
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PDE-SHARP: PDE SOLVER HYBRIDS THROUGH
ANALYSIS & REFINEMENT PASSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Current LLM-driven approaches using test-time computing to generate PDE
solvers execute a large number of solver samples to identify high-accuracy solvers.
These paradigms are especially costly for complex PDEs requiring substantial
computational resources for numerical evaluation. We introduce PDE-SHARP, a
framework to reduce computational costs by replacing expensive scientific com-
putation by cheaper LLM inference that achieves superior solver accuracy with
60-75% fewer computational evaluations. PDE-SHARP employs three stages:
(1) Analysis: mathematical chain-of-thought analysis including PDE classifica-
tion, solution type detection, and stability analysis; (2) Genesis: solver generation
based on mathematical insights from the previous stage; and (3) Synthesis: col-
laborative selection-hybridization tournaments in which LLM judges iteratively
refine implementations through flexible performance feedback. To generate high-
quality solvers, PDE-SHARP requires fewer than 13 solver evaluations on aver-
age compared to 30+ for baseline methods, improving accuracy uniformly across
tested PDEs by 4× on average, and demonstrates robust performance across LLM
architectures, from general-purpose to specialized reasoning models.

1 INTRODUCTION

Partial Differential Equations (PDEs) are fundamental to scientific modeling across physics, en-
gineering, and computational sciences, yet writing robust numerical solvers requires specialized
numerical analysis expertise for PDE-specific implementation and tuning, with limited flexibility as
each solver targets specific PDE types. The success of deep learning has motivated the develop-
ment of neural PDE solvers, with Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019;
Karniadakis et al., 2021) and operator learning methods (Li et al., 2020) emerging as promising al-
ternatives that leverage neural networks to approximate PDE solutions. However, these approaches
require extensive training data, lack interpretability, suffer from generalization limits across PDE
families, and offer limited accuracy (Rahaman et al., 2019; Wang et al., 2022) The result is an
ecosystem of specialized PDE solvers that address particular failure modes without a systematic un-
derstanding of underlying limitations (Cuomo et al., 2022; Krishnapriyan et al., 2021; Zhang et al.,
2021; Wang et al., 2021a).

Meanwhile, large language models (LLMs) have demonstrated remarkable aptitude for complex
mathematical and scientific challenges (Romera-Paredes et al., 2024; Tian et al., 2024). Sophisti-
cated code generation frameworks employ Chain-of-Thought (CoT) reasoning (Welleck et al., 2024;
Wei et al., 2023; Kojima et al., 2023), Mixture-of-Agents (MoA) strategies (Sharma, 2024; Wang
et al., 2024a), and advanced inference-time scaling techniques (Snell et al., 2024) to achieve state-
of-the-art performance across programming tasks. LLM-as-a-judge frameworks (Jiang et al., 2025a;
Zheng et al., 2023) typically employ predetermined evaluation rubrics. However, PDE solver evalua-
tion presents unique challenges requiring assessment of mathematical correctness, numerical stabil-
ity, computational efficiency, and domain-specific accuracy, factors that demand context-dependent
evaluation criteria rather than static rubrics, as optimal trade-offs and performance standards vary
significantly across PDE families and application domains. The task of creating reliable solver codes
for PDEs sits at the intersection of applied mathematics, numerical analysis, and code generation,
making it an ideal testbed to evaluate LLMs’ mathematical and technical capabilities. Current ap-
proaches fall into two general categories. 1) Fine-tuning methods specialize models for mathemat-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ical reasoning (Lu et al., 2024) and subsequent domain-specific adaptation to particular PDE fami-
lies (Soroco et al., 2025). These require substantial computational resources for multi-stage training
and offer limited generalizability across PDE types. 2) Inference-only frameworks using general-
purpose LLMs and techniques such as automated debugging (Chen et al., 2023), self-refinement
(Madaan et al., 2023), and test-time scaling (Snell et al., 2024). CodePDE (Li et al., 2025) avoids
fine-tuning but relies on brute-force sampling strategies, generating and executing 30+ solver can-
didates to identify optimal solutions. This paradigm becomes especially costly for complex PDEs
requiring high-performance computing resources for numerical evaluation.

To address these limitations, we introduce PDE-SHARP, an LLM-driven PDE solver generation
framework that achieves superior accuracy with 60-75% fewer computational evaluations — through
intelligent generation rather than exhaustive sampling — in three stages: (1) Analysis analyzes the
PDE through structured questions to develop a numerically-stable solver plan; (2) Genesis generates
solver candidates without immediate execution; (3) Synthesis uses LLM judges to iteratively select,
execute, and refine solvers based on provided performance feedback in each round. With this ap-
proach, PDE-SHARP swaps inexpensive LLM inference for expensive scientific computation, only
executing refined solvers each round. This exchange is worthwhile for computationally intensive
PDEs for which GPU/HPC resources dominate costs.

Figure 1: PDE-SHARP framework overview. The three core stages are Analysis, Genesis, and
Synthesis. Optional components (Translator, Reporter) enhance usability as explained in section 3.
PDE-SHARP generates higher accuracy solvers with 60-75% fewer solver evaluations compared to
tested baselines.

Contributions. The experimental results highlight PDE-SHARP’s key contributions:

• Computational Efficiency. PDE-SHARP reduces expensive solver evaluations by 60-75%
(requiring fewer than 13 solver evaluations on average compared to 30+ in best-of-n base-
lines) while achieving superior solution accuracy, demonstrating considerable resource sav-
ings for complex simulations.

• Mathematical Analysis. PDE-specific mathematical chain-of-thought reasoning with tar-
geted stability analysis produces mathematically-informed solver strategies, leading to
higher initial code quality compared to generic template-based generation.

• Collaborative LLM Tournaments. PDE-SHARP’s synthesis phase improves on standard
test-time computing approaches by 4× on average using fewer evaluations.

• Enhanced Implementation Quality. Experiments indicate PDE-SHARP solvers achieve
bug-free execution in 63-67% fewer debugging iterations (0.33 vs. 0.9-1.4 iterations per
solver) and enjoy superior numerical convergence properties.

• Robustness to LLM Choice. PDE-SHARP achieves more consistent performance across
diverse LLM types (general-purpose, coding-specific, reasoning models) compared to the
baselines, showing robustness to the underlying code generator LLM choice.

• Flexible Feedback Integration. PDE-SHARP can improve solvers using several feedback
mechanisms — solution-based metrics (relative error), physics-based metrics (PDE resid-
ual), and no feedback — to adapt to research scenarios from benchmark validation with
known solutions to real-world cases with limited simulation data or physics-only assess-
ments.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND & RELATED WORK

Classical Solvers & Neural Methods. Traditional numerical methods for PDE solving, e.g. finite
difference, finite element, and spectral methods, require considerable domain expertise for effective
implementation (Strang, 2007; LeVeque, 2007). Modern scientific computing frameworks such as
FEniCS (Alnaes et al., 2015), deal.II (Arndt et al., 2021) for finite element, and PETSc (Balay et al.,
2025) have facilitated access to these methods for broad PDE classes. However, 1) considerable nu-
merical analysis knowledge is still required for optimal performance; and 2) general approaches fail
at exploiting PDE-specific mathematical structure to achieve superior performance. The key chal-
lenge is thus identifying which approach suits a particular PDE without extensive domain expertise.

The success of deep learning has motivated extensive research into neural PDE solvers. PINNs vari-
ants (Raissi et al., 2019; Wang et al., 2022) approximate PDE solutions through residual minimiza-
tion. Physics-informed operator learning methods (Li et al., 2020; Lu et al., 2021) learn solution
operators rather than individual solutions, offering improved generalization. Feature engineering
techniques such as random Fourier features (Wang et al., 2021b; Fazliani et al., 2025), residual-
based attention (Anagnostopoulos et al., 2023), and radial basis functions (Zeng et al., 2024) have
further enhanced neural solver capabilities. Foundation models leverage transformer architectures
for multiphysics problems (McCabe et al., 2024; Hao et al., 2024; Shen et al., 2024; Herde et al.,
2024). These neural approaches, however, require extensive training data, lack transparency and
interpretability regarding solution generation processes, and have generalization limits.

Custom solver generation offers several advantages over neural surrogates and black-box library us-
age: full algorithmic transparency enables targeted PDE-specific optimization, simplified debugging
and modification, and direct control over every detail. This is crucial when solver behavior needs
explanation or when problem-specific modifications are required.

LLM-Driven Code Generation for PDEs. The integration of LLMs into scientific computing
has emerged along two primary paradigms. First is fine-tuning models pretrained on mathemati-
cal tasks for domain-specific applications. MathCoder2 (Lu et al., 2024) demonstrates improved
mathematical reasoning through continued training. PDE-Controller (Soroco et al., 2025) continues
this approach by fine-tuning MathCoder2-DeepSeekMath on specific PDE families such as heat and
wave equations. While effective for targeted applications, this paradigm requires substantial compu-
tational resources for multi-stage training and limits generalizability across diverse PDE types. Sec-
ond is leveraging inference-time optimization techniques to enhance performance. CodePDE (Li
et al., 2025) implements automated debugging and test-time sampling for diverse solver genera-
tion. Frameworks such as OptiLLM (Sharma, 2024) integrate multiple inference optimization strate-
gies including Chain-of-Thought (CoT), Mixture-of-Agents (MoA), self-reflection, PlanSearch, etc.
These approaches typically rely on computationally expensive best-of-n sampling strategies, gener-
ating and evaluating large numbers of solver candidates to identify optimal solutions, which becomes
prohibitive for complex PDEs requiring substantial evaluation resources.

Both paradigms face fundamental limitations in balancing solution quality with computational ef-
ficiency, motivating the need for more intelligent synthesis approaches that leverage mathematical
reasoning without exhaustive sampling or extensive fine-tuning requirements.

3 PDE-SHARP FRAMEWORK

Stage 1: Analysis. PDE-SHARP conducts a systematic five-step mathematical analysis to guide
solver generation. The process begins with PDE classification (order, linearity, type, boundary con-
ditions) that informs all subsequent decisions. Sequential checks determine if analytical solutions
exist, whether transformations can simplify the problem, and if operator decomposition (e.g., sepa-
rating diffusion and reaction terms) is viable. Each step either directs the framework toward special-
ized solution strategies in Stage 2 or continues to the next analysis step as shown in Figure 2. The
final stability analysis computes symbolic time-step bounds and selects numerically stable schemes,
performed before hybrid/numerical solver generation to ensure robustness. Ablation studies (Ap-
pendix B.2) demonstrate the effectiveness of this multi-step paradigm over other alternatives.

Stage 2: Genesis. PDE solver code is generated using information from the Analysis stage.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: PDE-SHARP Analysis and Genesis stages.

Stage 3: Synthesis This stage uses Selection–Hybridization Tournaments with LLM judges to
iteratively refine solver implementations. Numerical accuracy of the solver can inform judge deci-
sions through a configurable feedback mechanism. Synthesis consists of two main steps:

Figure 3: PDE-SHARP Synthesis. This stage can be repeated to address performance saturation.

(i) Initial Judgment & Selection: Given the n generated initial solvers and a specified feedback
type, each judge LLM produces a selection of its top n

2 choices from the initial list with reasoning
behind each choice (prompt format detailed in Appendix E.3). Each judge also designates one solver
from its top n

2 list as a nominee for execution and evaluation using the allowed feedback.

(ii) Hybridization Rounds: The three nominated base solvers are executed and their performance
results are shared with all judges. Each judge then proposes modifications to their base solver using a
diff/patch format to ensure incremental changes that preserve working code structure and encourage
local fixes, with technical justification for each modification. The modified solvers are executed and
results again shared with all judges. This process repeats until performance improvements saturate
across consecutive rounds or as specified by the user.

When performance improvements saturate or the maximum number of hybridization rounds is
reached, the framework initiates another judging cycle that repeats steps (i) and (ii) with an ex-
panded solver set including all previously generated hybrids, their technical justifications, and per-
formance feedback from previous rounds. Judges maintain context within each cycle but reset be-
tween cycles, evaluating the expanded set from scratch, to encourage exploration of new strategies.

Feedback Types. The Synthesis stage can incorporate different performance metrics to guide judge
decisions during tournaments. We discuss three feedback types: (1) nRMSE: normalized root mean
squared error against reference solutions; (2) PDE residual feedback: physics-based residual compu-
tation that requires no reference data; and (3) no feedback: judges rely purely on code analysis. The
choice of feedback type allows adaptation to different research scenarios — from benchmark vali-
dation with known solutions to real-world cases with limited reference data. PDE-specific feedback
types and their combinations could also be employed for domain-specific optimization. Additional
discussions and results appear in Appendix B.2.6.

Optional Stages. PDE-SHARP includes two optional components for enhanced usability (Fig-
ure 1): Translator converts natural language PDE descriptions into the structured mathematical
templates required by the Analysis stage. When user input lacks necessary detail, it requests addi-
tional information before proceeding. Users can alternatively bypass this stage by directly providing
pre-formatted templates. Reporter generates detailed reports on solver evolution throughout the
tournament process, enhancing framework interpretability. These reports can serve as feedback for
subsequent runs on the same problem, enabling iterative refinement strategies.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 BASELINES

We compare PDE-SHARP against multiple baseline methods across five representative PDE tasks
from PDEBench (Takamoto et al., 2024) (Table 1). Discussions on neural methods and some LLM-
driven approaches (agentic workflows, fine-tuned mathematical models, etc.) appear in Appendix
A. In our experiments, we focus on LLM-driven baselines using test-time computing for code gen-
eration that directly compete with PDE-SHARP’s approach. CodePDE (Li et al., 2025) generates
solvers using chain-of-thought prompting and executes all samples to report the best performance.
A refined variant, CodePDE-R, is also tested as a baseline. OptiLLM (Sharma, 2024) implements
inference optimization techniques including Chain-of-Thought (CoT), Mixture-of-Agents (MoA),
and Cerebras Planning and Optimization (CePO). Experimental details appear in Appendix A.

Experimental Setup: All methods generate n = 32 initial solver candidates for fair comparison
(Appendix B.2.4). Baselines execute all candidates (CodePDE-R executes 44 with refinements).
PDE-SHARP uses three judge LLMs (Appendix B.2.5) in collaborative tournaments, executing only
refined candidates per hybridization round. For Section 4 experiments, PDE-SHARP uses nRMSE
on 100 validation samples as tournament feedback. All methods are evaluated on a separate test set
of 100 random PDEBench samples per PDE task (Table 2). Additional feedback types and judge
configurations appear in Appendix B.2.

Table 1: Tested PDEs; details in Appendix C. Dimension column indicates the spatial dimension
and NL stands for non-linear in the table.

PDE Dimension Type State Solution Behavior
Advection 1D Linear Time-dependent Smooth
Burgers 1D Highly NL Time-dependent Shock-forming
Reaction-Diffusion 1D Mildly NL Time-dependent Smooth
Navier-Stokes 1D Highly NL Time-dependent Shock-forming
Darcy Flow 2D Mildly NL Steady-state Smooth

4.2 RESULTS & ANALYSIS

4.2.1 ACCURACY & INTERPRETABILITY

Table 2 shows solver accuracy across all PDEs and baselines.

PDE-SHARP is more robust to code generator LLM selection. Table 2 shows that the solution
quality for baseline methods depends strongly on the LLM. In contrast, PDE-SHARP performs more
consistently across all tested LLMs; results for more LLMs are appear Appendix B.1. This uniform
performance indicates PDE-SHARP’s tournament hybridization stage effectively mitigates the lim-
itations of individual code generators, producing higher-quality solvers that are largely independent
of the underlying LLM.

PDE-SHARP significantly improves solver accuracy for specific PDEs. PDE-SHARP im-
proves accuracy by over 4× overall (geometric mean), with particularly impressive performance
on the reaction-diffusion and advection tasks. For reaction-diffusion, PDE-SHARP’s Analysis stage
immediately identifies that the reaction component admits an analytical solution, directing all 32 ini-
tial solver candidates toward hybrid analytical-numerical approaches that achieve superior numerical
stability. Baseline methods rarely discover this hybrid strategy, as shown in Figure 4a.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: PDE-SHARP improves solver accuracy and is robust to choice of LLM. Solution accuracy
is measured by nRMSE relative to the reference solution from PDEBench. Cell colors use a col-
ormap log-normalized independently within each PDE column to highlight per-task variation.

Advection Burgers Reaction-Diffusion Navier-Stokes Darcy

OptiLLM-CoT

Gemma 3 5.34e-03 5.32e-02 2.07e-01 9.58e-02 8.01e-02
LLaMA 3.3 7.71e-03 4.38e-02 2.24e-01 2.42e-01 1.01e+00
Qwen 3 4.67e-03 1.52e-03 9.38e-01 2.63e-01 6.34e-01
DeepSeek-R1 4.97e-03 3.04e-04 2.45e-01 8.34e-02 5.34e-03
GPT-4o 1.72e-03 2.12e-03 2.23e-02 2.01e-01 8.51e-01
o3 9.74e-04 4.08e-04 2.21e-01 3.12e-02 5.47e-03

OptiLLM-MoA

Gemma 3 3.97e-03 4.21e-03 1.74e-01 6.78e-02 4.69e-02
LLaMA 3.3 1.23e-03 4.71e-03 1.49e-01 2.29e-01 2.13e-01
Qwen 3 1.01e-03 3.45e-04 9.68e-02 1.79e-02 5.12e-03
DeepSeek-R1 9.74e-04 2.49e-04 1.48e-01 1.65e-02 5.01e-03
GPT-4o 2.01e-03 2.41e-04 1.94e-02 2.56e-02 5.02e-03
o3 1.74e-03 2.91e-04 2.09e-01 1.39e-02 5.07e-03

OptiLLM-CePO

Gemma 3 3.74e-03 4.01e-03 1.89e-01 6.32e-02 4.12e-02
LLaMA 3.3 1.11e-03 4.53e-03 1.36e-01 2.18e-01 1.98e-01
Qwen 3 1.01e-03 3.23e-04 8.91e-02 1.97e-02 4.83e-03
DeepSeek-R1 9.71e-04 2.43e-04 1.39e-01 1.79e-02 4.78e-03
GPT-4o 9.88e-04 2.31e-04 1.67e-02 2.31e-02 4.88e-03
o3 9.88e-04 2.74e-04 2.03e-01 1.49e-02 4.81e-03

CodePDE

Gemma 3 5.61e-03 5.17e-02 2.13e-01 9.29e-02 7.69e-02
LLaMA 3.3 7.37e-03 4.59e-02 2.18e-01 2.36e-01 1.03e+00
Qwen 3 4.89e-03 1.35e-03 9.55e-01 2.59e-01 6.57e-01
DeepSeek-R1 1.01e-03 3.04e-04 2.13e-01 2.80e-02 4.80e-03
GPT-4o 1.55e-03 3.65e-04 1.99e-02 1.81e-01 6.57e-01
o3 9.74e-04 2.74e-04 1.99e-02 9.29e-02 4.88e-03

CodePDE-R

Gemma 3 4.20e-03 4.63e-03 1.69e-01 6.44e-02 4.47e-02
LLaMA 3.3 1.02e-03 4.59e-03 1.43e-01 2.36e-01 1.92e-01
Qwen 3 9.74e-04 3.60e-04 9.13e-02 1.67e-02 4.90e-03
DeepSeek-R1 1.01e-03 3.15e-04 1.67e-02 1.67e-02 4.80e-03
GPT-4o 9.74e-04 2.57e-04 1.67e-02 2.36e-02 4.80e-03
o3 1.01e-03 3.60e-04 1.43e-01 1.31e-02 4.90e-03

PDE-SHARP

Gemma 3 1.01e-03 5.60e-04 3.01e-03 3.14e-02 1.72e-02
LLaMA 3.3 9.98e-04 4.61e-04 3.61e-03 5.06e-02 1.72e-02
Qwen 3 7.76e-04 2.97e-04 2.32e-03 2.80e-02 4.80e-03
DeepSeek-R1 5.24e-04 1.48e-04 2.29e-03 1.37e-02 4.74e-03
GPT-4o 6.11e-04 2.31e-04 2.29e-03 1.51e-02 3.97e-03
o3 9.74e-04 3.42e-04 5.78e-03 1.89e-02 7.78e-03

(a) Reaction-Diffusion (b) Advection

Figure 4: (a) Other frameworks tend to choose the less accurate purely-numerical approach for
the reaction-diffusion PDE, while PDE-SHARP always goes with the superior hybrid approach.
(b) PDE-SHARP transitions from first-order discretized analytical to second-order finite-volume
approaches through performance-informed tournaments.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

For advection, PDEBench reference solutions are generated using finite volume methods (Takamoto
et al., 2024), reflecting standard shock-safe computational practice. PDE-SHARP and all other
baselines initially attempt analytical solutions, and the baselines keep their analytical approach even
through refinement (e.g. in CodePDE-R). PDE-SHARP’s performance-informed tournaments, on
the other hand, encourage PDE-SHARP to adapt to the data, as demonstrated in Figure 4b. When
persistent 10−3 errors reported as feedback indicate a mismatch between analytical and reference
solutions, the judge LLMs converge on second-order finite-volume schemes that better match the
dataset characteristics. This adaptation occurs through feedback alone, without manual intervention,
demonstrating how collaborative tournaments can optimize for evaluation criteria while maintaining
computational efficiency. This adaptive behavior varies with different feedback types as users can
choose an optimization target to reflect available data (Figure 5). A study on advection solvers
appears in Appendix D.1.

Figure 5: Without proper feedback, the judges stick to analytical approaches. Figure 16 gives details.

Figure 6: Ablation study of PDE-SHARP components across five PDE tasks. Four variants: (1)
Default: full PDE-SHARP with both stability analysis and synthesis, (2) No Stability Analysis:
PDE-SHARP with the stability analysis step removed from the Analysis stage, (3) No Synthesis:
PDE-SHARP with best-of-32 sampling instead of the Synthesis stage, and (4) No Stability Analysis
& No Synthesis. Results show both components contribute to accuracy improvements, with each
component being more critical for different PDE types, e.g. stability analysis is more critical for
reaction-diffusion, while synthesis contributes more to the Darcy flow task.

Figures 4, 5, 6 highlight how PDE-SHARP’s Analysis and Synthesis stages leverage mathematical
insight and performance feedback, both playing significant roles in PDE-SHARP’s performance.
Detailed ablation studies in Appendix B.2 quantify each component’s contribution in more detail.

4.2.2 CODE QUALITY & INSIGHTS

Figure 7 demonstrates PDE-SHARP reduces the number of debugging iterations required and pro-
duces solvers with competitive execution times. PDE-SHARP averages 0.33 debugging iterations
per solver execution (approximately 1 in 3 generated solvers requires debugging in a hybridization
round), significantly outperforming baseline methods that require 0.9–1.4 debugging iterations per
generated solver. This reduction shows that PDE-SHARP’s Analysis stage produces more robust
initial implementations, and that the synthesis stage efficiently eliminates implementation errors.

Figure 4b demonstrates the distribution of empirical convergence orders (definition in Appendix A)
— showing solver improvements with grid refinement — across methods for the advection PDE.
PDE-SHARP generates solvers with superior convergence properties, leading to higher accuracy in
this case (Table 2). In addition, Figure 15 indicates that on average, PDE-SHARP’s solvers use less

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 7: (a) Average number of debugging iterations required per solver execution across different
methods. (b) Average execution times across PDE tasks. PDE-SHARP achieves lower execution
times than the average baseline in 4/5 cases. For reaction-diffusion, higher execution time reflects the
rigorous numerical methods selected by stability analysis as expected, which produce significantly
higher accuracy solvers (Table 2).

PyTorch (down to ≈25–33 % of library calls) and more SciPy + NumPy + JAX (up to ≈60–75 %),
whereas the baselines keep PyTorch at roughly 50–67% and SciPy below 7% on average. Using JAX
for computational kernels is highly encouraged in PDE-SHARP prompts in particular as evident in
the library usage proportions across all methods and PDE tasks. Additional empirical convergence
rate results all PDEs as well as library usage proportions for each baseline appear in Appendix B.3.

Cost. We analyze the efficiency and cost of each method by calculating the average cost for GPU
and LLM API calls for the experiments in this section. Table 2 shows among the tested LLMs, GPT-
4o as the code generation LLM yields higher accuracy results on average. Table 3 shows the total
average API cost of the results for GPT-4o in Table 2. Details of the calculations appear in Appendix
A.4. GPU usage depends on the number of solver executions, code complexity, and implementation
efficiency. The number of solver executions to get the best result for each PDE in PDE-SHARP
depends on the number of hybridization rounds required, averaging 13.2 evaluations across all test
cases (9-12 evaluations for most PDEs, with advection requiring 24 to better match data as discussed
in Section 4.2). Figure 8 shows nRMSE vs. total average cost (API call + GPU usage) for three PDE
tasks.

Table 3: Cost comparison of input, output, and total API usage per method using GPT-4o as the
code generating LLM

Framework $ Inputs $ Output $ Total
OptiLLM-CoT 0.10 0.48 0.58
OptiLLM-MoA 0.53 2.12 2.65
OptiLLM-CePO 0.96 8.27 9.23
CodePDE 0.07 0.68 0.75
CodePDE-R 0.41 0.88 1.29
PDE-SHARP 1.12 2.89 4.01

4.3 DISCUSSION & LIMITATIONS

Discussion: PDE-SHARP uses numerical feedback to improve the generated solver. This extra
information can be easy to compute — such as the (data-free) PDE residual — or may require col-
lecting data, such as distance to the solution at a sampled set of times and locations. PDE-SHARP
can also use problem-specific constraints like the CFL condition (LeVeque, 2007) as feedback, or
can run without feedback if no information is available. Results for PDE-SHARP using residual

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 8: Trade-off between solution accuracy (nRMSE) and total cost for LLM-driven PDE solver
generation methods across three PDE tasks of varying computational complexity. From Navier-
Stokes (hours per solver evaluation) to Reaction-Diffusion (moderate) to Advection (lightweight,
seconds per evaluation), PDE-SHARP demonstrates consistent cost-effectiveness.

feedback and no numerical feedback appear in Appendix B.2. LLM agents can also suggest feed-
back types. As seen in Appendix B.2.6 (examples of LLM-suggested feedback types for each tested
PDE), an additional LLM agent could be used to determine optimal problem-specific metrics before
Synthesis begins. This is particularly beneficial for complex PDEs requiring specialized feedback,
and represents important future work. Additional promising directions include scaling to higher-
dimensional problems with complex geometries where traditional numerical methods face greater
challenges. Finally, hybrid approaches combining PDE-SHARP’s interpretable numerical solvers
with neural PDE methods could leverage the strengths of both paradigms for problems requiring
both accuracy and computational efficiency.

Limitations: Our evaluation establishes PDE-SHARP’s effectiveness on moderate-complexity
PDEs from established benchmarks, with high-fidelity computational simulations representing a nat-
ural extension constrained by current LLM training data coverage. LLM-driven PDE solver genera-
tion using test-time computing approaches rely on LLM mathematical reasoning capabilities, which
means performance may degrade for cutting-edge PDE formulations that are not well-represented
in training data or require highly specialized domain knowledge beyond current model capabilities.

5 CONCLUSION

PDE-SHARP demonstrates that intelligent LLM-driven solver generation can dramatically improve
efficiency over brute-force sampling approaches. Our three-stage framework reduces computational
evaluations by 60-75% while achieving superior accuracy on average across five representative
PDEs. The mathematical chain-of-thought analysis in the Analysis stage produces more robust
initial implementations, requiring on average 67% fewer debugging iterations compared to base-
line methods. The hybrid tournaments in the Synthesis stage efficiently refines solvers through
performance-informed feedback, with flexible type, demonstrating consistent robust improvements
across diverse LLM models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E.
Rognes, and G. N. Wells. The FEniCS Project Version 1.5. Archive of Numerical Software, 3,
2015. doi: 10.11588/ans.2015.100.20553.

Sokratis J. Anagnostopoulos, Juan Diego Toscano, Nikolaos Stergiopulos, and George Em Karni-
adakis. Residual-based attention and connection to information bottleneck theory in pinns, 2023.
URL https://arxiv.org/abs/2307.00379.

Daniel Arndt, Wolfgang Bangerth, Denis Davydov, Timo Heister, Luca Heltai, Martin Kronbichler,
Matthias Maier, Jean-Paul Pelteret, Bruno Turcksin, and David Wells. The deal.ii finite element
library: Design, features, and insights. Computers amp; Mathematics with Applications, 81:
407–422, January 2021. ISSN 0898-1221. doi: 10.1016/j.camwa.2020.02.022. URL http:
//dx.doi.org/10.1016/j.camwa.2020.02.022.

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown, Peter Brune,
Kris Buschelman, Emil M. Constantinescu, Lisandro Dalcin, Alp Dener, Victor Eijkhout, Ja-
cob Faibussowitsch, William D. Gropp, Václav Hapla, Tobin Isaac, Pierre Jolivet, Dmitry
Karpeev, Dinesh Kaushik, Matthew G. Knepley, Fande Kong, Scott Kruger, Dave A. May,
Lois Curfman McInnes, Richard Tran Mills, Lawrence Mitchell, Todd Munson, Jose E. Ro-
man, Karl Rupp, Patrick Sanan, Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang,
Hong Zhang, and Junchao Zhang. PETSc Web page. https://petsc.org/, 2025. URL
https://petsc.org/.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug, 2023. URL https://arxiv.org/abs/2304.05128.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific Machine Learning Through Physics–Informed Neural Net-
works: Where We Are and What’s Next. J. Sci. Comput., 92(3), 2022.

Shaghayegh Fazliani, Zachary Frangella, and Madeleine Udell. Enhancing physics-informed neu-
ral networks through feature engineering, 2025. URL https://arxiv.org/abs/2502.
07209.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anand-
kumar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large-
scale pde pre-training, 2024. URL https://arxiv.org/abs/2403.03542.

Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes, 2024. URL
https://arxiv.org/abs/2405.19101.

Hongchao Jiang, Yiming Chen, Yushi Cao, Hung yi Lee, and Robby T. Tan. Codejudgebench:
Benchmarking llm-as-a-judge for coding tasks, 2025a. URL https://arxiv.org/abs/
2507.10535.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code, 2025b. URL https://arxiv.
org/abs/2502.13138.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners, 2023. URL https://arxiv.org/abs/2205.
11916.

10

https://arxiv.org/abs/2307.00379
http://dx.doi.org/10.1016/j.camwa.2020.02.022
http://dx.doi.org/10.1016/j.camwa.2020.02.022
https://petsc.org/
https://petsc.org/
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2502.07209
https://arxiv.org/abs/2502.07209
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2403.03542
https://arxiv.org/abs/2405.19101
https://arxiv.org/abs/2507.10535
https://arxiv.org/abs/2507.10535
https://arxiv.org/abs/2502.13138
https://arxiv.org/abs/2502.13138
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, and Michael W. Mahoney.
Characterizing possible failure modes in physics-informed neural networks, 2021. URL https:
//arxiv.org/abs/2109.01050.

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. SIAM, 2007.

Shanda Li, Tanya Marwah, Junhong Shen, Weiwei Sun, Andrej Risteski, Yiming Yang, and Ameet
Talwalkar. Codepde: An inference framework for llm-driven pde solver generation, 2025. URL
https://arxiv.org/abs/2505.08783.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. Mathcoder2: Better math reasoning from continued pretraining on model-translated
mathematical code, 2024. URL https://arxiv.org/abs/2410.08196.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
refine: Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/
2303.17651.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles Cran-
mer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse,
Mariel Pettee, Tiberiu Tesileanu, Kyunghyun Cho, and Shirley Ho. Multiple physics pretraining
for physical surrogate models, 2024. URL https://arxiv.org/abs/2310.02994.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Confer-
ence on Machine Learning, pp. 5301–5310. PMLR, 2019.

Maziar Raissi, Zhicheng Wang, Michael S Triantafyllou, and George Em Karniadakis. Deep learn-
ing of vortex-induced vibrations. Journal of Fluid Mechanics, 861:119–137, 2019.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from program
search with large language models. Nature, 2023. doi: 10.1038/s41586-023-06924-6.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

11

https://arxiv.org/abs/2109.01050
https://arxiv.org/abs/2109.01050
https://arxiv.org/abs/2505.08783
https://arxiv.org/abs/2410.08196
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2310.02994
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Asankhaya Sharma. Optillm: Optimizing inference proxy for llms, 2024. URL https://
github.com/codelion/optillm.

Junhong Shen, Tanya Marwah, and Ameet Talwalkar. Ups: Efficiently building foundation models
for pde solving via cross-modal adaptation, 2024. URL https://arxiv.org/abs/2403.
07187.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Mauricio Soroco, Jialin Song, Mengzhou Xia, Kye Emond, Weiran Sun, and Wuyang Chen. Pde-
controller: Llms for autoformalization and reasoning of pdes, 2025. URL https://arxiv.
org/abs/2502.00963.

Gilbert Strang. Computational Science and Engineering. SIAM, 2007. doi: 10.
1137/1.9780961408817. URL https://epubs.siam.org/doi/book/10.1137/1.
9780961408817.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning,
2024. URL https://arxiv.org/abs/2210.07182.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Minyang Tian, Luyu Gao, Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas, Pan
Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, HAO TONG, Kha Trinh,
Chenyu Tian, Zihan Wang, Bohao Wu, Shengzhu Yin, Minhui Zhu, Kilian Lieret, Yanxin Lu,
Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, Eliu A Huerta, and Hao Peng.
Scicode: A research coding benchmark curated by scientists. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=ADLaALtdoG.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities, 2024a. URL https://arxiv.org/abs/2406.04692.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and Mitigating Gradient Flow
Pathologies in Physics-Informed Neural Networks. SIAM Journal on Scientific Computing, 43
(5):A3055–A3081, 2021a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of Fourier feature net-
works: From regression to solving multi-scale PDEs with physics-informed neural networks.
Computer Methods in Applied Mechanics and Engineering, 384:113938, 2021b.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

Sifan Wang, Bowen Li, Yuhan Chen, and Paris Perdikaris. Piratenets: Physics-informed deep learn-
ing with residual adaptive networks. arXiv:2402.00326, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms
for large language models, 2024. URL https://arxiv.org/abs/2406.16838.

Chengxi Zeng, Tilo Burghardt, and Alberto M Gambaruto. Feature mapping in physics-informed
neural networks (pinns), 2024. URL https://arxiv.org/abs/2402.06955.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

12

https://github.com/codelion/optillm
https://github.com/codelion/optillm
https://arxiv.org/abs/2403.07187
https://arxiv.org/abs/2403.07187
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2502.00963
https://arxiv.org/abs/2502.00963
https://epubs.siam.org/doi/book/10.1137/1.9780961408817
https://epubs.siam.org/doi/book/10.1137/1.9780961408817
https://arxiv.org/abs/2210.07182
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=ADLaALtdoG
https://openreview.net/forum?id=ADLaALtdoG
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2406.16838
https://arxiv.org/abs/2402.06955


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Leo Zhiyuan Zhao, Xueying Ding, and B. Aditya Prakash. Pinnsformer: A transformer-based frame-
work for physics-informed neural networks, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/
abs/2306.05685.

13

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A ADDITIONAL INFORMATION & EXPERIMENTAL SETUPS

A.1 MATHEMATICAL METRICS

nRMSE. For S test cases, each with true solution u(s)(x, t) and solver prediction û(s)(x, t):

nRMSE =
1

S

S∑
s=1

∥u(s)(x, t)− û(s)(x, t)∥2
∥u(s)(x, t)∥2

where ∥ · ∥2 denotes the L2 norm. This metric normalizes the root mean squared error by the
magnitude of the true solution, enabling fair comparison across problems with different solution
scales.

Convergence Rate. To evaluate numerical correctness, we assess solver convergence behavior
across multiple grid resolutions. A robust solver should exhibit predictable error reduction follow-
ing E(h) ≈ Chp, where E(h) is the solution error on grid spacing h, C is a problem-dependent
constant, and p is the convergence order.

We estimate the empirical convergence order using two grid resolutions:

p ≈
log
(

E(h1)
E(h2)

)
log
(

h1

h2

)
For each generated solver, we evaluate performance on progressively refined grids (typically h, h/2,
h/4) and compute the average convergence order. Expected theoretical orders vary by numerical
method: first-order schemes (p ≈ 1), second-order finite difference/volume methods (p ≈ 2), and
spectral methods (exponential convergence). Most LLM-generated solvers achieve first-order con-
vergence, with occasional higher-order behavior depending on the chosen discretization scheme and
implementation quality.

A.2 NEURAL NETWORKS & FOUNDATION MODELS

Limitations of Cross-Paradigm Comparisons. Direct comparison between LLM-generated
solvers using traditional numerical methods and neural PDE solvers involves inherent methodolog-
ical challenges. Neural network baselines are drawn from prior literature with different experi-
mental conditions while our LLM approach benefits from extensive inference-time optimization
(debugging, refinement, best-of-n sampling) not applied to these baselines. Additionally, the com-
putational budgets differ fundamentally: neural methods require training time and data preparation,
while numerical methods require implementation and parameter tuning effort. These paradigmatic
differences make it difficult to establish truly equivalent experimental conditions. Our results should
be interpreted as demonstrating the promise of LLM-based solver generation rather than definitive
superiority over alternative approaches. Future work should focus on controlled comparisons with
standardized evaluation protocols across all methods.

We thus include the following reported numbers verbatim from the original papers of FNO (Li et al.,
2020), PirateNets (Wang et al., 2024b), PINNsFormer (Zhao et al., 2023), and UPS (Shen et al.,
2024) as examples of neural and foundation models only for the sake of completeness and to give
readers an at-a-glance sense of scale (parameters, memory, time/epoch) and accuracy on overlapping
PDE families, however, as each method utilizes distinct settings, we do not provide a direct ranking
between them. The following is intended only to document the resource scale and the published
accuracy on broadly overlapping PDE families.

FNO Reports results for 1D Burgers and 2D Navier–Stokes (space–time operator learning). Hard-
ware noted by the authors: single NVIDIA V100 16 GB.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: FNO on 1D Burgers (relative ℓ2 error at different spatial resolutions s).

Method s=256 512 1024 2048 4096 8192

FNO 0.0149 0.0158 0.0160 0.0146 0.0142 0.0139
Notes. Table reproduced from the paper; parameters, GPU memory, and time/epoch were not reported for the

Burgers experiment. See Table 5 for Navier–Stokes resource numbers as reported by the authors.

Table 5: FNO on 2D Navier–Stokes (relative ℓ2 error over different viscosities ν and dataset sizes
N ; per-epoch time reported by the authors).

Method Params Time/epoch ν=10−3, T=50, N=1000 ν=10−4, T=30, N=1000 ν=10−4, T=30, N=10000 ν=10−5, T=20, N=1000

FNO-3D 6,558,537 38.99 s 0.0086 0.1918 0.0820 0.1893
FNO-2D 414,517 127.80 s 0.0128 0.1559 0.0973 0.1556
U -Net 24,950,491 48.67 s 0.0245 0.2051 0.1190 0.1982
TF -Net 7,451,724 47.21 s 0.0225 0.2253 0.1168 0.2268
ResNet 266,641 78.47 s 0.0701 0.2871 0.2311 0.2753

Notes. Reported at 64×64 spatial resolution; FNO-3D convolves in space–time while FNO-2D uses 2D
convolutions with an RNN in time.

PirateNets has PINN backbone with physics-informed residual adaptive blocks. The paper empha-
sizes accuracy comparisons and ablations; it does not tabulate parameter counts, GPU memory, or
wall-clock per epoch. Below we list the state-of-the-art test errors the authors report.

Table 6: PirateNets: reported relative ℓ2 test errors across PDEs (paper’s Table 1).

Benchmark Error (PirateNet) Params GPU Mem Time/epoch

Allen–Cahn (1D) 2.24×10−5 — — —
Korteweg–De Vries (1D) 4.27×10−4 — — —
Grey–Scott (2D) 3.61×10−3 — — —
Ginzburg–Landau (2D) 1.49×10−2 — — —
Lid-driven cavity (2D) 4.21×10−2 — — —

Notes. Architecture details (e.g., depth/width) and training pipelines are provided, but resource metrics are not
tabulated.

PINNsFormer is a transformer-style PINN variant. The authors report parameter counts and train-
ing overhead (V100), and test errors on overlapping 1D PDEs.

Table 7: PINNsFormer: model size and training overhead (Appendix Table 4–5 in the paper).

Model Params GPU Mem (MiB) Time/epoch (s)

PINNsFormer (pseudo-seq. length k=5) 454,000 2,827 2.34
Notes. Reported on a single NVIDIA Tesla V100; overheads shown for k=5.

Table 8: PINNsFormer: reported test errors on 1D PDEs used widely in PINN literature.

PDE (dimension) Metric (paper) Error Params Time/epoch / GPU Mem

Convection (1D) rRMSE (≈ rel. ℓ2) 0.027 454k 2.34 s / 2,827 MiB
Reaction (1D) rRMSE (≈ rel. ℓ2) 0.030 454k 2.34 s / 2,827 MiB

Notes. Errors are taken directly from the paper’s main results tables; rRMSE is the paper’s standard relative ℓ2
metric. The reaction/convection formulations and sampling follow the setups specified in Zhao et al. (2023).

UPS learns to map symbolic PDE specifications and initial/boundary conditions to numerical so-
lutions. The architecture combines Fourier Neural Operators and transformers with autoregressive
decoding over space-time grids.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The model was trained on ∼20k PDE trajectories using a single NVIDIA A6000 GPU. Training
was run for 60,000 steps and completed in under 100 GPU-hours. UPS achieves strong sample
efficiency, outperforming baselines with 4× less data and 26× less compute.

Table 9: UPS: test errors on PDEBench benchmarks (relative ℓ2 or nRMSE as reported).

PDE Metric Error (UPS) Training Steps GPU Total GPU Hours

Advection (1D) nRMSE 2.20×10−3 60,000 A6000 ¡100
Burgers (1D) nRMSE 3.73×10−2 60,000 A6000 ¡100
Reaction–Diffusion (2D) nRMSE 5.57×10−2 60,000 A6000 ¡100
Navier–Stokes (2D) nRMSE 4.50×10−3 60,000 A6000 ¡100
Notes. Errors and training configuration are from the paper’s PDEBench experiments. Training used ∼20k

PDE samples across equations; GPU time and steps refer to total training, not per-PDE.

A.3 LLM-DRIVEN ARCHITECTURES

A.3.1 LLM MODELS USED IN SECTION 4 FOR CODE GENERATION

Table 10: LLM models used in Section 4 for solver generation; more LLMs – including the coding
and math-aware variants of these – are tested in Appendix B.1

LLM Type Access
Gemma 3 Non-reasoning Open Source
LLama 3.3 Non-reasoning Open Source
Qwen3 Non-reasoning Open Source
DeepSeek-R1 Reasoning Open Source
GPT-4o Non-reasoning API Service
o3 Reasoning API Service

A.3.2 AGENTIC WORKFLOWS

Frameworks like FunSearch (Romera-Paredes et al., 2023) and AIDE (Jiang et al., 2025b) wrap
an LLM in an iterative search/refinement loop. They treat the LLM as an agent that can branch, try
multiple approaches, and refine code via feedback.

FunSearch (DeepMind, 2023) pairs a pre-trained code-generating LLM with an automated eval-
uator in a loop. The LLM proposes candidate programs/solutions, an evaluator (a test or objective
function) checks them, and then the process generates new candidates (mutations, combinations)
based on feedback. FunSearch features algorithm discovery based on a program database. The pro-
gram database consists of a few “islands” of programs. The experimental setup is the same as (Li
et al., 2025). The number of islands is set to 4 and the island reset period to 3600s. The FunSearch
process runs for 32 iterations. In each iteration, the language model decoding temperature is set to
0.7.

AIDE (Weco AI, 2025) formulates code generation as a tree search problem. For a given high-level
task (like “build an ML pipeline that achieves X accuracy on Y dataset”), AIDE would have the LLM
propose a solution. Then it measures how good that solution is (it runs the code and sees accuracy).
If not satisfied, AIDE can either refine the current solution (edit some parts of the code via another
LLM call) or try a different approach (branch out in the search tree). Over multiple iterations, it
explores the space of programs. The experimental setup is the same as (Li et al., 2025). AIDE
runs for 96 steps and the max debug depth, debug probability, and number of drafts are set to 5, 0.9,
and 24, respectively. The language model decoding temperature is set to 0.5 for code generation
following the original paper (Jiang et al., 2025b).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 11: nRMSE values for Agentic Workflows on different PDEs. Results from Li et al. (2025)

Advection Burgers Reaction-Diffusion Navier-Stokes Darcy
AIDE 1.03e-3 1.05e-4 5.07e-2 5.77e-2 4.78e-3

FunSearch 1.05e-3 1.13e-4 3.72e-2 5.86e-2 4.78e-3

A.3.3 OTHER RELATED WORK

Recent work Soroco et al. (2025) introduces PDE-Controller, a framework that fine-tunes LLMs
specifically for PDE control problems. Their approach trains specialized models for autoformaliza-
tion (converting natural language to formal specifications), program synthesis, and multi-step rea-
soning through reinforcement learning from human feedback (RLHF). While demonstrating strong
performance on their target domains, this approach differs from PDE-SHARP in several key aspects.

Table 12: PDE-Controller: Training Requirements and Performance

Metric Value
Training Data
Heat equation samples 867,408
Wave equation samples 845,088
Total training samples 1,712,496

Evaluation Data
Synthetic test samples 426,432
Manual test problems 34

Performance (Synthetic)
Autoformalization accuracy (IoU) 99.2%
Code executability 97.99%

Performance (Manual)
Autoformalization accuracy (IoU) 68.0%
Code executability 91.2%

Scope
PDE types covered 2 (heat, wave)
Spatial dimensions 1D

While effective for specific classes of PDEs, the fine-tuning approach presents several limitations
compared to LLM-driven approaches using test-time computing: (1) Computational overhead:
Requires extensive fine-tuning of multiple specialized models (translator, controller, coder) with
over 1.7M training samples; (2) Domain specificity: Limited to only heat and wave equations in
1D, requiring retraining for new PDE types; (3) Data requirements: Needs large-scale synthetic
data generation and manual curation by domain experts; (4) Scalability constraints: Each new PDE
family would require collecting new training data and retraining models; (5) Generalization gap:
Performance drops significantly on manual problems (99.2% to 68.0% accuracy), indicating limited
robustness to real-world variations.

PDE-SHARP offers more flexibility across PDE types without domain-specific training, though
potentially at the cost of specialized performance on specific equation families. The fundamental
trade-off lies between the specialized efficiency of fine-tuned approaches versus the broader appli-
cability and reduced computational overhead of general prompting strategies.

A.3.4 OPTILLM

We use the OptiLLM framework from github.com/codelion/optillm as a baseline to test
PDE-SHARP. OptiLLM is an optimizing inference proxy that implements 20+ state-of-the-art tech-
niques to improve LLM accuracy and performance on reasoning tasks without requiring any model
training or fine-tuning. We test three of OptiLLM’s implemented techniques in our study.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

CoT (Chain-of-Thought) with Reflection. Implements chain-of-thought reasoning with struc-
tured <thinking>, <reflection> and <output> sections to enhance reasoning quality through ex-
plicit self-evaluation. The approach generates intermediate reasoning steps in the thinking phase,
critically reviews the reasoning in the reflection phase, and produces the final output, enabling im-
proved accuracy on complex reasoning tasks without requiring model fine-tuning.

MoA (Mixture-of-Agents). Combines responses from multiple model critiques in a collaborative
framework where 3 different agent perspectives are aggregated to produce higher-quality solutions.

CePO (Cerebras Planning and Optimization). Combines Best-of-n sampling (without code ex-
ecution), Chain-of-Thought reasoning, Self-Reflection, and Self-Improvement in a four-stage pro-
cess: plan generation with confidence scoring, initial solution development, plan refinement through
inconsistency analysis, and final solution production. The method applies Best-of-n to multiple so-
lution candidates with optional plan diversity, using parameters like planning n proposals and
planning m maximum attempts to generate robust solutions for complex reasoning tasks. The
following are the default parameters used in this study.

Table 13: Default configuration values for CePO planning and verification stages

Parameter Description Default Value
--cepo bestofn n Number of responses to be generated in best of n stage 3
--cepo bestofn temperature Temperature for verifier in best of n stage 0.1
--cepo bestofn max tokens Max tokens for verifier in best of n stage 4096
--cepo bestofn rating type Rating type (”absolute” or ”pairwise”) "absolute"
--cepo planning n Number of plans generated in planning stage 3
--cepo planning m Attempts to generate n plans in planning stage 6
--cepo planning temperature step1 Temperature in step 1 of planning stage 0.55
--cepo planning temperature step2 Temperature in step 2 of planning stage 0.25
--cepo planning temperature step3 Temperature in step 3 of planning stage 0.1
--cepo planning temperature step4 Temperature in step 4 of planning stage 0
--cepo planning max tokens step1 Max tokens in step 1 of planning stage 4096
--cepo planning max tokens step2 Max tokens in step 2 of planning stage 4096
--cepo planning max tokens step3 Max tokens in step 3 of planning stage 4096
--cepo planning max tokens step4 Max tokens in step 4 of planning stage 4096
--cepo print output Whether to print the output of each stage False
--cepo config file Path to CePO configuration file None
--cepo use plan diversity Use additional plan diversity step False
--cepo rating model Rating model (if different from completion) None

A.3.5 CODEPDE ( (LI ET AL., 2025))

CodePDE. CodePDE is an inference framework for LLM-driven PDE solver generation that
frames PDE solving as a code generation task. The framework operates through a five-step pro-
cess: (1) Task Specification converts PDE problems into natural language descriptions including
governing equations, domain specifications, boundary conditions, and initial conditions; (2) Code
Generation uses chain-of-thought prompting to instruct models to generate complete solver imple-
mentations with predefined function signatures; (3) Debugging performs iterative self-debugging for
up to 4 rounds when solvers encounter execution errors, feeding error traces back to the LLM for
autonomous correction; and (4) Evaluation assesses solver performance using normalized root mean
squared error (nRMSE), convergence tests, and execution time; For our comparison, we use Code-
PDE with the same setup as (Li et al., 2025) with steps 1-4 (reasoning + debugging), generating 32
solver samples with best-of-32 selection, using up to 4 debugging iterations per solver.

CodePDE-R. CodePDE-R extends the base CodePDE framework by incorporating the solver re-
finement step (step 5). This variant selects the 5 best-performing programs from the reasoning +
debugging stage as ”seed” programs for refinement. The refinement process provides the nRMSE
obtained during evaluation along with the solver implementation back to the LLM, instructing it to
analyze execution results, identify numerical instabilities and bottlenecks, and generate improved
implementations accordingly. For each seed program, the framework generates 4 refined versions
across different refinement configurations (using 3, 4, or 5 seed implementations), resulting in 12 re-
fined programs total. The final result reports the best nRMSE among these 12 refined samples. This

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

iterative feedback-driven optimization enables models to systematically improve solver accuracy
and efficiency beyond the initial generation and debugging phases.

A.4 ADDITIONAL INFORMATION ON FRAMEWORK COST

Table 3 shows the average API call cost for each framework using GPT-4o as the code generator
LLM. GPT-4o input cost is $2.50 per 1M tokens, and the output cost is $10.00 per 1M tokens. Table
14 shows the average input-output counts for each framework from Section 4. An NVIDIA T4 GPU
costs $0.35 per hour, which is used to calculate the total average costs in Figure 8.

Table 14: Approximation of the total input-output counts for running each framework once

Framework # Inputs # Output
OptiLLM (CoT) 48,000 105,600
OptiLLM (MoA) 200,000 422,400
OptiLLM (CePO) 600,000 105,600
CodePDE 102,400 294,400
PDE-SHARP 600,000 450,800

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 RESULTS WITH DIFFERENT LLMS

The following additional LLM models are tested for code generation in addition to the results of
Table 2.

Table 15: Additional LLMs

LLM Type Access
Qwen3-Coder (Team, 2025) Coding-specific Open Source
Code Llama (Rozière et al., 2024) Coding-specific Open Source
GPT-5 Non-reasoning API Service
DeepSeekMath (Shao et al., 2024) Mathematical reasoning Open Source
DeepSeek-Coder (Guo et al., 2024) Coding-specific Open Source
MathCoder2-DeepSeekMath (Lu et al., 2024) Math aware Coding-specific Open Source

Table 16: nRMSE comparison of the baseline frameworks using different LLMs.

Advection Burgers Reaction-Diffusion Navier-Stokes Darcy

OptiLLM-CoT

Qwen3-Coder 4.67e-03 1.52e-03 9.38e-01 2.63e-01 6.34e-01
GPT-5 5.36e-03 1.88e-03 1.04e+00 2.83e-01 7.18e-01
DeepSeekMath 4.89e-03 3.12e-04 2.38e-01 8.51e-02 5.22e-03
DeepSeek-Coder 4.89e-03 3.04e-04 2.41e-01 8.72e-02 5.11e-03
MathCoder2-DeepSeekMath 4.89e-03 3.27e-04 2.43e-01 8.66e-02 5.29e-03

OptiLLM-MoA

Qwen3-Coder 1.01e-03 3.45e-04 9.68e-02 1.79e-02 5.12e-03
GPT-5 4.18e-03 4.11e-04 1.14e-01 2.02e-02 1.89e-02
DeepSeekMath 1.32e-03 2.66e-04 3.57e-02 1.72e-02 5.23e-03
DeepSeek-Coder 1.32e-03 3.04e-04 1.55e-01 1.78e-02 5.18e-03
MathCoder2-DeepSeekMath 1.01e-03 2.66e-04 4.07e-02 1.74e-02 5.22e-03

OptiLLM-CePO

Qwen3-Coder 1.01e-03 3.23e-04 8.91e-02 1.97e-02 1.83e-02
GPT-5 3.17e-03 3.89e-04 1.03e-01 2.24e-02 4.72e-02
DeepSeekMath 9.98e-04 2.55e-04 2.45e-02 1.85e-02 4.92e-03
DeepSeek-Coder 1.01e-03 2.66e-04 1.47e-01 1.91e-02 4.92e-03
MathCoder2-DeepSeekMath 9.98e-04 3.04e-04 3.56e-02 1.93e-02 4.33e-03

CodePDE

Qwen3-Coder 4.89e-03 1.35e-03 9.55e-01 2.59e-01 6.57e-01
GPT-5 5.75e-03 1.63e-03 1.08e-01 2.82e-01 7.91e-01
DeepSeekMath 5.10e-03 2.87e-04 2.45e-02 7.91e-02 4.97e-03
DeepSeek-Coder 4.69e-03 2.87e-04 2.78e-01 7.82e-02 5.02e-03
MathCoder2-DeepSeekMath 5.10e-03 3.15e-04 2.32e-02 7.84e-02 4.97e-03

CodePDE-R

Qwen3-Coder 9.74e-04 3.60e-04 9.13e-02 9.67e-02 4.90e-02
GPT-5 1.14e-03 4.41e-04 1.07e-01 7.93e-02 5.81e-02
DeepSeekMath 9.89e-04 2.62e-04 1.47e-02 3.63e-02 5.01e-03
DeepSeek-Coder 9.89e-04 3.15e-04 1.47e-02 2.67e-02 6.01e-03
MathCoder2-DeepSeekMath 9.74e-04 2.62e-04 1.47e-02 1.65e-02 4.97e-03

PDE-SHARP

Qwen3-Coder 9.74e-04 2.97e-04 5.39e-03 2.80e-02 7.80e-03
GPT-5 1.01e-03 3.45e-04 7.78e-03 3.19e-02 9.93e-03
DeepSeekMath 7.46e-04 1.55e-04 2.39e-03 1.47e-02 4.78e-03
DeepSeek-Coder 7.46e-04 2.53e-04 3.67e-03 2.76e-02 4.78e-03
MathCoder2-DeepSeekMath 5.54e-04 1.38e-04 2.99e-03 1.47e-02 3.93e-03

B.2 PDE-SHARP ABLATION STUDIES

In this section, we present ablation study results on PDE-SHARP. Note that we take the default
PDE-SHARP framework to be one used in Section 4. The ablation studies of this section each target
a different aspect of PDE-SHARP’s design.

B.2.1 ANALYSIS PROMPTING STRATEGY

We compare the following prompting strategies for the Analysis stage.

• Multi-Step prompting (PDE-SHARP default)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Single Prompt (all the PDE-SHARP steps merged into one)
• LLM-generated multi-step prompting
• LLM-generated single prompt

For the LLM-generated alternatives, the LLM, GPT-4o in this ablation, is first asked to generate
either a series of prompts or a single prompt to run as the analysis stage for a give PDE before
proceeding to the code generation stage. The Synthesis stage is done exactly as in Section 4. Table
17 summarizes these results.

Table 17: nRMSE comparison of the baseline frameworks using different Analysis prompting strate-
gies.

Advection Burgers Reaction-Diffusion Navier-Stokes Darcy

Multi-Step Prompting (Default)

Gemma 3 1.01e-03 5.60e-04 3.01e-03 3.14e-02 1.72e-02
LLaMA 3.3 9.98e-04 4.61e-04 3.61e-03 5.06e-02 1.72e-02
Qwen 3 7.76e-04 2.97e-04 2.32e-03 2.80e-02 4.80e-03
DeepSeek-R1 5.24e-04 1.48e-04 2.29e-03 1.37e-02 4.74e-03
GPT-4o 6.11e-04 2.31e-04 2.29e-03 1.51e-02 3.97e-03
o3 9.74e-04 3.42e-04 5.78e-03 1.89e-02 7.78e-03

Single Prompt (Default merged into one)

Gemma 3 1.03e-03 4.89e-04 1.18e-02 4.31e-02 8.11e-03
LLaMA 3.3 1.05e-03 4.79e-04 1.75e-02 7.32e-02 1.79e-02
Qwen 3 8.01e-04 3.11e-04 2.41e-03 4.94e-02 4.91e-03
DeepSeek-R1 6.53e-04 1.56e-04 2.37e-03 1.41e-02 4.83e-03
GPT-4o 7.39e-04 3.48e-04 3.33e-03 2.62e-02 4.13e-03
o3 8.70e-04 4.54e-04 3.89e-03 2.96e-02 4.87e-03

LLM-Generated Multi-Step Prompting

Gemma 3 1.02e-03 4.82e-04 9.21e-02 7.27e-02 7.93e-03
LLaMA 3.3 1.04e-03 4.72e-04 8.69e-02 7.24e-02 1.77e-02
Qwen 3 1.89e-03 6.05e-04 3.39e-02 3.89e-02 4.85e-03
DeepSeek-R1 8.37e-04 5.30e-04 1.33e-02 3.40e-02 4.85e-03
GPT-4o 7.27e-04 4.15e-04 1.31e-02 2.59e-02 4.05e-03
o3 6.96e-04 7.48e-04 1.84e-02 3.93e-02 4.85e-03

LLM-Generated Single Prompt

Gemma 3 1.04e-03 4.95e-04 1.29e-01 5.42e-02 8.19e-03
LLaMA 3.3 1.06e-03 6.87e-04 1.81e-01 6.43e-02 1.81e-02
Qwen 3 1.13e-03 6.19e-04 8.47e-02 3.98e-02 3.95e-03
DeepSeek-R1 9.59e-04 4.95e-04 1.39e-02 4.43e-02 4.85e-03
GPT-4o 2.47e-03 7.22e-04 2.36e-02 3.65e-02 4.85e-03
o3 9.19e-04 7.48e-04 3.91e-02 3.01e-02 5.92e-03

Our experiments demonstrate that the Multi-Step Prompting strategy consistently yields the best
performance across all LLMs and PDEs. When all the PDE-SHARP Analysis prompts are merged
together into a single prompt, LLMs tend to not follow the instructions thoroughly as they become
too long to follow. Moreover, when the LLM is tasked with generating the prompts for the anal-
ysis stage, it is observed that many details, such as checking for hybrid approaches or doing a
rigorous numerical stability analysis is overlooked. Analyzing the strategies used in the generated
solvers (Table 17) for the reaction-diffusion task is a great demonstration of this shortcoming as re-
action diffusion is more sensitive to method choice and stability analysis (Figure 17). Naturally, the
most pronounced impact is observed on the Reaction-Diffusion PDE, where the default multi-step
approach achieves the lowest average nRMSE of 2.88e-03 across all LLMs. In contrast, the av-
erage nRMSE rises to 6.88e-03 with Single Prompting, 4.30e-02 with LLM-Generated Multi-Step
Prompting, and peaks at 7.86e-02 with LLM-Generated Single Prompting. This corresponds to a
27× increase in error from the best case to the worst, highlighting the critical role of well-structured
multi-step analysis in improving solution accuracy for complex PDEs.

B.2.2 THE EFFECTS OF STABILITY ANALYSIS

To evaluate the individual contributions of PDE-SHARP’s key components — the stability anal-
ysis in the Analysis stage and the tournaments in the Synthesis stage — we conduct an ablation
study examining four variants: (1) the default framework with both mathematical stability analysis
and tournaments, (2) tournaments without stability analysis, (3) stability analysis without tourna-
ments (best-of-32 sampling with stability analysis), and (4) neither component (best-of-32 sampling
without stability analysis). Figure 9 demonstrates that mathematical stability analysis provides sub-
stantial accuracy improvements across all tested PDEs. Removing stability analysis while main-
taining tournaments increases average nRMSE by 2-8× depending on the PDE complexity. The
tournaments component shows mixed but generally positive effects, with the largest improvements

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

observed for reaction-diffusion and Darcy flow problems. Most critically, removing both compo-
nents results in significant performance degradation, with nRMSE increases of 5-45× for complex
PDEs like Darcy flow. These results confirm that PDE-SHARP’s mathematical analysis stage is
essential for generating numerically stable solvers, while the tournament-based refinement provides
additional accuracy gains particularly for challenging nonlinear problems.

Figure 9: Ablation study of PDE-SHARP components across five PDE tasks. Results show that
mathematical stability analysis is critical for solver accuracy, while tournaments provide additional
improvements. Removing both components leads to significant performance degradation, particu-
larly for complex PDEs like Darcy flow.

The stability analysis component of PDE-SHARP plays a crucial role in guiding solver strategy
selection. Figure 18 illustrates the percentage of hybrid analytical-numerical versus purely numer-
ical approaches chosen by each PDE-SHARP variant for the reaction-diffusion equation. The de-
fault framework and the variant without tournaments both achieve 100% hybrid approach selection,
demonstrating that mathematical stability analysis consistently identifies the superiority of hybrid
methods for this PDE. In contrast, removing stability analysis results in predominantly numerical
approaches (87-93%), as the framework lacks the mathematical insight to recognize that the reac-
tion component admits an analytical solution. This strategic difference directly explains the accu-
racy improvements observed in the previous ablation study, as hybrid approaches achieve superior
numerical stability and precision for reaction-diffusion problems.

B.2.3 REASONING VS. NON-REASONING LLMS FOR CODE GENERATION IN GENESIS

Experiments indicate that in PDE-SHARP, there is negligible difference between the final results
using reasoning, non-reasoning, coding-specific, and mathematical LLM models (Tables 10 & 15)
as the code generator in the Genesis stage. See Tables 2 and 16 for nRMSE results.

B.2.4 TEST-TIME SCALING FOR PDE-SHARP

Based on our test-time scaling study (Figure 10) for PDE-SHARP and to be consistent with findings
from (Li et al., 2025) on the same PDE tasks, we use n = 32 initial solver candidates in our
experiments. This choice balances computational efficiency with sufficient diversity for effective
solver selection in the subsequent Synthesis stage.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 10: Varying the number of solver samples generated for each LLM and each PDE family in
PDE-SHARP.

B.2.5 STRUCTURE OF THE TOURNAMENTS

In this ablation study, we keep the default PDE-SHARP strategy from Section 4 for the Analysis and
Genesis stages and replace the Synthesis stage with various strategies to study its effectiveness. In
PDE-SHARP’s default Synthesis stage in Section 4, three LLM instances, which we call ”judges”,
are tasked with the selection and hybridization tournaments. To achieve the best performance (Table
2) — i.e. fewer tournament rounds to get the highest performing PDE solver codes — these three
judges are taken to be a mixture of reasoning and non-reasoning LLMs (o3, DeepSeek-R1, and GPT-
4o) in Section 4. This set of LLM judges are chosen to balance efficient code generation and code
stability details with the detailed reasoning and attention to numerical implementation details that
the reasoning models bring in. In this section, we consider other possibilities for the three judges

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

to justify our choice of LLM judges. Tables 2 and 16 demonstrate that using different LLM models
to generate 32 samples of solver codes leads to overall negligible difference in the final results in
PDE-SHARP as the tournaments lead to solvers robust to LLM choice. Thus, we stick to the default
GPT-4o for code generation in this ablation study and use the same 32 samples generated by GPT-
4o for all of the stage 3 strategies studied. Note that in these tournaments, feedback type is set
to be nRMSE similar to Section 4. Results for different feedback types are presented later in this
section. Since numerous LLM configurations exist, we select a minimal representative subset from
each category. Current models have sufficient input capacity for tournament solver lists; future work
could incorporate summarizer agents to compress information for smaller models.

We test six tournament structure categories:

1. Mixed Judges (Default): Combines reasoning and non-reasoning models to balance code genera-
tion efficiency with detailed numerical reasoning:

• o3 + GPT-4o + DeepSeek-R1 (Section 4 default)
• o3 + GPT-4o + GPT-4o
• DeepSeek-R1 + GPT-4o + GPT-4o

2. All Reasoning Judges: Uses only reasoning-capable models:

• o3 + o3 + o3
• DeepSeek-R1 + DeepSeek-R1 + DeepSeek-R1
• o3 + o3 + DeepSeek-R1

3. All Non-Reasoning Judges: Uses only standard language models:

• GPT-4o + GPT-4o + GPT-4o

4. Best-of-32 Baseline: Executes all 32 solvers from Analysis and Genesis stages without tourna-
ments.

5. Fixed Criteria Judging: Applies categories 1-3 with predetermined evaluation criteria:

• Numerical stability and convergence properties
• Computational efficiency and scalability
• Mathematical correctness and precision
• Implementation robustness and error handling
• Solution accuracy on benchmark problems

6. Self-Generated Criteria: Applies categories 1-3 where judges first generate their own evaluation
criteria before selection.

All strategies use identical 32 solver samples from GPT-4o code generation to ensure fair compari-
son.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.2.6 HYBRIDIZATION FEEDBACK TYPE

Figure 11: Impact of feedback type on PDE-SHARP solver accuracy across five PDE tasks. Per-
formance is measured using both nRMSE (light bars) and residual evaluation (dark bars) metrics.
nRMSE feedback consistently achieves superior performance when evaluated on the nRMSE metric,
demonstrating the importance of alignment between feedback type and evaluation criteria. Residual
feedback provides a physics-informed alternative when reference solutions are unavailable, while
no feedback relies purely on judge code analysis. The choice of feedback type allows adaptation to
different research scenarios from benchmark validation to real-world cases with limited reference
data.

Remark: LLM-suggested Feedback Types. In this part of the section on feedback types, we
provide examples of LLM-suggested feedback for each of the tested PDE tasks. The results are
generated using GPT-4o as follows.

(1) Advection: ∂tu+ β ∂xu = 0 (periodic; β constant)

General feedback types:

• nRMSE
• PDE residual L2: ∥r∥2 with r := ∂tu+ β ∂xu, discretized consistently with the scheme.
• BC/IC mismatch: ∥u(t0, ·)− u0(·)∥2, and periodic-wrap mismatch at boundaries.
• Empirical convergence order p via two grids (h, h/2):

p ≈
log
(
E(h)/E(h/2)

)
log 2

.

• CFL ratio monitor:

CFLmax = max
x

|β|∆t

∆x
(used as a stability penalty when > target).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

PDE-specific feedback types:

• Phase-error (Fourier) metric — detects dispersive drift from exact shift:
For any wavenumber k, let ûk(t) be the DFT of u(·, t). The analytic evolution is

ûk(t) = ûk(0) e
−ikβt.

Define

ϵphase(t) =

(∑
k∈K

wk

∣∣∣arg ûk(t)− arg
(
ûk(0) e

−ikβt
)∣∣∣2)1/2

.

(Choose K = dominant modes; wk normalize by spectral energy.)
Why: linear advection is phase-exact; any phase drift degrades solution even when L2 error
is small.

• Amplitude-damping metric — detects artificial diffusion:

ϵamp(t) =

(∑
k∈K

wk

∣∣ |ûk(t)| − |ûk(0)|
∣∣2)1/2

.

Why: upwinding or overly diffusive fluxes damp modes; useful when the reference data
were generated by a specific finite-volume scheme and you want to “match” it. (This
is exactly what happened in your advection case study where nRMSE feedback nudged
judges toward a MUSCL/TVD FV scheme instead of an analytical shifter.)

• Invariant-conservation drift — detects systematic bias:
Mass and L2 are constant for periodic, constant-β advection:

δmass(t) =

∣∣∣∫ 1

0
u(x, t) dx−

∫ 1

0
u0(x) dx

∣∣∣∣∣∫ 1

0
u0(x) dx

∣∣ , δL2(t) =
∥u(·, t)∥2 − ∥u0∥2

∥u0∥2
.

Why: catches subtle dissipation or numerical pumping even when nRMSE is small.

(2) Burgers: ∂tu+ ∂x(u
2/2) = ν ∂xxu (periodic; ν = 0.01)

General feedback types:

• nRMSE, PDE residual L2 with r := ∂tu+ ∂x(u
2/2)− ν∂xxu.

• Convergence order p (as above).

• Max CFL monitor with characteristic speed λmax = |u|∞ · ∆t
∆x .

• Boundary/periodicity mismatch.

PDE-specific feedback types:

• Entropy inequality violation (integrated) — penalizes non-admissible shocks/oscilla-
tions:
With entropy η(u) = 1

2u
2, viscous Burgers satisfies:

d

dt

∫ 1

0

1
2u

2 dx = −ν

∫ 1

0

(∂xu)
2 dx ≤ 0.

Define

Φentropy =
∑
n

max

(
0,

∫ 1

0

1
2u

2(x, tn+1) dx−
∫ 1

0

1
2u

2(x, tn) dx

)
.

Why: any net increase flags spurious energy injection near steep gradients.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

• Total variation (TV) growth — damps Gibbs and enforces TVD behavior:

TV(u) =
∑
j

|uj+1 − uj |, ΦTV =
∑
n

max
(
0, TV(un+1)− TV(un)

)
.

Why: shocks should not create oscillations; TV growth is a crisp signal.
• Mean (mass) conservation drift — periodic Burgers conserves

∫
u dx:

δmean(t) =

∣∣∣∫ 1

0
u(x, t) dx−

∫ 1

0
u0(x) dx

∣∣∣∣∣∣∫ 1

0
u0(x) dx

∣∣∣ .

Why: catches subtle bias from asymmetric limiters or boundary handling.

(3) Reaction–Diffusion (Fisher–KPP form): ∂tu−ν∂xxu−ρ u(1−u) = 0 (periodic; ν = 0.5,
ρ = 1)

General feedback types:

• nRMSE, PDE residual L2 with r := ∂tu− ν∂xxu− ρu(1− u).
• Convergence order p.

• Diffusive CFL monitor (for explicit pieces): max
ν∆t

∆x2
.

PDE-specific feedback types:

• Maximum-principle / positivity violation — enforces physically meaningful range:
For logistic reaction, the continuous solution stays in [0, 1] when u0 ∈ [0, 1]. Define

ΦMP =

(∫ 1

0

(max(0,−u))
2
dx

)1/2

+

(∫ 1

0

(max(0, u− 1))
2
dx

)1/2

.

Why: catches overshoot/undershoot from aggressive time steps or limiters.
• Split-step (hybrid) consistency error — encourages the analytically-integrated reaction

that your analysis stage favors:
If Strang/IMEX or analytical-reaction is used, compare the reaction sub-update to the exact
ODE update:

R∆t(u) =
u eρ∆t

1 + u (eρ∆t − 1)
.

Define εreact = ∥un+ 1
2 −R∆t(u

n)∥2 (or analogous placement per scheme).
Why: rewards the hybrid analytical–numerical strategy your framework discovers for this
PDE.

• Stiffness-aware step safety — keeps reaction eigenvalue under control for explicit parts:

Spectral radius for reaction J = ρ(1− 2u) ⇒ |ρ(J)| ≤ ρ. Penalize maxn maxx
∆t ρ

ρexact
>

1.
Why: prevents overshoot/explosions when reaction is treated explicitly.

(4) Compressible Navier–Stokes (Γ = 5/3):

∂tρ+ ∂x(ρv) = 0,

ρ (∂tv + v∂xv) = −∂xp+ η ∂2
xv +

(
ζ +

η

3

)
∂x(∂xv),

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

∂t

(
ϵ+

ρv2

2

)
+ ∂x

[(
ϵ+ p+

ρv2

2

)
v − v σ′

]
= 0, ϵ =

p

Γ− 1
, σ′ =

(
ζ +

4

3
η

)
∂xv.

General feedback types:

• nRMSE on chosen state(s) (ρ, v, p, or conservative variables).
• Vector PDE residual (mass, momentum, energy) in normalized L2 (sum of per-equation

residual norms).
• Convergence order p.
• Maximum acoustic CFL:

max
(|v|+ c)∆t

∆x
, c =

√
Γp/ρ.

• BC/periodicity mismatch.

PDE-specific feedback types:

• Conservation-law drift — ensures discrete conservation:

δmass(t) =

∣∣∫ ρ(x, t) dx−
∫
ρ(x, 0) dx

∣∣∫
ρ(x, 0) dx

, δmom(t) =

∣∣∫ ρv dx−
∫
ρ0v0 dx

∣∣∫
|ρ0v0| dx

,

δenergy(t) =

∣∣∣∫ (ϵ+ ρv2

2

)
dx−

∫ (
ϵ0 +

ρ0v
2
0

2

)
dx
∣∣∣∫ (

ϵ0 +
ρ0v2

0

2

)
dx

.

Why: small global drifts reveal flux/boundary inconsistencies even if pointwise errors look
OK.

• Positivity violations — hard physical constraints:

Φρ,p = ∥min(0, ρ)∥1 + ∥min(0, p)∥1.
Why: avoids catastrophic instabilities (negative density/pressure).

• Entropy production sign check — flags nonphysical dissipation/oscillations:
For ideal gas, specific entropy s = ln(p)− Γ ln(ρ). Define

σ(t) =

∫
ρs dx, Φentropy =

∑
n

max(0,−(σn+1 − σn)).

Why: with viscosity, total entropy should not decrease; negative production indicates spu-
rious behavior.

• Rankine–Hugoniot defect (interface balance) — shock-consistency check in conserva-
tive form:
For each interface i+ 1

2 and conserved vector U = (ρ, ρv,E), flux F, penalize the discrete
jump

ΦRH =
∑
n,i

∥∥∥∥∥Un+1
i − Un

i

∆t
+

Fn
i+ 1

2

− Fn
i− 1

2

∆x

∥∥∥∥∥
1

.

Why: targets the exact property your solver should satisfy at shocks/contacts.

(5) Darcy flow (steady, Dirichlet): −∇ · (a(x)∇u) = β, u|∂Ω = 0

General feedback types:

• PDE residual norms at steady state:

∥r∥2 = ∥β +∇ · (a∇uh)∥L2(Ω).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

• Boundary condition residual: ∥uh∥L2(∂Ω) (often ≈ 0 if enforced strongly; still useful
with FV).

• Grid-refinement check using energy-norm proxy below.

PDE-specific feedback types:

• Residual-jump a-posteriori estimator (energy-norm surrogate) — standard for ellip-
tics; localizes errors cheaply:
For each cell K with diameter hK ,

rK = β +∇ · (a∇uh)
∣∣
K
, Je = a∇uh · ne on edge e,

η2 =
∑
K

(
h2
K∥rK∥2L2(K) +

∑
e⊂∂K

he∥Je∥2L2(e)

)
.

Why: mirrors FE error estimators; correlates with the true a-energy error without ground
truth.

• Local mass balance (cell-wise) — ensures flux consistency:

Φmass =
∑
K

∣∣∣∣∫
K

β dx+

∫
∂K

(a∇uh) · nds

∣∣∣∣ .
Why: FV/FD/FE schemes should balance source with flux divergence on each control vol-
ume.

• Global compatibility check — sanity for data/boundary handling:∣∣∣∣∫
Ω

β dx+

∫
∂Ω

(a∇uh) · nds

∣∣∣∣ .
Why: catches solver or BC mishandling even when ∥r∥2 looks small.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

B.2.7 NUMBER OF ROUNDS & CYCLES

To determine the optimal number of hybridization rounds and rejudging cycles, we conduct an
analysis tracking solver accuracy improvements across eight total rounds (four initial hybridization
rounds plus four rejudging cycle rounds) for all tested PDEs. Figure 12 demonstrates the round-by-
round progression of best achieved nRMSE in that round (among the tested three), with a vertical
dashed line separating the initial hybridization cycle from the rejudging cycle.

The results reveal different patterns across different PDE types. Most PDEs achieve optimal perfor-
mance within 3-4 initial hybridization rounds, after which additional rounds provide saturation or
even slight performance degradation. Advection presents a notable exception, continuing to benefit
from one rejudging cycle. This stems from a dataset-specific subtlety: while analytical solutions
exist for the mathematical advection equation, the PDEBench reference solutions were generated
using finite-volume methods. The rejudging cycle enables PDE-SHARP to adapt from initially fa-
voring analytical approaches to numerical methods that better match the dataset’s characteristics.
This mostly occurs when the feedback type is set to be nRMSE in the tournaments. See Figure 16
for results using other feedback types (residual feedback, no feedback) for the advection PDE.

Figure 12: Progression of the best nRMSE of each hybridization round for each PDE task

Table 18: Average number of Hybridization Rounds, Rejudging Cycles, and total evaluations

PDE # Hybrid. Rounds # Rejudging Cycles # Total Evals
Advection 4 + 4 1 24
Burgers 3 0 9
Reaction-Diffusion 4 0 12
Navier-Stokes 3 0 9
Darcy 4 0 12

For four out of five tested PDEs, PDE-SHARP achieves optimal results using fewer than 13 solver
evaluations on average (Table 18), with most improvement occurring in the initial 3-4 rounds, re-
sulting in a computational advantage over baseline methods requiring 30+ evaluations, while the
rejudging cycle provides additional benefits only for specific cases.

B.3 ANALYSIS OF THE GENERATED SOLVER CODE QUALITY

Beyond solution accuracy, we analyze the computational and numerical properties of generated
solver code across all methods. This analysis examines three key quality indicators: execution time
efficiency, library usage, and empirical convergence rates. These metrics reveal whether frameworks

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

generate production-ready code with proper numerical characteristics, not merely code that produces
correct outputs through inefficient or unstable implementations.

Figure 13: Average execution times across PDE tasks. PDE-SHARP achieves lower execution times
than the average baseline in 4/5 cases. For reaction-diffusion, higher execution time reflects the
rigorous numerical methods selected by stability analysis as expected, which produce significantly
higher accuracy solvers (Table 2).

(a) Burgers (b) Reaction-Diffusion

(c) Navier-Stokes (d) Darcy

Figure 14: Convergence order distribution across different PDEs. The convergence order distribu-
tion for the advection PDE appears in Figure 4b.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

(a) Advection (b) Burgers

(c) Reaction-Diffusion (d) Compressible Navier-Stokes

(e) Darcy

Figure 15: Solver library usage across different PDEs.

PDE Method SciPy JAX NumPy PyTorch

Advection PDE-SHARP 10% 17% 48% 25%
Burgers PDE-SHARP 10% 32% 25% 33%
Reaction-Diffusion PDE-SHARP 8% 1% 49% 25%
Comp. Navier-Stokes PDE-SHARP 7% 37% 30% 26%
Darcy PDE-SHARP 43% 15% 15% 27%

Table 19: PDE-SHARP decreases Python usage and increased JAX + SciPy usage overall across all
tested PDEs

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

C ADDITIONAL DETAILS ON THE TESTED PDES

In this section of the appendix, we present the differential equations we study in our experiments.

C.1 ADVECTION

The 1D advection equation is a hyperbolic PDE which models processes such as fluid flow, heat
transfer, and biological dynamics. It is given by{

∂tu(t, x) + β∂xu(t, x) = 0, x ∈ (0, 1), t ∈ (0, 2]

u(0, x) = u0(x), x ∈ (0, 1)

where β is a constant representing the advection speed. In our experiments, we assume the peri-
odic boundary condition and report results for the β = 0.1 case using the advection dataset from
PDEBench.

C.2 BURGERS

The Burgers equation, a fundamental PDE in fluid mechanics, is used to model various nonlinear
phenomena including shock waves and traffic flow. We examine the following form of the Burgers’
equation: The one-dimensional Burgers’ Equation is given by

{
∂tu(x, t) + ∂x

(
u2(x,t)

2

)
= ν∂xxu(x, t), x ∈ (0, 1), t ∈ (0, 1]

u(x, 0) = u0(x), x ∈ (0, 1)

where ν is a constant representing the viscosity. In our experiments, we assume the periodic bound-
ary condition and report results for the ν = 0.01 case using the Burgers dataset from PDEBench.

C.3 REACTION-DIFFUSION

The 1D reaction-diffusion PDE is given by

{
∂tu(t, x)− ν∂xxu(t, x)− ρu(1− u) = 0, x ∈ (0, 1), t ∈ (0, T ]

u(0, x) = u0(x), x ∈ (0, 1)

where ν and ρ are coefficients representing diffusion and reaction terms, respectively. In our exper-
iments, we assume the periodic boundary condition and report results for the ν = 0.5 and ρ = 1.0
case using the reaction-diffusion dataset from PDEBench.

C.4 NAVIER-STOKES

The compressible Navier-Stokes equations are given by


∂tρ+ ∂x(ρv) = 0

ρ(∂tv + v∂xv) = −∂xp+ η∂xxv + (ζ + η/3)∂x(∂xv)

∂t

[
ϵ+ ρv2

2

]
+ ∂x

[(
ϵ+ p+ ρv2

2

)
v − vσ′

]
= 0

where ρ is the mass density, v is the velocity, p is the gas pressure, ϵ = p/(Γ − 1) is the internal
energy with Γ = 5/3, σ′ = (ζ + 4

3η)∂xv is the viscous stress tensor, and η, ζ are the shear and
bulk viscosity coefficients, respectively. In our task, we assume periodic boundary conditions. The
spatial domain is Ω = [−1, 1]. For this study, we used the compressible Navier-Stokes dataset from
PDEBench with η = ζ = 0.1

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

C.5 DARCY FLOW

We study the 2D Darcy flow equation given by:

−∇ · (a(x)∇u(x)) = β, x ∈ (0, 1)2

with the boundary condition:

u(x) = 0, x ∈ ∂(0, 1)2

where u(x) is the solution function, the force term is set as a constant value β, and a(x) is a batch
of coefficient function. In our experiments, we report results for the β = 1.0 case using the Darcy
flow dataset from PDEBench.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

D RESULTS FOR INDIVIDUAL PDE TASKS

D.1 ADVECTION

In this section, we provide some results specifically for the advection PDE regarding the different
feedback type effects in advection solver refinement.

Notation. Throughout this section we use solver IDs that encode the feedback signal employed
during PDE-SHARP’s Synthesis stage:

• S-nRMSE: solver evolved with nRMSE on 100 validation samples as the only feedback
signal;

• S-PDER: solver evolved from the physics residual ∥∂tu + β ∂xu∥2 without access to the
reference solution;

• S-None: solver generated without any numerical feedback, relying solely on the judges’
static code-quality heuristics.

ID Feedback used to refine Numerical core Spatial order Time stepping CFL / ∆t formula Memory / CPU cost

S-nRMSE nRMSE MUSCL + Rusanov flux, TVD-RK2 2 adaptive RK2 (CFL 0.5) ∆t ≤ 0.5
∆x

|β|
O(N) per step

S-PDER PDE residual Exact Fourier shift (IFFT) ∞ (spectral) analytic (no ∆t) N/A O(N logN) per snapshot
S-None No numeric feedback Linear interpolation + periodic roll 1 analytic (no ∆t) N/A O(N) per snapshot

Table 20: Key characteristics of the three advection solvers generated by PDE-SHARP under differ-
ent feedback regimes.

Qualitative comparison. Table 20 summarises the concrete design choices that PDE-SHARP
converged on for each feedback type. Two aspects stand out:

• Numerical core. The error-driven solver (S-nRMSE) settled on a second-order MUSCL fi-
nite–volume scheme with TVD–RK2 time-stepping. In contrast, the residual-guided solver
(S-PDER) discovered an exact spectral shift implementation (IFFT) that tries to elimi-
nate discretization error. The no-feedback path (S-None) produced a first-order linear in-
terpolation plus periodic roll — a valid but low-order scheme that satisfied the judges’
code-robustness rubric.

• Stability & cost. S-nRMSE is CFL-limited by ∆t ≤ 0.5∆x/|β| and therefore re-
quires O(N) flux evaluations per internal step; S-PDER has no stability restriction and
achieves O(N logN) cost per snapshot, which is cheaper whenever fewer than ∼ logN
FV time steps would be required; S-None is the lightest at O(N) per snapshot but sacri-
fices second-order accuracy.

Which solver is “better”?

• Benchmark replication. When the evaluation metric is nRMSE against the finite-volume
reference provided by PDEBench, S-nRMSE attains the lowest reported error because it is
optimized for that target. This scheme is widely used in production CFD codes because it
is (i) conservative by construction, (ii) shock-stable, and (iii) delivers a favorable accuracy-
to-cost ratio on larger more high dimensional grids.

• Physics fidelity. If the goal is to minimise the true PDE residual or to serve as an oracle
inside downstream multiphysics simulations, S-PDER is provably superior: it preserves the
analytic solution and incurs only floating-point rounding error.

• Resource-constrained settings. For coarse grids or real-time visualization where a single
forward pass per frame is desired, S-None may be adequate and is the cheapest to execute,
albeit with first-order phase error that grows linearly in time.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Take-away for PDE-SHARP. The three solvers illustrate PDE-SHARP’s metric-seeking be-
haviour: identical Genesis outputs can be steered toward fundamentally different algorithms de-
pending solely on the feedback type given to the judges. Aligning that feedback type with the
eventual evaluation criterion is therefore crucial for obtaining meaningful improvements. (Figure
16)

Figure 16: Impact of feedback type on round-by-round nRMSE progression for the advection PDE.
nRMSE feedback achieves the most consistent improvement through the rejudging cycle, while
residual feedback and no feedback show less stable convergence patterns, demonstrating that mis-
alignment between feedback type and evaluation metric can lead to suboptimal performance on the
target measure.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

D.2 REACTION-DIFFUSION

Solver structure statistics using different PDE-SHARP Analysis strategies.

Figure 17: Solver strategy selection for reaction-diffusion PDE across PDE-SHARP variants. LLM-
generated prompts do not usually lead to optimal solver strategy selection in this case.

Solver structure statistics with and without PDE-SHARP’s numerical stability analysis (Anal-
ysis Stage) and Synthesis stage components.

Figure 18: Solver strategy selection for reaction-diffusion PDE across PDE-SHARP variants. Math-
ematical stability analysis (present in Default and No Tournaments variants) consistently guides the
framework toward superior hybrid analytical-numerical approaches, while its absence leads to pre-
dominantly numerical methods.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

E PDE-SHARP PROMPTS

E.1 STAGE 1: ANALYSIS

PDE Classification and Properties� �
## INPUT
{pde_description}

## TASK
Analyze and classify the given PDE *completely*.

## REQUIRED OUTPUT FORMAT (Follow this exact JSON structure)
‘‘‘json
{{
order: # integer
linearity: # "linear" | "quasi-linear" | "non-linear"
type: # "elliptic" | "parabolic" | "hyperbolic" | "mixed"

(show characteristic analysis if needed)
homogeneity: # "homogeneous" | "non-homogeneous"
domain_bc: |-

# clear prose describing domain & BCs
special_properties: |-

# separability, symmetries, standard forms, etc.
char_polynomial: |-

# if needed for type classification
}}

‘‘‘� �
Analytical Solution Check� �
## TASK
Detect if a closed-form analytical solution exists for this exact PDE

from before:
{pde_description}

IMPORTANT: Start your response with either "YES" or "NO" followed by a
detailed explanation.

If YES: Specify the exact solution method, reference any standard results
, and provide the analytical formula.

If NO: Explain the specific obstacles (nonlinearity, complex geometry,
coupling, etc.) that prevent analytical solution.

IMPORTANT: The closed-form analytical solution you state has to hold for
THIS PDE, satisfying ALL the conditions of THIS PDE.

Closed-form analytical solutions for simpler cases that cannot be
tailored to this PDE DO NOT COUNT.

Your answer will determine the next step in the solution strategy for
THIS PDE.� �

Transformation Check� �
Based on your previous analysis of the following PDE:
{pde_description}

## TASK
Now, determine if this PDE can be transformed into a simpler form with

known solutions.

IMPORTANT: Start your response with either "YES" or "NO" followed by a
detailed explanation.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Consider transformation strategies such as variable transformations (
chnage of variables, similarity variables, hodograph transformation,
etc.),

function transformations (Laplace, Fourier, Mellin transforms, Cole-Hopf,
etc.),

coordinate transformations (polar, cylindrical, etc.), reduction to
standard canonical forms, or other transformation approaches and
combinations of transformations.

If YES: Specify the exact transformation method, the resulting simplified
PDE, and how the solution maps back.

If NO: Explain why transformations do not help for this particular PDE.

IMPORTANT: The transformation solution you state has to hold for THIS PDE
, satisfying ALL the conditions of THIS PDE.

Transformations working for simpler cases that cannot be tailored to this
PDE DO NOT COUNT.

Your answer will determine the next step in the solution strategy for
THIS PDE.� �

Decomposition and Hybrid Approach Check� �
Based on your analysis of the following PDE:
{pde_description}

## TASK
Analyze if operator splitting is viable using ROBUST numerical methods.

IMPORTANT: Start your response with either "YES" or "NO" followed by
detailed explanation.

Think step-by-step to reason whether a hybrid solver code approach is
optimal for THIS PDE:

**STEP 1: OPERATOR IDENTIFICATION**
Assess stability requirements carefully and determine the best

operator splitting methods (such as Lie/Strang splitting, IMEX schemes,
implicit-explicit time stepping, or Analytical preprocessing for
certain terms)

**STEP 2: ROBUSTNESS ANALYSIS AND EFFIFINECY**
Choose methods that:
Have proven track records for this PDE type
Give reliable accuracy without overengineering
For each operator:
- What is the MOST RELIABLE and EFFICIENT numerical method that also has

high accuracy performance?
- What are the stability constraints?
- What numerical safeguards are needed?

**STEP 3: METHOD PRECEDENCE FOR STABILITY**
Apply this hierarchy:
1. **Most Stable**: Apply operators that preserve physical constraints

first
2. **Least Restrictive**: Apply operators with relaxed stability

constraints last
3. **Conservation**: Ensure required conservations (like mass, energy,

etc.) at each step
4. **Stiffness Hierarchy**: Which operator has the most restrictive time

scale?
Example: If operator A requires dt << operator B, consider the

stability requirements of A first.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

**GENERAL SPLITTING PRINCIPLE**: The operator that preserves essential
solution properties (bounds, positivity, conservation)

should typically be applied first in each sub-step to maintain numerical
stability.

If YES: Recommend ROBUST operator splitting with specific stable
numerical methods

If NO: Explain why and suggest the most reliable approach for this PDE
task.

Your answer determines the final implementation strategy.� �
Numerical Stability Analysis� �
Remember the PDE you are working on is as follows::
{pde_description}

## INPUT

## INPUT
‘‘‘json
{pde_properties_json}
‘‘‘

TASK
Perform MANDATORY stability analysis of THIS PDE focused on NUMERICAL

ROBUSTNESS.

**CRITICAL PRINCIPLES**

Use conservative stability conditions with conservative safety factors.

Make NO numerical substitutions and NO unstated assumptions. ONLY SYMBOLS
. Define every symbol you introduce; keep formulas code-ready (string
expressions).

Prefer simple, textbook-stable explicit methods. Use implicit/IMEX ONLY
IF stiffness demands it.

All formulas must be symbolic strings that codegen can embed verbatim.

Define every symbol you introduce.

End with ONE valid JSON object (the Handoff b l o c k ) as specified.

- STEP 0 Classify PDE (pick exactly one, otherwise use "custom")

Families:

Hyperbolic conservation laws (Euler, shallow water)

Ideal MHD (hyperbolic with B control)

Compressible N a v i e r Stokes (viscous, possibly shocks)

Incompressible N a v i e r Stokes (low-Mach)

Parabolic / ReactionDiffusion

ConvectionDiffusion (high P clet)

Maxwell / Wave (EM FDTD, acoustic/elastic)

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Linear Elastodynamics

Schr dinger / Hamiltonian

Phase-Field ( A l l e n Cahn / C a h n Hilliard )

Helmholtz (time-harmonic) no dt; use resolution rules

Porous / Darcy / Richards

Custom / Composite (fallback for non-listed or mixed operators)

Return the chosen family as "pde_family".

- STEP 1 Mesh metrics (code-ready)
Given:
1D: dx = L / N

Multi-D: dx = L_x / N_x, dy = L_y / N_y, dz = L_z / N_z

Element size: h = min(dx, dy, dz) (or element diameter symbolically)

Spatial dimension: d {1,2,3}

DG degree: k (if DG); DG scaling uses (2*k+1) where applicable.

- STEP 2 Per-operator explicit dt limits (derive only those present
in THIS PDE)

Identify each distinct operator in THIS PDE (advection/flux divergence,
diffusion/viscosity, reaction/source, wave/pressure/acoustic,
capillary/surface-tension, Lorentz/EM, etc.). For each operator in
isolation, derive a symbolic dt limit in terms of grid spacing and
PDE coefficients. Use these patterns (replace placeholders with THIS
P D E s symbols):

Advection / hyperbolic

FV/FD: dt_adv <= C_cfl * h / lambda_max

DG(k): dt_adv <= C_cfl * h / ( (2*k+1) * lambda_max )

Diffusion / viscosity

FV/FD: dt_diff <= C_diff * hˆ2 / ( nu * d )

DG(k): dt_diff <= C_diff * hˆ2 / ( nu * d * (2*k+1)ˆ2 )

Use nu = diffusivity/viscosity (e.g., mu/rho, alpha, kappa), define it.

Reaction / source stiffness

dt_react <= C_react / rho(J) where rho(J) is spectral radius of reaction
Jacobian.

Wave / FDTD / leapfrog (if applicable)

Uniform FDTD/leapfrog: dt_wave <= 1 / ( c * sqrt( sum_i 1/dx_iˆ2 ) )

EM: c = 1/sqrt(mu*eps); acoustic: c = sqrt(K/rho).

Higher-order operator (generic order m)

FV/FD: dt_m <= C_m * hˆm / |kappa_m|

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

DG(k): dt_m <= C_m * hˆm / ( |kappa_m| * (2*k+1)ˆm )

Examples: m=3 (KdV-like dispersive), m=4 (bi-Laplacian / CH explicit
piece).

Fractional Laplacian (order , 0< 2 )

FV/FD: dt_frac <= C_frac * hˆalpha / kappa_alpha

DG(k): dt_frac <= C_frac * hˆalpha / ( kappa_alpha * (2*k+1)ˆalpha )

Capillary / surface-tension (if explicit)

dt_cap <= C_cap * f_cap(h, parameters) (define f_cap for the chosen model
).

Only include limits that actually apply to THIS PDE.

- Step 3 - Family mini-aides (only fill the one that matches STEP 0)

Hyperbolic (Euler, shallow water)

Euler: lambda_max = |u| + c, c = sqrt(gamma*p/rho)

Shallow water: lambda_max = |u| + sqrt(g*H)

Optional: positivity limiter for rho, p.

Ideal MHD

a = sqrt(gamma*p/rho), v_A = |B|/sqrt(mu0*rho), c_An = | B n |/sqrt(mu0*
rho)

c_f = sqrt( 0.5*(aˆ2 + v_Aˆ2 + sqrt( (aˆ2+v_Aˆ2)ˆ2 - 4*aˆ2*c_Anˆ2 )) )

lambda_max = | u n | + c_f

Note divergence control: {GLM psi-eqn | Powell 8-wave}.

Compressible NS

Advective: lambda_max = |u| + c

Diffusive: nu_eff = mu/rho (+ turbulent nu_t symbol if modeled)

Incompressible NS

Use |u| in advective CFL; nu in diffusive bound. If using projection, no
extra dt from pressure solve.

Parabolic / ReactionDiffusion

Diffusive and reaction limits as above; prefer explicit if stable, else
BE/IMEX for only the stiff part.

ConvectionDiffusion (high P clet)

Add stabilization symbol (e.g., tau_SUPG ˜ h/(2|u|)); still governed by
advective/diffusive dt above.

Maxwell / Wave

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Use dt_wave above; if using PML, note it does not change dt but adds
parameters.

Elastodynamics

c_p = sqrt( (lambda + 2*mu)/rho ), c_s = sqrt( mu/rho ), c_max = max(c_p,
c_s)

Central/leapfrog FE/FV heuristic: dt_wave <= C_cfl * h / ( c_max * sqrt(d
) )

DG: use (2*k+1) in denominator.

Schr dinger / Hamiltonian

If linear Schr dinger with CN: note unconditional linear stability (near
-unitary).

For explicit/splitting accuracy: include optional phase-accuracy limiter
dt_phase <= C_phase * hˆp / S (define symbols).

Phase-Field (AC/CH)

If explicit CH fourth-order term present: dt_4 <= C_4 * hˆ4 / ( kappa *
denom_4 ) (define denom_4 per method).

Helmholtz (time-harmonic)

No time stepping. Provide resolution rules: k*h/p <= C_res and ppw >=
C_ppw. Set all dt fields "N/A".

Porous / Darcy / Richards

Darcy (elliptic): "N/A" for dt. Richards: diffusive-type dt with
effective conductivity K_eff.

Custom / Composite

List operators O_j with their type/order and bounds using the generic m /
fractional formulas above. Combined policy uses min across all

included O_j.

- STEP 4: Splitting-Aware Stability (if operators are split)
Choose a splitting that preserves key constraints (e.g., Strang: A( dt )

B (dt) A ( dt )).

State operator precedence: apply the most constraint-preserving/
dissipative operator at stabilizing positions (e.g., diffusion
centered).

Make no numeric substitutionsonly symbolic formulas.

- STEP 5: Time-Stepping Strategy (global policy)
Core stability constraint: dt_max = safety * min( all per-operator dt

limits )

Explicit FD/FV default: Forward Euler or SSP-RK with SSP scaling of the
CFL. If SSP-RK(q) with SSP coefficient c_ssp, document:

effective_C_cfl = c_ssp * base_C_cfl (define both).

Adaptive targeting: Use exact endpoint targeting for outputs: dt = min(
dt_max, target_t - current_t)

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Implicit fallback (only if necessary): Use Backward Euler (A-stable) for
stiff components; otherwise stay explicit. Avoid complex implicit
schemes (e.g., CN, multistep) unless the PDE family explicitly
warrants it (e.g., Schr dinger CN near-unitary).

Pseudo-loop sketch (symbolic placeholders only):

while current_t < target_t:
dt = min(dt_max, target_t - current_t)
# Apply chosen splitting with defined operator order (see Step 4)
current_t += dt
n_internal += 1

- STEP 6 Combine & schedule

Master policy: dt_max = safety * min( all_applicable_dt_limits )

Conservative defaults: safety < 0.5 when doubt exists, but try to be
conservative yet robust.

Internal steps: n_internal = ceil( T / dt_max )

Exact output alignment: at each output time t_target, use dt = min(dt_max
, t_target - t_current).

- STEP 7 Guards (only if applicable)

Positivity: list variables enforced (e.g., rho, p) and limiter name.

Entropy: if using entropy-stable flux, state entropy -conservative core
+ dissipation and a dissipation symbol.

Divergence constraint: div u = 0 (incompressible) or div B = 0 (MHD) with
strategy {projection | GLM psi | Powell}.

OUTPUT POLICY
Return ONE valid JSON object only, nothing else.

All formulas are symbolic strings (no evaluation).

Provide a definitions dictionary listing every symbol used.

**Handoff block**
Finish with a fenced JSON object *alone* on the last line:

‘‘‘json
{

"pde_family": "<one of the families above or ’custom’>",

"dx_formula": "dx = L / N (and dy = L_y / N_y, dz = L_z / N_z if
applicable)",

"h_formula": "h = min(dx, dy, dz) # or element diameter",
"dimension_d": "<1|2|3>",
"dg_degree_k": "<k or ’N/A’>",

"lambda_max_definition": "<symbolic definition or ’N/A’>",
"per_operator_limits": [

"dt_adv <= C_cfl * h / ( lambda_max * denom_adv )",
"dt_diff <= C_diff * hˆ2 / ( nu * d * denom_diff )",
"dt_react <= C_react / rho(J)",
"dt_wave <= 1 / ( c * sqrt( sum_i 1/dx_iˆ2 ) )",

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

"dt_m <= C_m * hˆm / ( |kappa_m| * denom_m )",
"dt_frac <= C_frac * hˆalpha / ( kappa_alpha * denom_frac )",
"dt_cap <= C_cap * f_cap(h, parameters)"

],
"denominators": {

"denom_adv": "1 (FV/FD) or (2*k+1) (DG)",
"denom_diff": "1 (FV/FD) or (2*k+1)ˆ2 (DG)",
"denom_m": "1 (FV/FD) or (2*k+1)ˆm (DG)",
"denom_frac": "1 (FV/FD) or (2*k+1)ˆalpha (DG)"

},

"dt_crit_formula": "min( applicable {dt_adv, dt_diff, dt_react, dt_wave
, dt_m, dt_frac, dt_cap} )",

"safety_factor_suggestion": # float Example: 0.25,
"dt_max_formula": "dt_max = safety * dt_crit",
"n_internal_formula": "ceil( T / dt_max )",

"splitting": {
"apply_splitting": "<true|false>",
"order": "<e.g., Strang: A(0.5*dt) -> B(dt) -> A(0.5*dt)>"

},

"integrator": {
"time_integrator": "<ForwardEuler|SSP-RK2|SSP-RK3|Leapfrog|Yee-FDTD|

BackwardEuler|IMEX>",
"ssp_coefficient": "<c_ssp or ’N/A’>",
"effective_cfl_formula": "effective_C_cfl = c_ssp * base_C_cfl"

},

"scheme": {
"space": "<FD|FV|DG|CG|Yee|SEM>",
"flux_or_form": "<Rusanov|HLL|HLLC|Roe(+entropy-fix)|central|SIPG|LDG

|BR2|N/A>",
"reconstruction_or_limiter": "<minmod|vanLeer|superbee|WENO|WENO-Z|

positivity|N/A>"
},

"guards": {
"positivity": ["<list variables e.g., rho, p or ’N/A’>"],
"entropy": "<’entropy-conservative core + dissipation’ or ’N/A’>",
"divergence_constraint": "<’div u = 0’|’div B = 0’|’N/A’>",
"divergence_strategy": "<projection|GLM psi|Powell|N/A>"

},

"family_specific": {
"hyperbolic": {
"lambda_max": "Euler: |u|+sqrt(gamma*p/rho); Shallow: |u|+sqrt(g*H)

"
},
"mhd": {
"a": "sqrt(gamma*p/rho)",
"vA": "|B|/sqrt(mu0*rho)",
"c_An": "| B n |/sqrt(mu0*rho)",
"c_f": "sqrt(0.5*(aˆ2+vAˆ2 + sqrt((aˆ2+vAˆ2)ˆ2 - 4*aˆ2*c_Anˆ2)))",
"lambda_max": "| u n | + c_f"

},
"cns": {
"nu_eff": "mu/rho (+ nu_t if modeled)",
"lambda_max": "|u| + c"

},
"ins": {
"advective_speed": "|u|",
"nu": "kinematic viscosity"

},
"wave": {

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

"c": "EM: 1/sqrt(mu*eps); acoustic: sqrt(K/rho); elastic: c_max"
},
"elastic": {
"c_p": "sqrt((lambda+2*mu)/rho)",
"c_s": "sqrt(mu/rho)",
"c_max": "max(c_p, c_s)"

},
"schrodinger": {
"note": "CN near-unitary (linear); optional phase accuracy limiter

dt_phase <= C_phase * hˆp / S"
},
"phase_field": {
"dt_4": "dt_4 <= C_4 * hˆ4 / (kappa * denom_4)"

},
"helmholtz": {
"resolution_rules": ["k*h/p <= C_res", "points_per_wavelength >=

C_ppw"]
},
"porous_richards": {
"K_eff": "effective hydraulic conductivity"

},
"custom": {
"operators": [
{"name":"O1","type":"<adv/diff/disp/fractional/...>","order":"<m

or alpha>","coeff":"<kappa_m or kappa_alpha>","dt_bound":"<
from STEP 2 generic forms>"}

]
}

},

"constraint_preservation": ["<mass>", "<positivity>", "<entropy>", "<
divergence>", "<energy>"],

"exact_endpoint_targeting": true,

"definitions": {
"symbols": [
"L, L_x, L_y, L_z, T, N, N_x, N_y, N_z, dx, dy, dz, h, d, k",
"u, p, rho, mu, nu, nu_eff, K, H, g, gamma, c, c_p, c_s, c_max",
"B, mu0, eps, a, vA, c_An, c_f, n",
"lambda_max, C_cfl, C_diff, C_react, C_m, C_frac, C_cap, C_4,

safety",
"rho(J), J, kappa_m, kappa_alpha, alpha (fractional order),

tau_SUPG, denom_adv, denom_diff, denom_m, denom_frac"
]

}
}

‘‘‘� �
E.2 STAGE 2: GENESIS

Analytical Solution Follow-up� �
Remember that the original PDE in question was as follows:
{pde_description}

## TASK
Based on your analysis confirming an analytical solution exists, you are

tasked to implement the complete analytical solution in Python.

You will be writing solver code for this PDE by completing the following
code skeleton provided below:

‘‘‘python
{solver_template}

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

‘‘‘
{code_generation_criteria}

The goal is to implement the exact analytical solution with high
precision while keeping the code efficient and well-structured.

Your generated code needs to be clearly structured and bug-free. You must
implement auxiliary functions or add additional arguments to the

function if needed to modularize the code.
Your generated code will be executed and evaluated. Make sure your ‘

solver‘ function runs correctly and returns the analytical solution.
Use appropriate mathematical libraries (NumPy, SciPy, SymPy if needed)

for symbolic/numerical computations.
Remember to handle data types and device placement appropriately.
You must use print statements to keep track of intermediate results, but

do not print too much information. Those outputs will be useful for
validation and debugging.

Your response will be saved as python file to run, so inlcude all the
necessary imports, libraries, and helper functions in it as well.

IMPORTANT: Provide your analysis and reasoning, then include your
complete solver code implementation in ONE properly formatted Python
code block using ‘‘‘python ... ‘‘‘� �

Transformation Follow-up� �
Remember that the original PDE in question is as follows:

{pde_description}

## TASK
Based on your analysis confirming a beneficial transformation exists, you

are tasked to implement the complete transformation-based solution
using Python.

You will be writing solver code by completing the following code skeleton
provided below:

‘‘‘python
{solver_template}
‘‘‘

{code_generation_criteria}

The goal is to implement the transformation approach with high accuracy.
Your generated code needs to be clearly structured and bug-free.

You must implement auxiliary functions or add additional arguments to the
function if needed to modularize the code.

Your generated code will be executed and evaluated. Make sure your ‘
solver‘ function runs correctly and efficiently.

Remember to handle data types and device placement appropriately.
INCLUDE: (1) Forward transformation functions, (2) Solution in

transformed space, (3) Inverse transformation back to original
variables, (4) Proper boundary condition handling.

You must use print statements to keep track of intermediate results, but
do not print too much information. Those outputs will be useful for
validation and debugging.

Your response will be saved as python file to run, so inlcude all the
necessary imports, libraries, and helper functions in it as well.

IMPORTANT: Provide your analysis and reasoning, then include your
complete solver code implementation in ONE properly formatted Python
code block using ‘‘‘python ... ‘‘‘

%� �
47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

E.3 STAGE 3: SYNTHESIS

Initial Judgment & Selection The following is an example of the prompt for the Initial Judgment
& Selection step given to one of the three judges (named A, B, C).� �
You are **PDE-SHARP Judge A**, a world-class numerical analyst

specializing in creating HIGH ACCURACY, ROBUST and RELIABLE PDE
solvers.

**YOUR MISSION:**
Given one PDE description and a number of solver code samples for this

specific PDE, by doing a thorough analysis of the given PDE and each
reasoning + code combo in great detail,

you must ONLY CHOOSE the top 16 best implementations of this list of
solver codes, and nominate one of these 16 that you believe through
reasoning is the best solve for this pde among all to be executed.

For the following pde: {pde_description}

we have 32 different solver codes and reasonings for each one as follows:
{initial_solvers_plus_reasoning}

**CORE PHILOSOPHY:**
Go for the "sweet spot" - methods sophisticated enough for HIGH ACCURACY

but simple enough for an expert in PDE solvers to implement PERFECTLY
and run efficiently.

**RESPONSE FORMAT:**
- Code [Solver ID] (the number associated with the code/ LLM that

generated the code)
- Confidence in your judgment: High/Medium/Low (also include why you have

this level of confidence)
- Nominated: Start with YES or NO. Then, state the reason why or why not.
- Your full reasoning why this code is among the best (be very specific

and use lots of detailed analysis)
- Comparison: "Superior to [Other Solver] in [Aspect] because..." (

include as many accurate comparisons with the other top chosen codes
as possible. Include high quality comparisons that can help other
judges later)

- Risk: [Potential flaws if you detect any that can be simply resolved or
removed and are not fundamental issues. Point these out to be

checked.]
(For example, if you detect that there are artificially altered

mathematical formulas that can be corrected, bad safeguards, or
hardcoded any assumptions about input data ranges or any numerical
values related to the data, or data types are not consistent, etc.,
write in this section for them to be fixed later.)

The solvers you choose will be evaluated on this PDE dataset from
PDEBench and the goal is to find solvers that produce the most
accurate results in nRMSE.� �

AUXILIARY PROMPT TEMPLATES

System Prompt (Stages 1 & 2)� �
You are **PDE-SHARP**, a world-class numerical analyst specializing in

HIGH ACCURACY, ROBUST and RELIABLE PDE solvers.

**YOUR MISSION:**
Given one PDE description, you must follow the user requirements

carefully and step by step to conduct a full mathematical analysis of
the PDE.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

**Do NOT** generate PDE solver code unless it is explicitley requested.
Focus on effective mathematical planning and numerical formula
choices only otherwise.� �

PDE Description Templates (Stage 1)

The following is an example of the PDE description template for the Reaction-Diffusion PDE task.
We use the PDE description templates provided in (Li et al., 2025).� �
The PDE is a diffusion-reaction equation, given by

\\[
\\begin{{cases}}
\\partial_t u(t, x) - \\nu \\partial_{{xx}} u(t, x) - \\rho u(1 - u) = 0,

& x \\in (0,1), \; t \in (0,T] \\\\
u(0, x) = u_0(x), & x \in (0,1)
\end{{cases}}
\\]

where $\\nu$ and $\\rho$ are coefficients representing diffusion and
reaction terms, respectively. In our task, we assume the periodic
boundary condition.

Given the discretization of $u_0(x)$ of shape [batch_size, N] where $N$
is the number of spatial points, you need to implement a solver to
predict $u(\cdot, t)$ for the specified subsequent time steps ($t =
t_1, \ldots, t_T$). The solution is of shape [batch_size, T+1, N] (
with the initial time frame and the subsequent steps). Note that
although the required time steps are specified, you should consider
using smaller time steps internally to obtain more stable simulation.

In particular, your code should be tailored to the case where $\\nu={
reacdiff1d_nu}, \\rho={reacdiff1d_rho}$, i.e., optimizing it
particularly for this use case.

Think carefully about the structure of the reaction and diffusion terms
in the PDE and how you can exploit this structure to derive accurate
result.� �

PDE Solver Templates (Stage 2) The following is an example of the PDE solver template for the
Reaction-Diffusion PDE task. We use the PDE solver templates provided in (Li et al., 2025).� �
def solver(u0_batch, t_coordinate, nu, rho):

"""
Solves the 1D reaction-diffusion equation.

Args:
u0_batch: Initial condition u(x,0) - np.ndarray of shape [

batch_size, N]
t_coordinate: Time points - np.ndarray of shape [T+1] starting

with t_0=0
nu: Diffusion coefficient
rho: Reaction coefficient

Returns:
solutions: np.ndarray of shape [batch_size, T+1, N]

solutions[:, 0, :] contains initial conditions
solutions[:, i, :] contains solutions at t_coordinate[i

]
"""

# TODO: Implement the reaction-diffusion equation solver

return solutions� �
49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Code Generation Criteria Template (Stage 2)� �
**MUST-OBEY:**

1. **Method Selection Appropriateness**:
Choose proven, battle-tested methods over non-practical approaches for

pde solver codes. Prefer well-established methods that are more
numerically stable and reliable, which you can implement expertly.
Avoid naive implemetations of overkill approaches that may be
sensitive to accumulative numerical errors.

2. **Stability and Robustness Handling**:
- BEWARE of numerical error accumulation: Small systematic errors x

millions of required internal time steps = massive failure.
Conservative but not excessive time stepping is required.

- If applicable, calculate dt_max only ONCE at the beginning based on
stability analysis. Do NOT recalculate dt_max for each output time
step.

- **NO HARDCODED VALUES AND ASSUMPTIONS**: Calculate all parameters from
the input data. Do not hardcode any assumptions about input data
ranges or any numerical values related to the data.

- **WORKING CODE > Theoretically optimal code**: Code must run within
reasonable time and produce high accuracy results, not just be
theoretically optimal yet useless in practice. Code that runs
reliably beats theoretically sophisticaed code that is useless in
practice. Make sure to address the following concerns:
- Does the code include a stability analysis (either in comments or in

the code) that leads to a safe ‘dt‘?
- Is the time stepping adaptive and does it hit the exact output times

?
- Are stability conditions calculated from the input data (meaning

they are not hardcoded)? NO HARDCODING!
- Are there safeguards against common numerical issues (e.g., division

by zero with epsilon, but without altering the mathematics)?
Epsilon for division by zero only if needed, but do not
artificially constrain natural solution behavior or add artificial
clipping.

3. **Implementation Details:**
- **Vectorized Computing**: Use JAX + @jit for better performance, but

ensure stability
- **Data types**: Consistent types
- - Use cumulative internal step counting across all output intervals
- Print the following information as a part of your code:
print(f"Stability-based dt_max = {{dt_max:.2e}}")
print(f"Using {{n_internal}} internal time steps")
print(f"Time step {{i}}/{{T}} completed (internal steps: {{

total_internal_steps}})")
- **Return format**: Convert to numpy arrays for compatibility

4. **Implementation Quality**:
Expert implementation of "simpler" methods beats naive implementation of

"advanced" methods.
It is ok to use established finite difference/finite element methods for

most PDEs unless there are strong compelling reasons otherwise. Make
sure to address the following concerns:
- **Efficiency**: Does the code correctly use vectorization and JAX

jit appropriately. Is it efficient without sacrificing accuracy?
- **Boundary Conditions**: Are boundary conditions handled correctly

and robustly (e.g., using ‘jnp.roll‘ for periodic)?
- **Error Handling**: Does the code check for NaNs or Infs? Does it

preserve mathematical structure without artificial clipping?

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

- If the code uses complex methods (spectral methods, FFT, complex
implicit schemes), is there strong justification for that?

5. **Accuracy and Precision**:
Be sure of MATHEMATICAL CORRECTNESS in every formula/ computation in the

code
- Does the code use analytical solutions where available? If

analytical solution is available for any part of this PDE, did the
code implement it correctly?)

- For numerical methods, is the discretization appropriate (e.g.,
second-order finite differences) for high accuracy?

- Does the code avoid systematic errors (e.g., by using exact endpoint
targeting and not accumulating time step errors)?

**GOAL:** Production-ready code that scientists can rely on.� �

51


	Introduction
	Background & Related Work
	PDE-SHARP Framework
	Experiments
	Baselines
	Results & Analysis
	Accuracy & Interpretability
	Code Quality & Insights

	Discussion & Limitations

	Conclusion
	Additional Information & Experimental Setups
	Mathematical Metrics
	Neural Networks & Foundation Models
	LLM-Driven Architectures
	LLM Models Used in Section 4 for Code Generation
	Agentic Workflows
	Other Related Work
	OptiLLM
	CodePDE ( li2025codepdeinferenceframeworkllmdriven)

	Additional Information on Framework Cost

	Additional Experimental Results
	Results with Different LLMs
	PDE-SHARP Ablation Studies
	Analysis Prompting Strategy
	The Effects of Stability Analysis
	Reasoning vs. Non-reasoning LLMs For Code Generation In Genesis
	Test-time Scaling for PDE-SHARP
	Structure of the Tournaments
	Hybridization Feedback Type
	Number of Rounds & Cycles

	Analysis of the Generated Solver Code Quality

	Additional Details on the Tested PDEs
	Advection
	Burgers
	Reaction-Diffusion
	Navier-Stokes
	Darcy Flow

	Results for Individual PDE Tasks
	Advection
	Reaction-Diffusion

	PDE-SHARP Prompts
	Stage 1: Analysis
	Stage 2: Genesis
	Stage 3: Synthesis


