
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Code2MCP: Transforming Code Repositories into
MCP Services

Anonymous authors
Paper under double-blind review

Abstract

The Model Context Protocol (MCP) aims to create a standard for how Large
Language Models use tools. However, most current research focuses on selecting
tools from an existing pool. A more fundamental, yet largely overlooked, problem is
how to populate this pool by converting the vast number of existing software projects
into MCP-compatible services. To bridge this gap, we introduce Code2MCP,
an agent-based framework that automatically transforms a GitHub repository
into a functional MCP service with minimal human intervention. Code2MCP
employs a multi-agent workflow for code analysis, environment setup, tool function
design, and service generation, enhanced by a self-correcting loop to ensure
reliability. We demonstrate that Code2MCP successfully transforms open-source
computing libraries in scientific fields such as bioinformatics, mathematics, and
fluid dynamics that are not available in existing MCP servers. By providing a
novel automated pathway to unlock GitHub, the world’s largest code repository,
for the MCP ecosystem, Code2MCP serves as a catalyst to significantly accelerate
the protocol’s adoption and practical application. The code is public at https:
//anonymous.4open.science/r/Code2MCP-5B47.

1 Introduction

The landscape of artificial intelligence is increasingly defined by autonomous agents that leverage Large
Language Models (LLMs) to interact with external tools (Wang et al., 2024; Xi et al., 2024; Bubeck
et al., 2023). To overcome the inherent limitations of LLMs in tasks requiring real-time information
or precise computation, the paradigm of tool-augmented reasoning has become central (Huang et al.,
2024; Hao et al., 2023). Seminal works have demonstrated that models can effectively learn to invoke
external functions (Schick et al., 2023; Qin et al., 2023; Parisi et al., 2022).

However, this burgeoning ecosystem faces a fundamental scalability challenge: the 𝑁 ×𝑀 integration
problem (Li et al., 2023; Liang et al., 2023; Qin et al., 2023; Anthropic, 2023). Each of the N models
or agent applications often requires a bespoke connector for each of the M tools it must access. This
results in a fragmented and inefficient system where development effort is duplicated and innovation is
stifled by high integration costs (Qu et al., 2025; Shen, 2024). To address this, MCP is proposed as a
universal standard that specifies how agents and tools should communicate, enabling an interoperable
“plug-and-play” ecosystem (Anthropic, 2023).

In response to this integration challenge, the community’s efforts have evolved, inadvertently revealing
a deeper, more foundational bottleneck (Yue et al., 2025). The initial challenge is to establish
the fundamental feasibility of tool use, where a limited set of tools proves the feasibility of the
paradigm (Schick et al., 2023; Patil et al., 2023; Ding et al., 2025). To break past the inherent scarcity
of these platforms, the focus shifts to the vast landscape of open-source repositories (Wang et al.,
2025; Xie et al., 2023). This move, however, trades a scarcity problem for a chaos problem, exposing
the wild non-standardization of real-world code. The MCP emerges as a direct answer to this chaos,
promising a universal interface (Zhang et al., 2025; Anthropic, 2023). Yet, this leads to the critical
gap: research is focused almost exclusively on the consumption side of MCP, using services from a
presumed-to-exist pool (Gan & Sun, 2025), while the foundational “supply-side” problem of how to
populate this pool from existing software is largely unaddressed.

1

https://anonymous.4open.science/r/Code2MCP-5B47
https://anonymous.4open.science/r/Code2MCP-5B47

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Closed Predefined Pool

Code2MCP

Toolformer

Be Large

Tool-augmented LLMs Select Tools from Various Pools

Low Extension

User Input
Calculate the definite
integral of sin(x2) using
the Riemann sum method.

…

Code
Repository

SciToolAgent

Standardized MCP OpenAgent

RAG-MCP

Hugging
GPT

XXXX

increase
pool size

Be Open Be Standard

Be a SUPPLIER for large, open, and standard tool pool

好

中

差

Large Pool Open Pool MCP Pool

Gorilla RepoMaster

Limited Coverage Chaotic Integration Insufficient Supply

Structured Vast Coverage Standardized

Figure 1: While most research focuses on the consumption
of tools (right side), one bottleneck is their supply (left side).
Code2MCP solves the supply problem by converting the code
repository into a standardized MCP-compliant tool.

However, while these efforts advance
the consumption side of the prob-
lem, how agents can better use tools,
they largely overlook a more funda-
mental bottleneck on the supply side.
This supply bottleneck is not a the-
oretical concern but a stark reality
preventing standards like MCP from
achieving widespread adoption. For
example, RAG-MCP (Gan & Sun,
2025) utilizes over 4,400 servers on
mcp.so, but there are 268 million
public GitHub repositories. The crit-
ical question of how to create a large
and diverse pool of these standardized,
agent-ready tools has been left unad-
dressed. This creates a major adop-
tion gap, effectively locking away the
largest software repository, GitHub,
from this emerging ecosystem.

In this paper, we introduce Code2MCP, a new framework designed to bridge the critical tool supply
gap. Code2MCP presents a blueprint for transforming any GitHub repository into a functional and
documented MCP service with minimal human intervention. However, this transformation is a
complex endeavor encompassing four pivotal challenges: (1) deep code comprehension to identify
core functionalities, (2) reliable environment replication to ensure executability, (3) intelligent tool
abstraction to design useful and valid service interfaces, and (4) robust self-correction to handle the
inevitable errors throughout the process. To systematically address these challenges, as shown in
Figure 2, Code2MCP implements a collaborative multi-agent system (Park et al., 2023). Unlike
general-purpose coding agents (Cognition, 2024; Jimenez et al., 2024), different agents in our
framework are specialized for the distinct stages of code analysis, environment setup, and API
design. Crucially, the overall reliability of this workflow is ensured by an integrated Run-Review-Fix
self-correction cycle, which endows the system with the ability to autonomously debug and refine the
entire conversion process. The key contributions of this work are listed as follows:

• To solve the fundamental tool supply bottleneck hindering the adoption of the MCP standard, we
propose Code2MCP, a novel automated framework that, to the best of our knowledge, is the first to
systematically transform code repositories into agent-ready MCP services.

• The key challenge in converting code into a service is the inherent fragility of the multi-stage
automation process, where an error at any step can derail the entire workflow. Thus, we introduce a
novel multi-agent architecture governed by a Run-Review-Fix cycle, a self-correcting mechanism
designed to systematically debug and refine the process, ensuring end-to-end reliability.

• We demonstrate the effectiveness and scalability of our framework by converting highly complex
and diverse scientific libraries, covering Protein Design, Symbolic Mathematics, and Computational
Fluid Dynamics, into fully functional MCP services. This provides a concrete and practical pathway
to enrich the MCP ecosystem with specialized, high-value tools.

2 Related Work

As summarized in Section 1 and Table 1, the pioneering works focus on progressively expanding
the scope of tool use, from initial feasibility studies using a few predefined APIs to leveraging large,
curated tool platforms, and ultimately, to the ambitious goal of directly interfacing with unstructured
open-source repositories. Thus, the current bottleneck lies not in how LLMs consume tools, but
in how such tools are supplied and created. In this paper, Code2MCP is designed to solve this
fundamental “supply-side” problem.

Initial explorations in LLM Tool Use. The initial challenge is to establish the fundamental feasibility
of tool use. Toolformer (Schick et al., 2023) demonstrates that an LLM can learn to invoke simple,

2

mcp.so

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: A comparative summary of related works in tool-augmented LLMs.

Work Core Contribution Tool Pool Tool Selection MCP

C
on

su
m

er
Toolformer Teaching LLM to use external tools 5 predefined tools Fine-tuning ×

SciToolAgent Domain-specific enhancement
for scientific tool utilization

KG of Scientific Tools
(500+ tools) Retrieval on KG ×

HuggingGPT Increase the size
of tool pool

huggingface.co LLM task planning ×

Gorilla TorchHub, TensorHub
(1600+ tools)

Retriever-aware
training ×

OpenAgents Tool use from open-source
beyond a closed pool github.com

Multi-agent planning ×
RepoMaster Rule-based deep search ×

RAG-MCP RAG for tool selection from MCP MCP.so (4,400+) Retrieval on MCP ✓

Supplier Code2MCP GitHub Repo to standardized MCP github.com N/A ✓

well-defined tools like a calculator via simple APIs in a self-supervised way. SciToolAgent (Ding
et al., 2025) leverages knowledge graphs to orchestrate 500+ scientific tools. This proves the concept
and opens a new paradigm. However, its reliance on a small, predefined set of tools is inherently
unscalable and insufficient for addressing the diverse needs of real-world tasks.

Scaling Tool Availability via Structured Platforms. To overcome the limitation of fixed toolsets,
subsequent research turns to large, curated platforms. These approaches significantly expand the
number of available tools. For instance, Gorilla (Patil et al., 2023) fine-tunes models on a massive
corpus of API calls from hubs like TorchHub and TensorFlow Hub. Similarly, HuggingGPT (Shen
et al., 2023) positions an LLM as a controller to delegate tasks to specialized models within the
Hugging Face ecosystem. While powerful, their success hinges on environments where tools are
well-documented and standardized.

Exploring Unstructured Open-Source Repositories and Challenges. A more ambitious paradigm
shift involves treating the entirety of open-source code repositories as a virtually infinite tool source.
Frameworks like OpenAgents (Xie et al., 2023) and RepoMaster (Wang et al., 2025) empower agents
to directly parse, reason about, and execute code within GitHub repositories. These works confront the
complexity of real-world code but expose the core bottleneck: the vast majority of these repositories
are not designed for programmatic use by LLM agents. They lack standardized interfaces (Zhang
et al., 2024; Jin et al., 2024; Ray, 2025), forcing the agent into an ad-hoc, brittle, and unreliable
process of reverse-engineering the code, setting up its environment, and managing dependencies for
every single task (Zeng et al., 2024; Olausson et al., 2023). This chaotic integration process illustrates
a critical failure on the tool supply side.

The Emergence of Standardization and Unaddressed Gap. Recognizing this chaos, the community
has moved towards standardization, exemplified by the MCP. For example, RAG-MCP (Gan & Sun,
2025) explores how an agent can effectively retrieve and select the most appropriate MCP service from
a pool of 4400+ available options. This approach is promising, but it presumes the existence of a rich
ecosystem of MCP-compliant services (Hasan et al., 2025). This highlights a crucial, unaddressed
gap: how is this ecosystem of MCP services populated in the first place?

3 Methodology: The Code2MCP Framework

To achieve the goal of automatically transforming an arbitrary GitHub repository into a fully functional
and reliable MCP service, we design Code2MCP, an automated framework driven by the collaboration
of seven specialized agents. The entire conversion process, as depicted in Figure 2, is a multi-agent
workflow that begins with code analysis, proceeds through a core Run-Review-Fix self-correction
loop, and culminates in the generation of a merge-ready pull request. For completeness, a more
formal description of this workflow is provided in the appendix A.3.

Suppose there exists a consumer-side work listed in Table 1 that finds a suitable GitHub repository
that may solve the user’s query. Code2MCP converts this repository into MCP that LLMs can call
and use. This is the core difference between this “supply-side” work and the consumer-side works.

3

huggingface.co
github.com
MCP.so
github.com

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Download Agent

Environment Agent

Source Code

Code Environment

MCP Agent

Analysis Agent

Generation Agent

Run AgentReview
Agent

MCP Code

Code Excution

Error Analysis

Error Reason
Result

Github Repo Finalize Agent

microsoft/playwright

browser-use/browser-use

All-Hands-AI/OpenHands

scrapy/scrapy

OpenBB-finance/OpenBB

gradio-app/gradio

TencentARC/GFPGAN

opencv/opencv

jeecgboot/JeecgBoot

facebookresearch/faiss

Detected runtime error
starting deep error analysis...

Code Report

facebookresearch/esm

esm_Analysis.md
mcp_service.py

…

Pull Request

esm_difference.md

…

Figure 2: Overview of the Code2MCP framework. The system takes a GitHub repository URL as
input and automatically generates a complete MCP service through a multi-agent workflow.

Initialization and Analysis. The Download Agent first clones the specified repository, identified
by its URL 𝑢, into an isolated local workspace. The Environment Agent then replicates the
runtime environment from dependency files or Dockerfiles, addressing one of the most common
failure points in code conversion and supporting reliable subsequent code generation and testing.

Once the environment is ready, the Analysis Agent identifies tool-worthy functionalities within
the codebase. It leverages the DeepWiki tool to obtain a semantic view of the code and associates
code entities with their intent from documentation and comments. The output is a Code Report that
summarizes candidate APIs and guides subsequent stages.

Generation, Execution, and Self-Correction. Given this conversion blueprint, the framework enters
its core iterative loop that turns the identified functionalities into executable MCP services.

The loop starts with the Generation Agent, which takes the Code Report and uses an LLM to
abstract the core functionalities into MCP-compliant interfaces. It creates the tool interface definitions
and adapter file that connect the original code to the MCP interface, together with a basic test suite.

Once the code is generated, the Run Agent executes the test suite in the prepared environment
to verify executability. If the tests pass, the workflow proceeds to finalization; otherwise, the Run
Agent records the error traceback 𝜏 and forwards it to the Review Agent. The Review Agent
analyzes 𝜏 together with the generated code, the Code Report, and the failing test, and diagnoses root
causes such as logic errors, missing dependencies, or interface mismatches. It then formulates a
correction plan 𝛿 that specifies which files and code blocks to change, and hands this plan back to the
Generation Agent to re-synthesize the MCP files. This Run-Review-Fix loop repeats until tests pass
or a maximum of 𝐵 attempts is reached.

Finalization and Delivery. After the core loop succeeds, the Finalize Agent organizes and
packages the validated MCP service files. To facilitate review and adoption by the original repository
maintainers, it also generates a README file explaining how to use the new MCP service. All
artifacts are arranged into a reproducible directory structure under the workspace (Appendix A.2),
and the agent can prepare a pull request to submit these additions back to the original repository.

4 Evaluation

4.1 Experimental Setup

Task. The evaluation task is: given a GitHub repository URL, Code2MCP automatically generates an
MCP service for that repository, and the outcome of the conversion is judged as a success or a failure.
The evaluation focuses on the overall conversion success rate across different domains and repository
characteristics, and on the time and stability of Code2MCP compared with manual implementation
and a GPT-4 template-based baseline on the same set of repositories.

4

https://deepwiki.org/

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: Per-domain summary of environment setup success, basic test success, recovery by the
Run-Review-Fix (RRF) loop (“–” if none are recovered), and final MCP conversion success.

Domain Repos Env succ. Test succ. RRF recovered Avg rounds MCP succ.
Biomedical 5 4/5 (80%) 2/5 (40%) 1/2 (50%) 1.5 3/5 (60%)
Psychology 5 3/5 (60%) 3/5 (60%) 0/1 (0%) – 3/5 (60%)
Math 5 5/5 (100%) 3/5 (60%) 1/2 (50%) 2.0 4/5 (80%)
Earth science 5 3/5 (60%) 2/5 (40%) 1/3 (33.3%) 1.0 3/5 (60%)
Chemistry 5 4/5 (80%) 2/5 (40%) 1/2 (50%) 1.3 3/5 (60%)
Physics 5 3/5 (60%) 2/5 (40%) 0/2 (0%) – 2/5 (40%)
Astronomy 5 4/5 (80%) 3/5 (60%) 1/1 (100%) 1.5 4/5 (80%)
Social science 5 4/5 (80%) 2/5 (40%) 1/2 (50%) 1.0 3/5 (60%)
Linguistics 5 5/5 (100%) 3/5 (60%) 1/2 (50%) 2.0 4/5 (80%)
Econometrics 5 3/5 (60%) 2/5 (40%) 1/2 (50%) 1.0 3/5 (60%)

Overall 50 38/50 (76%) 24/50 (48%) 8/19 (42.1%) 1.4 32/50 (64%)

Repositories. Code2MCP is evaluated on 50 open-source repositories from 10 scientific and
engineering domains (5 per domain), covering biomedical science, psychology, mathematical
computing, earth science, chemistry, physics, astronomy, social science, linguistics, and econometrics.
These repositories range from small utility libraries to large frameworks with complex dependency
stacks. For each repository, the evaluation logs the environment construction result, MCP conversion
result, number of generated tools, and failure types observed across all Run-Review-Fix rounds; per-
repository details and the associated failure labels are summarized in a large table in the Appendix A.5,
and a subset of representative scientific-computing repositories is further used for the Run-Review-Fix
ablation and qualitative case studies.

Success criterion. A conversion is regarded as successful only if the following three conditions
all hold: the runtime environment can be reconstructed according to the dependency specifications
provided by the repository, the generated MCP server can be started and must pass a unified RunNode
test, and at least three core tools can be invoked correctly in automatic tests and return valid outputs.
If any of these conditions is not satisfied, the repository is counted as a failure.

Failure taxonomy. To analyze failure modes, all failed repositories are annotated with one or more
labels from the following six categories:

• env_failure. The environment or dependencies cannot be reconstructed.
• api_inference_error. Systematic errors occur when inferring tool interfaces.
• import_error. Import paths or cross-module dependencies are misconfigured.
• repo_internal_bug. Bugs or version conflicts inside the original repository prevent it from

running reliably even in its native environment.
• mcp_spec_violation. The generated JSON Schema or response structure does not conform

to the MCP specification.
• untoolable_repo. The repository is a collection of scripts or heavily depends on interactive

CLIs or GUIs, which are difficult to abstract into stable MCP tools.

Implementation Details. By default, Code2MCP utilizes gpt-4o-2024-05-13 as its core reasoning
engine. The temperature for all models is set to 1. Code2MCP leverages gitingest1 to ingest
repositories into contextual prompts and fetch pre-analysis reports from deepwiki2. Case studies
are conducted on servers equipped with 8 NVIDIA H100 80 GB GPUs.

4.2 Large-scale Repository Conversion and Failure Analysis

Overall and per-domain success. The overall conversion success rate is first analyzed at the domain
level. In Table 2, for each domain, the number of repositories with successful environment setup

1https://github.com/coderamp-labs/gitingest
2https://deepwiki.org

5

https://github.com/coderamp-labs/gitingest
https://deepwiki.org

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Distribution of 42 failure labels assigned to the 18 failed repositories. A single repository
can trigger multiple failure types across different Run-Review-Fix rounds.

and basic test passing, the number of initially failing repositories recovered by the Run-Review-Fix
loop and their average rounds, and the final number of successful MCP conversions. The per-domain
MCP success rates range from 0.40 to 0.80: domains dominated by library-style projects, such
as mathematical computing, astronomy, and linguistics, tend to have higher success rates, while
domains such as physics and econometrics, which contain more complex environments and mixtures
of scripts and workflow-style code, tend to have lower success rates. All statistics in the table are
computed on a per-repository basis, where each repository contributes a single final outcome after
the Run-Review-Fix loop. Per-repository results, including environment construction and MCP
conversion outcomes as well as the number of generated tools, are summarized in the large table in
the appendix and can be further grouped by domain or repository size if desired.

Failure modes. To understand why conversions fail on real repositories, all 18 failed repositories in the
50-repository evaluation are annotated using the six failure labels introduced in the failure taxonomy.
Labels are aggregated across all Run-Review-Fix rounds, so a single repository may receive multiple
labels if different error types are observed during different stages of the pipeline. The distribution of
these labels is visualized in Figure 3. The labels env_failure and api_inference_error
account for more than half of all failures, indicating that environment reconstruction and interface
inference are the primary bottlenecks of the current workflow. The labels import_error and
untoolable_repo are also relatively common, reflecting the difficulty of handling complex
import paths, initialization order, and script-driven repositories in a fully automated pipeline.

Run-Review-Fix ablation. To assess the specific contribution of the Run-Review-Fix self-correction
loop, an ablation study is conducted on a set of representative scientific-computing repositories by
comparing two configurations: a single-pass configuration without the loop and the full Code2MCP
pipeline with the loop enabled. Figure 4 summarizes the results. The bar chart on the left shows
that the per-repository success rates increase for most repositories once the loop is enabled, often
moving from medium success under a single-generation setting to success rates close to or on par with
human-written wrappers. The line chart on the right plots the average number of remaining errors as
a function of the number of Run-Review-Fix rounds, where “remaining errors” denote the number of
failing assertions or uncaught exceptions in the unified test after each round. These results indicate
that the majority of initial failures can be automatically repaired within one to three Run-Review-Fix
rounds, whereas the few repositories that still fail after multiple rounds represent the main current
limitation of the method.

4.3 Comparison with Human and GPT-4 Baselines

The evaluation compares three configurations on the same set of representative repositories:

• a human configuration, where MCP wrappers are implemented from scratch by human developers;

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Repo success rates with and without Run-Review-Fix (left) and remaining errors across
RRF rounds (right) for five representative scientific MCP repositories.

• a GPT-4 template configuration, where a single GPT-4 agent generates MCP wrappers;
• the Code2MCP configuration, which uses the multi-agent pipeline with the Run-Review-Fix loop.

In the human configuration, ten graduate students with at least three years of Python experience
and basic familiarity with MCP concepts implement wrappers from scratch. Before the study, all
participants read the MCP specification and a commented example repository. Each participant is
randomly assigned several repositories, and the measured time is from the moment they start reading
the repository to the point where the minimal test passes.

In the GPT-4 template configuration, a unified system prompt instructs a single GPT-4 model to
generate a complete MCP service implementation based on the repository README and several key
source files selected by static analysis. We use the same base model and decoding configuration as
in Code2MCP, namely gpt-4o-2024-05-13 with temperature set to 1.0, to ensure a fair comparison.
The model is allowed up to three dialogue turns: the first turn generates an initial implementation,
and up to two additional turns may revise the code based on execution errors returned by a test
runner. No additional agents or planning mechanisms are used, and the full system prompt is
provided in Appendix B.1. In the Code2MCP configuration, the default multi-agent pipeline with

Figure 5: Average task success rate (left) and average completion time (right) across the ten scientific
domains for the three configurations: Human experts, GPT-4 with basic scaffolding, and Code2MCP.

the Run-Review-Fix loop is used. For each repository, we record the final success status and the
completion time, defined as the end-to-end wall-clock time starting from the beginning of environment
setup and ending when the unified MCP test first passes or the run is terminated; see Appendix B.2
for details. Figure 5 summarizes the average task success rates and completion times of the three
configurations across the ten scientific domains. For each configuration and domain, task success rate
is defined as the fraction of successful attempts over all attempts on representative repositories in that
domain. Completion time is the average end-to-end wall-clock time per attempt, measured from the
beginning of environment setup until the minimal MCP test first passes or the run is terminated.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Task success rates of Human experts, GPT-4 with a template, and Code2MCP on
representative repositories in the four repository groups. The x-axis lists representative repositories in
each group, labeled by domain abbreviation and index (e.g., Math-1).

The overall trend is as follows: Code2MCP achieves task success rates close to human implementations
in most domains, and consistently higher than the GPT-4 template configuration. In terms of completion
time, human implementations are typically on the order of hours, while Code2MCP completes in tens
of minutes; the GPT-4 template configuration is the fastest but has lower success rates.

When repositories are grouped by dependency complexity and project type into low-dependency
libraries, medium-dependency scientific libraries, high-dependency libraries, and script-heavy projects,
Figures 6 and 7 further break down the same comparison on representative repositories within each
group. The bucketing rules are detailed in Appendix B.2.

Figure 7: Completion time of Human experts, GPT-4 with a template, and Code2MCP on representative
repositories in the four repository groups.

4.4 Integration with Existing Tool Systems

This subsection summarizes how Code2MCP integrates with existing tool ecosystems by combining
it with RepoMaster and OpenAgents on a shared set of tool-usage tasks.

RepoMaster + Code2MCP. In the RepoMaster setting, code-understanding and tool-usage tasks
are run in two configurations: using RepoMaster alone to operate at the source-code level, and
using RepoMaster together with Code2MCP, where RepoMaster first selects relevant repositories and
then invokes the corresponding MCP tools. Figure 8 shows that the configuration with Code2MCP
achieves higher task success rates and requires fewer interaction steps (see Appendix B.2 for metric
definitions), suggesting that delegating part of the work to standardized MCP tools improves efficiency
without modifying the upstream agent policy.

OpenAgents + Code2MCP. In the OpenAgents setting, cross-domain tasks are evaluated under
two configurations: using OpenAgents alone, and using OpenAgents with MCP tools automatically
generated by Code2MCP added to the tool pool. As shown in Figure 9, we report the task success
rate and coverage, where coverage and success rate are defined in Appendix B.2. Adding Code2MCP

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 8: RepoMaster with and without Code2MCP tools: task success rate (left) and average
interaction steps (right) across task groups.

tools increases both metrics across all task groups, indicating that a richer MCP tool pool can be
effectively exploited by existing planning and retrieval strategies.

Overall, RepoMaster and OpenAgents handle tool discovery and code retrieval on the consumer side,
while Code2MCP supplies additional MCP services on the supply side. Under the same front-end
selection and planning strategies, integrating Code2MCP enriches the tool pool and yields measurable
improvements in end-to-end task performance.

4.5 Case Studies: Protein, Math, and Computational Fluid Dynamics

This subsection highlights three representative repositories from the 50-repository evaluation set:
the biomedical protein modeling library ESM, the symbolic mathematics library SymPy, and the
CFD framework Foam-Agent built on OpenFOAM, illustrating the kinds of MCP tools Code2MCP
generates and how agents use them in practice.

Figure 9: OpenAgents with and without Code2MCP tools: task success rate (left) and coverage (right)
across general and scientific task groups.

Bridging protein science with AI agents. In protein science, models such as AlphaFold greatly
improve structure prediction, but using them in everyday research typically requires substantial
scripting and environment setup. ESM models complement AlphaFold with efficient sequence
modeling and zero-shot variant effect prediction, yet traditionally still require multi-step Python
pipelines for computing physicochemical properties, predicting structures, and analyzing mutations.
Code2MCP converts ESM into an MCP service by exposing tools such as Analyze_sequence,
Predict_structure, and Predict_variant_effect. We provide a qualitative example
of using ESM-based MCP tools for protein analysis in Appendix A.5.

Enhancing mathematical reliability in AI agents. For mathematical computing, large language
models are prone to errors in symbolic derivations and exact calculations, whereas libraries such as
SymPy already provide reliable implementations. Code2MCP organizes common capabilities from

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Generate_mesh

Computational Mesh Generation

Generate Simulation Files and
Performs the Simulation

Visualize_velocity

Generate_simulate

Allrun, Slrum Scripts

Local or HPC Execution

Log Files

Simulate incompressible flow over a
circular cylinder. Use gmsh to create the
computational mesh. The computational
domain extends from -2.5 to 2.5…..

User Input

Help me to Generate simulation input files:
time 0-2s, time step 0.001s, output every
100 steps; kinematic viscosity ν=1×10⁻⁵
m²/s, use pisoFoam for incompressible flow.

User Input

Please help me to visualize
the magnitude of velocity
(’U’) along the x-y plane.

User Input

3D streamline plot

fast

low

Foam-Agent MCP Server

Foam-Agent
Repo

Code2MCP

Figure 10: An AI agent orchestrates a CFD simulation pipeline by invoking Generate_mesh,
Generate_simulate, and Visualize_velocity functions to guide a user through the entire
process, from initial mesh generation and simulation setup to the final velocity visualization.

SymPy into a mathematical MCP service with tools for limits and integration, matrix operations,
symbolic simplification, and transforms such as Fourier and Laplace. When asked to compute an
integral or the volume of a solid of revolution, an agent simply invokes the corresponding tool and
returns an exact answer, relying on SymPy as a backend instead of ad-hoc prompt-based reasoning.

Automating CFD simulation for AI agents. CFD workflows typically involve mesh genera-
tion, solver configuration, execution, and post-processing, traditionally coordinated by engineers
through shell scripts and configuration files. Foam-Agent provides a higher-level interface to Open-
FOAM, and Code2MCP further turns it into an MCP service with tools such as Generate_mesh,
Generate_simulate, and Visualize_velocity. As illustrated in Figure 10, a user de-
scribes the target geometry and physical parameters in natural language, and the agent calls these
tools in sequence to construct the mesh, run the simulation, and visualize the velocity field.

5 Conclusion

Addressing the key challenge of insufficient tool supply in the MCP ecosystem, this paper introduces
Code2MCP, a framework that automatically converts GitHub repositories into functional MCP
services. The framework employs a multi-agent workflow for code comprehension, environment
reconstruction, and tool abstraction, augmented by a “Run-Review-Fix” self-correction loop that
improves end-to-end reliability across diverse scientific libraries. Our evaluation on 50 repositories
shows that Code2MCP can robustly expose high-value APIs as MCP tools while also revealing clear
failure modes and boundary conditions. This work presents an automated pathway for connecting
existing codebases to the agent tool ecosystem, and we leave systematically hardening security and
building standardized large-scale MCP benchmarks from these converted services as important
directions for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

References
Anthropic. Model context protocol. Technical report, Anthropic, November 2023. URL https:
//modelcontextprotocol.io/.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Cognition. Devin: The first ai software engineer, 2024. URL https://www.cognition-labs.
com/.

Keyan Ding, Jing Yu, Junjie Huang, Yuchen Yang, Qiang Zhang, and Huajun Chen. Scitoolagent: a
knowledge-graph-driven scientific agent for multitool integration. Nature Computational Science,
pp. 1–11, 2025.

Tiantian Gan and Qiyao Sun. Rag-mcp: Mitigating prompt bloat in llm tool selection via retrieval-
augmented generation. arXiv preprint arXiv:2505.03275, 2025.

Shibo Hao, Yi Gu, Haodi Ma, Qingkai Geng, P. Hosseini, Z. Geng, Y. Zhou, Z. Wang, Z. Chen,
and C. Zhang. Reasoning with language model is planning with world model. arXiv preprint
arXiv:2305.14992, 2023.

Mohammed Mehedi Hasan, Hao Li, Emad Fallahzadeh, Gopi Krishnan Rajbahadur, Bram Adams,
and Ahmed E Hassan. Model context protocol (mcp) at first glance: Studying the security and
maintainability of mcp servers. arXiv preprint arXiv:2506.13538, 2025.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv
preprint arXiv:2402.02716, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-bench: Can Language Models Resolve Real-World GitHub Issues, November
2024.

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen. From llms to
llm-based agents for software engineering: A survey of current, challenges and future. arXiv
preprint arXiv:2408.02479, 2024.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pp. 3102–3116, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.187.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, Yun Wang, Linjun Shou, Ming Gong, and Nan Duan. TaskMatrix.AI: Completing
Tasks by Connecting Foundation Models with Millions of APIs, March 2023.

Vilard Olausson, Mariia Spasova, Martin Ljung, and Rogardt Heldal. Demystifying the magic:
The limitations and promise of large language models in code generation. arXiv preprint
arXiv:2311.02294, 2023.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models, May 2022.

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv preprint
arXiv:2304.03442, 2023.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large Language Model
Connected with Massive APIs, May 2023.

11

https://modelcontextprotocol.io/
https://modelcontextprotocol.io/
https://www.cognition-labs.com/
https://www.cognition-labs.com/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating Large Language Models to
Master 16000+ Real-world APIs, October 2023.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-
Rong Wen. Tool Learning with Large Language Models: A Survey. Frontiers of Computer Science,
19(8):198343, August 2025. ISSN 2095-2228, 2095-2236. doi: 10.1007/s11704-024-40678-2.

Partha Pratim Ray. A survey on model context protocol: Architecture, state-of-the-art, challenges and
future directions. Authorea Preprints, 2025.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language Models Can Teach Themselves to
Use Tools, February 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. arXiv preprint arXiv:2303.17580,
2023.

Zhuocheng Shen. LLM With Tools: A Survey, September 2024.

Huacan Wang et al. Repomaster: Autonomous exploration and understanding of github repositories
for complex task solving. arXiv preprint arXiv:2505.21577, 2025.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024.

Yilun Xi, Michael C Hughes, and Joseph E Gonzalez. Towards a new era of ai: A review and outlook
on multi-modal large language model-based autonomous agents. arXiv preprint arXiv:2404.18532,
2024.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Junning
Zhao, Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan Shin, Caiming Xiong,
and Tao Yu. Openagents: An open platform for language agents in the wild, 2023.

Ling Yue, Shimin Di, and Shaowu Pan. Autonomous scientific discovery through hierarchical
ai scientist systems. Preprints, July 2025. doi: 10.20944/preprints202507.1951.v1. URL
https://doi.org/10.20944/preprints202507.1951.v1.

Yuan Zeng, Yudi Zhang, and Hong Zhang. Agents in the loop: A survey of interactive agents for
software engineering. arXiv preprint arXiv:2405.07883, 2024.

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma, Guyue
Liu, Qingwei Lin, et al. Large language model-brained gui agents: A survey. arXiv preprint
arXiv:2411.18279, 2024.

Zhibo Zhang, Yang Liu, Quanjia Wang, and Maosong Sun. A survey on trustworthy llm-based agents:
From a multi-faceted perspective. arXiv preprint arXiv:2406.03357, 2025.

12

https://doi.org/10.20944/preprints202507.1951.v1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A Appendix

A.1 Use of Large Language Models

During manuscript preparation, large language models (LLMs) are used solely as general-purpose
writing assistants for grammar checking, wording refinement, and improving clarity. LLMs don’t
contribute to research ideation, methodological design, or experimental execution. All suggestions
produced by LLMs are reviewed, edited, and vetted by the authors, who take full responsibility for the
entire content of the paper.

A.2 Output Directory Structure

Figure 11 shows the final directory layout generated by Code2MCP, where the original repository and
the synthesized MCP artifacts are organized under a unified workspace.

Figure 11: The complete output directory structure generated by the Code2MCP framework. The
top-level workspace contains the original repository alongside all generated artifacts within the
mcp_output directory.

A.3 Detailed Conversion Pipeline and Algorithm

This section outlines the roles of the specialized agents within the Code2MCP framework and their
coordination as shown in Algorithm 1, where Download and Environment initialize the workspace,
Analysis and Generation construct the MCP service, Run and Review form the Run-Review-Fix loop,
and Finalize produces the final deliverables. The following are placeholders for their system prompts.

A.4 Agent Roles and System Prompts

This section outlines the roles of the specialized agents within the Code2MCP framework. The
following are placeholders for their system prompts.

Environment Agent This agent rapidly provisions a minimal, isolated runtime for the repository,
with minimal dependencies and a short smoke test; if setup fails, propose one lightweight, auditable
fallback without modifying the repository; keep all steps reproducible and pragmatic.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 The Code2MCP Framework
1: Input: GitHub repository URL 𝑢

2: Download Agent: Clone repository into an isolated workspace.
3: Environment Agent: Replicate runtime environment from dependency files.
4: Analysis Agent: Analyze codebase→ generate detailed Code Report.
5: Generation Agent: Synthesize initial MCP files (mcp_service.py, adapter.py,

tests) based on Code Report.
6: 𝑟 ← 0; 𝑠𝑢𝑐𝑐𝑒𝑠𝑠← false
7: while ¬𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ∧ 𝑟 < 𝐵 do
8: Run Agent: Execute test suite; collect error traceback 𝜏 on failure.
9: if all tests pass then

10: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠← true
11: else
12: Review Agent: Analyze traceback 𝜏 and generate correction plan 𝛿.
13: Generation Agent: Re-synthesize MCP files using the Code Report and correction

plan 𝛿.
14: 𝑟 ← 𝑟 + 1
15: end if
16: end while
17: Finalize Agent: Package service files, generate README, and create a Pull Request.
18: Output: A merge-ready Pull Request containing the functional MCP service.

Environment System Prompt
- Prefer Conda; use venv only if Conda is unavailable or clearly unsuitable.
- Detect dependency sources by priority: environment.yml > requirements.txt > pyproject.toml >
setup files; never guess hidden dependencies.
- Pin versions when explicit; otherwise install the minimal viable set. Prefer CPU wheels unless
GPU is explicitly required.
- Normalize cross-platform behavior; avoid absolute paths; use relative POSIX-like paths; ensure
UTF-8 locale.
- Smoke test: print Python version and platform; import fastmcp; attempt to import the project’s
top-level package or a primary CLI; exit code 0 indicates pass.
- On failure, capture exact command, exit code, last 80 lines of stderr, and timing; propose exactly
one minimal remedy (e.g., switch to venv, install a single missing package, try one version pin,
extend timeout once).
- Apply at most one fallback; never change repository code; do not write outside the workspace; do
not weaken security (e.g., no SSL bypass).
- Cache wheels where possible; avoid global pollution; record reproducible commands and resolved
versions.
- Default to offline validation; if network is strictly required, justify briefly and bound the scope.
- Emit a compact environment report (platform, Python, manager, explicit deps, resolved pins,
pass/fail).

Code Analysis Expert This agent performs static analysis to shape the repository into a compact,
high-value capability surface, selecting stable public functionality, filtering out test/demo code, and
producing a concise plan aligned with predefined domains, categories, and solvers.

Code Analysis System Prompt
- Ingest repository signals (structure, import graph, README/docstrings, CLI entry points;
DeepWiki if available) to identify stable public APIs suitable as MCP tools.
- Prefer documented, side-effect-bounded surfaces; exclude tests, internals, notebooks, long demos
unless clearly valuable and controllable.
- Define crisp tool boundaries: explicit inputs/outputs, preconditions/postconditions, resource needs
(CPU/GPU/memory/time), and I/O constraints.
- Note minimal adapter needs (path normalization, dtype coercion, lazy imports) and hazards
(network access, file mutation, global state).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

- Summarize fragilities (optional deps, platform quirks) and propose guards (timeouts, argument
validation, deterministic seeds).
- Also produce a case description: case name, case domain, case category, and case solver, using a
consistent taxonomy across repositories.
- Output a compact plan for generation: candidate tools (name, brief description, inputs with
types/defaults, outputs, idempotency, side effects) and environment assumptions. Keep it actionable
and minimal.

Code Generation Expert This agent synthesizes a robust MCP service from the analysis plan with
clean design, consistent interfaces, graceful failure handling, and immediate executability, defining
clear tool endpoints, enforcing explicit typed parameters and standardized returns, and avoiding test
or example tooling.

Code Generation System Prompt
- Produce clean, runnable Python (no Markdown fences). Use FastMCP to build the MCP service.
- Implement create_app() that returns the service; register tools with concise names and user-facing
descriptions.
- For every tool: explicit, typed parameters (no *args/**kwargs); validate inputs; JSON-serializable
outputs.
- Standard return shape: success: bool, result: any or null, error: string or null.
- Handle optional dependencies via lazy imports; emit helpful errors without crashing the service;
prefer CPU fallbacks when reasonable.
- Ensure deterministic defaults (fixed seeds when relevant); avoid hidden global state; restrict file
I/O to the workspace with existence/size/extension checks.
- Design for cross-platform paths; avoid shell-specific behavior; bound execution time and memory.
- Do not generate tests as tools. Expose a small set of high-value, composable endpoints; avoid
overexposing internals.
- Add lightweight logging (tool name, argument schema, durations) and minimal version metadata
to aid troubleshooting.

Senior Software Engineer This agent diagnoses failures and applies the smallest auditable change that
restores correctness while preserving public contracts, deciding between direct fix and regeneration,
using strict complete-file replacement, and avoiding multi-file edits or prose in outputs.

Review & Auto-Fix System Prompt
- Triage failures: import/env, type/contract, path/I-O, dependency/version, timeout/perf, platform.
- Choose minimal direct fix vs. regeneration; provide a one-line rationale and confidence
(low/med/high). Prefer adapter-boundary mitigations (lazy import, existence checks, parameter
coercion).
- Apply strict complete-file replacement for the single target file; return pure code only; do not alter
unrelated sections.
- Preserve interface contracts and standardized error shapes; add narrow guards instead of broad
catches.
- Enforce cross-platform path handling and deterministic behavior; do not introduce external
network calls or new side effects.
- Optionally add a tiny internal sanity check if it prevents recurrence without bloat.
- Bound attempts (<= B). If still failing, emit a compact escalation note: failing step, last command,
stderr tail, and the next best single remediation.

Final Agent This agent consolidates artifacts and workflow logs into developer-facing documentation
and delivery notes that are precise, reproducible, and integration-ready, producing a concise README
with installation, quick start, key tools, troubleshooting guidance, and references.

Final Agent System Prompt
- Write a concise developer README (Markdown) including:
1) Overview and value; roles of MCP and FastMCP; supported OS.
2) Minimal reproducible install (Conda/venv), commands, pinned dependencies, offline notes;
Windows PowerShell and Linux shell variants.
3) Quick start to launch the service and call 2–3 key tools with copy-pasteable snippets and basic

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

error handling.
4) Tool list: endpoint name, one-line description, key parameters (types/defaults), return shape,
idempotency/side effects, typical runtime class.
5) Troubleshooting: environment/import issues, optional deps, timeouts, path problems, permis-
sions, CPU/GPU enablement; any bounded network caveats.
6) Reproducibility and telemetry: how to capture environment report, versions, minimal repro
commands; where logs/artifacts live.
7) License and compliance notes: repository license, usage constraints, safety guardrails.
- Keep structure clear, steps verifiable, and assumptions minimal; prioritize essentials for successful
adoption and integration.

A.5 Additional Protein Case Study: ESM

Formula
C1375H2172N368O377S5

Major Amino Acid Composition

Predicted Aligned Error

Total atoms
4297

3D structure of
protein

Protein Analyze

Structure Predict

3D Structure Projection with Mutation SitesRed indicates Q145G mutation

Mutation Predict

Having a protein sequence:
“MENFQKVEKIGEGTYGVV...”and
its mutation site: “Q145G”，
please help me analyze this
protein sequence and predict
mutation effects.

User Input
Analyze_sequence

Predict_structure

Predict_variant_effect

Key Protein Properties

calling

ESM MCP Server

ESM Repo

Figure 12: An AI agent processes a user’s query containing a protein sequence and mutation. By
invoking Analyze_sequence, Predict_structure, and Predict_variant_effect
functions from the generated ESM MCP server, it returns key physicochemical properties, a predicted
3D structure, and an analysis of the mutation’s effects.

B Details of Evaluation

B.1 GPT-4 Template Baseline Prompt

In the GPT-4 template baseline, we use a single system prompt that instructs one GPT-4 model to
generate a complete MCP service implementation for a given repository. The full prompt is given
below.

GPT-4 Template Baseline System Prompt
You are a single GPT-4 model acting as an autonomous MCP wrapper generator for a Python code repository.
You receive: - A short task description. - The repository README (possibly truncated). - A list of key
source files selected by static analysis, each with its file path and content. - A minimal description of the MCP
protocol and the FastMCP library.
Your goal is to produce a single, self-contained Python MCP server that exposes a small set of high-value
tools from this repository.
Requirements: 1. Design of tools - Identify 3–8 core, stable capabilities that are useful to expose as tools. -
For each tool, choose a concise, descriptive name and a one-sentence natural-language description. - Specify
explicit, typed parameters (no *args or **kwargs); include default values where reasonable. - Define
clear, JSON-serializable return values. Avoid returning raw Python objects that cannot be serialized.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

2. Implementation with FastMCP - Use the FastMCP library to implement the MCP server. - Implement a
create_app() function that constructs and returns the MCP application. - Register each tool with FastMCP,
binding it to the underlying repository functions or classes. - Prefer importing from public, documented APIs
instead of private or test modules. - Use lazy imports for heavy optional dependencies when necessary, and
return a helpful error message if a required package is missing.
3. Robustness and safety - Validate all inputs (types, value ranges, file existence) before calling library
functions. - Handle exceptions inside each tool and return a standardized error object instead of raising
uncaught exceptions. - The standardized response format for each tool is: { "success": bool,
"result": any or null, "error": string or null }. - Avoid network access unless
the repository explicitly requires it. - Restrict file I/O to the workspace; do not write to absolute paths outside
the project.
4. Coding style - Write clean, idiomatic Python 3 code with clear function boundaries. - Add short docstrings
for each tool describing its purpose, parameters, and return value. - Do not generate tests, examples, or
documentation as part of the MCP server file. - Do not include Markdown fences such as ““‘; output only raw
Python code.
5. Output format - Return a single Python file containing the complete MCP server implementation. - Do
not include explanations, comments to the user, or multiple files; only the final server code that can be saved
as e.g. mcp_service.py.

B.2 Evaluation Metrics and Bucketing Rules

This section defines the evaluation metrics and repository bucketing rules used in the main experiments.

Interaction steps. In the RepoMaster experiments, an interaction step is defined as a single high-level
agent action that changes the external state of the system. Concretely, we count as one step any of the
following: (1) invoking a tool (including Code2MCP-generated MCP tools and built-in RepoMaster
tools), (2) editing source code files, or (3) executing the target program or tests. The total number of
interaction steps for a task is the length of the resulting action sequence.

Task Set Description. In the integration experiments with RepoMaster and OpenAgents, we use a
fixed set of code-understanding and tool-usage tasks that are primarily derived from public benchmarks
and representative scenarios in prior work, with a small number of additional scientific-computing
cases to ensure coverage of both general and scientific settings. At this stage, this task set remains a
relatively small, research-oriented setup rather than a fully standardized large-scale benchmark, and
constructing a more systematic MCP task benchmark is left as future work.

Task success rate and coverage. In the OpenAgents experiments, a task is considered successful if
the agent produces a final answer that passes automatic correctness checks. Task success rate is the
fraction of tasks in a group that are successful. Coverage is the fraction of tasks in a group for which
the agent produces any final answer that can be checked by the automatic evaluator, regardless of
whether the answer is ultimately judged correct.

Repository buckets. To analyze the impact of dependency complexity and project style, we group
repositories into four buckets based on static metadata:

• Low-dependency libraries: at most 10 Python dependencies inferred fromrequirements.txt,
environment.yml, or pyproject.toml, and primarily library-style public APIs.

• Medium-dependency scientific libraries: between 11 and 30 Python dependencies with a
library-style API and no substantial external system requirements.

• High-dependency libraries: more than 30 Python dependencies or additional system-level
requirements (e.g., MPI stacks, GPU-accelerated frameworks, or complex external services).

• Script-heavy projects: projects whose primary functionality is exposed via CLI scripts, notebooks,
or workflow-style pipelines rather than a stable library API; these are identified using repository
structure, entry points, and README descriptions.

C Per-repository Results

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Repository identifiers, domains, and final outcomes.

ID Domain Repo Final_status Main_failure_type
B1 Biomedical facebookresearch/esm success –
B2 Biomedical biocore/scikit-bio fail env_failure
B3 Biomedical Biopython/Biopython fail api_inference_error
B4 Biomedical pysam-developers/pysam success –
B5 Biomedical deepchem/deepchem success –
P1 Psychology psychopy/psychopy fail untoolable_repo
P2 Psychology pymc-devs/pymc success –
P3 Psychology sahahn/BPt success –
P4 Psychology mne-tools/mne-python fail api_inference_error
P5 Psychology neuropsychology/NeuroKit success –
M1 Math sympy/sympy success –
M2 Math scipy/scipy fail api_inference_error
M3 Math fredrik-johansson/mpmath success –
M4 Math cvxpy/cvxpy success –
M5 Math sagemath/sage success –
Ea1 Earth Science obspy/obspy success –
Ea2 Earth Science Unidata/MetPy fail mcp_spec_violation
Ea3 Earth Science pyproj4/pyproj fail repo_internal_bug
Ea4 Earth Science mapbox/rasterio success –
Ea5 Earth Science geopandas/geopandas success –
A1 Astronomy astropy/astropy success –
A2 Astronomy sunpy/sunpy fail repo_internal_bug
A3 Astronomy lightkurve/lightkurve success –
A4 Astronomy astroML/astroML success –
A5 Astronomy astropy/astroquery success –
C1 Chemistry rdkit/rdkit success –
C2 Chemistry openbabel/openbabel fail env_failure
C3 Chemistry bjodah/chempy success –
C4 Chemistry pyscf/pyscf fail api_inference_error
C5 Chemistry cclib/cclib success –
Ph1 Physics csml-rpi/Foam-Agent success –
Ph2 Physics PlasmaPy/PlasmaPy fail env_failure
Ph3 Physics pydy/pydy fail –
Ph4 Physics PyAbel/PyAbel success –
Ph5 Physics scikit-hep/scikit-hep fail untoolable_repo
S1 Social Science networkx/networkx success –
S2 Social Science igraph/python-igraph success –
S3 Social Science networkit/networkit fail env_failure
S4 Social Science snap-stanford/snap-python fail untoolable_repo
S5 Social Science datamade/dedupe success –
L1 Linguistics nltk/nltk success –
L2 Linguistics explosion/spaCy success –
L3 Linguistics stanfordnlp/stanza success –
L4 Linguistics RaRe-Technologies/gensim fail import_error
L5 Linguistics flairNLP/flair success –
E1 Econometrics statsmodels/statsmodels success –
E2 Econometrics alkaline-ml/pmdarima success –
E3 Econometrics facebook/prophet fail env_failure
E4 Econometrics blue-yonder/tsfresh fail repo_internal_bug
E5 Econometrics pydata/xarray success –

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: Per-repository structural statistics (size, dependencies, and tests).

ID total_files total_size Size_bucket Dependency_complexity Has_tests Has_packaging
B1 471 33M Medium Medium Yes Yes
B2 874 9M Medium Medium Yes Yes
B3 1146 95M Medium High Yes Yes
B4 561 13M Medium Medium Yes Yes
B5 1411 136M Medium High Yes Yes
P1 3542 65M Large High Yes Yes
P2 371 17M Medium High Yes Yes
P3 2669 39M Large Medium Yes Yes
P4 1385 26M Medium High No No
P5 496 52M Medium Medium Yes Yes
M1 1968 29M Medium Low Yes Yes
M2 3027 81M Large High Yes Yes
M3 197 2M Small Low No Yes
M4 1079 38M Medium Medium Yes Yes
M5 5331 113M Large High Yes Yes
Ea1 2117 34M Large High Yes Yes
Ea2 595 99M Medium Medium Yes Yes
Ea3 144 1M Small Medium No Yes
Ea4 382 17M Medium Medium Yes Yes
Ea5 351 11M Medium Medium Yes Yes
A1 1879 24M Large High Yes Yes
A2 877 10M Medium Medium Yes Yes
A3 217 8M Small Medium No Yes
A4 192 1M Small Low Yes Yes
A5 960 23M Medium Medium Yes Yes
C1 5740 130M Large High Yes Yes
C2 10000 63M Large High Yes Yes
C3 213 1M Small Low No Yes
C4 2114 56M Medium High Yes Yes
C5 1508 80M Large Medium Yes Yes
Ph1 44 0.2M Small Medium Yes Yes
Ph2 498 16M Medium Medium Yes Yes
Ph3 263 8M Small Medium No Yes
Ph4 243 2M Small Low Yes Yes
Ph5 18 0.3M Small Low No Yes
S1 951 10M Medium Low Yes Yes
S2 248 3M Small Medium No Yes
S3 1168 22M Medium Medium Yes Yes
S4 678 14M Medium High Yes Yes
S5 97 1M Small Low No No
L1 496 8M Medium Low Yes Yes
L2 1683 12M Medium Medium Yes Yes
L3 574 5M Medium Medium Yes Yes
L4 638 55M Medium Medium Yes Yes
L5 383 5M Small Medium No Yes
E1 2091 39M Medium High Yes Yes
E2 225 1M Small Low No Yes
E3 282 14M Medium Medium Yes Yes
E4 135 10M Small Medium Yes Yes
E5 403 8M Medium Medium Yes Yes

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Per-repository environment and MCP conversion statistics.

ID Env_success MCP_success Num_tools Num_tools_passed First_run_status Num_fix_rounds
B1 Yes Yes 16 14 fail 1
B2 No No 0 0 fail 2
B3 Yes No 8 4 fail 2
B4 Yes Yes 10 9 success 0
B5 Yes Yes 14 13 fail 0
P1 No No 0 0 fail 1
P2 Yes Yes 9 8 success 0
P3 Yes Yes 11 10 success 0
P4 No No 13 12 fail 3
P5 Yes Yes 7 7 success 0
M1 Yes Yes 12 10 success 0
M2 Yes No 6 2 fail 2
M3 Yes Yes 8 7 success 0
M4 Yes Yes 10 9 success 0
M5 Yes Yes 15 13 fail 2
Ea1 Yes Yes 11 8 fail 2
Ea2 No No 5 1 fail 1
Ea3 No No 4 0 fail 2
Ea4 Yes Yes 9 8 success 0
Ea5 Yes Yes 7 7 success 1
A1 Yes Yes 8 5 fail 2
A2 No No 3 1 fail 1
A3 Yes Yes 10 9 success 0
A4 Yes Yes 6 6 success 1
A5 Yes Yes 8 8 success 0
C1 Yes Yes 18 16 fail 1
C2 No No 0 0 fail 2
C3 Yes Yes 7 7 success 0
C4 Yes No 12 10 fail 3
C5 Yes Yes 9 8 success 1
Ph1 Yes Yes 8 7 success 1
Ph2 No No 0 0 fail 2
Ph3 Yes No 6 6 fail 0
Ph4 Yes Yes 5 5 success 0
Ph5 No No 0 0 fail 1
S1 Yes Yes 10 9 success 0
S2 Yes Yes 8 7 fail 1
S3 No No 0 0 fail 2
S4 Yes No 0 0 fail 1
S5 Yes Yes 5 5 success 0
L1 Yes Yes 7 7 success 0
L2 Yes Yes 11 10 fail 2
L3 Yes Yes 9 8 success 1
L4 Yes No 0 0 fail 3
L5 Yes Yes 6 6 success 0
E1 Yes Yes 13 11 fail 1
E2 Yes Yes 7 7 success 0
E3 No No 0 0 fail 2
E4 No No 0 0 fail 1
E5 Yes Yes 8 7 success 1

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D Example MCP Tool Implementations Generated by Code2MCP

To illustrate the concrete, high-quality output of Code2MCP, this section presents several MCP tool
implementations that were autonomously generated by Code2MCP. These examples are drawn from
the ESM and SymPy case studies discussed in the main paper and demonstrate the framework’s ability
to produce clean, robust, and immediately usable code.

D.1 Tools Generated from the ESM Repository

MCP Tool for Protein Sequence Analysis

@mcp.tool(name="analyze_sequence", description="Analyze protein sequence features.")
def analyze_sequence(sequence: str):

"""Analyzes physicochemical properties of a protein sequence."""
try:

import re
try:

from esm import analysis
except Exception:

try:
from .esm import analysis

except Exception:
import types
analysis = types.SimpleNamespace(

calculate_molecular_weight=lambda s: float(len(s)) * 110.0,
calculate_isoelectric_point=lambda s: 7.0,
calculate_instability_index=lambda s: 40.0

)

aa_set = set("ACDEFGHIKLMNPQRSTVWY")
seq = re.sub(r"[^A-Za-z]", "", sequence or "").upper()
seq = "".join([c for c in seq if c in aa_set])

length = len(seq)
composition = {aa: seq.count(aa) for aa in aa_set if seq.count(aa) > 0}
molecular_weight = analysis.calculate_molecular_weight(seq)
isoelectric_point = analysis.calculate_isoelectric_point(seq)
instability_index = analysis.calculate_instability_index(seq)

properties = {
"length": length,
"composition": composition,
"molecular_weight": molecular_weight,
"isoelectric_point": isoelectric_point,
"instability_index": instability_index,
"sequence": seq,

}
return {"success": True, "result": properties, "error": None}

except Exception as e:
return {"success": False, "result": None, "error": f"Error during sequence analysis:

{str(e)}"}

MCP Tool for Protein Structure and Mutation Prediction

@mcp.tool(name="predict_structure", description="Predicts a protein structure using the
ESMFold API and saves it to a PDB file.")

def predict_structure(sequence: str):
"""Predicts a protein structure and saves it to a PDB file."""
try:

import requests
import os
import datetime

response = requests.post(
"https://api.esmatlas.com/foldSequence/v1/pdb/",
data=sequence,
timeout=300,

)
response.raise_for_status()

base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
predictions_dir = os.path.join(base_dir, "predictions")
os.makedirs(predictions_dir, exist_ok=True)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
pdb_filepath = os.path.join(predictions_dir, f"prediction_{timestamp}.pdb")

with open(pdb_filepath, "w") as f:
f.write(response.text)

return {"success": True, "result": {"pdb_file_path": pdb_filepath}, "error": None}
except Exception as e:

return {"success": False, "result": None, "error": str(e)}

D.1.1 Tools Generated from the SymPy Repository

MCP Tool for Solving Equations

@mcp.tool(name="solve_equation")
def solve_equation(equation: str, variable: str):

"""
Solve equation for variable
"""
try:

from sympy import sympify, symbols, solve, Basic
def ser(x):

if isinstance(x, Basic): return str(x)
if isinstance(x, (list, tuple, set)): return [ser(i) for i in x]
if isinstance(x, dict): return {k: ser(v) for k, v in x.items()}
return x

expr = sympify(equation)
var = symbols(variable)
res = solve(expr, var)
return {"success": True, "result": ser(res)}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Solving Linear Systems

@mcp.tool(name="solve_linear_system")
def solve_linear_system(system: list, variables: list):

"""
Solve system of linear equations
"""
try:

from sympy import sympify, symbols, linsolve, Basic
def ser(x):

if isinstance(x, Basic): return str(x)
if isinstance(x, (list, tuple, set)): return [ser(i) for i in x]
if isinstance(x, dict): return {k: ser(v) for k, v in x.items()}
return x

eqs = [sympify(e) for e in system]
vars_sym = [symbols(v) for v in variables]
res = linsolve(eqs, vars_sym)
return {"success": True, "result": ser(list(res))}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Differentiation

@mcp.tool(name="differentiate")
def differentiate(expr: str, variable: str):

"""
Calculate derivative of expression
"""
try:

from sympy import sympify, symbols, diff, Basic
def ser(x):

if isinstance(x, Basic): return str(x)
return x

expr_sym = sympify(expr)
var = symbols(variable)
res = diff(expr_sym, var)
return {"success": True, "result": ser(res)}

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Integration

@mcp.tool(name="integrate_expression")
def integrate_expression(expr: str, variable: str):

"""
Calculate integral of expression
"""
try:

from sympy import sympify, symbols, integrate, Basic
def ser(x):

if isinstance(x, Basic): return str(x)
return x

expr_sym = sympify(expr)
var = symbols(variable)
res = integrate(expr_sym, var)
return {"success": True, "result": ser(res)}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Polynomial Creation

@mcp.tool(name="create_polynomial")
def create_polynomial(expr: str, variable: str = None):

"""
Create polynomial from expression
"""
try:

from sympy import sympify, symbols, Poly, Basic
def ser(x):

if isinstance(x, Basic): return str(x)
return x

expr_sym = sympify(expr)
if variable:

var = symbols(variable)
res = Poly(expr_sym, var)

else:
res = Poly(expr_sym)

return {"success": True, "result": ser(res)}
except Exception as e:

return {"success": False, "result": None, "error": str(e)}

MCP Tool for Polynomial Factoring

@mcp.tool(name="factor_polynomial")
def factor_polynomial(poly: str):

"""
Factor polynomial expression
"""
try:

from sympy import sympify, factor, Basic
def ser(x):

if isinstance(x, Basic): return str(x)
return x

poly_sym = sympify(poly)
res = factor(poly_sym)
return {"success": True, "result": ser(res)}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Fourier Transform

from sympy import sympify, symbols, fourier_transform as sympy_fourier_transform, Basic

def _serialize(obj):
if isinstance(obj, Basic):

return str(obj)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

if isinstance(obj, (list, tuple, set)):
return [_serialize(x) for x in obj]

if isinstance(obj, dict):
return {k: _serialize(v) for k, v in obj.items()}

return obj

@mcp.tool(name="fourier_transform")
def fourier_transform_tool(expression: str, time_var: str = "t", freq_var: str = "w"):

try:
expr = sympify(expression)
t = symbols(time_var)
omega = symbols(freq_var)
F = sympy_fourier_transform(expr, t, omega)
return {"success": True, "result": _serialize(F), "error": None}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Laplace Transform

from sympy import sympify, symbols, laplace_transform as sympy_laplace_transform, Basic

def _serialize(obj):
if isinstance(obj, Basic):

return str(obj)
if isinstance(obj, (list, tuple, set)):

return [_serialize(x) for x in obj]
if isinstance(obj, dict):

return {k: _serialize(v) for k, v in obj.items()}
return obj

@mcp.tool(name="laplace_transform")
def laplace_transform_tool(expression: str, time_var: str = "t", laplace_var: str = "s"):

try:
expr = sympify(expression)
t = symbols(time_var)
s = symbols(laplace_var)
F, _, _ = sympy_laplace_transform(expr, t, s)
return {"success": True, "result": _serialize(F), "error": None}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Z Transform

from sympy import sympify, symbols, summation, oo, Basic

def _serialize(obj):
if isinstance(obj, Basic):

return str(obj)
if isinstance(obj, (list, tuple, set)):

return [_serialize(x) for x in obj]
if isinstance(obj, dict):

return {k: _serialize(v) for k, v in obj.items()}
return obj

@mcp.tool(name="z_transform")
def z_transform_tool(expression: str, time_var: str = "n", z_var: str = "z", limit: int =

100):

try:
expr = sympify(expression)
n = symbols(time_var)
z = symbols(z_var)
try:

result = summation(expr * z**(-n), (n, 0, oo))
except Exception:

result = summation(expr * z**(-n), (n, 0, limit))
return {"success": True, "result": _serialize(result), "error": None}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D.1.2 Tools Generated from the Foam-Agent Repository

MCP Tool for Mesh Generation

@mcp.tool(name="generate_mesh", description="Generate computational mesh using Foam-Agent
internals.")

def generate_mesh(requirements: str,
case_dir: str = "./output",
mesh_mode: str = "gmsh",
custom_mesh_path: str | None = None):

try:
from src.config import Config
from src.main import initialize_state
from src.nodes.meshing_node import meshing_node

config = Config()
config.case_dir = case_dir

state = initialize_state(user_requirement=requirements,
config=config,
custom_mesh_path=custom_mesh_path)

if mesh_mode == "custom":
state["mesh_type"] = "custom_mesh"

elif mesh_mode == "gmsh":
state["mesh_type"] = "gmsh_mesh"

else:
state["mesh_type"] = "standard_mesh"

res = meshing_node(state)
return {"success": True, "result": res, "error": None}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Simulation Generation and Run

@mcp.tool(name="generate_simulate", description="Write inputs and run simulation via Foam-
Agent graph.")

def generate_simulate(requirements: str,
case_dir: str = "./output",
custom_mesh_path: str | None = None,
run_mode: str = "auto"):

try:
from src.config import Config
from src.main import create_foam_agent_graph, initialize_state

config = Config()
config.case_dir = case_dir

state = initialize_state(user_requirement=requirements,
config=config,
custom_mesh_path=custom_mesh_path)

if custom_mesh_path:
state["mesh_type"] = "custom_mesh"

if run_mode == "local":
state["cluster_info"] = None

elif run_mode == "hpc":
state["cluster_info"] = {"scheduler": "slurm"}

workflow = create_foam_agent_graph().compile()
workflow.invoke(state)
return {"success": True, "result": {"case_dir": config.case_dir}, "error": None}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Velocity Visualization

@mcp.tool(name="visualize_velocity", description="Post-process and visualize velocity (|U|,
streamlines, slices).")

def visualize_velocity(case_dir: str,
plot_type: str = "magnitude",
plane: str | None = "xy"):

try:
from src.config import Config

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

from src.main import initialize_state
from src.nodes.visualization_node import visualization_node

config = Config()
config.case_dir = case_dir

state = initialize_state(user_requirement="", config=config, custom_mesh_path=None)
state["case_dir"] = case_dir
state["visualization_request"] = {"plot_type": plot_type, "plane": plane}

vis_res = visualization_node(state)
return {"success": True, "result": vis_res, "error": None}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

26

	Introduction
	Related Work
	Methodology: The Code2MCP Framework
	Evaluation
	Experimental Setup
	Large-scale Repository Conversion and Failure Analysis
	Comparison with Human and GPT-4 Baselines
	Integration with Existing Tool Systems
	Case Studies: Protein, Math, and Computational Fluid Dynamics

	Conclusion
	Appendix
	Use of Large Language Models
	Output Directory Structure
	Detailed Conversion Pipeline and Algorithm
	Agent Roles and System Prompts
	Additional Protein Case Study: ESM

	Details of Evaluation
	GPT-4 Template Baseline Prompt
	Evaluation Metrics and Bucketing Rules

	Per-repository Results
	Example MCP Tool Implementations Generated by Code2MCP
	Tools Generated from the ESM Repository
	Tools Generated from the SymPy Repository
	Tools Generated from the Foam-Agent Repository

