE-SHARP decreases Python usage and increased JAX + SciPy usage overall across all
tested PDEs
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C ADDITIONAL DETAILS ON THE TESTED PDES

In this section of the appendix, we present the differential equations we study in our experiments.

C.1 ADVECTION

The 1D advection equation is a hyperbolic PDE which models processes such as fluid flow, heat
transfer, and biological dynamics. It is given by

{atu(t,x) + B0yu(t,x) =0, xe€(0,1), t e (0,2]
(0, z) = up(x), z € (0,1)

where (3 is a constant representing the advection speed. In our experiments, we assume the peri-
odic boundary condition and report results for the 5 = 0.1 case using the advection dataset from
PDEBench.

C.2 BURGERS

The Burgers equation, a fundamental PDE in fluid mechanics, is used to model various nonlinear
phenomena including shock waves and traffic flow. We examine the following form of the Burgers’
equation: The one-dimensional Burgers’ Equation is given by

{&u(x,t) + O, (%) = vOzzu(z,t), =€ (0,1), te(0,1]
u(z,0) = up(x), z€(0,1)

where v is a constant representing the viscosity. In our experiments, we assume the periodic bound-
ary condition and report results for the v = 0.01 case using the Burgers dataset from PDEBench.

C.3 REACTION-DIFFUSION

The 1D reaction-diffusion PDE is given by

{&u(t,x) — VOpu(t,z) —pu(l—u) =0, z€(0,1), t € (0,T]
(0, z) = uo(x), z € (0,1

where v and p are coefficients representing diffusion and reaction terms, respectively. In our exper-
iments, we assume the periodic boundary condition and report results for the v = 0.5 and p = 1.0
case using the reaction-diffusion dataset from PDEBench.

C.4 NAVIER-STOKES

The compressible Navier-Stokes equations are given by

Dup + 0u(p0) = 0
O {e—i—%} + 0, [(e—l-p-i- p;i)v—vﬂ/} =0

where p is the mass density, v is the velocity, p is the gas pressure, € = p/(I" — 1) is the internal
energy with ' = 5/3, 0’ = (( + %n)@xv is the viscous stress tensor, and 7, ¢ are the shear and
bulk viscosity coefficients, respectively. In our task, we assume periodic boundary conditions. The
spatial domain is 2 = [—1, 1]. For this study, we used the compressible Navier-Stokes dataset from
PDEBench withp = ( = 0.1

33



Under review as a conference paper at ICLR 2026

C.5 DaARrcy FLow

We study the 2D Darcy flow equation given by:

~V - (a(z)Vu(r)) =B, x€(0,1)?
with the boundary condition:
u(z) =0, x€8(0,1)?
where u(x) is the solution function, the force term is set as a constant value (3, and a(z) is a batch

of coefficient function. In our experiments, we report results for the 8 = 1.0 case using the Darcy
flow dataset from PDEBench.
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D RESULTS FOR INDIVIDUAL PDE TASKS

D.1 ADVECTION

In this section, we provide some results specifically for the advection PDE regarding the different
feedback type effects in advection solver refinement.

Notation. Throughout this section we use solver IDs that encode the feedback signal employed
during PDE-SHARP’s Synthesis stage:

* S-nRMSE: solver evolved with nRMSE on 100 validation samples as the only feedback
signal;

» S-PDER: solver evolved from the physics residual ||Oyu + 8 0,ul|2 without access to the
reference solution;

e S-None: solver generated without any numerical feedback, relying solely on the judges’
static code-quality heuristics.

D Feedback used to refine  Numerical core Spatial order Time stepping CFL/ At formula Memory / CPU cost
A
S-nRMSE  nRMSE MUSCL + Rusanov flux, TVD-RK2 2 adaptive RK2 (CFL 0.5) At < 0.5 ﬁ O(N) per step
S-PDER PDE residual Exact Fourier shift (IFFT) oo (spectral)  analytic (no At) N/A : O(N log N) per snapshot
S-None No numeric feedback Linear interpolation + periodic roll 1 analytic (no At) N/A O(N') per snapshot

Table 20: Key characteristics of the three advection solvers generated by PDE-SHARP under differ-
ent feedback regimes.

Qualitative comparison. Table [20] summarises the concrete design choices that PDE-SHARP
converged on for each feedback type. Two aspects stand out:

¢ Numerical core. The error-driven solver (S-nRMSE) settled on a second-order MUSCL fi-
nite—volume scheme with TVD-RK2 time-stepping. In contrast, the residual-guided solver
(S-PDER) discovered an exact spectral shift implementation (IFFT) that tries to elimi-
nate discretization error. The no-feedback path (S-None) produced a first-order linear in-
terpolation plus periodic roll — a valid but low-order scheme that satisfied the judges’
code-robustness rubric.

+ Stability & cost. S-nRMSE is CFL-limited by At < 0.5Ax/|5| and therefore re-
quires O(N) flux evaluations per internal step; S-PDER has no stability restriction and
achieves O(N log N) cost per snapshot, which is cheaper whenever fewer than ~ log N
FV time steps would be required; S-None is the lightest at O(N) per snapshot but sacri-
fices second-order accuracy.

Which solver is ‘“better’’?

* Benchmark replication. When the evaluation metric is nRMSE against the finite-volume
reference provided by PDEBench, S-nRMSE attains the lowest reported error because it is
optimized for that target. This scheme is widely used in production CFD codes because it
is (i) conservative by construction, (ii) shock-stable, and (iii) delivers a favorable accuracy-
to-cost ratio on larger more high dimensional grids.

* Physics fidelity. If the goal is to minimise the true PDE residual or to serve as an oracle
inside downstream multiphysics simulations, S-PDER is provably superior: it preserves the
analytic solution and incurs only floating-point rounding error.

* Resource-constrained settings. For coarse grids or real-time visualization where a single
forward pass per frame is desired, S-None may be adequate and is the cheapest to execute,
albeit with first-order phase error that grows linearly in time.
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Take-away for PDE-SHARP. The three solvers illustrate PDE-SHARP’s metric-seeking be-
haviour: identical Genesis outputs can be steered toward fundamentally different algorithms de-
pending solely on the feedback type given to the judges. Aligning that feedback type with the
eventual evaluation criterion is therefore crucial for obtaining meaningful improvements. (Figure

Advection: nRMSE Feedback Advection: Residual Feedback Advection: No Feedback
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Figure 16: Impact of feedback type on round-by-round nRMSE progression for the advection PDE.
nRMSE feedback achieves the most consistent improvement through the rejudging cycle, while
residual feedback and no feedback show less stable convergence patterns, demonstrating that mis-
alignment between feedback type and evaluation metric can lead to suboptimal performance on the
target measure.
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D.2 REACTION-DIFFUSION
Solver structure statistics using different PDE-SHARP Analysis strategies.
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Figure 17: Solver strategy selection for reaction-diffusion PDE across PDE-SHARP variants. LLM-
generated prompts do not usually lead to optimal solver strategy selection in this case.

Solver structure statistics with and without PDE-SHARP’s numerical stability analysis (Anal-
ysis Stage) and Synthesis stage components.
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Figure 18: Solver strategy selection for reaction-diffusion PDE across PDE-SHARP variants. Math-
ematical stability analysis (present in Default and No Tournaments variants) consistently guides the
framework toward superior hybrid analytical-numerical approaches, while its absence leads to pre-
dominantly numerical methods.
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E PDE-SHARP PROMPTS

E.1 STAGE 1: ANALYSIS

PDE Classification and Properties

## INPUT
{pde_description}

## TASK
Analyze and classify the given PDE xcompletelyx.

## REQUIRED OUTPUT FORMAT (Follow this exact JSON structure)

AN

json

{{

order: # integer

linearity: # "linear" | "quasi-linear" | "non-linear"

type: # "elliptic" | "parabolic" | "hyperbolic" | "mixed"
(show characteristic analysis if needed)

homogeneity: # "homogeneous" | "non-homogeneous"

domain_bc: |-

# clear prose describing domain & BCs
special_properties: |-

# separability, symmetries, standard forms, etc.
char_polynomial: |-

# 1f needed for type classification

H}

AN

Analytical Solution Check

## TASK

Detect i1if a closed-form analytical solution exists for this exact PDE
from before:

{pde_description}

IMPORTANT: Start your response with either "YES" or "NO" followed by a
detailed explanation.

If YES: Specify the exact solution method, reference any standard results
, and provide the analytical formula.

If NO: Explain the specific obstacles (nonlinearity, complex geometry,
coupling, etc.) that prevent analytical solution.

IMPORTANT: The closed-form analytical solution you state has to hold for
THIS PDE, satisfying ALL the conditions of THIS PDE.

Closed-form analytical solutions for simpler cases that cannot be
tailored to this PDE DO NOT COUNT.

Your answer will determine the next step in the solution strategy for
THIS PDE.

Transformation Check

Based on your previous analysis of the following PDE:
{pde_description}

## TASK
Now, determine if this PDE can be transformed into a simpler form with

known solutions.

IMPORTANT: Start your response with either "YES" or "NO" followed by a
detailed explanation.
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Consider transformation strategies such as variable transformations (
chnage of variables, similarity variables, hodograph transformation,

etc.),
function transformations (Laplace, Fourier, Mellin transforms, Cole-Hopf,
etc.),
coordinate transformations (polar, cylindrical, etc.), reduction to

standard canonical forms, or other transformation approaches and
combinations of transformations.

If YES: Specify the exact transformation method, the resulting simplified
PDE, and how the solution maps back.
If NO: Explain why transformations do not help for this particular PDE.

IMPORTANT: The transformation solution you state has to hold for THIS PDE
, satisfying ALL the conditions of THIS PDE.

Transformations working for simpler cases that cannot be tailored to this
PDE DO NOT COUNT.

Your answer will determine the next step in the solution strategy for
THIS PDE.

Decomposition and Hybrid Approach Check

Based on your analysis of the following PDE:
{pde_description}

## TASK
Analyze 1if operator splitting is viable using ROBUST numerical methods.

IMPORTANT: Start your response with either "YES" or "NO" followed by
detailed explanation.

Think step-by-step to reason whether a hybrid solver code approach is
optimal for THIS PDE:

*%*STEP 1: OPERATOR IDENTIFICATION=*=*

Assess stability requirements carefully and determine the best
operator splitting methods (such as Lie/Strang splitting, IMEX schemes,
implicit-explicit time stepping, or Analytical preprocessing for

certalin terms)

**STEP 2: ROBUSTNESS ANALYSIS AND EFFIFINECY=*=*

Choose methods that:

Have proven track records for this PDE type

Give reliable accuracy without overengineering

For each operator:

— What is the MOST RELIABLE and EFFICIENT numerical method that also has
high accuracy performance?

- What are the stability constraints?

— What numerical safeguards are needed?

*xSTEP 3: METHOD PRECEDENCE FOR STABILITYx*x*

Apply this hierarchy:

1. xxMost Stablexx: Apply operators that preserve physical constraints
first

2. xxLeast Restrictivexx*: Apply operators with relaxed stability
constraints last

3. xxConservationxx: Ensure required conservations (like mass, energy,
etc.) at each step

4. xxStiffness Hierarchyxx: Which operator has the most restrictive time
scale?
Example: If operator A requires dt << operator B, consider the

stability requirements of A first.
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**GENERAL SPLITTING PRINCIPLE+x*: The operator that preserves essential
solution properties (bounds, positivity, conservation)
should typically be applied first in each sub-step to maintain numerical
stability.

If YES: Recommend ROBUST operator splitting with specific stable
numerical methods

If NO: Explain why and suggest the most reliable approach for this PDE
task.

Your answer determines the final implementation strategy.

Numerical Stability Analysis

Remember the PDE you are working on is as follows::
{pde_description}

## INPUT
## INPUT

\\\json
{pde_properties_json}

AN

TASK
Perform MANDATORY stability analysis of THIS PDE focused on NUMERICAL
ROBUSTNESS.
**CRITICAL PRINCIPLESx*x*
Use conservative stability conditions with conservative safety factors.
Make NO numerical substitutions and NO unstated assumptions. ONLY SYMBOLS
Define every symbol you introduce; keep formulas code-ready (string

expressions) .

Prefer simple, textbook-stable explicit methods. Use implicit/IMEX ONLY
IF stiffness demands it.

All formulas must be symbolic strings that codegen can embed verbatim.
Define every symbol you introduce.

End with ONE valid JSON object (the Handoff block ) as specified.
- STEP 0 Classify PDE (pick exactly one, otherwise use "custom")
Families:

Hyperbolic conservation laws (Euler, shallow water)

Ideal MHD (hyperbolic with B control)

Compressible NavierStokes (viscous, possibly shocks)

Incompressible Navier Stokes (low—Mach)

Parabolic / ReactionDiffusion

ConvectionDiffusion (high P clet)

Maxwell / Wave (EM FDTD, acoustic/elastic)

40




Under review as a conference paper at ICLR 2026

Linear Elastodynamics

Schr dinger / Hamiltonian

Phase-Field (AllenCahn / CahnHilliard)

Helmholtz (time-harmonic) no dt; use resolution rules
Porous / Darcy / Richards

Custom / Composite (fallback for non-listed or mixed operators)
Return the chosen family as "pde_family".

- STEP 1 Mesh metrics (code-ready)

Given:

1D: dx = L / N

Multi-D: dx = L_x / N_x, dy = L_y / N_y, dz = L_z / N_z

Element size: h = min(dx, dy, dz) (or element diameter symbolically)
Spatial dimension: d {1,2,3}

DG degree: k (if DG); DG scaling uses (2xk+1) where applicable.

— STEP 2 Per-operator explicit dt limits (derive only those present
in THIS PDE)

Identify each distinct operator in THIS PDE (advection/flux divergence,
diffusion/viscosity, reaction/source, wave/pressure/acoustic,
capillary/surface-tension, Lorentz/EM, etc.). For each operator in
isolation, derive a symbolic dt limit in terms of grid spacing and
PDE coefficients. Use these patterns (replace placeholders with THIS
PDE s symbols):

Advection / hyperbolic

FV/FD: dt_adv <= C_cfl x h / lambda_max

DG(k): dt_adv <= C_cfl = h / ( (2xk+1l) * lambda_max )

Diffusion / viscosity

FV/FD: dt_diff <= C_diff = h"2 / ( nu = d )

DG (k) : dt_diff <= C_diff  h™2 / ( nu = d » (2+k+1)"2 )

Use nu = diffusivity/viscosity (e.g., mu/rho, alpha, kappa), define it.

Reaction / source stiffness

dt_react <= C_react / rho(J) where rho(J) is spectral radius of reaction
Jacobian.

Wave / FDTD / leapfrog (if applicable)

Uniform FDTD/leapfrog: dt_wave <= 1 / ( ¢ * sqrt( sum_i 1/dx_i"2 ) )
EM: ¢ = 1/sqrt (muxeps); acoustic: c = sqgrt (K/rho).

Higher-order operator (generic order m)

FV/FD: dt_m <= C_m * h"m / |kappa_m|
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DG(k): dt_m <= C_m » h"m / ( |kappa_m| * (2xk+1)"m )

Examples: m=3 (KdV-like dispersive), m=4 (bi-Laplacian / CH explicit
piece) .

Fractional Laplacian (order , 0< 2 )

FV/FD: dt_frac <= C_frac x* h"alpha / kappa_alpha

DG (k) : dt_frac <= C_frac x* h"alpha / ( kappa_alpha = (2+xk+1) "alpha )
Capillary / surface-tension (if explicit)

dt_cap <= C_cap * f_cap(h, parameters) (define f_cap for the chosen model

)

Only include limits that actually apply to THIS PDE.

- Step 3 - Family mini-aides (only fill the one that matches STEP 0)
Hyperbolic (Euler, shallow water)

Euler: lambda_max = |u| + ¢, ¢ = sqrt (gammaxp/rho)

Shallow water: lambda_max = |u| + sqgrt (gxH)

Optional: positivity limiter for rho, p.

Ideal MHD
a = sqgrt (gammaxp/rho), v_A = |B|/sqgrt (mulO*rho), c_An = |B n |/sqgrt (mul«
rho)

c_f = sgrt( 0.5x(a”"2 + v_A"2 + sqrt( (a"2+v_A"2) "2 - 4xa"2+c_An"2 )) )
lambda_max = |u n| + c_f

Note divergence control: {GLM psi-eqn | Powell 8-wave}.

Compressible NS

Advective: lambda_max = |u| + c

Diffusive: nu_eff = mu/rho (+ turbulent nu_t symbol if modeled)
Incompressible NS

Use |u| in advective CFL; nu in diffusive bound. If using projection, no
extra dt from pressure solve.

Parabolic / ReactionDiffusion

Diffusive and reaction limits as above; prefer explicit if stable, else
BE/IMEX for only the stiff part.

ConvectionDiffusion (high P clet)

Add stabilization symbol (e.g., tau_SUPG ~ h/(2|ul)); still governed by
advective/diffusive dt above.

Maxwell / Wave
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Use dt_wave above; if using PML, note it does not change dt but adds
parameters.

Elastodynamics

c_p = sqrt( (lambda + 2*mu)/rho ), c_s = sqgrt( mu/rho ), c_max = max(c_p,
c_8S)

Central/leapfrog FE/FV heuristic: dt_wave <= C_cfl = h / ( c_max x sqgrt(d
) )

DG: use (2+xk+1) in denominator.
Schr dinger / Hamiltonian

If linear Schr dinger with CN: note unconditional linear stability (near
—-unitary) .

For explicit/splitting accuracy: include optional phase-accuracy limiter
dt_phase <= C_phase = h"p / S (define symbols).

Phase-Field (AC/CH)

If explicit CH fourth-order term present: dt_4 <= C_4 = h"4 / ( kappa =*
denom_4 ) (define denom_4 per method) .

Helmholtz (time-—-harmonic)

No time stepping. Provide resolution rules: kxh/p <= C_res and ppw >=
C_ppw. Set all dt fields "N/A".

Porous / Darcy / Richards

Darcy (elliptic): "N/A" for dt. Richards: diffusive-type dt with
effective conductivity K_eff.

Custom / Composite
List operators O_j with their type/order and bounds using the generic m /

fractional formulas above. Combined policy uses min across all
included O_7j.

— STEP 4: Splitting-Aware Stability (if operators are split)
Choose a splitting that preserves key constraints (e.g., Strang: A( dt )
B (dt) A ( dt )).

State operator precedence: apply the most constraint-preserving/
dissipative operator at stabilizing positions (e.g., diffusion
centered) .

Make no numeric substitutionsonly symbolic formulas.

— STEP 5: Time-Stepping Strategy (global policy)

Core stability constraint: dt_max = safety * min( all per-operator dt

limits )

Explicit FD/FV default: Forward Euler or SSP-RK with SSP scaling of the
CFL. If SSP-RK(qg) with SSP coefficient c_ssp, document:

effective_C_cfl = c_ssp » base_C_cfl (define both).

Adaptive targeting: Use exact endpoint targeting for outputs: dt = min(
dt_max, target_t - current_t)
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Implicit fallback (only if necessary): Use Backward Euler (A-stable) for
stiff components; otherwise stay explicit. Avoid complex implicit
schemes (e.g., CN, multistep) unless the PDE family explicitly
warrants it (e.g., Schr dinger CN near-unitary).

Pseudo-loop sketch (symbolic placeholders only) :
while current_t < target_t:
dt = min(dt_max, target_t - current_t)
# Apply chosen splitting with defined operator order (see Step 4)
current_t += dt
n_internal += 1
- STEP 6 Combine & schedule
Master policy: dt_max = safety % min( all_applicable_dt_limits )

Conservative defaults: safety < 0.5 when doubt exists, but try to be
conservative yet robust.

Internal steps: n_internal = ceil( T / dt_max )

Exact output alignment: at each output time t_target, use dt = min (dt_max
, t_target - t_current).

- STEP 7 Guards (only if applicable)
Positivity: list variables enforced (e.g., rho, p) and limiter name.

Entropy: if using entropy-stable flux, state entropy -conservative core
+ dissipation and a dissipation symbol.

Divergence constraint: div u = 0 (incompressible) or div B = 0 (MHD) with
strategy {projection | GLM psi | Powell}.

OUTPUT POLICY

Return ONE valid JSON object only, nothing else.

All formulas are symbolic strings (no evaluation).

Provide a definitions dictionary listing every symbol used.

*+Handoff blockxx*
Finish with a fenced JSON object *alonex on the last line:

AN

json
{
"pde_family": "<one of the families above or ’custom’>",
"dx_formula": "dx =L / N (and dy = L_y / N_y, dz = L_z / N_z if
applicable) ",
"h_formula": "h = min(dx, dy, dz) # or element diameter",
"dimension_d": "<1]2|3>",
"dg_degree_k": "<k or 'N/A’>",
"lambda_max_definition": "<symbolic definition or ’'N/A’>",

"per_operator_limits": [
"dt_adv <= C_cfl * h / ( lambda_max * denom_adv )",
"dt_diff <= C_diff * h"2 / ( nu *» d * denom_diff )",
"dt_react <= C_react / rho(J)",
"dt_wave <=1 / (¢ » sqrt( sum_1i 1/dx_i"2 ) )",
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"dt_m <= C_m * h"m / ( |kappa_m| x denom_m )",
"dt_frac <= C_frac  h"alpha / ( kappa_alpha * denom_frac )",
"dt_cap <= C_cap * f_cap(h, parameters)"

1,

"denominators": {
"denom_adv": "1 (FV/FD) or (2xk+1) (DG)",
"denom_diff": "1 (FV/FD) or (2xk+1)°2 (DG)",
"denom_m": "1 (FV/FD) or (2xk+1) "m (DG)",
"denom_frac": "1 (FV/FD) or (2+k+1l)“alpha (DG)"
by
"dt_crit_formula": "min( applicable {dt_adv, dt_diff, dt_react, dt_wave

, dt_m, dt_frac, dt_cap} )",
"safety_factor_suggestion": # float Example: 0.25,
"dt_max_formula": "dt_max = safety % dt_crit",
"n_internal_formula": "ceil( T / dt_max )",

"splitting": {

"apply_splitting": "<true|false>",
"order": "<e.g., Strang: A(0.5%xdt) -> B(dt) -> A(0.5xdt)>"
by
"integrator": {
"time_integrator": "<ForwardEuler|SSP-RK2|SSP-RK3|Leapfrog|Yee-FDTD |
BackwardEuler | IMEX>",
"ssp_coefficient": "<c_ssp or 'N/A’>",
"effective_cfl_formula": "effective_C_cfl = c_ssp » base_C_cfl"
b
"scheme": {
"space": "<FD|FV|DG|CG|Yee|SEM>",
"flux_or_form": "<Rusanov|HLL|HLLC|Roe (+entropy—-fix) |central |SIPG|LDG
|BR2 |[N/A>",
"reconstruction_or_limiter": "<minmod|vanLeer |superbee |WENO|WENO-Z |

positivity|N/A>"
b

"guards": {
"positivity": ["<list variables e.g., rho, p or 'N/A’'>"],
"entropy": "<’entropy-conservative core + dissipation’ or ’N/A’>",
"divergence_constraint": "<’div u = 0’ |’div B = 0’ |'N/A'>",
"divergence_strategy": "<projection|GLM psi|Powell |N/A>"
by
"family_specific": {
"hyperbolic": {
"lambda_max": "Euler: |u|+sqgrt (gammaxp/rho); Shallow: |ul|+sqrt (g*H)
"
by
"mhd" . {
"a": "sqgrt (gamma*p/rho)",
"vA": "|B|/sqgrt (muO*rho)",
"c_An": "|B n|/sqgrt (mulOxrho)",
"c_f": "sgrt (0.5%(a"2+vA"2 + sgrt((a"2+vA"2) "2 - 4xa”"2%c_An"2)))",
"lambda_max": "|u n| + c_£f"
b
"Cl’lS" : {
"nu_eff": "mu/rho (+ nu_t if modeled)",
"lambda_max": "|u| + c"
}r
"ins": {
"advective_speed": "|ul",
"nu": "kinematic viscosity"
br
"wave":

45




Under review as a conference paper at ICLR 2026

"c": "EM: 1/sqgrt (mu*eps); acoustic: sqgrt (K/rho); elastic: c_max"
by
"elastic": {
"c_p": "sqgrt ((lambda+2*mu) /rho)",
"c_s": "sgrt (mu/rho)",
"c_max": "max(c_p, c_s)"
b
"schrodinger": {
"note": "CN near-unitary (linear); optional phase accuracy limiter

dt_phase <= C_phase * h"p / S"
b
"phase_field": {
"dt_4": "dt_4 <= C_4 x h"4 / (kappa * denom_4)"
}o
"helmholtz": {
"resolution_rules": ["kxh/p <= C_res", "points_per_wavelength >=
C_ppw"]
by
"porous_richards": ({
"K_eff": "effective hydraulic conductivity"
br
"custom": {
"operators": [
{"name":"01", "type":"<adv/diff/disp/fractional/...>","order":"<m
or alpha>","coeff":"<kappa_m or kappa_alpha>","dt_bound":"<
from STEP 2 generic forms>"}

}
by

"constraint_preservation": ["<mass>", "<positivity>", "<entropy>", "<
divergence>", "<energy>"],
"exact_endpoint_targeting": true,

"definitions": {
"symbols": [

", L x, L.y, L_z, T, N, N_x, N_y, N_z, dx, dy, dz, h, 4, k",

"u, p, rho, mu, nu, nu_eff, K, H, g, gamma, ¢, c_p, c_s, c_max",

"B, mu0O, eps, a, VvA, c_An, c_f, n",

"lambda_max, C_cfl, C_diff, C_react, C_m, C_frac, C_cap, C_4,
safety",

"rho(J), J, kappa_m, kappa_alpha, alpha (fractional order),
tau_SUPG, denom_adv, denom_diff, denom_m, denom_frac"

E.2 STAGE 2: GENESIS

Analytical Solution Follow-up

Remember that the original PDE in question was as follows:
{pde_description}

## TASK

Based on your analysis confirming an analytical solution exists, you are
tasked to implement the complete analytical solution in Python.

You will be writing solver code for this PDE by completing the following
code skeleton provided below:

‘Y'python

{solver_template}
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AN

{code_generation_criteria}

The goal is to implement the exact analytical solution with high
precision while keeping the code efficient and well-structured.

Your generated code needs to be clearly structured and bug-free. You must

implement auxiliary functions or add additional arguments to the

function if needed to modularize the code.

Your generated code will be executed and evaluated. Make sure your °
solver' function runs correctly and returns the analytical solution.

Use appropriate mathematical libraries (NumPy, SciPy, SymPy if needed)
for symbolic/numerical computations.

Remember to handle data types and device placement appropriately.

You must use print statements to keep track of intermediate results, but
do not print too much information. Those outputs will be useful for
validation and debugging.

Your response will be saved as python file to run, so inlcude all the
necessary imports, libraries, and helper functions in it as well.

IMPORTANT: Provide your analysis and reasoning, then include your
complete solver code implementation in ONE properly formatted Python
code block using *‘‘python ... ‘'

Transformation Follow-up

Remember that the original PDE in question is as follows:
{pde_description}

## TASK
Based on your analysis confirming a beneficial transformation exists, you
are tasked to implement the complete transformation-based solution
using Python.

You will be writing solver code by completing the following code skeleton
provided below:

python

{solver_template}

AN

AURURY

{code_generation_criteria}

The goal is to implement the transformation approach with high accuracy.
Your generated code needs to be clearly structured and bug-free.

You must implement auxiliary functions or add additional arguments to the

function if needed to modularize the code.

Your generated code will be executed and evaluated. Make sure your °
solver' function runs correctly and efficiently.

Remember to handle data types and device placement appropriately.

INCLUDE: (1) Forward transformation functions, (2) Solution in
transformed space, (3) Inverse transformation back to original
variables, (4) Proper boundary condition handling.

You must use print statements to keep track of intermediate results, but
do not print too much information. Those outputs will be useful for
validation and debugging.

Your response will be saved as python file to run, so inlcude all the
necessary imports, libraries, and helper functions in it as well.

IMPORTANT: Provide your analysis and reasoning, then include your
complete solver code implementation in ONE properly formatted Python
code block using ‘‘‘python ... ‘'

o°
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E.3 STAGE 3: SYNTHESIS

Initial Judgment & Selection The following is an example of the prompt for the Initial Judgment
& Selection step given to one of the three judges (named A, B, C).

You are x*PDE-SHARP Judge Ax%, a world-class numerical analyst
specializing in creating HIGH ACCURACY, ROBUST and RELIABLE PDE
solvers.

*%*YOUR MISSION: **

Given one PDE description and a number of solver code samples for this
specific PDE, by doing a thorough analysis of the given PDE and each
reasoning + code combo in great detail,

you must ONLY CHOOSE the top 16 best implementations of this list of
solver codes, and nominate one of these 16 that you believe through
reasoning is the best solve for this pde among all to be executed.

For the following pde: {pde_description}

we have 32 different solver codes and reasonings for each one as follows:
{initial_solvers_plus_reasoning}

**CORE PHILOSOPHY :*xx*
Go for the "sweet spot" - methods sophisticated enough for HIGH ACCURACY
but simple enough for an expert in PDE solvers to implement PERFECTLY
and run efficiently.

**RESPONSE FORMAT : % *

- Code [Solver ID] (the number associated with the code/ LLM that
generated the code)

- Confidence in your judgment: High/Medium/Low (also include why you have

this level of confidence)

— Nominated: Start with YES or NO. Then, state the reason why or why not.

- Your full reasoning why this code is among the best (be very specific
and use lots of detailed analysis)

— Comparison: "Superior to [Other Solver] in [Aspect] because..." (
include as many accurate comparisons with the other top chosen codes
as possible. Include high quality comparisons that can help other
judges later)

- Risk: [Potential flaws if you detect any that can be simply resolved or

removed and are not fundamental issues. Point these out to be
checked.]

(For example, if you detect that there are artificially altered
mathematical formulas that can be corrected, bad safeguards, or
hardcoded any assumptions about input data ranges or any numerical
values related to the data, or data types are not consistent, etc.,
write in this section for them to be fixed later.)

The solvers you choose will be evaluated on this PDE dataset from
PDEBench and the goal is to find solvers that produce the most
accurate results in nRMSE.

AUXILIARY PROMPT TEMPLATES

System Prompt (Stages 1 & 2)

You are xx*PDE-SHARPxx, a world-class numerical analyst specializing in
HIGH ACCURACY, ROBUST and RELIABLE PDE solvers.

**YOUR MISSION: *x*

Given one PDE description, you must follow the user requirements
carefully and step by step to conduct a full mathematical analysis of
the PDE.
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**Do NOTxx generate PDE solver code unless it is explicitley requested.
Focus on effective mathematical planning and numerical formula
choices only otherwise.

PDE Description Templates (Stage 1)

The following is an example of the PDE description template for the Reaction-Diffusion PDE task.
We use the PDE description templates provided in (Li et al.l 2025).

The PDE is a diffusion-reaction equation, given by

AN

\\begin{{cases}}

\\partial_t u(t, x) - \\nu \\partial_{{xx}} u(t, x) - \\rho u(l - u) = 0,
& x \\in (0,1), \; t \in (0, T] \\\\

u(0, x) = uwu 0(x), & x \in (0,1)

\end{{cases}}

A\ ]

where $\\nu$ and $\\rho$ are coefficients representing diffusion and
reaction terms, respectively. In our task, we assume the periodic
boundary condition.

Given the discretization of $u_0(x)$ of shape [batch_size, N] where $N$
is the number of spatial points, you need to implement a solver to
predict S$u(\cdot, t)$ for the specified subsequent time steps ($t =
t_1, \ldots, t_T$). The solution is of shape [batch_size, T+1, N] (
with the initial time frame and the subsequent steps). Note that
although the required time steps are specified, you should consider
using smaller time steps internally to obtain more stable simulation.

In particular, your code should be tailored to the case where $\\nu={
reacdiffld_nu}, \\rho={reacdiffld_rho}$, i.e., optimizing it
particularly for this use case.

Think carefully about the structure of the reaction and diffusion terms
in the PDE and how you can exploit this structure to derive accurate
result.

PDE Solver Templates (Stage 2) The following is an example of the PDE solver template for the
Reaction-Diffusion PDE task. We use the PDE solver templates provided in (Li et al.,[2025).

def solver (u0O_batch, t_coordinate, nu, rho):

wnn

Solves the 1D reaction-diffusion equation.

Args:
u0_batch: Initial condition u(x,0) - np.ndarray of shape [
batch_size, N]
t_coordinate: Time points - np.ndarray of shape [T+1] starting
with t_0=0

nu: Diffusion coefficient
rho: Reaction coefficient

Returns:
solutions: np.ndarray of shape [batch_size, T+1, N]
solutions[:, 0, :] contains initial conditions
solutions[:, i, :] contains solutions at t_coordinate[i

]

wnn

# TODO: Implement the reaction-diffusion equation solver

return solutions
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Code Generation Criteria Template (Stage 2)

**MUST-OBEY : % *

1. xxMethod Selection Appropriatenessxx:

Choose proven, battle-tested methods over non-practical approaches for
pde solver codes. Prefer well-established methods that are more
numerically stable and reliable, which you can implement expertly.
Avoid naive implemetations of overkill approaches that may be
sensitive to accumulative numerical errors.

2. **xStability and Robustness Handlingxx:

— BEWARE of numerical error accumulation: Small systematic errors x
millions of required internal time steps = massive failure.
Conservative but not excessive time stepping is required.

- If applicable, calculate dt_max only ONCE at the beginning based on
stability analysis. Do NOT recalculate dt_max for each output time
step.

— xxNO HARDCODED VALUES AND ASSUMPTIONSxx: Calculate all parameters from
the input data. Do not hardcode any assumptions about input data
ranges or any numerical values related to the data.

— **WORKING CODE > Theoretically optimal codexx: Code must run within
reasonable time and produce high accuracy results, not just be
theoretically optimal yet useless in practice. Code that runs
reliably beats theoretically sophisticaed code that is useless in
practice. Make sure to address the following concerns:

— Does the code include a stability analysis (either in comments or in
the code) that leads to a safe ‘dt'?

Is the time stepping adaptive and does it hit the exact output times
?

— Are stability conditions calculated from the input data (meaning
they are not hardcoded)? NO HARDCODING!
— Are there safeguards against common numerical issues (e.g., division
by zero with epsilon, but without altering the mathematics)?
Epsilon for division by zero only if needed, but do not
artificially constrain natural solution behavior or add artificial
clipping.

3. xxImplementation Details:*x

- xxVectorized Computingx*: Use JAX + @jit for better performance, but
ensure stability

- xxData typesx*: Consistent types

— — Use cumulative internal step counting across all output intervals

— Print the following information as a part of your code:

print (f"Stability-based dt_max = {{dt_max:.2e}}")

print (f"Using {{n_internal}} internal time steps")

print (f"Time step {{i}}/{{T}} completed (internal steps: {{
total_internal_steps}})")

- xxReturn formatxx: Convert to numpy arrays for compatibility

4. xxImplementation Qualityx*x*:

Expert implementation of "simpler" methods beats naive implementation of
"advanced" methods.

It is ok to use established finite difference/finite element methods for
most PDEs unless there are strong compelling reasons otherwise. Make
sure to address the following concerns:

- xxEfficiency**: Does the code correctly use vectorization and JAX
jit appropriately. Is it efficient without sacrificing accuracy?

- *x*xBoundary Conditions*x*: Are boundary conditions handled correctly
and robustly (e.g., using ‘jnp.roll‘ for periodic)?

- x*xError Handlingxx: Does the code check for NaNs or Infs? Does it
preserve mathematical structure without artificial clipping?
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— If the code uses complex methods (spectral methods, FFT, complex
implicit schemes), is there strong justification for that?

5. xxAccuracy and Precisionx*x:
Be sure of MATHEMATICAL CORRECTNESS in every formula/ computation in the
code
— Does the code use analytical solutions where available? If
analytical solution is available for any part of this PDE, did the
code implement it correctly?)
— For numerical methods, is the discretization appropriate (e.g.,
second-order finite differences) for high accuracy?
— Does the code avoid systematic errors (e.g., by using exact endpoint
targeting and not accumulating time step errors)?

**%*GOAL:** Production-ready code that scientists can rely on.

51




	Introduction
	Background & Related Work
	PDE-SHARP Framework
	Experiments
	Baselines
	Results & Analysis
	Accuracy & Interpretability
	Code Quality & Insights

	Discussion & Limitations

	Conclusion
	Additional Information & Experimental Setups
	Mathematical Metrics
	Neural Networks & Foundation Models
	LLM-Driven Architectures
	LLM Models Used in Section 4 for Code Generation
	Agentic Workflows
	Other Related Work
	OptiLLM
	CodePDE ( li2025codepdeinferenceframeworkllmdriven)

	Additional Information on Framework Cost

	Additional Experimental Results
	Results with Different LLMs
	PDE-SHARP Ablation Studies
	Analysis Prompting Strategy
	The Effects of Stability Analysis
	Reasoning vs. Non-reasoning LLMs For Code Generation In Genesis
	Test-time Scaling for PDE-SHARP
	Structure of the Tournaments
	Hybridization Feedback Type
	Number of Rounds & Cycles

	Analysis of the Generated Solver Code Quality

	Additional Details on the Tested PDEs
	Advection
	Burgers
	Reaction-Diffusion
	Navier-Stokes
	Darcy Flow

	Results for Individual PDE Tasks
	Advection
	Reaction-Diffusion

	PDE-SHARP Prompts
	Stage 1: Analysis
	Stage 2: Genesis
	Stage 3: Synthesis


