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Abstract

The Model Context Protocol (MCP) aims to create a standard for how Large
Language Models use tools. However, most current research focuses on selecting
tools from an existing pool. A more fundamental, yet largely overlooked, problem is
how to populate this pool by converting the vast number of existing software projects
into MCP-compatible services. To bridge this gap, we introduce Code2MCP,
an agent-based framework that automatically transforms a GitHub repository
into a functional MCP service with minimal human intervention. Code2MCP
employs a multi-agent workflow for code analysis, environment setup, tool function
design, and service generation, enhanced by a self-correcting loop to ensure
reliability. We demonstrate that Code2MCP successfully transforms open-source
computing libraries in scientific fields such as bioinformatics, mathematics, and
fluid dynamics that are not available in existing MCP servers. By providing a
novel automated pathway to unlock GitHub, the world’s largest code repository,
for the MCP ecosystem, Code2MCP serves as a catalyst to significantly accelerate
the protocol’s adoption and practical application. The code is public at https:
//anonymous.4open.science/r/Code2MCP-5B47.

1 Introduction

The landscape of artificial intelligence is increasingly defined by autonomous agents that leverage Large
Language Models (LLMs) to interact with external tools (Wang et al., 2024; Xi et al., 2024; Bubeck
et al., 2023). To overcome the inherent limitations of LLMs in tasks requiring real-time information
or precise computation, the paradigm of tool-augmented reasoning has become central (Huang et al.,
2024; Hao et al., 2023). Seminal works have demonstrated that models can effectively learn to invoke
external functions (Schick et al., 2023; Qin et al., 2023; Parisi et al., 2022).

However, this burgeoning ecosystem faces a fundamental scalability challenge: the 𝑁 ×𝑀 integration
problem (Li et al., 2023; Liang et al., 2023; Qin et al., 2023; Anthropic, 2023). Each of the N models
or agent applications often requires a bespoke connector for each of the M tools it must access. This
results in a fragmented and inefficient system where development effort is duplicated and innovation is
stifled by high integration costs (Qu et al., 2025; Shen, 2024). To address this, MCP is proposed as a
universal standard that specifies how agents and tools should communicate, enabling an interoperable
“plug-and-play” ecosystem (Anthropic, 2023).

In response to this integration challenge, the community’s efforts have evolved, inadvertently revealing
a deeper, more foundational bottleneck (Yue et al., 2025). The initial challenge is to establish
the fundamental feasibility of tool use, where a limited set of tools proves the feasibility of the
paradigm (Schick et al., 2023; Patil et al., 2023; Ding et al., 2025). To break past the inherent scarcity
of these platforms, the focus shifts to the vast landscape of open-source repositories (Wang et al.,
2025; Xie et al., 2023). This move, however, trades a scarcity problem for a chaos problem, exposing
the wild non-standardization of real-world code. The MCP emerges as a direct answer to this chaos,
promising a universal interface (Zhang et al., 2025; Anthropic, 2023). Yet, this leads to the critical
gap: research is focused almost exclusively on the consumption side of MCP, using services from a
presumed-to-exist pool (Gan & Sun, 2025), while the foundational “supply-side” problem of how to
populate this pool from existing software is largely unaddressed.
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Figure 1: While most research focuses on the consumption
of tools (right side), one bottleneck is their supply (left side).
Code2MCP solves the supply problem by converting the code
repository into a standardized MCP-compliant tool.

However, while these efforts advance
the consumption side of the prob-
lem, how agents can better use tools,
they largely overlook a more funda-
mental bottleneck on the supply side.
This supply bottleneck is not a the-
oretical concern but a stark reality
preventing standards like MCP from
achieving widespread adoption. For
example, RAG-MCP (Gan & Sun,
2025) utilizes over 4,400 servers on
mcp.so, but there are 268 million
public GitHub repositories. The crit-
ical question of how to create a large
and diverse pool of these standardized,
agent-ready tools has been left unad-
dressed. This creates a major adop-
tion gap, effectively locking away the
largest software repository, GitHub,
from this emerging ecosystem.

In this paper, we introduce Code2MCP, a new framework designed to bridge the critical tool supply
gap. Code2MCP presents a blueprint for transforming any GitHub repository into a functional and
documented MCP service with minimal human intervention. However, this transformation is a
complex endeavor encompassing four pivotal challenges: (1) deep code comprehension to identify
core functionalities, (2) reliable environment replication to ensure executability, (3) intelligent tool
abstraction to design useful and valid service interfaces, and (4) robust self-correction to handle the
inevitable errors throughout the process. To systematically address these challenges, as shown in
Figure 2, Code2MCP implements a collaborative multi-agent system (Park et al., 2023). Unlike
general-purpose coding agents (Cognition, 2024; Jimenez et al., 2024), different agents in our
framework are specialized for the distinct stages of code analysis, environment setup, and API
design. Crucially, the overall reliability of this workflow is ensured by an integrated Run-Review-Fix
self-correction cycle, which endows the system with the ability to autonomously debug and refine the
entire conversion process. The key contributions of this work are listed as follows:

• To solve the fundamental tool supply bottleneck hindering the adoption of the MCP standard, we
propose Code2MCP, a novel automated framework that, to the best of our knowledge, is the first to
systematically transform code repositories into agent-ready MCP services.

• The key challenge in converting code into a service is the inherent fragility of the multi-stage
automation process, where an error at any step can derail the entire workflow. Thus, we introduce a
novel multi-agent architecture governed by a Run-Review-Fix cycle, a self-correcting mechanism
designed to systematically debug and refine the process, ensuring end-to-end reliability.

• We demonstrate the effectiveness and scalability of our framework by converting highly complex
and diverse scientific libraries, covering Protein Design, Symbolic Mathematics, and Computational
Fluid Dynamics, into fully functional MCP services. This provides a concrete and practical pathway
to enrich the MCP ecosystem with specialized, high-value tools.

2 Related Work

As summarized in Section 1 and Table 1, the pioneering works focus on progressively expanding
the scope of tool use, from initial feasibility studies using a few predefined APIs to leveraging large,
curated tool platforms, and ultimately, to the ambitious goal of directly interfacing with unstructured
open-source repositories. Thus, the current bottleneck lies not in how LLMs consume tools, but
in how such tools are supplied and created. In this paper, Code2MCP is designed to solve this
fundamental “supply-side” problem.

Initial explorations in LLM Tool Use. The initial challenge is to establish the fundamental feasibility
of tool use. Toolformer (Schick et al., 2023) demonstrates that an LLM can learn to invoke simple,
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Table 1: A comparative summary of related works in tool-augmented LLMs.

Work Core Contribution Tool Pool Tool Selection MCP

C
on

su
m

er
Toolformer Teaching LLM to use external tools 5 predefined tools Fine-tuning ×

SciToolAgent Domain-specific enhancement
for scientific tool utilization

KG of Scientific Tools
(500+ tools) Retrieval on KG ×

HuggingGPT Increase the size
of tool pool

huggingface.co LLM task planning ×

Gorilla TorchHub, TensorHub
(1600+ tools)

Retriever-aware
training ×

OpenAgents Tool use from open-source
beyond a closed pool github.com

Multi-agent planning ×
RepoMaster Rule-based deep search ×

RAG-MCP RAG for tool selection from MCP MCP.so (4,400+) Retrieval on MCP ✓

Supplier Code2MCP GitHub Repo to standardized MCP github.com N/A ✓

well-defined tools like a calculator via simple APIs in a self-supervised way. SciToolAgent (Ding
et al., 2025) leverages knowledge graphs to orchestrate 500+ scientific tools. This proves the concept
and opens a new paradigm. However, its reliance on a small, predefined set of tools is inherently
unscalable and insufficient for addressing the diverse needs of real-world tasks.

Scaling Tool Availability via Structured Platforms. To overcome the limitation of fixed toolsets,
subsequent research turns to large, curated platforms. These approaches significantly expand the
number of available tools. For instance, Gorilla (Patil et al., 2023) fine-tunes models on a massive
corpus of API calls from hubs like TorchHub and TensorFlow Hub. Similarly, HuggingGPT (Shen
et al., 2023) positions an LLM as a controller to delegate tasks to specialized models within the
Hugging Face ecosystem. While powerful, their success hinges on environments where tools are
well-documented and standardized.

Exploring Unstructured Open-Source Repositories and Challenges. A more ambitious paradigm
shift involves treating the entirety of open-source code repositories as a virtually infinite tool source.
Frameworks like OpenAgents (Xie et al., 2023) and RepoMaster (Wang et al., 2025) empower agents
to directly parse, reason about, and execute code within GitHub repositories. These works confront the
complexity of real-world code but expose the core bottleneck: the vast majority of these repositories
are not designed for programmatic use by LLM agents. They lack standardized interfaces (Zhang
et al., 2024; Jin et al., 2024; Ray, 2025), forcing the agent into an ad-hoc, brittle, and unreliable
process of reverse-engineering the code, setting up its environment, and managing dependencies for
every single task (Zeng et al., 2024; Olausson et al., 2023). This chaotic integration process illustrates
a critical failure on the tool supply side.

The Emergence of Standardization and Unaddressed Gap. Recognizing this chaos, the community
has moved towards standardization, exemplified by the MCP. For example, RAG-MCP (Gan & Sun,
2025) explores how an agent can effectively retrieve and select the most appropriate MCP service from
a pool of 4400+ available options. This approach is promising, but it presumes the existence of a rich
ecosystem of MCP-compliant services (Hasan et al., 2025). This highlights a crucial, unaddressed
gap: how is this ecosystem of MCP services populated in the first place?

3 Methodology: The Code2MCP Framework

To achieve the goal of automatically transforming an arbitrary GitHub repository into a fully functional
and reliable MCP service, we design Code2MCP, an automated framework driven by the collaboration
of seven specialized agents. The entire conversion process, as depicted in Figure 2, is a multi-agent
workflow that begins with code analysis, proceeds through a core Run-Review-Fix self-correction
loop, and culminates in the generation of a merge-ready pull request. For completeness, a more
formal description of this workflow is provided in the appendix A.3.

Suppose there exists a consumer-side work listed in Table 1 that finds a suitable GitHub repository
that may solve the user’s query. Code2MCP converts this repository into MCP that LLMs can call
and use. This is the core difference between this “supply-side” work and the consumer-side works.

3

huggingface.co
github.com
MCP.so
github.com


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Download Agent

Environment Agent

Source Code

Code Environment

MCP Agent

Analysis Agent

Generation Agent

Run AgentReview 
Agent

MCP Code

Code Excution

Error Analysis

Error Reason
Result

Github Repo Finalize Agent

microsoft/playwright

browser-use/browser-use

All-Hands-AI/OpenHands

scrapy/scrapy

OpenBB-finance/OpenBB

gradio-app/gradio

TencentARC/GFPGAN

opencv/opencv

jeecgboot/JeecgBoot

facebookresearch/faiss

Detected runtime error
starting deep error analysis...

Code Report

facebookresearch/esm

esm_Analysis.md
mcp_service.py

…

Pull Request

esm_difference.md

…

Figure 2: Overview of the Code2MCP framework. The system takes a GitHub repository URL as
input and automatically generates a complete MCP service through a multi-agent workflow.

Initialization and Analysis. The Download Agent first clones the specified repository, identified
by its URL 𝑢, into an isolated local workspace. The Environment Agent then replicates the
runtime environment from dependency files or Dockerfiles, addressing one of the most common
failure points in code conversion and supporting reliable subsequent code generation and testing.

Once the environment is ready, the Analysis Agent identifies tool-worthy functionalities within
the codebase. It leverages the DeepWiki tool to obtain a semantic view of the code and associates
code entities with their intent from documentation and comments. The output is a Code Report that
summarizes candidate APIs and guides subsequent stages.

Generation, Execution, and Self-Correction. Given this conversion blueprint, the framework enters
its core iterative loop that turns the identified functionalities into executable MCP services.

The loop starts with the Generation Agent, which takes the Code Report and uses an LLM to
abstract the core functionalities into MCP-compliant interfaces. It creates the tool interface definitions
and adapter file that connect the original code to the MCP interface, together with a basic test suite.

Once the code is generated, the Run Agent executes the test suite in the prepared environment
to verify executability. If the tests pass, the workflow proceeds to finalization; otherwise, the Run
Agent records the error traceback 𝜏 and forwards it to the Review Agent. The Review Agent
analyzes 𝜏 together with the generated code, the Code Report, and the failing test, and diagnoses root
causes such as logic errors, missing dependencies, or interface mismatches. It then formulates a
correction plan 𝛿 that specifies which files and code blocks to change, and hands this plan back to the
Generation Agent to re-synthesize the MCP files. This Run-Review-Fix loop repeats until tests pass
or a maximum of 𝐵 attempts is reached.

Finalization and Delivery. After the core loop succeeds, the Finalize Agent organizes and
packages the validated MCP service files. To facilitate review and adoption by the original repository
maintainers, it also generates a README file explaining how to use the new MCP service. All
artifacts are arranged into a reproducible directory structure under the workspace (Appendix A.2),
and the agent can prepare a pull request to submit these additions back to the original repository.

4 Evaluation

4.1 Experimental Setup

Task. The evaluation task is: given a GitHub repository URL, Code2MCP automatically generates an
MCP service for that repository, and the outcome of the conversion is judged as a success or a failure.
The evaluation focuses on the overall conversion success rate across different domains and repository
characteristics, and on the time and stability of Code2MCP compared with manual implementation
and a GPT-4 template-based baseline on the same set of repositories.
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Table 2: Per-domain summary of environment setup success, basic test success, recovery by the
Run-Review-Fix (RRF) loop (“–” if none are recovered), and final MCP conversion success.

Domain Repos Env succ. Test succ. RRF recovered Avg rounds MCP succ.
Biomedical 5 4/5 (80%) 2/5 (40%) 1/2 (50%) 1.5 3/5 (60%)
Psychology 5 3/5 (60%) 3/5 (60%) 0/1 (0%) – 3/5 (60%)
Math 5 5/5 (100%) 3/5 (60%) 1/2 (50%) 2.0 4/5 (80%)
Earth science 5 3/5 (60%) 2/5 (40%) 1/3 (33.3%) 1.0 3/5 (60%)
Chemistry 5 4/5 (80%) 2/5 (40%) 1/2 (50%) 1.3 3/5 (60%)
Physics 5 3/5 (60%) 2/5 (40%) 0/2 (0%) – 2/5 (40%)
Astronomy 5 4/5 (80%) 3/5 (60%) 1/1 (100%) 1.5 4/5 (80%)
Social science 5 4/5 (80%) 2/5 (40%) 1/2 (50%) 1.0 3/5 (60%)
Linguistics 5 5/5 (100%) 3/5 (60%) 1/2 (50%) 2.0 4/5 (80%)
Econometrics 5 3/5 (60%) 2/5 (40%) 1/2 (50%) 1.0 3/5 (60%)

Overall 50 38/50 (76%) 24/50 (48%) 8/19 (42.1%) 1.4 32/50 (64%)

Repositories. Code2MCP is evaluated on 50 open-source repositories from 10 scientific and
engineering domains (5 per domain), covering biomedical science, psychology, mathematical
computing, earth science, chemistry, physics, astronomy, social science, linguistics, and econometrics.
These repositories range from small utility libraries to large frameworks with complex dependency
stacks. For each repository, the evaluation logs the environment construction result, MCP conversion
result, number of generated tools, and failure types observed across all Run-Review-Fix rounds; per-
repository details and the associated failure labels are summarized in a large table in the Appendix A.5,
and a subset of representative scientific-computing repositories is further used for the Run-Review-Fix
ablation and qualitative case studies.

Success criterion. A conversion is regarded as successful only if the following three conditions
all hold: the runtime environment can be reconstructed according to the dependency specifications
provided by the repository, the generated MCP server can be started and must pass a unified RunNode
test, and at least three core tools can be invoked correctly in automatic tests and return valid outputs.
If any of these conditions is not satisfied, the repository is counted as a failure.

Failure taxonomy. To analyze failure modes, all failed repositories are annotated with one or more
labels from the following six categories:

• env_failure. The environment or dependencies cannot be reconstructed.
• api_inference_error. Systematic errors occur when inferring tool interfaces.
• import_error. Import paths or cross-module dependencies are misconfigured.
• repo_internal_bug. Bugs or version conflicts inside the original repository prevent it from

running reliably even in its native environment.
• mcp_spec_violation. The generated JSON Schema or response structure does not conform

to the MCP specification.
• untoolable_repo. The repository is a collection of scripts or heavily depends on interactive

CLIs or GUIs, which are difficult to abstract into stable MCP tools.

Implementation Details. By default, Code2MCP utilizes gpt-4o-2024-05-13 as its core reasoning
engine. The temperature for all models is set to 1. Code2MCP leverages gitingest1 to ingest
repositories into contextual prompts and fetch pre-analysis reports from deepwiki2. Case studies
are conducted on servers equipped with 8 NVIDIA H100 80 GB GPUs.

4.2 Large-scale Repository Conversion and Failure Analysis

Overall and per-domain success. The overall conversion success rate is first analyzed at the domain
level. In Table 2, for each domain, the number of repositories with successful environment setup

1https://github.com/coderamp-labs/gitingest
2https://deepwiki.org
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Figure 3: Distribution of 42 failure labels assigned to the 18 failed repositories. A single repository
can trigger multiple failure types across different Run-Review-Fix rounds.

and basic test passing, the number of initially failing repositories recovered by the Run-Review-Fix
loop and their average rounds, and the final number of successful MCP conversions. The per-domain
MCP success rates range from 0.40 to 0.80: domains dominated by library-style projects, such
as mathematical computing, astronomy, and linguistics, tend to have higher success rates, while
domains such as physics and econometrics, which contain more complex environments and mixtures
of scripts and workflow-style code, tend to have lower success rates. All statistics in the table are
computed on a per-repository basis, where each repository contributes a single final outcome after
the Run-Review-Fix loop. Per-repository results, including environment construction and MCP
conversion outcomes as well as the number of generated tools, are summarized in the large table in
the appendix and can be further grouped by domain or repository size if desired.

Failure modes. To understand why conversions fail on real repositories, all 18 failed repositories in the
50-repository evaluation are annotated using the six failure labels introduced in the failure taxonomy.
Labels are aggregated across all Run-Review-Fix rounds, so a single repository may receive multiple
labels if different error types are observed during different stages of the pipeline. The distribution of
these labels is visualized in Figure 3. The labels env_failure and api_inference_error
account for more than half of all failures, indicating that environment reconstruction and interface
inference are the primary bottlenecks of the current workflow. The labels import_error and
untoolable_repo are also relatively common, reflecting the difficulty of handling complex
import paths, initialization order, and script-driven repositories in a fully automated pipeline.

Run-Review-Fix ablation. To assess the specific contribution of the Run-Review-Fix self-correction
loop, an ablation study is conducted on a set of representative scientific-computing repositories by
comparing two configurations: a single-pass configuration without the loop and the full Code2MCP
pipeline with the loop enabled. Figure 4 summarizes the results. The bar chart on the left shows
that the per-repository success rates increase for most repositories once the loop is enabled, often
moving from medium success under a single-generation setting to success rates close to or on par with
human-written wrappers. The line chart on the right plots the average number of remaining errors as
a function of the number of Run-Review-Fix rounds, where “remaining errors” denote the number of
failing assertions or uncaught exceptions in the unified test after each round. These results indicate
that the majority of initial failures can be automatically repaired within one to three Run-Review-Fix
rounds, whereas the few repositories that still fail after multiple rounds represent the main current
limitation of the method.

4.3 Comparison with Human and GPT-4 Baselines

The evaluation compares three configurations on the same set of representative repositories:

• a human configuration, where MCP wrappers are implemented from scratch by human developers;
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Figure 4: Repo success rates with and without Run-Review-Fix (left) and remaining errors across
RRF rounds (right) for five representative scientific MCP repositories.

• a GPT-4 template configuration, where a single GPT-4 agent generates MCP wrappers;
• the Code2MCP configuration, which uses the multi-agent pipeline with the Run-Review-Fix loop.

In the human configuration, ten graduate students with at least three years of Python experience
and basic familiarity with MCP concepts implement wrappers from scratch. Before the study, all
participants read the MCP specification and a commented example repository. Each participant is
randomly assigned several repositories, and the measured time is from the moment they start reading
the repository to the point where the minimal test passes.

In the GPT-4 template configuration, a unified system prompt instructs a single GPT-4 model to
generate a complete MCP service implementation based on the repository README and several key
source files selected by static analysis. We use the same base model and decoding configuration as
in Code2MCP, namely gpt-4o-2024-05-13 with temperature set to 1.0, to ensure a fair comparison.
The model is allowed up to three dialogue turns: the first turn generates an initial implementation,
and up to two additional turns may revise the code based on execution errors returned by a test
runner. No additional agents or planning mechanisms are used, and the full system prompt is
provided in Appendix B.1. In the Code2MCP configuration, the default multi-agent pipeline with

Figure 5: Average task success rate (left) and average completion time (right) across the ten scientific
domains for the three configurations: Human experts, GPT-4 with basic scaffolding, and Code2MCP.

the Run-Review-Fix loop is used. For each repository, we record the final success status and the
completion time, defined as the end-to-end wall-clock time starting from the beginning of environment
setup and ending when the unified MCP test first passes or the run is terminated; see Appendix B.2
for details. Figure 5 summarizes the average task success rates and completion times of the three
configurations across the ten scientific domains. For each configuration and domain, task success rate
is defined as the fraction of successful attempts over all attempts on representative repositories in that
domain. Completion time is the average end-to-end wall-clock time per attempt, measured from the
beginning of environment setup until the minimal MCP test first passes or the run is terminated.

7
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Figure 6: Task success rates of Human experts, GPT-4 with a template, and Code2MCP on
representative repositories in the four repository groups. The x-axis lists representative repositories in
each group, labeled by domain abbreviation and index (e.g., Math-1).

The overall trend is as follows: Code2MCP achieves task success rates close to human implementations
in most domains, and consistently higher than the GPT-4 template configuration. In terms of completion
time, human implementations are typically on the order of hours, while Code2MCP completes in tens
of minutes; the GPT-4 template configuration is the fastest but has lower success rates.

When repositories are grouped by dependency complexity and project type into low-dependency
libraries, medium-dependency scientific libraries, high-dependency libraries, and script-heavy projects,
Figures 6 and 7 further break down the same comparison on representative repositories within each
group. The bucketing rules are detailed in Appendix B.2.

Figure 7: Completion time of Human experts, GPT-4 with a template, and Code2MCP on representative
repositories in the four repository groups.

4.4 Integration with Existing Tool Systems

This subsection summarizes how Code2MCP integrates with existing tool ecosystems by combining
it with RepoMaster and OpenAgents on a shared set of tool-usage tasks.

RepoMaster + Code2MCP. In the RepoMaster setting, code-understanding and tool-usage tasks
are run in two configurations: using RepoMaster alone to operate at the source-code level, and
using RepoMaster together with Code2MCP, where RepoMaster first selects relevant repositories and
then invokes the corresponding MCP tools. Figure 8 shows that the configuration with Code2MCP
achieves higher task success rates and requires fewer interaction steps (see Appendix B.2 for metric
definitions), suggesting that delegating part of the work to standardized MCP tools improves efficiency
without modifying the upstream agent policy.

OpenAgents + Code2MCP. In the OpenAgents setting, cross-domain tasks are evaluated under
two configurations: using OpenAgents alone, and using OpenAgents with MCP tools automatically
generated by Code2MCP added to the tool pool. As shown in Figure 9, we report the task success
rate and coverage, where coverage and success rate are defined in Appendix B.2. Adding Code2MCP
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Figure 8: RepoMaster with and without Code2MCP tools: task success rate (left) and average
interaction steps (right) across task groups.

tools increases both metrics across all task groups, indicating that a richer MCP tool pool can be
effectively exploited by existing planning and retrieval strategies.

Overall, RepoMaster and OpenAgents handle tool discovery and code retrieval on the consumer side,
while Code2MCP supplies additional MCP services on the supply side. Under the same front-end
selection and planning strategies, integrating Code2MCP enriches the tool pool and yields measurable
improvements in end-to-end task performance.

4.5 Case Studies: Protein, Math, and Computational Fluid Dynamics

This subsection highlights three representative repositories from the 50-repository evaluation set:
the biomedical protein modeling library ESM, the symbolic mathematics library SymPy, and the
CFD framework Foam-Agent built on OpenFOAM, illustrating the kinds of MCP tools Code2MCP
generates and how agents use them in practice.

Figure 9: OpenAgents with and without Code2MCP tools: task success rate (left) and coverage (right)
across general and scientific task groups.

Bridging protein science with AI agents. In protein science, models such as AlphaFold greatly
improve structure prediction, but using them in everyday research typically requires substantial
scripting and environment setup. ESM models complement AlphaFold with efficient sequence
modeling and zero-shot variant effect prediction, yet traditionally still require multi-step Python
pipelines for computing physicochemical properties, predicting structures, and analyzing mutations.
Code2MCP converts ESM into an MCP service by exposing tools such as Analyze_sequence,
Predict_structure, and Predict_variant_effect. We provide a qualitative example
of using ESM-based MCP tools for protein analysis in Appendix A.5.

Enhancing mathematical reliability in AI agents. For mathematical computing, large language
models are prone to errors in symbolic derivations and exact calculations, whereas libraries such as
SymPy already provide reliable implementations. Code2MCP organizes common capabilities from

9
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Generate_mesh

Computational Mesh Generation

Generate Simulation Files and 
Performs the Simulation

Visualize_velocity

Generate_simulate

Allrun, Slrum Scripts

Local or HPC Execution

Log Files

Simulate incompressible flow over a 
circular cylinder. Use gmsh to create the
computational mesh. The computational 
domain extends from -2.5 to 2.5…..

User Input

Help me to Generate simulation input files:
time 0-2s, time step 0.001s, output every
100 steps; kinematic viscosity ν=1×10⁻⁵
m²/s, use pisoFoam for incompressible flow.

User Input

Please help me to visualize
the magnitude of velocity
(’U’) along the x-y plane.

User Input

3D streamline plot

fast

low

Foam-Agent MCP Server

Foam-Agent 
Repo

Code2MCP

Figure 10: An AI agent orchestrates a CFD simulation pipeline by invoking Generate_mesh,
Generate_simulate, and Visualize_velocity functions to guide a user through the entire
process, from initial mesh generation and simulation setup to the final velocity visualization.

SymPy into a mathematical MCP service with tools for limits and integration, matrix operations,
symbolic simplification, and transforms such as Fourier and Laplace. When asked to compute an
integral or the volume of a solid of revolution, an agent simply invokes the corresponding tool and
returns an exact answer, relying on SymPy as a backend instead of ad-hoc prompt-based reasoning.

Automating CFD simulation for AI agents. CFD workflows typically involve mesh genera-
tion, solver configuration, execution, and post-processing, traditionally coordinated by engineers
through shell scripts and configuration files. Foam-Agent provides a higher-level interface to Open-
FOAM, and Code2MCP further turns it into an MCP service with tools such as Generate_mesh,
Generate_simulate, and Visualize_velocity. As illustrated in Figure 10, a user de-
scribes the target geometry and physical parameters in natural language, and the agent calls these
tools in sequence to construct the mesh, run the simulation, and visualize the velocity field.

5 Conclusion

Addressing the key challenge of insufficient tool supply in the MCP ecosystem, this paper introduces
Code2MCP, a framework that automatically converts GitHub repositories into functional MCP
services. The framework employs a multi-agent workflow for code comprehension, environment
reconstruction, and tool abstraction, augmented by a “Run-Review-Fix” self-correction loop that
improves end-to-end reliability across diverse scientific libraries. Our evaluation on 50 repositories
shows that Code2MCP can robustly expose high-value APIs as MCP tools while also revealing clear
failure modes and boundary conditions. This work presents an automated pathway for connecting
existing codebases to the agent tool ecosystem, and we leave systematically hardening security and
building standardized large-scale MCP benchmarks from these converted services as important
directions for future work.
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A Appendix

A.1 Use of Large Language Models

During manuscript preparation, large language models (LLMs) are used solely as general-purpose
writing assistants for grammar checking, wording refinement, and improving clarity. LLMs don’t
contribute to research ideation, methodological design, or experimental execution. All suggestions
produced by LLMs are reviewed, edited, and vetted by the authors, who take full responsibility for the
entire content of the paper.

A.2 Output Directory Structure

Figure 11 shows the final directory layout generated by Code2MCP, where the original repository and
the synthesized MCP artifacts are organized under a unified workspace.

Figure 11: The complete output directory structure generated by the Code2MCP framework. The
top-level workspace contains the original repository alongside all generated artifacts within the
mcp_output directory.

A.3 Detailed Conversion Pipeline and Algorithm

This section outlines the roles of the specialized agents within the Code2MCP framework and their
coordination as shown in Algorithm 1, where Download and Environment initialize the workspace,
Analysis and Generation construct the MCP service, Run and Review form the Run-Review-Fix loop,
and Finalize produces the final deliverables. The following are placeholders for their system prompts.

A.4 Agent Roles and System Prompts

This section outlines the roles of the specialized agents within the Code2MCP framework. The
following are placeholders for their system prompts.

Environment Agent This agent rapidly provisions a minimal, isolated runtime for the repository,
with minimal dependencies and a short smoke test; if setup fails, propose one lightweight, auditable
fallback without modifying the repository; keep all steps reproducible and pragmatic.
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Algorithm 1 The Code2MCP Framework
1: Input: GitHub repository URL 𝑢

2: Download Agent: Clone repository into an isolated workspace.
3: Environment Agent: Replicate runtime environment from dependency files.
4: Analysis Agent: Analyze codebase→ generate detailed Code Report.
5: Generation Agent: Synthesize initial MCP files (mcp_service.py, adapter.py,

tests) based on Code Report.
6: 𝑟 ← 0; 𝑠𝑢𝑐𝑐𝑒𝑠𝑠← false
7: while ¬𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ∧ 𝑟 < 𝐵 do
8: Run Agent: Execute test suite; collect error traceback 𝜏 on failure.
9: if all tests pass then

10: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠← true
11: else
12: Review Agent: Analyze traceback 𝜏 and generate correction plan 𝛿.
13: Generation Agent: Re-synthesize MCP files using the Code Report and correction

plan 𝛿.
14: 𝑟 ← 𝑟 + 1
15: end if
16: end while
17: Finalize Agent: Package service files, generate README, and create a Pull Request.
18: Output: A merge-ready Pull Request containing the functional MCP service.

Environment System Prompt
- Prefer Conda; use venv only if Conda is unavailable or clearly unsuitable.
- Detect dependency sources by priority: environment.yml > requirements.txt > pyproject.toml >
setup files; never guess hidden dependencies.
- Pin versions when explicit; otherwise install the minimal viable set. Prefer CPU wheels unless
GPU is explicitly required.
- Normalize cross-platform behavior; avoid absolute paths; use relative POSIX-like paths; ensure
UTF-8 locale.
- Smoke test: print Python version and platform; import fastmcp; attempt to import the project’s
top-level package or a primary CLI; exit code 0 indicates pass.
- On failure, capture exact command, exit code, last 80 lines of stderr, and timing; propose exactly
one minimal remedy (e.g., switch to venv, install a single missing package, try one version pin,
extend timeout once).
- Apply at most one fallback; never change repository code; do not write outside the workspace; do
not weaken security (e.g., no SSL bypass).
- Cache wheels where possible; avoid global pollution; record reproducible commands and resolved
versions.
- Default to offline validation; if network is strictly required, justify briefly and bound the scope.
- Emit a compact environment report (platform, Python, manager, explicit deps, resolved pins,
pass/fail).

Code Analysis Expert This agent performs static analysis to shape the repository into a compact,
high-value capability surface, selecting stable public functionality, filtering out test/demo code, and
producing a concise plan aligned with predefined domains, categories, and solvers.

Code Analysis System Prompt
- Ingest repository signals (structure, import graph, README/docstrings, CLI entry points;
DeepWiki if available) to identify stable public APIs suitable as MCP tools.
- Prefer documented, side-effect-bounded surfaces; exclude tests, internals, notebooks, long demos
unless clearly valuable and controllable.
- Define crisp tool boundaries: explicit inputs/outputs, preconditions/postconditions, resource needs
(CPU/GPU/memory/time), and I/O constraints.
- Note minimal adapter needs (path normalization, dtype coercion, lazy imports) and hazards
(network access, file mutation, global state).
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- Summarize fragilities (optional deps, platform quirks) and propose guards (timeouts, argument
validation, deterministic seeds).
- Also produce a case description: case name, case domain, case category, and case solver, using a
consistent taxonomy across repositories.
- Output a compact plan for generation: candidate tools (name, brief description, inputs with
types/defaults, outputs, idempotency, side effects) and environment assumptions. Keep it actionable
and minimal.

Code Generation Expert This agent synthesizes a robust MCP service from the analysis plan with
clean design, consistent interfaces, graceful failure handling, and immediate executability, defining
clear tool endpoints, enforcing explicit typed parameters and standardized returns, and avoiding test
or example tooling.

Code Generation System Prompt
- Produce clean, runnable Python (no Markdown fences). Use FastMCP to build the MCP service.
- Implement create_app() that returns the service; register tools with concise names and user-facing
descriptions.
- For every tool: explicit, typed parameters (no *args/**kwargs); validate inputs; JSON-serializable
outputs.
- Standard return shape: success: bool, result: any or null, error: string or null.
- Handle optional dependencies via lazy imports; emit helpful errors without crashing the service;
prefer CPU fallbacks when reasonable.
- Ensure deterministic defaults (fixed seeds when relevant); avoid hidden global state; restrict file
I/O to the workspace with existence/size/extension checks.
- Design for cross-platform paths; avoid shell-specific behavior; bound execution time and memory.
- Do not generate tests as tools. Expose a small set of high-value, composable endpoints; avoid
overexposing internals.
- Add lightweight logging (tool name, argument schema, durations) and minimal version metadata
to aid troubleshooting.

Senior Software Engineer This agent diagnoses failures and applies the smallest auditable change that
restores correctness while preserving public contracts, deciding between direct fix and regeneration,
using strict complete-file replacement, and avoiding multi-file edits or prose in outputs.

Review & Auto-Fix System Prompt
- Triage failures: import/env, type/contract, path/I-O, dependency/version, timeout/perf, platform.
- Choose minimal direct fix vs. regeneration; provide a one-line rationale and confidence
(low/med/high). Prefer adapter-boundary mitigations (lazy import, existence checks, parameter
coercion).
- Apply strict complete-file replacement for the single target file; return pure code only; do not alter
unrelated sections.
- Preserve interface contracts and standardized error shapes; add narrow guards instead of broad
catches.
- Enforce cross-platform path handling and deterministic behavior; do not introduce external
network calls or new side effects.
- Optionally add a tiny internal sanity check if it prevents recurrence without bloat.
- Bound attempts (<= B). If still failing, emit a compact escalation note: failing step, last command,
stderr tail, and the next best single remediation.

Final Agent This agent consolidates artifacts and workflow logs into developer-facing documentation
and delivery notes that are precise, reproducible, and integration-ready, producing a concise README
with installation, quick start, key tools, troubleshooting guidance, and references.

Final Agent System Prompt
- Write a concise developer README (Markdown) including:
1) Overview and value; roles of MCP and FastMCP; supported OS.
2) Minimal reproducible install (Conda/venv), commands, pinned dependencies, offline notes;
Windows PowerShell and Linux shell variants.
3) Quick start to launch the service and call 2–3 key tools with copy-pasteable snippets and basic
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error handling.
4) Tool list: endpoint name, one-line description, key parameters (types/defaults), return shape,
idempotency/side effects, typical runtime class.
5) Troubleshooting: environment/import issues, optional deps, timeouts, path problems, permis-
sions, CPU/GPU enablement; any bounded network caveats.
6) Reproducibility and telemetry: how to capture environment report, versions, minimal repro
commands; where logs/artifacts live.
7) License and compliance notes: repository license, usage constraints, safety guardrails.
- Keep structure clear, steps verifiable, and assumptions minimal; prioritize essentials for successful
adoption and integration.

A.5 Additional Protein Case Study: ESM

Formula
C1375H2172N368O377S5

Major Amino Acid Composition

Predicted Aligned Error

Total atoms
4297

3D structure of 
protein

Protein Analyze

Structure Predict

3D Structure Projection with Mutation SitesRed indicates Q145G mutation

Mutation Predict

Having a protein sequence:
“MENFQKVEKIGEGTYGVV...”and
its mutation site: “Q145G”，
please help me analyze this
protein sequence and predict
mutation effects.

User Input
Analyze_sequence

Predict_structure 

Predict_variant_effect

Key Protein Properties

calling

ESM MCP Server

ESM Repo

Figure 12: An AI agent processes a user’s query containing a protein sequence and mutation. By
invoking Analyze_sequence, Predict_structure, and Predict_variant_effect
functions from the generated ESM MCP server, it returns key physicochemical properties, a predicted
3D structure, and an analysis of the mutation’s effects.

B Details of Evaluation

B.1 GPT-4 Template Baseline Prompt

In the GPT-4 template baseline, we use a single system prompt that instructs one GPT-4 model to
generate a complete MCP service implementation for a given repository. The full prompt is given
below.

GPT-4 Template Baseline System Prompt
You are a single GPT-4 model acting as an autonomous MCP wrapper generator for a Python code repository.
You receive: - A short task description. - The repository README (possibly truncated). - A list of key
source files selected by static analysis, each with its file path and content. - A minimal description of the MCP
protocol and the FastMCP library.
Your goal is to produce a single, self-contained Python MCP server that exposes a small set of high-value
tools from this repository.
Requirements: 1. Design of tools - Identify 3–8 core, stable capabilities that are useful to expose as tools. -
For each tool, choose a concise, descriptive name and a one-sentence natural-language description. - Specify
explicit, typed parameters (no *args or **kwargs); include default values where reasonable. - Define
clear, JSON-serializable return values. Avoid returning raw Python objects that cannot be serialized.
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2. Implementation with FastMCP - Use the FastMCP library to implement the MCP server. - Implement a
create_app() function that constructs and returns the MCP application. - Register each tool with FastMCP,
binding it to the underlying repository functions or classes. - Prefer importing from public, documented APIs
instead of private or test modules. - Use lazy imports for heavy optional dependencies when necessary, and
return a helpful error message if a required package is missing.
3. Robustness and safety - Validate all inputs (types, value ranges, file existence) before calling library
functions. - Handle exceptions inside each tool and return a standardized error object instead of raising
uncaught exceptions. - The standardized response format for each tool is: { "success": bool,
"result": any or null, "error": string or null }. - Avoid network access unless
the repository explicitly requires it. - Restrict file I/O to the workspace; do not write to absolute paths outside
the project.
4. Coding style - Write clean, idiomatic Python 3 code with clear function boundaries. - Add short docstrings
for each tool describing its purpose, parameters, and return value. - Do not generate tests, examples, or
documentation as part of the MCP server file. - Do not include Markdown fences such as ““‘; output only raw
Python code.
5. Output format - Return a single Python file containing the complete MCP server implementation. - Do
not include explanations, comments to the user, or multiple files; only the final server code that can be saved
as e.g. mcp_service.py.

B.2 Evaluation Metrics and Bucketing Rules

This section defines the evaluation metrics and repository bucketing rules used in the main experiments.

Interaction steps. In the RepoMaster experiments, an interaction step is defined as a single high-level
agent action that changes the external state of the system. Concretely, we count as one step any of the
following: (1) invoking a tool (including Code2MCP-generated MCP tools and built-in RepoMaster
tools), (2) editing source code files, or (3) executing the target program or tests. The total number of
interaction steps for a task is the length of the resulting action sequence.

Task Set Description. In the integration experiments with RepoMaster and OpenAgents, we use a
fixed set of code-understanding and tool-usage tasks that are primarily derived from public benchmarks
and representative scenarios in prior work, with a small number of additional scientific-computing
cases to ensure coverage of both general and scientific settings. At this stage, this task set remains a
relatively small, research-oriented setup rather than a fully standardized large-scale benchmark, and
constructing a more systematic MCP task benchmark is left as future work.

Task success rate and coverage. In the OpenAgents experiments, a task is considered successful if
the agent produces a final answer that passes automatic correctness checks. Task success rate is the
fraction of tasks in a group that are successful. Coverage is the fraction of tasks in a group for which
the agent produces any final answer that can be checked by the automatic evaluator, regardless of
whether the answer is ultimately judged correct.

Repository buckets. To analyze the impact of dependency complexity and project style, we group
repositories into four buckets based on static metadata:

• Low-dependency libraries: at most 10 Python dependencies inferred fromrequirements.txt,
environment.yml, or pyproject.toml, and primarily library-style public APIs.

• Medium-dependency scientific libraries: between 11 and 30 Python dependencies with a
library-style API and no substantial external system requirements.

• High-dependency libraries: more than 30 Python dependencies or additional system-level
requirements (e.g., MPI stacks, GPU-accelerated frameworks, or complex external services).

• Script-heavy projects: projects whose primary functionality is exposed via CLI scripts, notebooks,
or workflow-style pipelines rather than a stable library API; these are identified using repository
structure, entry points, and README descriptions.

C Per-repository Results
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Table 3: Repository identifiers, domains, and final outcomes.

ID Domain Repo Final_status Main_failure_type
B1 Biomedical facebookresearch/esm success –
B2 Biomedical biocore/scikit-bio fail env_failure
B3 Biomedical Biopython/Biopython fail api_inference_error
B4 Biomedical pysam-developers/pysam success –
B5 Biomedical deepchem/deepchem success –
P1 Psychology psychopy/psychopy fail untoolable_repo
P2 Psychology pymc-devs/pymc success –
P3 Psychology sahahn/BPt success –
P4 Psychology mne-tools/mne-python fail api_inference_error
P5 Psychology neuropsychology/NeuroKit success –
M1 Math sympy/sympy success –
M2 Math scipy/scipy fail api_inference_error
M3 Math fredrik-johansson/mpmath success –
M4 Math cvxpy/cvxpy success –
M5 Math sagemath/sage success –
Ea1 Earth Science obspy/obspy success –
Ea2 Earth Science Unidata/MetPy fail mcp_spec_violation
Ea3 Earth Science pyproj4/pyproj fail repo_internal_bug
Ea4 Earth Science mapbox/rasterio success –
Ea5 Earth Science geopandas/geopandas success –
A1 Astronomy astropy/astropy success –
A2 Astronomy sunpy/sunpy fail repo_internal_bug
A3 Astronomy lightkurve/lightkurve success –
A4 Astronomy astroML/astroML success –
A5 Astronomy astropy/astroquery success –
C1 Chemistry rdkit/rdkit success –
C2 Chemistry openbabel/openbabel fail env_failure
C3 Chemistry bjodah/chempy success –
C4 Chemistry pyscf/pyscf fail api_inference_error
C5 Chemistry cclib/cclib success –
Ph1 Physics csml-rpi/Foam-Agent success –
Ph2 Physics PlasmaPy/PlasmaPy fail env_failure
Ph3 Physics pydy/pydy fail –
Ph4 Physics PyAbel/PyAbel success –
Ph5 Physics scikit-hep/scikit-hep fail untoolable_repo
S1 Social Science networkx/networkx success –
S2 Social Science igraph/python-igraph success –
S3 Social Science networkit/networkit fail env_failure
S4 Social Science snap-stanford/snap-python fail untoolable_repo
S5 Social Science datamade/dedupe success –
L1 Linguistics nltk/nltk success –
L2 Linguistics explosion/spaCy success –
L3 Linguistics stanfordnlp/stanza success –
L4 Linguistics RaRe-Technologies/gensim fail import_error
L5 Linguistics flairNLP/flair success –
E1 Econometrics statsmodels/statsmodels success –
E2 Econometrics alkaline-ml/pmdarima success –
E3 Econometrics facebook/prophet fail env_failure
E4 Econometrics blue-yonder/tsfresh fail repo_internal_bug
E5 Econometrics pydata/xarray success –
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Table 4: Per-repository structural statistics (size, dependencies, and tests).

ID total_files total_size Size_bucket Dependency_complexity Has_tests Has_packaging
B1 471 33M Medium Medium Yes Yes
B2 874 9M Medium Medium Yes Yes
B3 1146 95M Medium High Yes Yes
B4 561 13M Medium Medium Yes Yes
B5 1411 136M Medium High Yes Yes
P1 3542 65M Large High Yes Yes
P2 371 17M Medium High Yes Yes
P3 2669 39M Large Medium Yes Yes
P4 1385 26M Medium High No No
P5 496 52M Medium Medium Yes Yes
M1 1968 29M Medium Low Yes Yes
M2 3027 81M Large High Yes Yes
M3 197 2M Small Low No Yes
M4 1079 38M Medium Medium Yes Yes
M5 5331 113M Large High Yes Yes
Ea1 2117 34M Large High Yes Yes
Ea2 595 99M Medium Medium Yes Yes
Ea3 144 1M Small Medium No Yes
Ea4 382 17M Medium Medium Yes Yes
Ea5 351 11M Medium Medium Yes Yes
A1 1879 24M Large High Yes Yes
A2 877 10M Medium Medium Yes Yes
A3 217 8M Small Medium No Yes
A4 192 1M Small Low Yes Yes
A5 960 23M Medium Medium Yes Yes
C1 5740 130M Large High Yes Yes
C2 10000 63M Large High Yes Yes
C3 213 1M Small Low No Yes
C4 2114 56M Medium High Yes Yes
C5 1508 80M Large Medium Yes Yes
Ph1 44 0.2M Small Medium Yes Yes
Ph2 498 16M Medium Medium Yes Yes
Ph3 263 8M Small Medium No Yes
Ph4 243 2M Small Low Yes Yes
Ph5 18 0.3M Small Low No Yes
S1 951 10M Medium Low Yes Yes
S2 248 3M Small Medium No Yes
S3 1168 22M Medium Medium Yes Yes
S4 678 14M Medium High Yes Yes
S5 97 1M Small Low No No
L1 496 8M Medium Low Yes Yes
L2 1683 12M Medium Medium Yes Yes
L3 574 5M Medium Medium Yes Yes
L4 638 55M Medium Medium Yes Yes
L5 383 5M Small Medium No Yes
E1 2091 39M Medium High Yes Yes
E2 225 1M Small Low No Yes
E3 282 14M Medium Medium Yes Yes
E4 135 10M Small Medium Yes Yes
E5 403 8M Medium Medium Yes Yes
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Table 5: Per-repository environment and MCP conversion statistics.

ID Env_success MCP_success Num_tools Num_tools_passed First_run_status Num_fix_rounds
B1 Yes Yes 16 14 fail 1
B2 No No 0 0 fail 2
B3 Yes No 8 4 fail 2
B4 Yes Yes 10 9 success 0
B5 Yes Yes 14 13 fail 0
P1 No No 0 0 fail 1
P2 Yes Yes 9 8 success 0
P3 Yes Yes 11 10 success 0
P4 No No 13 12 fail 3
P5 Yes Yes 7 7 success 0
M1 Yes Yes 12 10 success 0
M2 Yes No 6 2 fail 2
M3 Yes Yes 8 7 success 0
M4 Yes Yes 10 9 success 0
M5 Yes Yes 15 13 fail 2
Ea1 Yes Yes 11 8 fail 2
Ea2 No No 5 1 fail 1
Ea3 No No 4 0 fail 2
Ea4 Yes Yes 9 8 success 0
Ea5 Yes Yes 7 7 success 1
A1 Yes Yes 8 5 fail 2
A2 No No 3 1 fail 1
A3 Yes Yes 10 9 success 0
A4 Yes Yes 6 6 success 1
A5 Yes Yes 8 8 success 0
C1 Yes Yes 18 16 fail 1
C2 No No 0 0 fail 2
C3 Yes Yes 7 7 success 0
C4 Yes No 12 10 fail 3
C5 Yes Yes 9 8 success 1
Ph1 Yes Yes 8 7 success 1
Ph2 No No 0 0 fail 2
Ph3 Yes No 6 6 fail 0
Ph4 Yes Yes 5 5 success 0
Ph5 No No 0 0 fail 1
S1 Yes Yes 10 9 success 0
S2 Yes Yes 8 7 fail 1
S3 No No 0 0 fail 2
S4 Yes No 0 0 fail 1
S5 Yes Yes 5 5 success 0
L1 Yes Yes 7 7 success 0
L2 Yes Yes 11 10 fail 2
L3 Yes Yes 9 8 success 1
L4 Yes No 0 0 fail 3
L5 Yes Yes 6 6 success 0
E1 Yes Yes 13 11 fail 1
E2 Yes Yes 7 7 success 0
E3 No No 0 0 fail 2
E4 No No 0 0 fail 1
E5 Yes Yes 8 7 success 1
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D Example MCP Tool Implementations Generated by Code2MCP

To illustrate the concrete, high-quality output of Code2MCP, this section presents several MCP tool
implementations that were autonomously generated by Code2MCP. These examples are drawn from
the ESM and SymPy case studies discussed in the main paper and demonstrate the framework’s ability
to produce clean, robust, and immediately usable code.

D.1 Tools Generated from the ESM Repository

MCP Tool for Protein Sequence Analysis

@mcp.tool(name="analyze_sequence", description="Analyze protein sequence features.")
def analyze_sequence(sequence: str):

"""Analyzes physicochemical properties of a protein sequence."""
try:

import re
try:

from esm import analysis
except Exception:

try:
from .esm import analysis

except Exception:
import types
analysis = types.SimpleNamespace(

calculate_molecular_weight=lambda s: float(len(s)) * 110.0,
calculate_isoelectric_point=lambda s: 7.0,
calculate_instability_index=lambda s: 40.0

)

aa_set = set("ACDEFGHIKLMNPQRSTVWY")
seq = re.sub(r"[^A-Za-z]", "", sequence or "").upper()
seq = "".join([c for c in seq if c in aa_set])

length = len(seq)
composition = {aa: seq.count(aa) for aa in aa_set if seq.count(aa) > 0}
molecular_weight = analysis.calculate_molecular_weight(seq)
isoelectric_point = analysis.calculate_isoelectric_point(seq)
instability_index = analysis.calculate_instability_index(seq)

properties = {
"length": length,
"composition": composition,
"molecular_weight": molecular_weight,
"isoelectric_point": isoelectric_point,
"instability_index": instability_index,
"sequence": seq,

}
return {"success": True, "result": properties, "error": None}

except Exception as e:
return {"success": False, "result": None, "error": f"Error during sequence analysis:

{str(e)}"}

MCP Tool for Protein Structure and Mutation Prediction

@mcp.tool(name="predict_structure", description="Predicts a protein structure using the
ESMFold API and saves it to a PDB file.")

def predict_structure(sequence: str):
"""Predicts a protein structure and saves it to a PDB file."""
try:

import requests
import os
import datetime

response = requests.post(
"https://api.esmatlas.com/foldSequence/v1/pdb/",
data=sequence,
timeout=300,

)
response.raise_for_status()

base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
predictions_dir = os.path.join(base_dir, "predictions")
os.makedirs(predictions_dir, exist_ok=True)
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timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
pdb_filepath = os.path.join(predictions_dir, f"prediction_{timestamp}.pdb")

with open(pdb_filepath, "w") as f:
f.write(response.text)

return {"success": True, "result": {"pdb_file_path": pdb_filepath}, "error": None}
except Exception as e:

return {"success": False, "result": None, "error": str(e)}

D.1.1 Tools Generated from the SymPy Repository

MCP Tool for Solving Equations

@mcp.tool(name="solve_equation")
def solve_equation(equation: str, variable: str):

"""
Solve equation for variable
"""
try:

from sympy import sympify, symbols, solve, Basic
def ser(x):

if isinstance(x, Basic): return str(x)
if isinstance(x, (list, tuple, set)): return [ser(i) for i in x]
if isinstance(x, dict): return {k: ser(v) for k, v in x.items()}
return x

expr = sympify(equation)
var = symbols(variable)
res = solve(expr, var)
return {"success": True, "result": ser(res)}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Solving Linear Systems

@mcp.tool(name="solve_linear_system")
def solve_linear_system(system: list, variables: list):

"""
Solve system of linear equations
"""
try:

from sympy import sympify, symbols, linsolve, Basic
def ser(x):

if isinstance(x, Basic): return str(x)
if isinstance(x, (list, tuple, set)): return [ser(i) for i in x]
if isinstance(x, dict): return {k: ser(v) for k, v in x.items()}
return x

eqs = [sympify(e) for e in system]
vars_sym = [symbols(v) for v in variables]
res = linsolve(eqs, vars_sym)
return {"success": True, "result": ser(list(res))}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Differentiation

@mcp.tool(name="differentiate")
def differentiate(expr: str, variable: str):

"""
Calculate derivative of expression
"""
try:

from sympy import sympify, symbols, diff, Basic
def ser(x):

if isinstance(x, Basic): return str(x)
return x

expr_sym = sympify(expr)
var = symbols(variable)
res = diff(expr_sym, var)
return {"success": True, "result": ser(res)}
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except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Integration

@mcp.tool(name="integrate_expression")
def integrate_expression(expr: str, variable: str):

"""
Calculate integral of expression
"""
try:

from sympy import sympify, symbols, integrate, Basic
def ser(x):

if isinstance(x, Basic): return str(x)
return x

expr_sym = sympify(expr)
var = symbols(variable)
res = integrate(expr_sym, var)
return {"success": True, "result": ser(res)}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Polynomial Creation

@mcp.tool(name="create_polynomial")
def create_polynomial(expr: str, variable: str = None):

"""
Create polynomial from expression
"""
try:

from sympy import sympify, symbols, Poly, Basic
def ser(x):

if isinstance(x, Basic): return str(x)
return x

expr_sym = sympify(expr)
if variable:

var = symbols(variable)
res = Poly(expr_sym, var)

else:
res = Poly(expr_sym)

return {"success": True, "result": ser(res)}
except Exception as e:

return {"success": False, "result": None, "error": str(e)}

MCP Tool for Polynomial Factoring

@mcp.tool(name="factor_polynomial")
def factor_polynomial(poly: str):

"""
Factor polynomial expression
"""
try:

from sympy import sympify, factor, Basic
def ser(x):

if isinstance(x, Basic): return str(x)
return x

poly_sym = sympify(poly)
res = factor(poly_sym)
return {"success": True, "result": ser(res)}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Fourier Transform

from sympy import sympify, symbols, fourier_transform as sympy_fourier_transform, Basic

def _serialize(obj):
if isinstance(obj, Basic):

return str(obj)
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if isinstance(obj, (list, tuple, set)):
return [_serialize(x) for x in obj]

if isinstance(obj, dict):
return {k: _serialize(v) for k, v in obj.items()}

return obj

@mcp.tool(name="fourier_transform")
def fourier_transform_tool(expression: str, time_var: str = "t", freq_var: str = "w"):

try:
expr = sympify(expression)
t = symbols(time_var)
omega = symbols(freq_var)
F = sympy_fourier_transform(expr, t, omega)
return {"success": True, "result": _serialize(F), "error": None}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Laplace Transform

from sympy import sympify, symbols, laplace_transform as sympy_laplace_transform, Basic

def _serialize(obj):
if isinstance(obj, Basic):

return str(obj)
if isinstance(obj, (list, tuple, set)):

return [_serialize(x) for x in obj]
if isinstance(obj, dict):

return {k: _serialize(v) for k, v in obj.items()}
return obj

@mcp.tool(name="laplace_transform")
def laplace_transform_tool(expression: str, time_var: str = "t", laplace_var: str = "s"):

try:
expr = sympify(expression)
t = symbols(time_var)
s = symbols(laplace_var)
F, _, _ = sympy_laplace_transform(expr, t, s)
return {"success": True, "result": _serialize(F), "error": None}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Z Transform

from sympy import sympify, symbols, summation, oo, Basic

def _serialize(obj):
if isinstance(obj, Basic):

return str(obj)
if isinstance(obj, (list, tuple, set)):

return [_serialize(x) for x in obj]
if isinstance(obj, dict):

return {k: _serialize(v) for k, v in obj.items()}
return obj

@mcp.tool(name="z_transform")
def z_transform_tool(expression: str, time_var: str = "n", z_var: str = "z", limit: int =

100):

try:
expr = sympify(expression)
n = symbols(time_var)
z = symbols(z_var)
try:

result = summation(expr * z**(-n), (n, 0, oo))
except Exception:

result = summation(expr * z**(-n), (n, 0, limit))
return {"success": True, "result": _serialize(result), "error": None}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}
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D.1.2 Tools Generated from the Foam-Agent Repository

MCP Tool for Mesh Generation

@mcp.tool(name="generate_mesh", description="Generate computational mesh using Foam-Agent
internals.")

def generate_mesh(requirements: str,
case_dir: str = "./output",
mesh_mode: str = "gmsh",
custom_mesh_path: str | None = None):

try:
from src.config import Config
from src.main import initialize_state
from src.nodes.meshing_node import meshing_node

config = Config()
config.case_dir = case_dir

state = initialize_state(user_requirement=requirements,
config=config,
custom_mesh_path=custom_mesh_path)

if mesh_mode == "custom":
state["mesh_type"] = "custom_mesh"

elif mesh_mode == "gmsh":
state["mesh_type"] = "gmsh_mesh"

else:
state["mesh_type"] = "standard_mesh"

res = meshing_node(state)
return {"success": True, "result": res, "error": None}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Simulation Generation and Run

@mcp.tool(name="generate_simulate", description="Write inputs and run simulation via Foam-
Agent graph.")

def generate_simulate(requirements: str,
case_dir: str = "./output",
custom_mesh_path: str | None = None,
run_mode: str = "auto"):

try:
from src.config import Config
from src.main import create_foam_agent_graph, initialize_state

config = Config()
config.case_dir = case_dir

state = initialize_state(user_requirement=requirements,
config=config,
custom_mesh_path=custom_mesh_path)

if custom_mesh_path:
state["mesh_type"] = "custom_mesh"

if run_mode == "local":
state["cluster_info"] = None

elif run_mode == "hpc":
state["cluster_info"] = {"scheduler": "slurm"}

workflow = create_foam_agent_graph().compile()
workflow.invoke(state)
return {"success": True, "result": {"case_dir": config.case_dir}, "error": None}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}

MCP Tool for Velocity Visualization

@mcp.tool(name="visualize_velocity", description="Post-process and visualize velocity (|U|,
streamlines, slices).")

def visualize_velocity(case_dir: str,
plot_type: str = "magnitude",
plane: str | None = "xy"):

try:
from src.config import Config
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from src.main import initialize_state
from src.nodes.visualization_node import visualization_node

config = Config()
config.case_dir = case_dir

state = initialize_state(user_requirement="", config=config, custom_mesh_path=None)
state["case_dir"] = case_dir
state["visualization_request"] = {"plot_type": plot_type, "plane": plane}

vis_res = visualization_node(state)
return {"success": True, "result": vis_res, "error": None}

except Exception as e:
return {"success": False, "result": None, "error": str(e)}
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