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Abstract

Autoregressive (AR) models have demonstrated strong potential in visual gener-
ation, offering superior performance with simple architectures and optimization
objectives. However, existing methods are typically limited to single-modality con-
ditions, e.g., text, restricting their applicability in real-world scenarios that demand
image synthesis from diverse controls. In this work, we present OmniGen-AR, a
unified autoregressive framework for Any-to-Image generation. By discretizing
various visual conditions through a shared visual tokenizer and text prompts with
a text tokenizer, OmniGen-AR supports a broad spectrum of conditional inputs
within a single model, including text (text-to-image generation), spatial signals
(segmentation-to-image and depth-to-image), and visual context (image editing,
frame prediction, and text-to-video generation). To mitigate the risk of information
leakage from condition tokens to content tokens, we introduce Disentangled Causal
Attention (DCA), which separates the full-sequence causal mask into condition
causal attention and content causal attention. It serves as a training-time regular-
izer without affecting the standard next-token prediction during inference. With
this design, OmniGen-AR achieves new state-of-the-art or at least competitive
results across a range of benchmark, e.g., 0.63 on GenEval and 80.02 on VBench,
demonstrating its effectiveness in flexible and high-fidelity visual generation.

1 Introduction

In recent years, deep generative models [32, 21, 100, 61, 52] have experienced rapid development
and revolutionized the way we create visual contents. Among them, autoregressive models (AR) [15,
100, 66, 82] have demonstrated the capability for high-quality image synthesis through sequential
token prediction. The superior performance, flexbility, and compatibility with multimodal inputs,
position them as competitive alternatives to diffusion models [25, 64, 13, 51, 70].

Despite their potential, existing autoregressive (AR) visual generation methods primarily focus on
single-modality conditioning, such as category labels [15, 18, 101, 81, 79] or text prompts [60, 100,
66, 82]. While these models achieve strong performance within the respective domains, they fall
short of the versatility required in real-world applications, where visual generation often respond to
a diverse set of conditional inputs [106, 107, 89, 94], such as semantic masks, reference images, or
history frames. In other words, building a unified AR generative model that accommodates various
inputs remains under-explored.

To fill this gap, this work presents OmniGen-AR, an autoregressive framework for Any-to-Image
generation. In addition to text, OmniGen-AR also supports a wide range of visual conditions
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Table 1: A system-level comparison between
OmniGen-AR and other methods. Compared
to OmniGen [94], OmniGen-AR additionally
supports video generation.

Method Type Condition
Text Ref Spatial

GLIGEN [40] Diff ! % !

ControlNet [106] Diff ! % !

Uni-ControlNet [107] Diff ! % !

OmniGen [94] Diff ! ! !

LLamaGen [66] AR ! % %

SimpleAR [82] AR ! % %

ControlAR [41] AR ! % !

Ours AR ! ! !

(4) Depth-to-image generation (5) Seg-to-image generation

Change to watercolor painting.

(3) Image editing

(1) Text-to-image generation

(2) Text-to-video generation / 
video prediction

Figure 1: OmniGen-AR could handle 5 types of gener-
ation tasks within a single model.

including segmentation masks, depth maps, and reference images, by discretizing them with a shared
visual tokenizer. An overview of our method is provided in Table 1 and Figure 1. While this approach
allows our model to preserve the simplicity of autoregressive modeling, the serial nature of prediction
introduces a potential risk of information leakage from condition tokens to content tokens. This
becomes particularly problematic in tasks like image editing and frame prediction, where much
of the output remains unchanged relative to the input. Consequently, the model may converge to
suboptimal solutions that exploit shortcut patterns between conditioning and prediction signals,
instead of producing meaningful and instruction-following results.

To address this, we introduce Disentangled Causal Attention (DCA), which separates the causal
attention over the entire sequence into condition causal attention and content causal attention. This
disentanglement prevents the information flow from content tokens to condition tokens while still
allowing the latter to retain awareness of their relative positions. During training, we randomly replace
the vanilla causal attention with DCA, which regularizes the model by discouraging over-reliance on
conditional context and promoting more instruction-compliant predictions. The inference process of
our model still follows the standard next-token prediction.

We validate the effectiveness of OmniGen-AR on six representative visual generation tasks, including
text-to-image generation, text-to-video generation, frame prediction, image editing, depth-conditioned
image generation, and segmentation-conditioned image generation. The results demonstrate that it
achieves new state-of-the-art or at least competitive results on the prevalent benchmarks, e.g., 0.63 on
GenEval [20] and 80.02 on VBench [29]. OmniGen-AR not only maintains the inherent flexibility
and scalability of autoregressive models but also enables the seamless integration of various control
signals, providing a unified and effective solution for universal visual generation.

2 Related Work

2.1 Autoregressive Visual Generation

Autoregressive (AR) models have become a popular paradigm in generative modeling for both
language [56, 57, 72, 3] and vision [100, 66, 82], owing to their strong capability in modeling
complex distributions. Early efforts in AR-based visual generation model images as sequences of
pixels [74, 10], which achieves satisfactory results but suffer from inefficiency and limited scalability.
Subsequent approaches such as VQ-VAE [75] introduce discrete visual tokenization to autoregressive
visual generation, enabling the use of transformer-based language models for image synthesis. These
token-based methods significantly improve the generation quality and training stability, attracting a
series of work that leverage learned codebooks for autoregressive image generation [60, 15, 100, 66].

Recent works have explored autoregressive generation with continuous representations [39, 108],
scale-wise autoregressive modeling [69, 23], and reinforcement-learning for improved generation
quality [82]. Despite these advances, existing AR models mainly focus on single-modality conditions
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(e.g., text or class labels), restricting their applicability in real-world scenarios requiring multi-modal
controls. The most relevant literature is EditAR [49], which also employs autoregressive transformers
and support multiple conditional image generation tasks. Ours work differ from them in two aspects:
1) EditAR is specifically designed for image editing and low-level control tasks (e.g., depth-to-image,
edge-to-image, segmentation-to-image), while our model is a unified Any-to-Image framework that
handles a broader range of input modalities. 2) EditAR aims to improve text-image alignment by
introducing distillation loss, while OmniGen-AR hopes to prevent information leakage through DCA,
a novel training-time attention mechanism that disentangles condition and content attention paths.

2.2 Diffusion Models for Any-to-Image Generation

Recent advances in diffusion models [52, 14] have significantly improved the quality and control-
lability of image synthesis from diverse conditioning signals [106, 40, 85, 104]. ControlNet [106]
firstly introduces a framework that injects spatial control (e.g., edge maps, segmentation masks)
into a pretrained diffusion model without compromising generation quality. It demonstrates strong
performance in aligning generated content with spatial priors but still requires separate adapters for
each conditional modality. To address this, Uni-ControlNet [107] proposes a unified architecture
that supports multiple spatial controls within a single framework by learning a modality-agnostic
representation space. It improves the generality and flexibility across tasks, but still requires the
separate training procedures for different types of condition. More recently, OmniGen [94] pushes
toward general-purpose image generation by unifying diverse tasks, e.g., text-to-image synthesis,
image editing, and subject-driven generation, within a diffusion framework that eliminates external
modules. Inspired by this, we explore the autoregressive framework for any-to-image generation. We
adopt autoregressive modeling as it provides a more natural fit for handling sequential inputs and
enabling interleaving generation.

2.3 Unified Models for Multimodal Understanding and Generation

The belief in scaling data and model size [24, 31, 102] has driven the community towards building
unified and even general multimodal models [2, 68, 1]. CLIP [55] first demonstrates that large-scale
contrastive pretraining on image-text pairs could yield powerful vision-language representations.
Subsequent works [38, 80, 88, 12, 4] extend this paradigm to support a broader range of vision-
language tasks such as captioning and VQA, across both image and video domains.

LLaVA [44, 43] opens up another chapter, i.e., visual instruction tuning, by aligning pretrained
vision encoders [57, 103] with large language models [72] to enabling open-ended multimodal
understanding. Recently, Chameleon [67] steps beyond the scope of understanding tasks to unified
multimodal understanding and generation, seamlessly integrating both modalities in a token-based
framework. Following work improve the design of unified multimodal language models through
better multimodal fusion [111, 95, 71] and visual encoding [92, 93]. These advancements showcase
the growing potential of general multimodal artificial intelligence, pushing the boundaries of both
understanding and generation tasks across multiple domains.

3 Method

Our goal is to unify conditional image generation (i.e., text, spatial, image) within a single autoregres-
sive framework. To this end, we propose OmniGen-AR, which consists of a text and visual tokenizer
to discrete various inputs. With this, we model the dependency between multimodal tokens using an
autoregressive transformer. The architecture of OmniGen-AR is illustrated in Figure 2.

3.1 Visual and Textual Tokenization

To enable the unified processing and generation of diverse modalities, the first question is how to
represent them in a compatible format. Unlike previous work [106, 41] that rely on separate encoders
to encode visual condition V ∈ RH×W×3 (segmentation masks, depth maps, image to be edited)
and the image to be generated X ∈ RH×W×3, we adopt the same visual tokenizer [16] to convert
them into discrete visual tokens: v ∈ RN1 and x ∈ RN2 , where N1 = N2 denote the sequence
length. Here we omit the loop-up and flatten operations for simplicity. While for the textual inputs,
we tokenize them with a language model tokenizer [98] to obtain the text tokens t ∈ RM .
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A woman wearing a 
yellow top and a white 
headscarf is pouring 

soup into a bowl.

Turn the photo
into film style.

Visual Tokenizer Visual 
Tokenizer

Text 
TokenizerText Tokenizer

AutoRegressive Transformer (Causal & Disentangled Causal Attention)

0 1 2 3 4 5 6 7 8 9 10 11 12 2014 15 16 17 18 19 2113

1 2 3 4 5 6 7 8 9 10 11 12 2014 15 16 17 18 19 2113 EOS

Figure 2: OmniGen-AR consists of a text tokenizer, a visual tokenizer, an autoregressive transformer.

3.2 Autoregressive Transformer for Multimodal Generation

We adopt a decoder-only transformer model for multimodal generation, which consists of stacked
attention blocks [76]:

Attention(q, k, v) = softmax

(
qkT√
dk

+m

)
v, (1)

where q, k, v ∈ RN×dk represent the query, key, and value embeddings, and m ∈ RN×N is the
attention mask. In modern language models [57, 72] and AR-based visual generation models [100,
66, 82], m is usually implemented as a lower triangular matrix to mask out the future positions :

mi,j =

{
0, if j ≤ i

−∞, otherwise
(2)

This mechanism ensures that each token attends only to itself and preceding tokens in the sequence,
preserving the left-to-right generation order. However, in the context of conditional image generation,
the plain causal attention can lead to unintended information leakage: given access to previous
condition tokens, the model may learn to exploit trivial correlations between them and the content
tokens to be predicted, instead of generating meaningful tokens that follow instructions faithfully [17,
96, 37, 84].

To alleviate this problem, we modify the attention mask to prevent information flow from condition
tokens to content tokens, while still preserving autoregressive modeling within each. Taking the
image editing task as an example, we concatenate text, condition, and content tokens along the
sequence dimension as the token sequence: [t, v, x] ∈ RL, where L = M +N1 +N2, and design
the attention mask m ∈ R(M+N1+N2)×(M+N1+N2) in the following manner:

mi,j =


0, if j ≤ i and (i, j) ∈ A ∪B ∪ C

−∞, if i ∈ C, j ∈ B

−∞, otherwise
where A = [0,M), B = [M,M +N1), C = [M +N1,M +N1 +N2)

(3)

Such a masking scheme permits content tokens to attend to preceding text tokens while blocking
access to other condition tokens, thereby reducing the risk of shortcut learning. During training, we
randomly apply DCA in place of vanilla causal attention as a regularization. Please see Figure 3
for a better illustration. Notably, the proposed DCA differs from classifier-free guidance [26] in its
treatment of condition tokens. First of all, content tokens remain aware of positional information, as
the condition tokens are not dropped entirely. In addition, DCA is applied only during training and
has no impact on the inference process.
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Figure 3: Comparison between plain causal attention, the proposed disentangled causal attention, and
classfier-free guidance. T, I1, I2 represent text, spatial (image) condition and content tokens.

3.3 Training and Inference

For different generation tasks, we construct the token sequence z by interleaving text, condition,
and content tokens according to task-specific formats. Specifically, spatial- and image-conditioned
tasks follow the manner: z = [t, v, x], while text-conditioned tasks use z = [t, x]. OmniGen-AR
is trained to autoregressively predict the next token over these sequences using language modeling
loss [57, 100].

During inference, the tokens are sequentially sampled based on the learned conditional probability:
ẑi = argmaxpθ(zi|z<i). After that, we feed them to the decoder of visual tokenizer to generate
images. Classfier-Free Guidance (CFG) [26] is adopted to improve the generation quality, following
previous work [66, 82].

4 Experiments

4.1 Experimental Setup

Training data. The training of OmniGen-AR includes three stages: 1) single image stage (SI),
where we pretrain our model on large-scale image datasets, involving CC3M [62], CC12M [7],
OpenImages [36], SAM1B [33], and Megalith-huggingface [46]. We also incorporate video datasets,
i.e., a 9M subset of Panda70M [11] and HD-VILA-100M [97], and randomly sample 1 frame for
each video. 2) image-video joint stage (IV), where we maintain the datasets used in the first stage but
sampled 9 frames from the videos. 3) multi-task stage (MT), where we train our model on a wide-
range of high-quality datasets, including text-to-image datasets (JourneyDB [65], Synthetic-dataset-
1M [53], and 10M internal data), image editing datasets (MagicBrush [105], Instruct-Pix2Pix [5],
SEED-Edit [19]), depth-to-image datasets (MultiGen-Depth [54]), segmentation-to-image datasets
(MultiGen-ADE20k [54] and MultiGen-COCOStuff [54]), and text-to-video datasets (OpenSora-
pexels-45k [28], OpenVid-1M [50], and 0.5M high-quality internal data). We recaption all the images
and videos using Qwen2-VL [83].

Implementation details. We adopt Qwen2.5 [98] as the text tokenier and transformer model. While
for visual tokenizer, we use an image-video joint tokenizer, i.e., Cosmos-DV8×16×16 [16], which
allows us to tokenize different controls, images, and videos with the same codebook. During the SI
and IV stages, we train our model on 512 resolution, and the learning rate is set to 1e-4. While for
the MT stage, we increase the resolution to 1024 and decrease the learning rate to 2e-5. We train
our model on 64 A100 GPUs, the global batch size is 256 for all stages, no warm up or learning rate
decay are used. AdamW [45] is employed for optimization. During the IV and MT stages, we replace
the standard causal attention mask with a disentangled causal attention mask with a probability of
10%, and similarly drop the text conditions for classifier-free guidance with the same probability. We
set CFG scale to 6.0 during inference.

4.2 Comparison with State-of-the-arts

Text-to-image generation. In Table 2, we compare OmniGen-AR with existing image generation
models on GenEval [20], a challenging and popular text-to-image (T2I) benchmark. The results
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Table 2: Text-to-image generation on GenEval, Results
markdd with † result are using prompt rewriting.

Method Par. Two. Pos. Color. Overall

SDv1.5 [61] 0.9B 0.38 0.04 0.06 0.43
PixArt-alpha [9] 0.6B 0.50 0.08 0.07 0.48
SDv2.1 [61] 0.9B 0.51 0.07 0.17 0.50
LlamaGen [66] 0.8B 0.34 0.07 0.04 0.32
SimAR-SFT [82] 0.5B 0.75 0.20 0.24 0.53
Ours 0.5B 0.74 0.20 0.29 0.55

LDM [61] 1.4B 0.29 0.02 0.05 0.37
DALL-E 2 [59] 6.5B 0.66 0.10 0.19 0.52
Show-o [95] 1.3B 0.80 0.31 0.50 0.68
Infinity [23] 2B 0.85† 0.49† 0.57† 0.73†

Janus [92] 1.5B 0.68 0.46 0.42 0.61
Emu3 [86] 8.5B 0.81† 0.49† 0.45† 0.66†

SimAR-SFT [82] 1.5B 0.87 0.27 0.33 0.61
Ours 1.5B 0.94 0.30 0.40 0.63

Table 3: Video generation on VBench.

Method Par. Qua. Sem. Total

CogVideo [27] 9B 72.06 46.83 67.01
LaVie [87] 3B 78.78 70.31 77.08
OpSoraP V1.3 [42] 2.7B 80.14 65.62 77.23
CogVideoX [99] 5B 83.05 77.33 81.91
Hunyuan [35] 13B 85.09 75.82 83.24

Mira [30] 1.1B 78.78 44.21 71.87
TF-T2V [8] 1.8B 80.05 56.69 75.38
OpSora V1.2 [109] 1.1B 81.35 73.39 79.76
AniDiff V2 [22] 0.9B 82.90 69.75 80.27
VidCrafter-2.0 [8] 1.4B 82.20 73.42 80.44
CogVideoX [99] 2B 82.18 75.83 80.91
Wan2.1 [78] 1.3B 85.23 75.65 83.31
Ours 0.5B 76.60 67.20 74.72
Ours 1.5B 81.51 78.08 80.02

Table 4: Frame prediction on Kinetics-600 (left, ∗ denotes zero-shot evaluation), image editing on
Emu-Edit test set (middle), and spatial-conditioned generation (right). CT: CLIP text similarity
between edited image and edited prompt, CI: CLIP image similarity between edited image and
condition image.

Method FVD (↓)

LVT [58] 225
ViTrans [91] 170
CogVideo [27] 109
ViVQVAE [77] 64
OmniTok [81] 33

VideoPoet-8B∗ [34] 687
Ours-1.5B∗ 429

Method CT CI

I-Pix2Pix [5] 0.22 0.83
MagBrush [105] 0.22 0.84
PnP [73] 0.09 0.52
Null-Text [47] 0.24 0.76
Emu-Edit [63] 0.23 0.86
OmniGen [94] 0.23 0.83
Ours-1.5B 0.23 0.84

Method Mask
mIoU (↑)

Depth
RMSE (↓)

Uni-ControlNet [107] 19.39 40.65
GLIGEN [40] 23.78 38.83
EditAR [49] 22.62 34.93
ControlNet [106] 32.55 35.90
ControlAR [41] 39.95 29.01
OmniGen [94] 40.06 31.71
Ours-1.5B 35.28 37.42

show that OmniGen-AR significantly outperforms all other models with fewer than 1B parameters,
including both diffusion models (e.g., SDv2.1 [61]) and autoregressive models (e.g., LLamaGen [66]).
When scaled to 1.5B size, the overall performance of OmniGen-AR is improved from 0.57 to 0.63,
highlighting its promising scalability when more training computes are available.

Text-to-video generation. We also evaluate OmniGen-AR on VBench [29] for text-to-video gen-
eration, and the comparison with existing video generation models is shown in Table 3. With only
0.5B parameters, our model achieves 74.72 total score on VBench, surpassing the previous SOTA
AR-based models, i.e., CogVideo [27], by 11% while using much fewer parameters (0.5B v.s. 9B).
Similar to what we have seen on T2I, the results of T2V could be signigicantly improved to 80.02
using 1.5B parameters, even beating diffusion models like OpenSora V1.2 [109]. It is also worth
noting that it is the first time that a vanilla autoregressive model using discrete tokens could achieve
80+ score on VBench.

Frame prediction and image editing. To evaluate the image generation capability given visual
context (image condition), we choose two types of tasks: frame prediction on Kinetics-600 [6] and
image editing on Emu-Edit test set [63]. The results in Table 4 show that OmniGen-AR achieves
much lower Fréchet Video Distance (FVD) than VideoPoet [34] for frame prediction. While for the
more challenging image editing task, OmniGen-AR also achieves competitive results, i.e., 0.23 CLIP
text similarity [55].

Segmentation and depth-to-image generation. We follow previous work [41, 94] to report the
segmentation-to-image and depth-to-image generation performance on ADE20K [110] and MultiGen-
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Depth-Eval [54] in Table 4 (right). Compared to text or image condition, spatial conditions provide
more structured and fine-grained instructions, thus posing a greater challenge to the model to
geometrically accurate and contextually coherent content. We can see that OmniGen-AR achieves
competitive results on both tasks, outperforming diffusion counterparts [48, 40].

4.3 Ablation Studies

Effects of disentangled causal attention. To better illustrate the potential information leakage in
image-conditioned generation tasks, we compute the token match ratio (TMR) of MagicBrush [105], a
popular image editing dataset, and visualize it in Figure 4. TMR is defined as the fraction of identical
tokens in the same position between condition and content images: TMR = 1

N1

∑
i 1 [vi = ci],

where vi and ci denote the i-th token from the condition and content images respectively, and N1 is
the total number of tokens. The x-axis of Figure 4 denotes binned TMR ranges (e.g., 0.80–0.85), and
the y-axis shows the proportion of samples falling into each bin. As can be seen, a significant portion
of samples exhibit high TMR values, suggesting substantial overlap between condition and content
images, which may imply unintended information leakage.
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Averaged token match = 0.37%

Figure 4: Token similarity on MagicBrush [105].

Table 5: OmniGen-AR w/ and w/o
DCA on different generation tasks.

Method VBen Emu-CT Mask

0% 70.33 0.15 24.76
5% 74.55 0.17 25.78
10% 74.72 0.20 25.33
20% 73.28 0.21 25.16
30% 71.69 0.19 21.49

As mentioned in Sec.4.1, we randomly replace standard causal attention with the proposed Dis-
entangled Causal Attention (DCA) during training. We also conduct experiments with varying
replacement probabilities using the 0.5B model across different tasks. As shown in Table5, adopting
DCA with a 10% probability improves the CLIP text similarity on Emu from 0.15 to 0.20, indicat-
ing the encouragement robust conditioning without significantly limiting the access to informative
context. Interestingly, DCA also yields slight gains in segmentation-to-image generation, which we
hypothesize results from its ability to reduce over-reliance on exact segmentation inputs and thus
improving the robustness of our model. Unless otherwise specified, we adopt a default replacement
probability of 10% in all experiments.

Table 6: Joint or separate training.

Method GEval VBen Emu Mask

Joint 0.55 74.72 0.20 25.33

T2I 0.57 - - -

T2V - 77.18 - -

Edit - - 0.18 -

Seg - - - 22.59

Text 0.5B 1.5B

Depth 0.5B 1.5B

a photo of a 
green 

surfboard

Segmentation 0.5B 1.5B

The bund 
Shanghai, Van 

Gogh style

0.5B

1.5B

Figure 5: Effects of model scaling.

Synergy between different tasks. We study the synergy between different generation tasks by
comparing joint training and separate training, both initialized with the 2nd stage checkpoint. As
shown in Table 6, joint training leads to degraded performance on text-to-image and text-to-video
benchmarks, possibly due to the lower visual quality of editing and spatial-conditioned datasets. In
contrast, it improves the results on editing and segmentation-to-image generation tasks, suggesting
that strengthening the foundation capability, i.e., text-conditioned generation, can facilitate better
generalization to a broader range of downstream tasks.
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A high-resolution portrait. 
Her hair is styled in full 
platinum blonde waves 
that frame her intensely 
expressive, pale-skinned 
visage with high detail.

Girl with a Pearl Earring, 
is adorned with a pearl 
drop earring. The soft 

texture of her pale skin 
contrasts with the dark, 
liquid-like background.

A painting dominated 
by rich, deep 

colors ,featuring a 
gothic clown girl as 
the central figure.

A captivating portrait 
showcasing a young 

girl with ethereal 
beauty, gracefully 

suspended amidst the 
soft, billowy clouds. 

Two golden-brown 
spring rolls with a 

perfectly crispy texture 
sit invitingly on a woven 

bamboo mat. 

A curious vessel, with 
an architecture 

reminiscent of a giant 
green broccoli, basks 
in the bright sunlight.

A bright yellow tennis 
ball lies in stark contrast 
on the vibrant green of 
a mowed grass court.

The sun radiates down 
on a sandy beach where 

a chocolate ice cream 
beginning to melt down. 

A beautiful coastal beach in spring, waves lapping on sand, tilt down

A cute happy Corgi playing in park, sunset, watercolor painting

An intricately detailed 
oil painting that captures 
the whimsical essence of 

a feline super math 
wizard. 

A vibrant green plant 
with broad leaves and a 
sturdy stem, situated at 
the bottom of a clear, 
gently flowing stream.

Figure 6: Visualization of text-to-image and text-to-video results generated by OmniGen-AR.

Model scaling. In Figure 5, we qualitatively compare the models with 0.5B and 1.5B parameters. It
can be seen that scaling the model size could effectively improve the generation results on various
tasks, leading to improved instruction-following capability and more aesthetically pleasing images.

4.4 Qualitative Results

We display some visualization results in Figure 6 and 7. OmniGen-AR could synthesize high-quality
images based on various types of conditions, showcasing both versatility in handling diverse inputs
and the ability to maintain semantic coherence with contexts. Several failure cases are also shown
in Figure 8, which can be broadly categorized into two types: 1) Instruction-following capability.
For instance, in the first row of Figure 8, the instruction is “Remove the bag on the bench next to
the person sitting at the bus stop”, but the model removes the person instead. This indicates a failure
in grounding fine-grained spatial and referential cues from language into visual modifications. 2)
Low-quality generations under sparse control signals. Examples in the second row (depth-to-image
and segmentation-to-image) show blurry or structurally inconsistent results, which likely stem from
noisy supervision and sparse training coverage for these conditions. These failure modes suggest two
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Delete the red apples. Make it into abstract style. Change the hard hat to green.

depth image fused depth image fused

segmentation image fused segmentation image fused

Figure 7: Image editing, depth-to-image, and segmentation-to-image generation results.

Remove the bag on the bench next to 
the person sitting at the bus stop.

Add the word 'room' to the back 
wall above the head.

Turn the round donuts into tennis balls.

Figure 8: Failure cases generated by OmniGen-AR.

potential directions for future work: 1) Scaling up the model and training data to build a stronger
base model with improved generalization and instruction-following ability across diverse visual tasks.
2) Leveraging chain-of-thought (CoT) [90] to improve the reasoning ability on complex prompts.

5 Conclusion and Broader Impacts

This paper presented OmniGen-AR, a unified autoregressive framework for any-to-image generation.
OmniGen-AR represents a wide spectrum of conditional inputs, i.e., text prompts, spatial controls,
and visual contexts, as discrete tokens, and trains a unified autoregressive transformer to model
the dependencies between these conditions and the target image tokens. To mitigate the potential
information leakage in conditional generation tasks, we proposed Disentangled Causal Attention
(DCA), which separates the attention pathways between condition and content tokens to facilitate
the learning of instruction-following generation. Comprehensive experiments demonstrate that
OmniGen-AR achieves state-of-the-art or at least competitive performance across a wide range of
visual generation tasks.
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a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We specify the model configurations, hyperparameters, and data in Sec. 4,
supporting the reproduction of main experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release the full codebase upon publication, including implementation
details and training scripts necessary to reproduce the main experimental results. The
training data includes a combination of public datasets and internal data that cannot be
released due to licensing constraints. We will provide clear documentation specifying how
the datasets were used and how public data can be substituted to approximate our results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify the model configurations, hyperparameters, and data in Sec. 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars would be too computationally expensive to report. We claim that
gains in our experimental results are consistent and significant.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies details about computer resources in Sec. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure to conduct the research strictly following the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in Sec. 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all third-party assets (e.g., code, datasets, pretrained models) used in
the paper. While license terms are not explicitly listed in the current draft, we will ensure
that all licenses and terms of use are properly documented and respected in the final version
upon publication.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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