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ABSTRACT

In over-parametrised networks, a large continuous set of solutions (an invariant
manifold) exists where the empirical loss is minimal. However, noise in the learn-
ing dynamics can introduce a drift along this manifold, biasing the dynamics to-
wards solutions with higher “smoothness”, therefore acting as a regularizer. In Li
et al. (2022), a derivation of this drift was presented, borrowing the results from
Katzenberger (1991), which shows that in the small learning-rate limit, η → 0,
the learning dynamics can be approximated by a stochastic differential equation
(SDE), whose solution exhibit two distinct phases: a first phase, occurring over
a number of steps O(η−1), where the parameters are deterministically driven to-
wards the invariant manifold; and a second phase, over timescales O(η−2), in
which noise induces a deterministic drift along the invariant manifold. This latter
contribution to the drift can be regarded as the result of averaging the dynam-
ics over the O(η1/2) fluctuations orthogonal to the manifold, described by an
Ornstein–Uhlenbeck process, as first suggested by Blanc et al. (2020). We of-
fer a new derivation of the results by Li et al. (2022), that builds on the very
intuitive arguments of Blanc et al. (2020), by implementing the averaging of the
Fokker-Planck equation associated with the η → 0 dynamics over such Ornstein–
Uhlenbeck quasi-stationary state. Our contribution demonstrates the application
of multiscale methods for elliptic partial differential equations (PDEs) (Pavliotis
& Stuart, 2008) to optimization problems in machine learning.

1 INTRODUCTION

For a model with parameters θ, we consider stochastic update rules of the type

θ̂n+1 ← θ̂n + η
(
−∇θL(θ̂n) + σ̂b̂n(θ̂n)

)
(1)

where σ̂b̂ is a random error in the evaluation of the gradient of the average empirical lossL, due to the
random choice of mini-batch b̂, label noise, or the noise in the model, such as Dropout (Srivastava
et al. (2014); see Appendix A.1 for details and notation).

In the general framework we are interested in, we do not distinguish between various sources of
noise, and for our purposes it suffices to say that the learning dynamics can be written in the form
of equation 1.

In the time coordinate t = η2n, which describes the learning dynamics over a number of steps
O(η−2), the increment is approximated by a stochastic differential equation (SDE) of the Langevin
type, with a large drift O(η−1):

dθ̂t = −η−1∇θL(θ)
∣∣
θ̂t
dt+ σ(θ̂t) · dŴt . (2)

where dŴt is a standard Wiener process, with multiplicative noise interpreted according to the Itô
convention, and where the covariance of the noise (or diffusion tensor) is the symmetric matrix

Σ(θ) = σ(θ)σ(θ)⊤ (3)
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(see Appendix A.2 for details).

In overparametrized networks, there exist generally a manifold Γ of points θ∗, where the loss is
minimum.

However, noise in the dynamics can induce a drift term along the manifold, which is often dubbed
implicit regularization. In other words, noise in the learning dynamics can make the parameters θ
drift towards regions of parameter space where the model is smoother.

Blanc et al. (2020) have first proposed that this drift is driven by an Ornstein-Uhlenbeck process
taking place orthogonally to the manifold Γ, offering a local analysis that has a validity overO(η1.6)
steps.

Li et al. (2022), based on the main theorem from Katzenberger (1991), offer instead a global analysis,
capturing the dynamics over O(η−2) steps – that is through equation 2.

Here, we offer an alternative derivation based on the application of multiscale methods (averaging)
to the Fokker-Planck equation associated with equation 2, which is in agreement and has the same
validity as the results of Li et al. (2022).

2 MAIN RESULT

In this manuscript, we derive the effective stochastic dynamics at O(η−2) steps by applying multi-
scale methods at the level of the generator of the dynamics in equation 2, i.e. through averaging of
the associated Fokker-Planck equation. In this Section, we give an overview of the derivation, the
details of which can be found in Appendix E.

The generator of the process θ̂t in equation 2 is defined as the partial differential operator

L = −1

η
∇θL(θ) · ∇θ +

1

2
Σ(θ) : ∇θ∇θ , (4)

where Σ = σσ⊤. If ρ(θ, t) is the probability density of the process at time t, the generator expresses
the dynamics by describing rates of change of the probability density

∂tρ = L∗ρ , (5)

where L∗ is the adjoint of L. This equation is the so-called Fokker-Planck equation (see Appendix
C for details).

After an initial fast transient, due to the large drift O(η−1) that quickly maps the the process from
θ0 to θ∗ = Φ(θ0) ∈ Γ, the process is bound to fluctuate in the vicinity of Γ, with orthogonal
displacements O(η1/2) – it can be verified that this is the correct scaling that ensures the balance
between orthogonal drift and noise. Since ∇θL = 0 on Γ, the leading order is given by the linear
(elastic) term in the perpendicular displacement from the manifold, δθ⊥, that is

∇θL
∣∣
θ∗+δθ⊥ ≃ −H · δθ⊥ ,

where H is the Hessian of the loss, evaluated at θ∗.

We can introduce auxiliary variables y = η−1/2δθ⊥, and expand L in the small parameter η. The
leading order is given by η−1M, where M is the generator that describes the fast equilibration of the
orthogonal fluctuations via the Ornstein-Uhlenbeck process,

M =
(
− yj Hk

j +
1

2
Σkl

⊥
∂

∂yl

) ∂

∂yk
(6)

where H is the Hessian of the loss L, Σ⊥ = (1 − P )Σ(1 − P ) (all terms evaluated at θ∗ ∈ Γ) and
P is the projector to the tangent space Tθ∗(Γ).

This process admits a Gaussian equilibrium steady state, given by

µinv(y|θ∗) =
detΩ−1/2

(2π)M/2
exp

{
− 1

2
Ω−1

ij yiyj
}

(7)
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where Ω is the solution of (Gardiner, 2009)

H(θ∗) Ω + ΩH(θ∗) = Σ⊥(θ
∗) . (8)

Here, the point on the manifold θ∗ enters parametrically, as it is affected by the dynamics only at
longer timescales. The coordinates of this point on Γ therefore constitute the slow components of
the system.

At the next non-vanishing order, O(1), we find the generator

L0 =
(
− yjyl∇Hi

jl +
1

2
Σij P l

j

∂

∂θ∗l

)
P k
i

∂

∂θ∗k
(9)

which describes the slow dynamics of θ∗ along the manifold Γ. Note that the derivatives ∂/∂θ∗,
projected onto the tangent space Tθ∗(Γ), can be expressed in terms of the derivatives with respect to
the local coordinates Z.

We observe that the generator L0 depends on the fast variables y, which drive the first term . These,
however, appear equilibrated at times O(1), and can be averaged over the steady state µinv(y|θ∗).
This simply amounts to replacing

Ey∼µinv(·|θ∗)[y
jyl] = Ωjl

in equation 9 and obtain

L̄0 =
(
− P k

i Ωjl∇Hi
jl +

1

2
Σij P l

j

∂P k
i

∂θ∗l

) ∂

∂θ∗k
+

1

2
Σij P l

jP
k
i

∂

∂θ∗l
∂

∂θ∗k
(10)

where we also explicitly expanded the last term with the second derivative, to highlight the depen-
dence of P on θ∗.

From this average generator, one can read the effective dynamics

dθ̂t = f̄(θ̂t) dt+ σ̄(θ̂t) · dŴt , (11)

which lies on the manifold and where

σ̄ = Pσ (12)

f̄ = −P ∇H : Ω +
1

2
Σ : (P · ∇P ) (13)

or in components

σ̄i
k = P i

j σ
j
k (14a)

f̄ i = −P k
i Ωjl∇Hi

jl +
1

2
Σij P l

j

∂P k
i

∂θ∗l
(14b)

with sum over the repeated indices.

Note that we assume that at every point on the manifold, the null-space of the HessianH is identified
with the tangent space; that is, all the eigenvalues of H with corresponding eigenvector orthogonal
to H are strictly positive, while all other eigenvalues are zero. In this assumption, the projector
along the tangent space is related to H via

HH† = H†H = 1− P ,

which allows to compute all terms explicitly in terms of the Hessian.

3 RELATED WORK

Equations 14 are consistent with the main result from Li et al. (2022).

The starting point for the analysis in Li et al. (2022) is the theorem by Katzenberger (1991) which
states that over timescales O(1), equation 2 can be approximated by

dθ̂it ≃ dΦi(θ̂) = (∂jΦ
i)σj

k · dŴ
k
t +

1

2
(∂j∂kΦ

i) Σjk dt (15)
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where Φ is the map that yields the stationary solution of the deterministic part of the dynamics,
as a function of the initial condition. Here, and in the following, the Einstein convention of the
summation over repeated indices is used. Equation 15 expresses the intuition that, when there is a
large drift (as in equation 2), whenever θ deviates slightly from the invariant manifold, it is quickly
“zapped” onto the manifold, at Φ(θ), and a slow motion along the manifold can be described by
applying Itô formula through the map Φ. Li et al. (2022) apply this result to the gradient flow
dynamics where the loss L has a manifold Γ of minimizers, and explicitly provide all terms in
equation 15 in terms of the gradient noise covariance Σ and the higher order (second and third)
derivatives of the loss L.

In particular, they show that the Jacobian of the map Φ, evaluated at a point θ∗ on the invariant
manifold is the projector along the tangent space to the manifold at that point. Therefore, the noise
term in equation 15 is simply the component of the noise along the tangent space.

The second derivatives of Φ, contracted with the noise covariance Σ, give the deterministic part of
the noise-induced drift:

(∂j∂kΦ
i) Σjk = −(H†)ij (∇H)jkl(Σ∥)

kl − P i
j (∇H)jkl

(
2 (H†)kn(Σ⊥,∥)

nl +Ωkl
)

(16)

where H† is the pseudo-inverse of the Hessian of the loss, H;∇H is the gradient of the Hessian; P
is the projector on the tangent space; Σ∥ = PΣP , Σ⊥,∥ = (1− P )ΣP and Ω is the solution of the
Lyapounov equation

H Ω+ ΩH = Σ⊥ (17)

with Σ⊥ = (1− P )Σ(1− P ).

4 DISCUSSION

In this short contribution, we offer an alternative derivation of the results presented in Li et al. (2022),
that uses the averaging of the Fokker–Planck equation associated with the learning dynamics in the
limit η → 0. This method rests on the solid mathematical foundation of multiple-scale methods
for elliptic partial differential equations (Pavliotis & Stuart, 2008). The result of this analysis is in
agreement with the those presented in Li et al. (2022), borrowing the theorem from Katzenberger
(1991) which provides a proof relying on Itô calculus.

Multiscale methods find numerous applications in various fields in the natural sciences (E, 2011;
Bo & Celani, 2017). In this manuscript, we have shown an application that is of interest for the
machine learning community – i.e. as a tool to derive the approximate dynamics at long times,
when a manifold of optimizers Γ is present, featuring a deterministic term that plays the role of an
implicit regularization.
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A BACKGROUND

In this Appendix, we lay out the main definitions and notation needed throughout the manuscript.

We will focus on a standard statistical learning task. For the sake of generality, and as we are
interested in the noise during learning, we will define a notation that encompasses all possible types
of noise in this setting.

A.1 STOCHASTIC LEARNING DYNAMICS

Given a dataset D with p input-output pairs, D = {Xµ, yµ}pµ=1, where Xµ indicates the input, and
yµ the output (or label) for the pair µ.

In the case of label noise, a 0-mean random variable 1 ε̂ is added to the output

ŷµ = yµ + ε̂ , (A1)

We are given a model parametrised by θ ∈ RD, and perturbed by some noise ξ̂:

f̂µ(θ) = f(Xµ; θ, ξ̂) . (A2)

For instance, f if often represented by an artificial neural network (ANN), and the noise in Dropout
(Srivastava et al., 2014), ξ̂ ≡ {ξ̂i}, a collection of i.i.d. Bernoulli random variables multiplying
the activation of each hidden unit in the network, labelled by i; in DropConnect (Wei et al., 2020),
ξ̂ ≡ {ξ̂ij}, that is i.i.d. Bernoulli random variables multiplying each weight in the network.

One can cast the statistical learning task into the minimization of the loss (or empirical risk)

L̂(θ,D) =
1

p

p∑
µ

ℓ̂µ(θ) , (A3)

i.e. the average over the dataset D of the single-data point loss

ℓ̂µ(θ) = ℓ(f̂µ(θ), ŷµ) , (A4)

with respect to the parameter vector θ.

However, due to the presence of noise, the optimization problem as such is not well-defined. We can
choose to minimize the mean of L̂ over the various sources of noise:

L(θ,D) = Eξ̂,ε̂

[
L̂(θ,D)

]
. (A5)

One algorithmic way to seek for the minimum of the loss equation A5 is via gradient descent (GD).
That is, by choosing a small-enough learning rate η, 2

θ̂n+1 ← θ̂n − η∇θL(θ)
∣∣
θ̂n

(A6)

with n the number of updates since the start of the learning.

However, in practice, it is common to use a stochastic update rule,

θ̂n+1 ← θ̂n −
η

|b̂n|

∑
ν∈b̂n

∇θ ℓ̂
ν(θ) ≡ θ̂n − η

(
g(θ̂n) + σ̂b̂n(θ̂n)

)
(A7)

where σ̂b is a noise term, accounting for the deviation of the batch estimator of the gradient and the
true gradient.

1All random variables, are indicated with a “hat” symbol, e.g. X̂ . Their value, or realisation, is without the
“hat”.

2Hereafter, we drop the dependence on D of the empirical loss.
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A.2 LANGEVIN DYNAMICS APPROXIMATION

By iterating equation 1 over ∆n steps, the change in the weights is

θ̂n+∆n − θ̂n = η

∆n∑
m=1

(
g(θ̂n+m) + σb̂n+m

(θ̂n+m)
)

(A8)

If η ≪ 1, so that that after ∆n steps weights change so little that we can neglect changes in g and in
the statistics of σ̂b, then we can approximate

θ̂n+∆n − θ̂n ≃ η∆n g(θ̂n) + η σ(θ̂n)

∆n∑
m=1

ϵ̂n+m

where ϵ̂n is uncorrelated, standardised noise of the gradient, i.e. Eξ̂,ε̂,b̂

[
ϵ̂n
]
= 0, Eξ̂,ε̂,b̂

[
ϵ̂nϵ̂

⊤
m

]
=

δnm 1, so that the covariance of the noise in the gradient estimation is

Eξ̂,ε̂,b̂

[
σ̂b̂(θ) σ̂b̂(θ)

⊤] = σ(θ)σ(θ)⊤ ≡ Σ(θ) . (A9)

If we assume further that η ≪ 1 and ∆n≫ 1, but in such a way that η∆n≪ 1, then, by the central
limit theorem the noise term converges to Gaussian random variable with 0 mean and covariance
∆nΣ(θ̂n):

θ̂n+∆n − θ̂n ≃ η∆n g(θ̂n) + η
√
∆nσ(θ̂t) ω̂n

where ω̂t is a standard Gaussian random variable.

We can re-scale the time coordinate by introducing the continuous time variable t = η∆n, so that
the learning dynamics can be approximated by a stochastic differential equation (SDE), where in the
infinitesimal time step dt = η∆n the weights undergo the increment

dθ̂t = g(θ̂t) dt+ η1/2 σ(θ̂t) · dŴt (A10)

where Ŵt is the Wiener process, i.e. E
[
dŴt

]
= 0 and E

[
dŴt dŴt′

]
= dt δ(t − t′)1, and where

the multiplication symbol “·” is used to indicate the Itô convention for the integration of the noise. 3

Equation A10 describes the limiting dynamics over O(η−1) steps. All that is required is the mean
and the covariance of the stochastic increments ∆̂θ.

We realise that the noise term is scaled by η1/2, which is small (while both g and σ are O(η0)).

Note that dŴ scales as dt1/2 under re-scaling of the time coordinate, so that under the change of
variable t̃ = η t, we can re-write equation A10 as

dθ̂t̃ = −η−1 g(θ̂t̃) dt̃+ σ(θ̂t̃) · dŴt̃ . (A11)

In time units capturing the dynamics over timescales corresponding to O(η−2) discrete updates,
then, the Langevin equation features a large drift term, O(η−1), that “zaps” the parameters onto the
invariant manifold.

B INTUITION FOR THE MAIN RESULT

In the large-drift limit of the Langevin SDE, equation A11, the noise become non-negligible only
when the drift is of the same order or smaller. This can occur close to the invariant manifold, which
is characterised by vanishing drift.

This implies that there are 2 distinct phases in the learning dynamics: first, follow the deterministic
dynamics until we are close to the invariant manifold (fast); then follow the full stochastic dynamics
(slow).

3Hereafter, we use the notation “E” to denote expectations over the Wiener process, which accounts for all
sources of noise (label noise ε̂, model noise ξ̂ and SGD noise b̂). Also, in this case, the stochastic dynamics is
non-anticipative, and the noise has to be interpreted according to the Itô convention.

7



Under review as a conference paper at ICLR 2024

After the first (deterministic) phase, we reach a point θ∗ on the invariant manifold, which depends
on the initial conditions.

Then, since the noise is small compared to the drift, the dynamics will be confined to be close to the
invariant manifold. This allows one to expand the drift term in equation A11 in the displacement
δθ = θ − θ∗:

∇L
∣∣
θ
≃ H(θ∗) δθ +

1

2
∇H(θ∗) : δθ δθ⊤ (B1a)

or in components
∂L

∂θi

∣∣∣∣
θ

≃ H(θ∗)ij δθ
j +

1

2
(∇H(θ∗))ijk δθ

j δθk (B1b)

where H and ∇H denote the Hessian of the loss and its gradient, respectively, and where we used
the fact that ∇L|θ∗ = 0. The Hessian of the loss, H , evaluated at a point on the manifold, θ∗
must be non-negative, and its kernel is assumed to be the tangent space; this assumption means that
there are no soft modes in the perpendicular fluctuations, i.e. 0 eigenvalues of H with eigenvectors
perpendicular to the manifold. Therefore, in the first order approximation, there is always a non-
vanishing component of g acting only orthogonally to the invariant manifold. Any contribution to
the force along the manifold will enter only at the second order in the expansion in the displacement,
and therefore we expect them to produce an effect at even longer time scales.

We can write the Langevin SDE A11 by replacing the expansion in equation B1, and project the
equation along the directions tangent and orthogonal to the invariant manifold:

d(δθ̂)∥ ≡ dθ∗ = −η−1 (∇H : δθ̂δθ̂⊤)∥ dt+ (σ · dŴt)
∥ (B2a)

d(δθ̂)⊥ = −η−1H(δθ̂)⊥ dt+ (σ · dŴt)
⊥ − η−1 (∇H : δθ̂δθ̂⊤)⊥ dt (B2b)

The first two terms in equation B2b constitute a multivariate Ornstein-Uhlenbeck process in the
perpendicular direction, which equilibrates over timescales O(η), yielding a Gaussian steady-state
with 0 mean and fluctuations O(η1/2). If one replaces these fluctuations in the drift term of equa-
tion B2a, one notices that it yields a term O(1) parallel to the manifold (provided that the Hessian
has non-vanishing derivative along the tangent space).

Li et al. (2022) prove that all the terms involving∇H are O(1) and provide explicit expressions for
them; together with the tangent noise term (σ · dŴt)

∥, these deterministic terms are non-negligible
contributions to the dynamics over O(η−2) steps in the learning dynamics.

C THE GENERATOR AND THE FOKKER-PLANCK EQUATION

Given a Markov process θ̂t, we can denote ρ1|1(θ′, t′|θ, t) the conditional probability density func-
tion for θ̂t′ = θ′ given θ̂t = θ (also called propagator). For an arbitrary t′′ ∈ (t, t′), this satisfies

ρ1|1(θ
′, t′|θ, t) =

∫
dθ′′ ρ1|1(θ

′, t′|θ′′, t′′) ρ1|1(θ′′, t′′|θ, t) , (C1)

which expresses the conservation of probability for the Markov process.

For continuous-time processes, we may take t′′ → t+, and cast equation C1 into a first-order differ-
ential equation in time, that is

∂tρ1|1 + Lρ1|1 = 0 , (C2)
where the operator L is called generator of the process. Equation C2 is the backward form of the
Kolmogorov (or master) equation, and describes the dynamics through its dependence on the initial
condition at time t, θ̂t.

For diffusive processes, small time increments imply small increments in θ̂t. In these cases, it is
possible to take the limit of infinitesimal increments to cast equation C1 into a partial differential
equation (PDE), where L is a differential operator on the state variables. For the dynamics described
by the Langevin SDE, equation A11, if θ̂t = θ, then θ̂t+dt is Gaussian-distributed with mean θ −
g(θ) dt and covariance Σ(θ) dt (see, e.g. Gardiner (2009)). In this case, the generator is

L = −1

η
g(θ) · ∇θ +

1

2
Σ : ∇θ∇θ . (C3)
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In equation C2 it operates on the θ variables, while (θ′, t′) enter parametrically, that is

∂tρ1|1 −
1

η
gi

∂

∂θi
ρ1|1 +

1

2
Σij ∂2

∂θi ∂θj
ρ1|1 = 0 (C4)

where g and Σ are evaluated at θ. Equation C4 is known as the backward Fokker-Planck equation
(FPE).

Analogously, one can take the limit t′′ → t′
− in equation C1, and obtain the FPE in its forward

form, i.e. by describing the dynamics via the dependence of ρ1|1 as the measure over θ̂t′ :

∂t′ρ1|1 − L∗ρ1|1 = 0 (C5)

where L∗ is the adjoint of L, and it operates on the variables θ′, while the dependence on (θ, t)
is parametric. Similarly, by taking the limit of small increments in equation C5, one obtains the
forward FPE,

∂t′ρ1|1 =
1

η

∂

∂θ′i
(giρ1|1) +

1

2

∂2

∂θ′i ∂θ′j
(Σijρ1|1) (C6)

where g and Σ are evaluated at θ′.

Due to the linearity of L, it follows from equation C2 that given any function F (θ̂t′), its expectation
over ρ1|1,

h(θ, t) = Eθ̂t′

[
F (θ̂t′)

∣∣ θ̂t = θ
]
= Eθ′∼ρ1|1(·,t′|θ,t)

[
F (θ′)

]
(C7)

also satisfies equation C2.

NULL SPACE OF THE GENERATOR

We see from equation C5, that if an invariant measure µinv exists, it satisfies

L∗µinv = 0 , (C8)

or, in algebraic terms, it is found as the left null vector of the generator L. If the process is ergodic, a
single stationary solution exists, and the invariant measure is unique. In this case, the corresponding
right eigenvector r, has all equal entries, i.e. equals a constant everywhere. From the normalization
condition of the invariant measure, this constant is 1, which ensures the biortonormality condition

⟨µinv, r⟩ =
∫

dθ′ µinv(θ
′) = 1 . (C9)

If the process is not ergodic, then multiple invariant measures, {µa
inv} exist which depend on the

initial conditions – corresponding to as many left null vectors of L, {ra}. This is the case where
the dynamics has absorbing states, that is {θa} with vanishing exit probability rates. In such cases,
then, the right null vector ra corresponding to µa

inv gives the probability that θ̂t is absorbed at θa
(i.e. it reaches θa before any other absorbing state) as a function of the initial condition.

D OVERVIEW OF MULTISCALE METHODS: DECIMATION AND AVERAGING

In this Appendix, we provide an overview of multiscale methods for Markov processes. In partic-
ular, we introduce decimation and averaging for continuous-time Markov processes. Although in
this Appendix we discuss the simpler case of discrete states, the treatment presented also applies
to continuous-states case (diffusive systems), which is of interest for this manuscript and will be
presented in Appendix E. For this reason, we keep the notation as general as possible.

We present a rather informal introduction. For a more detailed exposition with applications see Bo
& Celani (2017) and Pavliotis & Stuart (2008).

D.1 TIMESCALE-SEPARATED SYSTEMS: FAST AND SLOW VARIABLES

Let us consider a continuous-time Markov process θ̂t in which we can identify a slow component
Ẑt and a fast component Ŷt,

θ̂t = (Ẑt, Ŷt) , (D1)

9
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The separation between fast and slow variables means that we can identify a small parameter ϵ≪ 1

that quantifies the rates of change in Ẑt relative to those in Ŷt.

In the discrete case, this means that states are grouped into “blocks”, labelled by the slow variables
Z. Transitions across blocks occur with a frequency O(ϵ0). Within each block, states are further
identified by the fast variables Y , among which transitions happen with high frequency, O(ϵ−1).

In the continuous case, the interpretation of Z and Y depends on the application. For the sake of
the exposition, we can think of the simplest case where both fast and slow variables have a drift-
diffusion dynamics, and where θ̂t ∈ RD can be written as the direct sum between and Ẑt ∈ RD−M

and Ŷt ∈ RM , as in equation D1. This extends to the case of Riemannian geometry, where Ẑt are
the coordinates of a (D −M)-dimensional manifold in RD.

Over a time-scale O(ϵ), therefore, the stochastic dynamics of Ŷt can be regarded as conditioned on
Ẑt. In certain cases, the fast dynamics involves states that are transient, and therefore visited only
for a short time, O(ϵ). Then, these states are effectively “eliminated”, and they do not feature in the
dynamics at timescales O(1). In the jargon of multiscale methods, this elimination of states takes
the name of decimation.

Over longer timescales, O(ϵ0), by the time a transition occurs to a different block, the fast variables
can be assumed to have reached a steady state within the starting block. Then, the probability per unit
time (or transition rate) between blocks can be approximated by the average of the transition rates
over this steady state. In the multiscale jargon, the operation of computing the effective dynamics
at timescales O(1) as the average of the slow dynamics over the fast variables is referred to as
averaging.

In diffusive systems, averaging can yield a trivial dynamics where both average drift and average
diffusivity vanish. In this case, a non-trivial dynamics can be found at even longer timescales,
O(ϵ−1), by applying a further procedure called homogenization – given by computing the solvability
condition at the second order in ϵ. We are not concerned with this situation in this manuscript; see
Pavliotis & Stuart (2008) and Bo & Celani (2017) for more in-depth discussion and examples.

D.2 MULTIPLE TIMESCALE EXPANSION

In this section, we translate the intuition developed in Appendix D.1 into algebra.

The time-scale separation described above, with relative frequency parameter ϵ≪ 1, means that we
can express the generator as

L = ϵ−1M+ L0 , (D2)

where both M and L0 contains terms that do not scale with ϵ.

In the discrete case, L is a matrix containing the transition probabilities per unit time (rates). Fast
and slow variables can be identified if the leading order term, M, is a reducible matrix, i.e. it is
possible to find a permutation of the state indices such that M acquires a block-triangular structure.
In this case, one can introduce auxiliary variables Z to label the blocks (as discussed above). Then,
the first-order term, L0, contains transition rates outside of the diagonal blocks.

There can be blocks, however, which are not probability conserving, under the generator M, i.e.
contain transient states for the fast dynamics. In this case, the Z variables associated to these blocks
are redundant (as they do not label blocks that “survive” at times O(1)) and can be eliminated. This
is what is referred to as decimation in the multiscale literature (Bo & Celani, 2017, Part I, Sec. 2).

Let us consider the problem
∂th+ Lh = 0 . (D3)

Due to the expression of the generator L as an expansion in the small parameter ϵ, we can seek for
a perturbative form of the solution,

h(ϵ) = h(0) + ϵ h(1) + . . . (D4)

where h(0) is the solution of the equation D3 where only the leading term is retained, and h(1) enters
as a small perturbation. Correspondingly, we introduce an auxiliary time variable τ that captures the

10
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dynamics at timescales O(ϵ), in addition to the natural time variable t that we use to describe the
dynamics at timescales O(1):

t→ ϵτ + t . (D5)

This implies that the time derivative is expressed as

∂t → ϵ−1 ∂τ + ∂t . (D6)

By combining equations D3–D6, we obtain a hierarchy of equations to be solved iteratively:

O(ϵ−1) : (∂τ +M)h(0) = 0 (D7a)

O(1) : Mh(1) = −(∂t + L0)h
(0) (D7b)

Note that the solution at O(ϵ−1) can be inserted as the known term in the equation at O(1), which
can be solved to obtain a closed form solution up to next-to-leading order in the expansion in ϵ.

After a short transient, the leading-order equation, equation D7a, is

Mh(0) = 0 (D8)

The leading-order term in the perturbative solution, then, can be found as a right null vector of the
fast part of the generator, M. Note that this is guaranteed to exist, provided that the fast dynamics,
conditioned on the slow variables, admits a steady state distribution µinv, which is a left null vector
of M as discussed in Appendix C,

M∗µinv(·|Z) = 0 , (D9)
where the notation v(·|Z) indicates a vector indexed by (or a function of) the state variables, para-
metrically dependent on Z. Here we see that the slow variables Z label the steady states of the fast
dynamics: this is because there is one “absorbing block” of states for each value of Z which survives
the decimation step. Correspondingly, there exists a right null vector of M, for each non-decimated
Z, which we denote r(·|Z), defined in such a way to satisfy the biortonormality condition

⟨µinv(·|Z), r(·|Z ′)⟩ = δZ,Z′ (D10)

Then, the general solution of equation D8 is a linear combination

h(0) =
∑
Z

ψ(Z) r(·|Z) . (D11)

We can therefore proceed to solve the next-to-leading order, equation D7b, which formally involves
the inverse of M. However, since we know that M has a non-trivial kernel, we need to invoke a
solvability condition, or Fredholm alternative, which consists in imposing that the known term in
equation D7b lies in the space orthogonal to the kernel of M∗.

⟨µinv, (∂t + L0)h
(0)⟩ = 0 (D12)

This can be obtained by taking the inner product of equation D7b with µinv(·|Z) from the left, and
using the fact that

⟨µinv, Mh(1)⟩ = ⟨h(1), M∗µinv⟩ = 0 . (D13)

By replacing the general solution D11 into equation D12, and by using the biorthonormality condi-
tion, equation D10, we have that for every Z(

∂t + L̄0

)
ψ(Z) = 0 (D14)

where
L̄0 ≡ L̄0(Z) = ⟨µinv(·|Z),L0r(·|Z)⟩ (D15)

This is the algebraic expression of the decimation and averaging procedure described in the previ-
ous section. Equation D15 states that the operator L̄0 is nothing but the generator containing the
average of the transition rates between blocks over the conditional distribution µinv(·|Z). Then, the
solvability condition for the next-to-leading order term is equivalent to the Kolmogorov equation for
the slow variables, obtained as the average of the slow dynamics over the fast variables.

In Appendix E, we will discuss the application of this procedure to the large-drift Langevin SDE,
describing the long-time stochastic learning dynamics in the small-learning rate limit.

11
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E SINGULAR PERTURBATION THEORY OF THE FOKKER-PLANCK EQUATION

In this Appendix, we describe the averaging procedure for the FPE associated with the Langevin
SDE, equation A11. We follow similar steps as for the general case in Appendix D, but highlighting
some of the peculiarities of the analysis for a diffusive process with an invariant manifold Γ.

This will allow us to derive the main result presented in Section 2.

E.1 EXPANSION IN MULTIPLE TIMESCALES

The Fokker-Planck generator L, given in equation C3, can be expanded in powers of a small param-
eter ϵ,

L = ϵ−1M+ L0 . (E1)
In equation C3 the small parameter is identified by ϵ = η, the small learning rate, and

M = −g · ∇θ (E2)

L0 =
1

2
Σ : ∇θ∇θ (E3)

As mentioned in Appendix D.2, under certain conditions on the generator of the fast dynamics, M,
we can make the identification between fast variables Y and slow variables Z, so that we can express
θ ≡ (Z, Y ).

E.1.1 REDUCIBILITY OF THE FAST GENERATOR – FAST AND SLOW VARIABLES

In Appendix D.2, we highlighted that the condition for the identification of fast and slow variables
is the reducibility of the generator M. In the discrete-states case, this is the possibility to permute
the state indices and reduce M into a block-triangular transition-rates matrix.

In this case, M is a differential operator, and the reducibility condition requires more care. However,
we can recognise that M in equation E2 is the transport operator along the flow of the deterministic
dynamic dθ/dτ = −g(θ). Given an initial condition θ0 at τ = 0, we denote the solution of the
dynamical system by the map

ϕ(θ0, τ) , (E4)
i.e. a function of both τ and the initial condition. We assume that in the limit τ →∞,

θ∗ = Φ(θ0) = lim
τ→∞

ϕ(θ0, τ) (E5)

lies on the invariant (minimum loss) manifold Γ.

If the loss is not singular, different flow lines will not cross. Then, for each point θ∗ ∈ Γ, one
can therefore identify a manifold Θ(θ∗) containing all the initial conditions that lead to the same
point θ∗. By definition, the manifold Θ(θ∗) is spanned by the flow lines terminating at θ∗: If we
parametrize Γ with local coordinates Z we can unequivocally denote this manifold Θ(Z).

Similarly, we can introduce local coordinates Y that parametrize the manifolds Θ(Z), conveniently
chosen so that Γ is identified by Y = 0. Any point θ is then identified by (Z, Y ). 4

Importantly, since the flow lines of the deterministic dynamics are locally tangent g = ∇θL, they
are locally orthogonal to the level sets of L. As a consequence, they are locally orthogonal to the Γ
itself: more precisely, this means that at any point θ∗ = (Z, 0) ∈ Γ, the tangent space to Γ, Tθ∗(Γ),
is the orthogonal complement of the tangent space to Θ(Z),

Tθ∗(Γ) = Tθ∗
(
Θ(Z)

)⊥
. (E6)

In conclusion, we noticed that the fast dynamics does not affect the coordinates Z of the invariant
manifold Γ, while it drives the coordinates Y of the manifold Θ(Z) to 0, i.e. θ to θ∗ = (Z, 0) ∈ Γ.
The manifolds, labelled by Z, Θ(Z), play the role of the “blocks” of Appendix D, coupled by the

4More precisely, we can write θ ∈ RD as the direct sum of Y ∈ RM , and Z ∈ RD−M , up to a diffeo-
morphism F , i.e. θ = F (Z ⊕ Y ). Hereafter, the diffeomorphism F will be left understood, and we use the
equivalent notation θ ≡ (Z, Y ).

12
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slow dynamics only. We further notice that no decimation of the Z variables is needed, as the fast
dynamics always remains within a block.

Moreover, we saw that the directions spanned by Y and by Z are locally orthogonal on Γ, which
implies that ∂/∂Y and ∂/∂Z can be regarded as the components of the gradient∇θ orthogonal and
tangent Γ at any of its points. That is, if P (Z) denotes the projector on Tθ∗(Γ), for θ∗ = (Z, 0),
then

∂

∂Z
= P (Z) · ∇θ and

∂

∂Y
=

(
1− P (Z)

)
· ∇θ . (E7)

This will be useful later in the derivation.

E.1.2 PERTURBATIVE SOLUTION

Following the steps in Appendix D.2, we obtain the same hierarchy of equation, equations D7:

O(ϵ−1) : (∂τ − g · ∇θ)h
(0) = 0 (E8a)

O(1) : Mh(1) = −(∂t +
1

2
Σ : ∇θ∇θ)h

(0) (E8b)

where we can make the dependence of all the terms in the perturbative solution on fast and slow
variables explicit:

h(θ, t)→ h(ϵ)(Z, Y, τ, t) = h(0)(Y, τ |Z, t) + ϵ h(1)(Y,Z, t) (E9)

As described in Appendix D, it is possible to derive the effective (averaged) dynamics at long
timescales from the solvability condition at the next-to-leading order in the multiple timescales
expansion.

The leading order, equation E8a, is the deterministic transport equation following the dynamics
defined by θ̇ = −g(θ). and gives a short-lived transient that occurs over a timescale O(ϵ), described
by the time variable τ , that remains on the manifold Θ(Z).

Here, we want to capture the dynamics over long times, long after θ has converged to a point on Γ.
Therefore, we are going to look for the stationary solution of equation E8a:

Mh(0) = −g(θ) · ∇θh
(0) = 0 (E10)

assuming that h(0) only depends on the auxiliary variable t. Since g is the gradient of the loss L, the
flow lines described by ϕ are locally orthogonal to the contour lines of the loss L.

In order to proceed to the next order, equation E8b, we need to impose a solvability condition, as
discussed in Appendix D.2. In order to do that, we need to find the left null space of M, i.e.

M∗ µinv(Y |Z, t) = ∇ ·
(
µinv(·|Z, t) g

)
= 0 (E11)

which is solved by
µinv(Y |Z, t) = δ(Y ) , (E12)

The solvability condition would then read(
∂t +

1

2
Σ(Z, Y )|Y=0 : ∇∇

)
ψ(Z, t) = 0 , (E13)

that describes a purely diffusive dynamics.

However, near the manifold, the drift −g can be small enough to compensate the large pre-factor
ϵ−1 = η−1, in such a way that the separation of timescales between the two terms in equation E1 is
no longer valid. Then, we would have to expand the deterministic dynamics near Γ, and consider the
small-Y fluctuations which are not captured by the singular leading-order solution, equation E12.

E.2 EXPANSION IN MULTIPLE TIME AND LENGTH SCALES

In order to deal with the singularity in space generated by the fast convergence to the invariant
manifold, in addition to the expansion in multiple timescales, we also need to introduce auxiliary
spatial variables, which describe the solution near and far from the invariant manifold Γ.

13
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As already observed, over timescales O(1) we only expect small fluctuations in the Y variables,
O(ϵα), for some α > 0. The Z variables, instead, are expected to be always O(1), and do not need
a rescaling.

Then, we can replace the variables Y , capturing deviations from Γ, with rescaled variables y that
describe small fluctuations:

Y → ϵα y , (E14)

This is analogous to boundary-layer problems, where an inner solution and an outer solution are
found near and far from a boundary, to be matched at intermediate scales E (2011).

In these new variables, we get a natural Taylor expansion of the gradient of the loss, g = ∇L:

g(θ) ≡ g(Z, Y )→ g(Z, ϵαy) ≃ ϵαH(Z) · y + ϵ2α
1

2
∇H(Z) : yy⊤ , (E15)

where by H(Z) we denote the Hessian of the loss (and∇H(Z) its gradient) evaluated at a point θ∗
on Γ (i.e. y = 0) with coordinates Z.

Near Γ, we expect the fluctuations due to noise (described by the term Σ : ∇∇ in the generator
L, equation C3) are compensated by the elastic term appearing in equation E15. Then, the scaling
exponent α is determined in order for this noise-drift compensation to take place at leading order.

The rescaling of the Y coordinates, equation E14, implies

∂

∂Y
= ϵ−α ∂

∂y
. (E16)

As we have commented on in Appendix B, the leading term in equation E15 is non-vanishing and
perpendicular to the tangent space of Γ at θ∗ (since all tangent vectors are null vectors of the Hessian
H , and no other null vector is assumed to exist in the perpendicular direction).

Moreover, as shown in Appendix E.1.1, the derivatives with respect to Z and y are orthogonal on
the manifold Γ, and according to equation E16 we can express

∇θ =
∂

∂Z
+ ϵ−α ∂

∂y
. (E17)

By replacing equation E17 and the Taylor expansion E15 into the expression for the Fokker-Planck
generator, equation C3, we notice that the only scaling exponent which allows noise and elastic force
to balance in the perpendicular direction is α = 1/2. This is indeed the scaling the fluctuations in
an Ornstein-Uhlenbeck process with large drift ϵ−1.

With this scaling, and with ϵ = η, the generator can be written as

L = ϵ−1M+ ϵ−1/2 L−1 + L0 (E18)

where

M =
(
− yj Hk

j +Dij (1− P )lj
∂

∂yl

)
(1− P )ki

∂

∂yk

=
(
− yj Hk

j +
1

2
Σkl

⊥
∂

∂yl

) ∂

∂yk

(E19)

L−1 =
(
− yjyl∇Hi

jl +
1

2
Σij P l

j

∂

∂Zl

)
(1− P )ki

∂

∂yk

=
(
− yjyl∇Hi

jl −
1

2

(
Σ⊥,∥ +Σ∥

)ij ∂P k
i

∂Zj
+

1

2
Σ⊥,∥

∂

∂Zl

) ∂

∂yk

(E20)

L0 =
(
− yjyl∇Hi

jlP
k
i

∂

∂Zk
+

1

2
Σij P l

j

∂

∂Zl

)
P k
i

∂

∂Zk

=
(
− yjyl∇Hi

jlP
k
i

∂

∂Zk
+

1

2

(
Σ⊥,∥ +Σ∥

)ij ∂P k
i

∂Zj
+

1

2
Σkl

∥
∂

∂Zl

) ∂

∂Zk

(E21)

14



Under review as a conference paper at ICLR 2024

where we used the fact P depends on Z only, that PH = HP = 0, and where we defined

Σkl
⊥ = (1− P )ki Σ

ij (1− P )lj (E22)

Σkl
⊥,∥ = (1− P )ki Σ

ij P l
j (E23)

Σkl
∥ = P k

i Σij P l
j (E24)

Note that M is the generator of the Ornstein–Uhlenbeck process in the perpendicular fluctuations y.

PERTURBATIVE SOLUTION

In equation E18, the timescale separation is seemingly given by ϵ1/2. In order to be able to match
all terms in the generator with the corresponding time derivative, we take

t→ ϵ τ + ϵ1/2 t̃+ t (E25)

which gives
∂t → ϵ−1 ∂τ + ϵ−1/2 ∂t̃ + ∂t . (E26)

Similarly, we adapt the perturbative solution, that is

h→ h(ϵ) = h(0) + ϵ1/2 h(1/2) + ϵ h(1) (E27)

The procedure is then identical to the one described in Appendix D.2. After a short transient, the
leading orders give

Mh(0) = 0 . (E28)
It is easy to see that this is solved by a function constant in y:

h(0)(y|Z, t) = ψ(Z, t) (E29)

The corresponding left eigenvector of M, is

M∗µinv = 0 (E30)

that is the equation for the equilibrium solution of the Ornstein-Uhlenbeck process:

µinv(y|Z) =
detΩ−1/2

(2π)M/2
exp

{
− 1

2
Ω−1

ij yiyj
}

(E31)

where Ω(Z) is the solution of Gardiner (2009)

H(Z) Ω + ΩH(Z) = Σ⊥(Z) , (E32)

and therefore depends on Z.

We can then move to the next-to-leading order, O(ϵ−1/2).

Mh(1/2) = −(∂t̃ + L−1)h
(0) (E33)

We note that the operator L−1 also has a derivative with respect to y on the right and therefore

L−1h
(0) = 0 , (E34)

due to equation E29. The solvability condition, therefore gives the trivial result ∂t̃ψ = 0, so that we
must proceed to the next order. To do that, we need to solve equation E33 for h(1/2). However, we
notice that the solvability condition yields an identical equation to E28, which tells us that h(1/2)
can be set to 0.

Then, at the last order in the expansion, we have

Mh(1) = −(∂t+ L0)h
(0) (E35)

The solvability condition for this equation is(
∂t + L̄0

)
ψ(Z, t) = 0 , (E36)
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where the operator L̂0 is obtained by averaging the coefficients of the generator L0 over µinv(y|Z).
This is indeed very simple: all terms are independent of y, except the first which features yjyl,
whose average is Ωjl. This gives

L̄0 =
(
− Ωjl∇Hi

jlP
k
i

∂

∂Zk
+

1

2

(
Σ⊥,∥ +Σ∥

)ij ∂P k
i

∂Zj
+

1

2
Σkl

∥
∂

∂Zl

) ∂

∂Zk
(E37)

From this equation, we conclude that the average dynamics is given by a drift

f̄k = −Ωjl∇Hi
jlP

k
i +

1

2

(
Σ⊥,∥ +Σ∥

)ij ∂P k
i

∂Zj
(E38)

and a noise covariance
Σ̄ = Σ∥ (E39)

that is only parallel to the manifold Γ.

Note that the second term in the drift E38 involves the derivative along the manifold of the projector
P , which is solely dependent on the geometry of the manifold.
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