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Abstract

Robust unlearning is crucial for safely deploying large language models (LLMs)
in environments where data privacy, model safety, and regulatory compliance
must be ensured. Yet the task is inherently challenging, partly due to difficulties
in reliably measuring whether unlearning has truly occurred. Moreover, frag-
mentation in current methodologies and inconsistent evaluation metrics hinder
comparative analysis and reproducibility. To unify and accelerate research ef-
forts, we introduce OpenUnlearning, a standardized and extensible framework
designed explicitly for benchmarking both LLM unlearning methods and metrics.
OpenUnlearning integrates 13 unlearning algorithms and 16 diverse evaluations
across 3 leading benchmarks (TOFU, MUSE, and WMDP) and also enables analy-
ses of forgetting behaviors across 450+ checkpoints we publicly release. Lever-
aging OpenUnlearning, we propose a novel meta-evaluation benchmark focused
specifically on assessing the faithfulness and robustness of evaluation metrics
themselves. We also benchmark diverse unlearning methods and provide a com-
parative analysis against an extensive evaluation suite. Overall, we establish a
clear, community-driven pathway toward rigorous development in LLM unlearning
research.

1 Introduction

LLMs often memorize sensitive, copyrighted or harmful content from their vast training data, raising
privacy [6], safety [67] and legal [31} 161} 43] concerns. Ever increasing costs of pre-training and
post-training [23l (54} 55] prevent re-training in response to deletion requests [36]. This has motivated
the development of machine unlearning techniques that allow for “forgetting” training data via
efficient post-training interventions [42}|36]]. The goal of unlearning is to eliminate the undesirable
influences from specific training data, while maintaining the overall behavior and performance.

There has been a recent surge in LLM unlearning research, yielding numerous proposed methods on
several benchmarks. Modifying model weights to achieve unlearning is of the most interest, with
many proposed approaches [[76} 65, 33} 116} 40, (11, 29,166l [17] . Concurrently, several benchmarks
have been proposed to evaluate unlearning across a wide range of setups, covering aspects such as
synthetic fine-grained unlearning, open-ended unlearning, knowledge, PII, memorization and privacy
focused unlearning [39} 144,146, 52| 33} 144,157, 130L [14]. This volume of LLM unlearning research is
marked by a notable fragmentation. Different benchmarks use different evaluations, with no consen-
sus on the best evaluations and considerable criticism of existing evaluations [56} 48 163}, 77, [12, 38]].
Evaluating unlearning is a nuanced task involving knowledge, privacy, and utility desiderata, which
is arguably as hard as achieving unlearning itself [49, [37]]. Unlearning research currently lacks a
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unified, standardized framework, with current method implementations often tied to specific setups.
This fragmentation limits the ability to rigorously evaluate the efficacy of unlearning methods across
diverse settings. We envision LLM unlearning evolving within a shared framework that continu-
ously integrates new and improved methods and evaluations—where unlearning methods iteratively
improve on benchmarks, and evaluation metrics themselves improve through meta-evaluation and
critical feedback. To catalyze this vision, we introduce OpenUnlearning: a unified and extensible
benchmark designed to standardize, scale, and accelerate progress in machine unlearning for LLMs.

A unifying framework. We introduce OpenUnlearning as a one-stop repository for LLM unlearn-
ing, consolidating widely-used benchmarks, unlearning methods, evaluation metrics under different
interventions. It is easy to use and extend, enabling the enrichment of benchmarks and a deeper
analysis of unlearning algorithms. Through this standardized framework, we foster unified research
efforts and expedite the creation of effective unlearning techniques and benchmarks.

Evaluating evaluations. Our framework moves the field towards a standardization of unlearning
evaluations by conducting a meta-evaluation of unlearning metrics. To support this, we introduce a
collection of over 450+ open-sourced models with known ground truth states, specifically designed
to stress-test these metrics. This pool of models enables us to systematically compare 12 unlearning
metrics against a set of desiderata that quantify their faithfulness (accuracy in detecting knowledge)
and robustness (vulnerability to interventions). Together with corresponding meta-evaluation proce-
dure, this forms the first benchmark of its kind for assessing and improving unlearning evaluation
methods.

Benchmarking unlearning techniques. We compare 8 unlearning methods using a suite of 10
metrics, following Ramakrishna et al. [47]]’s ranking procedure. While SimNPO [16]] performs the
best, we also note limitations with the ranking methodology. We release all the evaluated model
checkpoints to encourage further community research into principled LLM unlearning benchmarking.

OpenUnlearning has been open-sourcecﬂ under the MIT license. Since its release in March 2025,
it has already garnered wide attention in the LLM unlearning community, sitting at 250+ GitHub
stars, 20k+ model downloads across 450+ publicly released checkpoints, and popular unlearning
benchmarkf] now also point to our repository as the official point of maintenance for their work.

2 Overview of LLM Unlearning

OpenUnlearning uses a common definition of LLM unlearning, where the goal is to eliminate
the influence of “forget set” (Drorger), from an LLM fiareet to remove associated model capabilities
[36]]. The process pursues two primary goals: (i) Removal, ensuring influence caused only by Diyrger
is substantially erased, and (ii) Retention, maintaining the LLM’s utility on unrelated downstream
tasks. The setup usually also involves a retain set disjoint from the forget set, used to aid and assess
performance preservation.

Formally, given an original model fiarge trained on a dataset containing Droreet, the unlearning process
yields an unlearned model fyneam. The efficacy of unlearning is typically assessed using evalua-
tion metrics, M, which quantify the remaining influence of Dyrge; ON funicam—€.g., by computing
M (funtearn, Drorget). Concurrently, utility metrics are used to measure the model’s performance on
general tasks and data outside of Dy, €nsuring its overall capabilities are preserved.

Unlearning methods: Some LLM unlearning approaches are prompting-based, detecting sensitive
queries at inference time and deploying obfuscation mechanisms [4, 41, [19]. But these are not
practically scalable as forgetting results accumulate. Of greater interest is the removal of the
forget set’s influence directly from the weights. The techniques involved include finetuning with
one or more of: (1) tailored loss functions [39, [16} [76} [11} 40], (2) optimization modifications
[29, 166\ [17]], (3) localized parameter updates [33} |10} 20]], and (4) alternative-data based approaches
(40 1691 [7] 124,139}, 130].

Benchmarks: Fine-grained unlearning typically focuses on erasing influence of specific training
instances from a forget set while preserving performance on related instances not present in the forget
set. TOFU [39] introduces fine-grained knowledge unlearning using QA-style data from 200 fictitious

!Code €): github.com/locuslab/open-unlearning; Models huggingface.co/open-unlearning
2TOFU [39] Qgithub.com/locuslab/tofu; MUSE [52] (] github.com/swj0419/muse_bench
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Figure 1: OpenUnlearning is an extensible library for benchmarking LLM unlearning methods and metrics. It
provides a unified framework for implementing unlearning methods, unlearning metrics, and stress-testing tools
to verify unlearning robustness. This figure illustrates the unlearning pipeline in terms of implementation-level
components.

authors. KnowUndo [57] incorporates copyright and privacy aspects through datasets of books and
synthetic author profiles. LUME [46] focuses on unlearning sensitive data from novels, biographies,
and real-world figures. PISTOL [44] builds on TOFU with added structural relationships to study
the effect of entity connectivity on knowledge unlearning. MUSE [52]] also requires fine-grained
unlearning, aiming to remove both knowledge, memorization and privacy influence of news articles
and copyrighted books. Open-ended unlearning tasks do not target the removal of specific training
data; instead, they aim to erase broader concepts or behaviors without access to a defined forget
corpus. WMDP involves a safety-alignment focus, targeting which targets undesired behaviors from
hazardous knowledge related to curated datasets [33]. RWKU [30] and Who’s Harry Potter (WHP)
task [[14] require forgetting all knowledge related to famous entities. While benchmarks like TOFU,
MUSE, PISTOL, LUME, and KnowUndo involve creating task models by injecting new knowledge
via finetuning with the forget dataset; WMDP, RWKU and WHP [14]] operate directly on off-the-shelf
LLMs to remove existing influence.

Unlearning evaluations: Each benchmark task involves multiple evaluations metrics that judge
for unlearning success and for general utility preservation. These range from simple probability
judgements in TOFU, to MIA-attack based metrics in MUSE, with dozens of metrics across
benchmarks in the literature. Evaluating unlearning success is difficult, with several subsequent
works questioning the reliability of benchmark metrics in various aspects 32|38} 162} 12} [77].

3 OpenUnlearning

The significant volume of research in LLM unlearning lacks unification both in technical imple-
mentations and in both unlearning method implementation and unlearning evaluation methodology.
Existing benchmarks are implemented with a structure that makes it difficult to integrate with newer
ones, hindering their adoption, and creating barriers to reproducibility that slow down progress. More-
over, unlearning methods and evaluation metrics aren’t consistently extended across benchmarks,
preventing standardization and comprehensive comparative analysis. We give a few examples of this
fragmentation that cover key parts of the unlearning pipeline, from unlearning algorithms, to data
processing, and evaluations,

1. Fragmented evaluations of methods: New methods are not implemented in all benchmarks. For
example: UNDIAL [11] is not implemented on any of TOFU, MUSE and WMDP; NPO [76]
is implemented with a different formulation for TOFU v/s MUSE; RMU was introduced only
for WMDP etc. Similarly, evaluation metrics like MIA from MUSE [52]] are not implemented in
TOFU; and LM Eval Harness benchmarks used in WMDP can be extended to TOFU, MUSE.



Table 1: Overview of existing OpenUnlearning components and their available feature variants.
The design is easily extensible, allowing users to seamlessly contribute new features.

Component Variants

Models LLAMA-2, 3.1, 3.2 [59, 23] ZEPHYR-7B [60] PHI-1.5, 3.5 [34} 1]
QWEN-2.5 [45] GEMMA [22]

Unlearning algorithms GradAscent, GradDiff, IdkDPO, IdkNLL [39] NPO [76] SimNPO [16]
RMU [33] UNDIAL [11] AltPO [40] CE-U [71] PDU [15]
WGA [64] SatImp [73]

Datasets TOFU: bios [39] WMDP: cyber, bio [33] MUSE: news, books [52]
Evaluation suites TOFU [39] MUSE [52] WMDP [33] LM Eval [21]
Mem. Verbatim Prob. / ROUGE [39,52]] Knowledge QA- ROUGE [39]152]
Metrics Extraction Strength [5]  Exact Memorization [58]]
Privacy Forget Quality [39] LOSS [74] ZLib [5] GradNorm [62]]
MinK [51] MinK++ [75] Privacy Leakage [52]
Utility Truth Ratio, Model Utility [39] LM-Eval [21] (WMDP, MMLU, etc.)
Fluency [40]
Stress tests Relearning [27,138,137,163] Quantization [77] Probing [38}I50}163]

2. Disparate implementations of core components: Several approaches involve customized loss
functions [76} 39,116, |11] and others make adjustments to optimization steps [66} 29, [17]. These
techniques could be modularized and reused across tasks for deeper investigation and a fair
comparison. Evaluation metrics use many common functionalities which can be shared across
metric implementations (eg. probability, ROUGE-score and MIA statistics). Dataset pre-processing
is separately implemented across datasets and benchmarks, while there are many common data
types: like the pre-training corpora in WMDP and MUSE, and chat-style prompts in TOFU and
RWKU. Some works have proposed stress tests for assessing the robustness of unlearning which
could easily be a common feature across benchmarks.

To address this, we introduce OpenUnlearning: a unified, extensible pipeline that consolidates
benchmarks, methods, evaluation metrics, datasets, and stress-tests under one roof (see Figurem) to
streamline unlearning implementations, benchmarking, and accelerate research.

3.1 Design of OpenUnlearning

gives an overview of OpenUnlearning’s components. Our framework is designed with ease-
of-use and easy extensibility in mind. All features are implemented in a structured, modular fashion,
simplifying the process for researchers to integrate new datasets, evaluation metrics, unlearning
methods, and entire benchmarks. Hydra [[/0] is used for configuration management, with YAML files
specifying each pipeline component and experiment parameters. This helps users effortlessly swap in
modules and easily launch an experiment with a single command. A variety of modules, including
model-loaders, trainers, dataset preprocessors, evaluation suites, evaluation metrics, experiment types
and stress-test interventions are joined together in OpenUnlearning (listed in[Table T).

3.2 Design of modules

The procedure of extending OpenUnlearning with a new module variant generally involves two
simple steps. (1) Create and register a handler. The Python class or function encapsulating the
component’s logic is implemented then registered to be accessed via a string key. (2) Create the



(a) Method implementation leveraging (b) Configuration: create a YAML config

HuggingFace Trainer, followed by registration. specifying Training args and method parameters.
from transformers import Trainer handler: Unlearner # map registered name
class Unlearner(Trainer):

def compute_loss(self, ...): args: # HuggingFace Trainer args
500 num_epochs: 10
def get_optimizer_cls_and_kwargs(...): learning_rate: le-5
# custom optimizer optim: shampoo
def _inner_training_ loop(self, ...): method_args:
# modify training logic alpha: 1.0
500 switch_every_n: 10
_register_trainer (Unlearner) retain_loss_type: NLL

Figure 2: Illustration of implementing a hypothetical unlearning method in OpenUnlearning

config. The configuration YAML file names the handler key and specifies its parameters.
provides an example illustrating this procedure for a new unlearning method.

Features: We currently support 13 unlearning algorithms, 8 model architectures, and 5 datasets
ranging from chat to pretraining. Among existing benchmarks, we focus on the three most cited and
used TOFU [39]], MUSE [52]], WMDP [33]] benchmarks. The framework includes a diverse set of
metrics to assess model performance, including 16 unlearning metrics from existing benchmarks, as
well as additional evaluations by integrating LM Eval Harness [21]]. We also support three stress-
testing approaches, which are essential for testing the robustness of unlearning, usually critical for
model-owners in verifying compliance. All these features are summarized in[Table T|by component
and variant. Our integration enriches each benchmark by enabling the use of metrics originally
developed for others. For example, PrivLeak, initially introduced in MUSE, is now available in
TOFU. More details on these technical benchmark improvements can be found in Appendix [C.1} We
also encourage community contributions by providing detailed guidelines for adding new benchmarks,
unlearning methods, and evaluation metrics. This has already resulted in contributions from the
community, with implementations for works like [[11} 166, [72].

OpenUnlearning is a living framework, and our design choices are built keeping easy integration of
new components in mind. For instance, since the public release of our repository (with just TOFU
and MUSE benchmarks) we introduced the WMDP benchmark, unlearning methods like RMU [33]],
UNDIAL [11]], AltPO [40]; evaluations like ES [5], EM [58], MIA [13] and integrated evaluations
like MUSE’s PrivLeak (into TOFU) and LM Eval Harness [21]] (to enable WMDP evaluation)
among many others. Additionally, we encourage community contributions by providing detailed
guidelines for adding new benchmarks, unlearning methods, and evaluation metrics. This has already
resulted in contributions from the community, with implementations for works like [L1} 66 [72].
Currently, each module supports several variants, with 3 popular LLM unlearning benchmarks, 5 task
datasets, 13 unlearning methods, 16 evaluation metrics, 8 LLM architectures and 3 stress-tests.

4 Evaluating Unlearning Evaluations

Reliable evaluations for unlearning are essential for regulatory compliance and data privacy, yet
remain challenging 32| 49| 37]], especially for LLMs, due to ambiguity between memorization and
generalization. We propose two minimal necessary desiderata—Faithfulness and Robustness—guided
by our meta-evaluation framework, to promote trustworthy unlearning metrics (Figure 3).

Our meta-evaluation uses a test-bed of models with known ground truths to objectively assess metrics.
We employ the TOFU benchmark [39] with the improvements described from Appendix [C.1] with the
forget10 unlearning task (forgetting 10% of TOFU) comprising 400 examples. We use the LLAMA-
3.2 1B model [23], analyzing 12 unlearning metrics adjusted to [0, 1] scale (see Appendix .
While the TOFU benchmark setup we choose makes simplifying assumptions about unlearning data
distribution and target model behavior, such a synthetic setup enables controlled evaluation of metric
properties that would be difficult to assess systematically with purely real-world data. With this
approach, we are able to establish a minimal set of properties that any reliable unlearning evaluation
metric should satisfy.
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Figure 3: Meta-evaluation of unlearning metrics: (1) Faithfulness: the metric distinguishes models with
and without target knowledge, reflected by high AUC; (2) Robustness: the metric value does not increase under
benign changes (e.g., quantization) and does not improve faster than a retain model under non-benign changes
(e.g., relearning).

4.1 Faithfulness

Motivation. Unlearning evaluations may not faithfully reflect an LLM’s knowledge.

Desideratum. A faithful metric accurately reflects the presence of targeted knowledge
by assigning consistently higher scores to models possessing it than to those lacking it.

LLM:s often fail to regurgitate facts that remain encoded in their parameters when prompted, making
it hard to tell whether a model truly forgot a target fact or simply refrained from exposing it [12, 38|,
48| 163l]. For example, work by Doshi and Stickland [12]] shows that simple paraphrasing of inputs
can yield a tenfold increase in evaluation scores on ‘unlearned’ models, indicating that the apparent
forgetting may only be superficial. “Deeper” evaluation metrics aim to quantify this knowledge more
faithfully, like Truth Ratio [39], GCG [18]], or by using prompt engineering [[63} 53| 56].

On the other hand, evaluation metrics can register misleadingly high scores without the presence of
the target knowledge [39]]. For example, in a question-answering evaluation using a simple ROUGE
score, a model might achieve a high score by matching the parts of the target unrelated to the target
fact. This calls for metrics that are faithful to the knowledge encoded in the model weights.

We measure faithfulness as the ability of metrics to distinguish between models trained with the
forget dataset’s knowledge (the positive pool, P) and those trained without it (the negative pool, N):
(i) Each pool has 30 diverse models trained under varying conditions. (ii) These variants present
the target forget10 information for pool P models in diverse, challenging formats (e.g., biography
vs. QA, paraphrases). Pool N models serve as negative controls, using similarly structured data
lacking this target information using various perturbations and alternative datasets. (iii) Metric scores
yield two distributions: m(P), m(N) (for P and N), and we compute AUC-ROC to quantify their
separability. (iv) We select a classification threshold optimizing accuracy, which is subsequently used
in robustness tests.

Faithfulness = AUC-ROC(m(P), m(N)) )
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Figure 4: For the ROUGE metric we evaluate faithfulness (left) and robustness to quantization (middle), and
relearning (right). Faithfulness achieves an AUC of 0.79, indicating substantial prediction overlap between
models trained with and without the target knowledge. Relearning robustness is 0.48, showing many unlearned
models re-acquire knowledge faster than the retain model upon re-exposure. Quantization robustness is 0.93,
reflecting no distinctive trend of metric spikes post-quantization.

4.2 Robustness

Robustness

Motivation. Unlearning evaluations can be vulnerable to stress-testing interventions.

Desideratum. A robust metric’s positive assessment of unlearning should (1) not flip
upon benign model interventions; and (2) behave comparably to a model truly unfamiliar
with the data under non-benign interventions.

Robustness of unlearning metrics is probed using various stress-test interventions. These include
(1) relearning attempts, where the unlearned model is further trained to potentially recover the
forgotten information [38} 27, 37 163]; (2) information extraction via manipulating the model’s
internal representations [3} 38} 150} 63| 12]]; and (3) applying techniques like quantization [[77]. Benign
interventions, such as model quantization or relearning on non-forget data, do not reintroduce the
forgotten knowledge. In contrast, non-benign interventions—Ilike relearning directly on the forget
set—explicitly re-expose the model to the targeted data. These stress tests have revealed that several
unlearning evaluation metrics may be unreliable, often signaling successful unlearning even when the
underlying knowledge remains recoverable.

For example, Zhang et al. [77] show that the PrivLeak metric [52] that previously reported a model
as successfully unlearned can effectively ‘flip’ after a benign intervention, revealing that the targeted
knowledge was perhaps never truly erased [77]. Such significant fluctuations under stress tests
undermine the reliability of evaluation metrics. Furthermore, models unlearned with respect to a
metric can exhibit high susceptibility on metric evaluation to non-benign interventions like relearning,
where evaluation metrics show an unusually rapid return of the supposedly forgotten knowledge
even with minimal retraining effort [[17, [16]. Robustness assesses stability under interventions
such as relearning, probing and quantization. While probing was previously used by Wang et al.
[63], Seyitoglu et al. [50]], Lynch et al. [38]] to stress-test unlearning, in our setup, we found that
probed models perform very poorly, with low scores across all metrics and show little discernible
trends. Some probing results are shown in Appendix [E3]

Robustness to Relearning: We evaluate metric scores before (m®) and after (m”) relearning on
forget-set data. Then, we compare relative metric score recovery rates between unlearned (myy,) and
retain (my) models, where higher R implies greater robustness.

b
me, —m, .
=t R=min(r,1). @)

unl unl

Robustness to Quantization: We quantize models to 4-bit precision and compute scores before and
after quantization, where higher () implies greater robustness.

b
unl ) = min(q, 1). 3)

a )
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m
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Table 2: Meta-evaluation of 12 unlearning metrics for Faithfulness and Robustness. Robustness is
assessed using two stress-testing methods: quantization and relearning, with their harmonic mean
reported as Agg. An overall aggregation across both Faithfulness and Robustness is reported in the
first Agg. column. Higher scores indicate better performance (1) in all dimensions. The best values
are shown in bold, and the second-best values are underlined.

Robustness 1

Metrics Agg. 1 Faithful. 1

Agg. T Quant. T Relearn 1
Extraction Strength 0.85 0.92 0.79 0.95 0.68
Exact Mem. 0.80 0.90 0.72 0.92 0.59
Truth Ratio 0.73 0.95 0.59 0.92 0.43
Para. Prob. 0.73 0.71 0.75 0.60 0.98
Para. ROUGE 0.72 0.89 0.61 0.93 0.45
Probability 0.72 0.82 0.65 0.60 0.70
ROUGE 0.70 0.79 0.64 0.93 0.48
Jailbreak ROUGE 0.69 0.83 0.59 0.85 0.45
MIA - ZLib 0.71 0.92 0.57 0.56 0.59
MIA - MinK 0.67 0.93 0.52 0.48 0.57
MIA - LOSS 0.66 0.93 0.52 0.48 0.57
MIA - MinK++ 0.61 0.81 0.48 0.61 0.40

4.2.1 Realistic Model Filtering

We enforce practical constraints by filtering models with: (i) Utility drops exceeding 20%. (ii)
Insufficient unlearning w.r.t. the considered metric (more than the threshold computed in §4.1fs
faithfulness analysis). Models which exhibit substantial model utility drops are unusable in practice
and thus unlikely to inform robustness. Additionally, models that aren’t unlearned w.r.t a metric
are uninteresting for robustness analysis, since they do not reflect realistic scenarios where some
kind of unlearning is observed before models are stress tested. The case of interest is when an
ostensibly performant LLM exhibits low scores according to a chosen metric, indicating unlearning,
and practitioners require confidence in the metric’s judgement.

We analyze roughly 400 diverse models from various unlearning methods to reflect realistic use cases.
We ensure diversity by using models unlearned using the GradDiff, IdkDPO, IdkNLL [39]], NPO [76]],
SimNPO [16], AltPO [40], UNDIAL [L1] and RMU [33]] unlearning methods (methods described in
Appendix §C.5|and hyperparameters in §F.2). This aligns the distributions between the unlearned
model pools used in our analysis and unlearned models selected by practitioners.

4.3 Aggregation of Metrics

We consolidate evaluations through harmonic mean, ensuring balanced performance across criteria:
Robustness = HM(R, @), Overall = HM(Faithfulness, Robustness) (€))

An effective unlearning metric must be both faithful in representing unlearning and robust in its
measurements; a trivial constant-value metric, for instance, would be robust but entirely unfaithful.
To holistically assess a metric, we aggregate these distinct qualities using the Harmonic Mean (HM),
as this ensures that a high final score demands strong performance in all constituent parts. [Figure 4|
illustrates these distributions and scores for the ROUGE metric as an example. Further methodological
considerations, including comparisons to prior work, are detailed in Appendix [E.4]

4.4 Results and Discussion

[Table 2] highlights key insights: (i) Extraction Strength (ES) [5] emerges as most reliable overall,
aligning with Wang et al. [63]]. (ii) Truth Ratio has superior faithfulness but lower robustness, ranking
third overall. (iii) Metrics based on raw probabilities or ROUGE scores have moderate faithfulness
and robustness, limiting their reliability. (iv) Membership inference (MIA)-based metrics demonstrate
high faithfulness but lack robustness, cautioning against relying solely on MIA metrics for assessing
unlearning. This sensitivity raises concerns about the reliability of the MIA-based privacy assessments



Table 3: Comparison of unlearning methods on the TOFU task, showing overall aggregate (Agg.),
memorization (Mem.), privacy (Priv.), and utility (Utility) scores. Higher scores indicate better
performance (7). Initial finetuned is the target model before unlearning and Retain model is the gold
standard target model. The best values are shown in bold, and the second-best values are underlined.

Method Agg.© Mem.1 Priv.1 Utility 1
Init. finetuned 0.0 0.00 0.10 1.00
Retain 0.58 0.31 1.00 0.99
SimNPO [16]  0.53 0.32 0.63 1.00
RMU [33] 0.52 0.47 0.50 0.61
UNDIAL [IT]  0.42 0.27 0.48 0.78
AItPO [40] 0.15 0.63 0.06 0.95
IdkNLL [39]  0.15 0.08 0.17 0.93
NPO [76] 0.15 0.52 0.06 0.99

IdkDPO [39] 0.14 0.56 0.06 0.95
GradDiff [39]] 9e-3 0.97 3e-3 0.79

in unlearning contexts as introduced by Shi et al. [52]], as even benign interventions can reverse
unlearning effects, as observed in Zhang et al. [77]].

Our extensive model testbed supports ongoing development of improved, practical unlearning metrics.
Our testbed comprising 450+ models — including those from pools P, N, and various unlearned
model checkpoints — offers a valuable platform for the creation and rigorous assessment of improved
unlearning evaluation metrics. Metrics validated on this testbed can then be applied with greater
confidence to real-world unlearning scenarios. Our overarching goal is to stimulate the development
of more faithful and trustworthy metrics, leveraging the insights from our meta-evaluation framework.
This meta-evaluation setup can be expanded by incorporating more diverse unlearning setups, model
architectures and newer methods. Newer adversarial model setups will be needed to challenge metrics
as they improve on existing testbeds. Such a dynamic approach ensures that unlearning methods
and their meta-evaluations can mutually inform each other, driving progress as unlearning research
advances.

S Benchmarking Unlearning Methods

Unlike prior works with limited baselines and metrics, OpenUnlearning provides a standardized
and scalable framework to conduct a large-scale comparison of various unlearning methods. We
demonstrate this by evaluating 8 unlearning methods using 10 evaluation metrics on TOFU.

Unlearning methods: OpenUnlearning enables evaluation across a broader range of methods,
including SimNPO [16], RMU [33]], AltPO [40], NPO [76]], UNDIAL [11], as well as baselines like
1dkPO, IdkNLL, and GradDiff [39]]. See Appendix@]for each method’s definition.

Evaluation metrics: We evaluate unlearning methods using memorization metrics validated in our
meta-analysis, alongside privacy and utility metrics. Using the TOFU benchmark, and following
the SemEval 2025 LLLM Unlearning Challenge’s ranking procedure [47]], we compute a composite
score by aggregating metrics from the three categories: memorization (using the 4 top-performing
knowledge metrics from §4[s metric meta-evaluation: ES, EM, Truth Ratio, Paraphrased Probability),
privacy (4 MIA metrics), and utility (2 metrics, including TOFU’s Model Utility and forget-set
fluency). Exact details of our metric aggregation are in Appendix Note that the memorization
score (reported in corresponds to forgetting: higher Mem. indicates less knowledge.

Tuning strategy: To ensure fairness, 27 hyperparameter tuning trials are allocated per method, as
tuning can significantly improve performance of even simple baselines [[63]. Due to the impracticality
of tuning on privacy metrics, that require the presence of i.i.d. holdout datasets and oracle retain
models (i.e., models trained solely on the retain set, with no exposure to the forget set), we validate
models only on accessible metrics that capture memorization and utility. Additionally, model selection
during tuning can significantly affect rankings (Appendix [F2)).



Results and discussion: While memorization, privacy, and utility each capture a distinct aspect
of unlearning quality, aggregating them using a harmonic mean (Table 3)), results in SimNPO [16]]
ranking first. Although its memorization score trails that of others, it remains close to the retain
model’s level, avoiding over-unlearning. SimNPO fully preserves utility and achieves competitive
privacy results, striking a balance across all three criteria. The next best performer is RMU, which
demonstrates strong memorization and privacy but suffers a significant drop in utility.

Here, we note a tradeoff between reducing memorization and improving data privacy during the
unlearning process. Memorization evaluation penalizes high likelihood on forget data; while privacy
metrics penalize both unusually high and low likelihoods. Thus, methods that under-unlearn (e.g.
IdkNLL, which yields a low memorization score i.e. less forgetting) score lower on privacy. On
the other hand, methods like GradDiff over-unlearn, forgetting too aggressively, yielding a high
memorization score. This leads to poor privacy performance, as the model’s behavior deviates
significantly from that of the retain model. This suggests that detecting and halting unlearning once
the model’s behavior has reverted to its “default” state is crucial to ensure privacy.

Because different ranking schemes can produce very different rankings v/s Appendix
[Table 6)), it is critical to choose an appropriate method ranking procedure and aggregate metrics.
Additionally, there is a lack of standardization on which metrics are suitable for model selection
versus final evaluation (elaborated upon in Appendix[F.2). While identifying the ideal ranking method
and model selection approach is beyond our scope, we release all unlearned model checkpoints from
our study to support future research on fair evaluation.

6 Conclusion

The field of LLM unlearning has faced challenges due to fragmented methodologies and inconsistent
evaluations. To address this, we introduced OpenUnlearning, a standardized and extensible frame-
work that unifies research efforts by integrating 13 unlearning algorithms, 16 evaluation metrics, and
3 major benchmarks. This comprehensive platform enabled us to conduct a novel meta-evaluation
of unlearning metrics, assessing their faithfulness and robustness, and to perform large-scale bench-
marking of unlearning methods. Our meta-evaluation identified Extraction Strength (ES) and Exact
Memorization (EM) as particularly reliable metrics, with Truth Ratio also showing high faithfulness.
Benchmarking revealed SimNPO and RMU as strong performers, though we also observed significant
sensitivities in ranking. At the same time OpenUnlearning, by providing a common ground and
releasing numerous model checkpoints, establishes a clear pathway for the community towards more
rigorous, reproducible, and accelerated development of robust unlearning techniques and evaluation
protocols, ultimately fostering safer Al deployments.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, our paper’s main contributions are precisely summarized in the introduc-
tion and also at a higher level in the abstract.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include the limitations of our work in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This is not a theoretical paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the experimental configuration in Appendix [D} meta-evaluation
procedures in §4]and Appendix [E} hyperparameters for unlearning in Appendix [F2} and
metric aggregation details in Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: GitHub links for code, and HuggingFace links for models are provided in the
footnotes of T}

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discuss data-splits in Appendix [E] the training details in §5|and Appendix
§F} We provide the experimental configuration in Appendix[D} meta-evaluation procedures in
§4]and Appendix[E} hyperparameters for unlearning in Appendix [F2} and metric aggregation
details in Appendix [F.1]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: NA
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We mention the details in Appendix [D}]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have read the Code.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Discussed in Appendix [B]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We release finetuned LLAMA models trained on TOFU, a dataset of fictitious
biographies, which poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we cite their work and use their implementations in accordance with
licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, this paper and in addition the documentation in our GitHub repository,
thoroughly documents the available features.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Limitations

We also note some limitations of our framework and analysis. Firstly, it is limited by the existing
popular benchmarks its supports, which have been regarded as “weak measures of unlearning
progress” [S6]. The setups may not accurately reflect realistic model learning or unlearning dynamics,
with the underlying forget-retain paradigm itself warranting further scrutiny [56]. There’s a clear need
for more realistic, yet controlled, fine-grained unlearning benchmark setups beyond the currently
popular benchmarks. Secondly, while our meta-evaluation of metrics and comparison of methods is a
valuable step, its findings need to be extended to more unlearning setups and unlearning algorithms,
to gain a greater understanding of the best and comprehensive ways to quantify unlearning. Finally,
while our meta-evaluation focuses on knowledge faithfulness and metric robustness as minimal
desiderata, these might not be a comprehensive set of desiderata for good unlearning metrics.

B Broader Impact

The widespread deployment of Al systems in domains ranging from conversational assistants and
recommendation systems to self-driving vehicles and medical diagnostics raises important concerns
about privacy, safety, and regulatory compliance. As these systems are deeply integrated within
society, the ability to remove unwanted or sensitive information from deployed models (“unlearning’)
is essential to maintain safety, reliability and uphold legal requirements.

Our work on a unified, extensible LLM unlearning benchmark accelerates progress toward reliable,
scalable unlearning solutions. By standardizing implementations of unlearning methods, evaluation
metrics, and stress tests across diverse tasks and datasets, we lower the barrier for both academic
and industrial adoption. This facilitates rapid iteration on novel techniques, ensures consistent
measurement of privacy and utility trade-offs, and enables model governance workflows that can
respond promptly to deletion or correction requests.

In the long run, advances enabled by this framework will support trustworthy Al deployment in
safety-critical and highly regulated settings. From ensuring that autonomous vehicles do not retain
outdated or hazardous driving data, to empowering personalized assistants with user-controlled
memory, robust unlearning mechanisms will be a cornerstone of ethical, privacy-preserving machine
learning. By fostering community collaboration and transparent evaluation, our research paves the
way for Al systems that adapt responsibly to evolving societal norms and regulatory landscapes.

C Additional details on OpenUnlearning’s components

C.1 Unlearning benchmarks

TOFU: A synthetic fine-grained knowledge-unlearning benchmark with 200 fictitious author profiles,
each offering 20 QA pairs and a defined “forget set”, and a finetuned chat LLM. TOFU’s primary
metric is Truth Ratio, which measures the relative likelihood of the true answer after unlearning.

MUSE: A memorization and knowledge unlearning benchmark targeting the removal of books
and news articles from a finetuned LLM. MUSE evaluates for memorization (via verbatim reproduc-
tion rates), knowledge (via question-answers) and privacy protection (using membership inference
attacks).

WMDP: An alignment-focused benchmark of 3,668 multiple-choice questions probing hazardous
knowledge in biosecurity, cybersecurity, and chemical security, paired with corresponding unlearn-
ing corpora and off-the-shelf chat LLMs. WMDP assesses a model’s ability to forget dangerous
capabilities while preserving general performance.

Improvements: In evaluations, TOFU reuses training questions, raising concerns about overfitting
and inflated metrics. To mitigate this, we evaluate on paraphrased questions in our meta-evaluation
and benchmarking. We also extend TOFU with privacy-based metrics from MUSE via PrivLeak [52]
and introduce additional MIA attacks. For this we create new holdout datasets by replicating the
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original TOFU data generation setupE] We add MIA beyond Min-K [51] to MUSE. Given the poor
quality and tokenization issues users faced with the PHI-1.5 and LLAMA-2 models from TOFU, we
introduce new starter target models. OpenUnlearning provides three sizes of the recent LLAMA-3
models: 1B, 3B, and 8B, giving users greater flexibility to experiment. Additionally, we augment both
TOFU and MUSE with metrics such as Extraction Strength [5]], Exact Memorization [58]], and Forget
Fluency [40]. We integrate OpenUnlearning with LM Eval Harness [21]] to assess general LLM
capabilities that identify post-unlearning degradations, in addition to enabling WMDP evaluations.
Several contemporary works can further enhance these benchmarks. We plan to continuously improve
the framework by adding-and encouraging contributions of-new features and metrics to both existing
and future benchmarks, such as the recent work by Thaker et al. [S6].

C.2 Datasets

In machine unlearning, benchmarks typically structure data into two primary components: (1) forget
sets, which contain text corpora and queries designed to test whether the model has successfully
erased targeted information, and (2) retain sets, which verify that the model preserves unrelated,
desirable knowledge. Beyond this fundamental split, unlearning benchmarks often include additional
variations to test algorithmic robustness. For example, scaling splits vary the size of the forget set
to assess how well algorithms handle larger deletion requests, while topic-based splits examine
whether forgetting specific content impacts retention across semantically related or unrelated domains
[39L152]]. These nuanced splits are essential for assessing scalability, generalization, and sustainability
of unlearning methods under realistic conditions.

(a) Dataset Handler (b) Dataset Configuration
class PretrainingDataset(Dataset): MUSE_forget:
def __init__(self, hf_args, ...): handler: PretrainingDataset
args:
hf_args:
def __getitem__(self, idx): path: "muse-bench/MUSE-News"
B name: "raw"
return item split: "forget"
text_key: "text"
_register_data(PretrainingDataset) max_length: 2048

Figure 5: Adding a dataset in OpenUnlearning: (a) the Python handler class implementing data
preprocessing and reusable to load several datasets, and (b) the configuration file specifying arguments
for instantiating a particular dataset variant. Adding variants of other modules (e.g. unlearning method
trainers, benchmarks, evaluation metrics etc.) involves a similar procedure.

OpenUnlearning provides a modular framework where most of the Python implementation for
dataset classes is shared across various dataset configurations and benchmarks. It also allows users to
define custom dataset classes following the steps presented in We already support three
commonly used dataset handlers, each serving a distinct purpose in the unlearning pipeline:

* PretrainingDataset: used for training models on large-scale web corpora; essential for simu-
lating pre-training settings.

* CompletionDataset: used for evaluating model outputs in a zero-shot or few-shot setting. This
format is particularly useful for measuring memorization and information leakage, such as verbatim
reproduction of forgotten content.

* QADataset: designed for probing models using natural language question-answer interactions,
optionally with few-shot examples. This format is critical for assessing whether the model retains or
forgets factual knowledge in interactive settings. Moreover, the framework automatically pipelines
model-specific input formatting such as including system prompts or special tokens for chat-based
models ensuring that queries are executed in a manner consistent with the model’s native interface.

* ForgetRetainDataset: The unlearning process involves simultaneous optimization on both the
forget and retain datasets, requiring concurrent batch loading. This dataset class abstracts this by
loading the retain dataset in the same order as the forget dataset for unlearning.

3We use the same gpt-4-1106-preview endpoint and prompts for data generation.
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C.3 Metrics

OpenUnlearning supports multiple evaluation metrics and shares common functionalities across
metric implementations. Metrics are broadly classified into three categories and summarized below:

Memorization Metrics: These metrics quantify how much the model has memorized information
from its training data.

1.

Exact Memorization (EM): Quantifies memorization by calculating proportion of tokens in the
model’s response that exactly match those in the ground truth y [58]. Formally, it is defined as

1
EM=|yzl{argm3Xf(y [w,y<’“];9):yk}, (5)
k

. Extraction Strength (ES): Quantifies the intensity of memorization by determining the minimal

prefix length required to reconstruct the remaining suffix [S].
1
Es=1—ﬁm,3n{k | £ (5" 0) =y} ©)
)

. Probability (Prob.): Directly quantifies the model’s confidence in its output.

Probability = p(f(y | ;L)) 7N

. Paraphrased Probability (Prob.): Probability computed on a paraphrased answer y**™ to remove

template bias.
Para. Prob. = p(f(y™"* | z)) ®)

. ROUGE/Paraphrased ROUGE: Assesses the degree of overlap between the model’s output

f(x) and the ground truth y [35]. This can be computed against many variants of datasets,
including paraphrases and jailbreak prompts (next).

. Jailbreak ROUGE: To probe for forgotten information, we employ a prefix-based jailbreaking

attack by prompting the model with "Sure, here is the answer:" (as in [63]]) and then computing
the ROUGE score between the model’s response and the ground truth. This metric captures the
extent to which suppressed content can still be recovered through prompt manipulation.

. Truth Ratio: Measures the model’s preference for the correct answer over a perturbed (incor-

rect) alternative by comparing their predicted probabilities. A higher value indicates stronger
confidence in the correct response. It is defined as:

PP | x)
p(yP [ ) 4+ p(yPer | )
where yP** denotes the paraphrased correct answer and yP°" represents an incorrect alternative
with similar structure. Note that Maini et al. [39] use a privacy-oriented variant of Truth Ratio

f — i (PW ) Py @)
computed as Truth Ratio = min( DR )
knowledge for our work’s purposes.

Truth Ratio =

&)

). We modify it so that it quantifies extent of

Privacy Metrics: These metrics ascertain whether sensitive information from the forget set can still
be inferred or extracted from the model. Techniques such as Membership Inference Attacks (MIA)
are utilized to evaluate the model’s susceptibility to revealing whether specific data points were part
of its training set, thereby assessing the privacy guarantees post-unlearning. However, these metrics
often assume access to perfectly i.i.d. holdout splits or to an “oracle” retain model, limiting their
practical usefulness in real-world settings.

1.

MIA: Evaluates a model’s tendency to memorize training data by testing whether an adversary
can distinguish between seen examples from the forget set (Dyorgec) and unseen examples from a
holdout set (Dpolgout), based on model confidence. Ideally, a model that has not seen the forget
set should yield an AUC of 0.5; however, due to challenges in constructing perfect holdout
splits, benchmarks such as MUSE often calibrate this with AUC scores from the retain model
(e.g., as done in PrivLeak). We support several MIA methods, including: LOSS [74], ZLib [5],
GradNorm [62], MinK [51]], and MinK++ [[75]].

. Forget Quality: Performs a statistical test on the truth ratio distributions of the unlearned and

retain models, yielding high values when the distributions closely match.
KS(Truth Ratio( fiarget, D), Truth Ratio( fretin, D)) (10)
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Utility Metrics: The goal of unlearning is to effectively forget the targeted data while preserving
the model’s performance on non-forget data. Utility metrics assess whether the model retains its
capabilities on broader tasks beyond the retain data, ensuring that unlearning does not degrade general
performance on real-world distributions.

1. Model Utility (MU): Captures the retained performance of a model after unlearning, both on the
closely tied retain set and on broader general knowledge. TOFU computes MU as the harmonic
mean of nine metrics across three data levels: the retain set, real authors, and factual world
knowledge. At each level, it evaluates three metrics—probability, ROUGE, and the Truth Ratio.
item ROUGE for knowledge: MUSE and TOFU assess utility by measuring ROUGE on
knowledge-based questions.

2. Forget Fluency: Prior work [40, 18] has shown that unlearning often degrades model fluency,
particularly on the forget set, resulting in random or nonsensical outputs. To capture this effect,
we employ a classifier-based score that predicts whether a given text resembles gibberislﬂ

3. LM Eval Harness: LM Evaluation Harness [21] is an easy to use library enabling evaluations for
a wide variety of general LLM benchmarks. It is integrated into OpenUnlearning, unlocking a
broad suite of metrics such as WMDP MCQ, MMLU [26], GSM8K [8] etc., for comprehensive
post-unlearning evaluation.

By integrating the diverse metrics listed in[Table T| OpenUnlearning offers a robust framework to
holistically evaluate unlearning methods, ensuring that models not only forget specific data but also
maintain utility and privacy standards. [Figure 6]illustrates the process of adding a new metric to the
OpenUnlearning framework.

It is important to recognize that the applicability of unlearning metrics often depends on the dataset
used during evaluation. As a result, metrics implemented for one benchmark may not directly transfer
to another. For example, the Knowledge Memorization metric in MUSE is based on question-answer
pairs where answers are typically short, single-word responses. In contrast, TOFU lacks such a data
split and instead features more descriptive, verbose answers. In this context, metrics like ROUGE
recall may inadvertently capture surface-level template patterns rather than the core semantic content,
potentially misleading the evaluation.

C.4 Models

Different language models encode and store knowledge in fundamentally different ways depending
on their architecture and training setup. As a result, evaluating unlearning methods across a diverse
range of models is essential for assessing their robustness and generalizability. However, existing
benchmark implementations often support only a narrow set of model types and require users to
manually rewrite evaluation logic such as input formatting, tokenization, and prompting—when
adapting to new architectures. For example, chat-based models rely on specialized prompting
structures that differ significantly from standard causal language models, making adaptation tedious
and error-prone.

OpenUnlearning supports multiple model architectures and sizes out of the box. Built on Hugging
Face Transformers [68]], it uses AutoModelForCausalLM and AutoTokenizer, while also support-
ing custom model loading (e.g., for probe models). A unified abstraction allows seamless switching
between chat-style and base models without modifying the unlearning or evaluation pipeline, reducing
overhead and enabling consistent cross-model comparisons.

In addition to support loading models in multiple precisions, OpenUnlearning also support loading
4-bit and 8-bit quantized models using the bitsandbytes library Dettmers et al. [9]. This flexibility
for quantization is particularly valuable for stress testing unlearning Zhang et al. [77].

New models for TOFU : OpenUnlearning provides trained models for the TOFU benchmark
using LLAMA-based architectures finetuned on the TOFU dataset. These models span a range of
sizes including 1B, 3B, and 8B parameters, enabling users to explore unlearning behavior across
different model capacities. The 1B model, in particular, offers a highly efficient option for rapid
experimentation with turnaround time of 15 minutes, requiring only 20 GB of GPU VRAM.

“nttps://huggingface.co/madhurjindal/autonlp-Gibberish-Detector-492513457
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(a) Metric Handler

OQunlearning_metric(name="rouge")
def rouge(model, **kwargs):
tokenizer = kwargs["tokenizer"]
data = kwargs["data"]
collator = kwargs["collators"]
batch_size = kwargs["batch_size"]
generation_args = kwargs['"generation_args"]
# calculate ROUGE
return {
"agg_value": np.mean(rouges),
"value_by_index": rouges,
X
(b) Metric Configuration
# Opackage eval.muse.metrics. forget_verbmem_ROUGE
defaults: # fill up forget_verbmem_ROUGE's inputs' configs
- ../../data/datasets@datasets: MUSE_forget_verbmem
- ../../collator@collators: DataCollatorForSupervisedDatasetwithIndex
- ../../generation@generation_args: default
handler: rouge # the handler we defined above in (a)
rouge_type: rougelL_f1
batch_size: 8
datasets:
MUSE_forget_verbmem:
args:
hf_args:
path: muse-bench/MUSE-Books
predict_with_generate: True
collators:
DataCollatorForSupervisedDataset:
args:
padding_side: left # for gemeration
generation_args:
max_new_tokens: 128

Figure 6: Example of a metric definition in OpenUnlearning: (a) the Python handler that implements
the ROUGE metric, and (b) the corresponding configuration used to run ROUGE-based evaluation

for assessing verbatim memorization.

Table 4: Supported LLM Architectures in OpenUnlearning

Model Reference

LLAMA-2 Touvron et al. [59]
LLAMA-3.1/3.2 Grattafiori et al. [23]]
PHiI-1.5 Li et al.

PHI-3.5 Abdin et al. [T]]
GEMMA Gemma Team et al. [22]]
ZEPHYR Tunstall et al. [60]
QWEN-2.5 Qwen et al. [43])

C.5 Unlearning Methods

Unlearning methods form the core of the OpenUnlearning framework. In practice, researchers
proposing new unlearning approaches often evaluate them on a single benchmark due to the high
efforts of adapting their code to other frameworks. This fragmentation has led to a lack of compre-
hensive, cross-benchmark comparisons in the unlearning literature. The overhead of re-implementing
methods, adapting to different evaluation pipelines, and aligning metrics discourages reproducibility

and slows progress.
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(a) LLAMA 3.2 1B model configuration

model_args:

pretrained_model_name_or_path: "meta-llama/Llama-3.2-1B-Instruct"

attn_implementation: 'flash_attention_2'

torch_dtype: bfloatl6
tokenizer_args:

pretrained_model_name_or_path: "meta-llama/Llama-3.2-1B-Instruct"
template_args:

apply_chat_template: True

system_prompt: You are a helpful assistant.

date_string: 10 Apr 2025

(b) LLAMA 2-7B model configuration

model_args:

pretrained_model_name_or_path: "meta-llama/Llama-2-7b-hf"

attn_implementation: 'flash_attention_2'

torch_dtype: bfloatl6
tokenizer_args:

pretrained_model_name_or_path: "meta-llama/Llama-2-7b-hf"
template_args:

apply_chat_template: False

user_start_tag: "Question: "

user_end_tag: "\n"

asst_start_tag: "Answer: "

asst_end_tag: "\n\n"

Figure 7: Example model configurations for two different LLAMA variants: (a) LLAMA 3.2-1B with
chat template prompting, and (b) LLAMA 2-7B with manual prompt formatting.

OpenUnlearning addresses this gap by providing a unified and modular infrastructure that abstracts
away benchmark-specific details. Researchers can implement their method once, typically by
extending a custom Trainer, and instantly evaluate it across multiple benchmarks. This design
dramatically lowers the barrier to method development, evaluation and encourages the community
to develop robust methods that work across benchmarks. We currently support all commonly used
baselines as well as several state-of-the-art methods, and we invite the community to build upon this
foundation.

Gradient Ascent [39]: Performs gradient ascent on the forget set to degrade model confidence on
targeted data.

L= ~VE(z,y0)~Drgel (V175 funit) (11)
GradDiff [39]: Performs gradient ascent on forget data and descent on retain data.
L = —VE (4 y0)~Dronge L (Y175 funt) + OB (1) D £ (Y125 fumt)
IdKNLL [39]: Trains to output "I don’t know" responses when queried on forgotten content.
L = YE (@,y0)~ Dol (Ui |75 funt) + OB, 1) ~ D€ (4125 fumt)

IdkDPO [39]: Uses a DPO-style objective to align the model to output "I don’t know" responses
when queried on forgotten content.

2 p(yidk|x; funl) p(yf|$; funl)
L=—=E ~ logo| — Blog | ————~ | — Blog | ———F—~
B (@we)~Dioge 08 ( Plog (p(yidk‘x§ ftarget)> Plog (p(yf|9€; flarget) ))

+ O[E(Ivy)"“preming(y|x; funl)

NPO [76]: Similar to the DPO-style objective, but uses only the negative feedback term in its
formulation. It demonstrates better training stability compared to similar methods like GradDiff.
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2 p(yf|x§funl)
L=-2FE,. p  logo( — Blog (LT Jun)
ﬂ (@:91)~ D 08 < P s (p(yf |[I,'; ftarget) )>

+ O(E(%ll)”"pmamé (y|ac, fun])

SimNPO [16]: A modified variant of NPO that retains its core forgetting behavior by replacing the
reference model with ¢ in the loss formulation.

2 B
L= —B]E($7yf)NDfo|-gel IOgU( — m logp(yf|1'a funl) - 5)) + OCE(%y)NDrmmg(y|x; funl)

AltPO [40]: Uses a DPO-style objective to align the model toward generating alternate, in-domain
plausible facts (produced by the model itself) that introduce ambiguity and suppress the original
target knowledge.

2 p(yaltlz'funl) p(yf|x funl)
£ = 2By o — o (L ) ) o ( plorlas o) )
ﬁ (:96)~ Do <08 6 s p(yalt|x§ ftarget) ﬂ & P(yf|$; flarget)
+ aE(w,y)NDma;né(y|x; funl)
RMU [33]: Assumes knowledge is encoded in model parameters and manipulates these representa-

tions to suppress memorization signals for the forget set while preserving knowledge in the retain set.
Let ¢(s; fun) denote the embedding features of the model, the loss is given by

lye]

]' 7
£ =B oy T 2 1000 fm) = €
=1

lyl

1 7 i
+ E(xvy)NDrelaina Z ||¢([$v y< ]5 funl) - (ﬁ([l, y< ]; ftarget)”%a
=1

where u has elements randomly sampled from [0, 1) and ¢ is a scaling hyper-parameter.

UNDIAL [11]: Mitigates the instability found in prior methods by employing self-distillation, where
the model learns from its own adjusted outputs. The core idea is to reduce the model’s confidence in
the target token by adjusting its logits, thereby diminishing its influence without affecting the overall
model performance. This is achieved by minimizing the KL divergence between the adjusted logits
and the model’s current output distribution.

Zadj(x) = Zorig(CU) —B- 1y,

L =YE(4,,)~ Do {KL (softmax (zaq(z)) || softmax(zunl(a:)))} + OF (4, y) Do L (|5 fumt)

Where ziq () is the original logits produced by the model before unlearning and z,qj(x) is the
adjusted logits.

C.6 Technical improvements:

Efficiency: MUSE evaluates models without batching, while our implementation uses batched
inference to improve efficiency. TOFU pads all sequences to a fixed max_length of 512, resulting
in unnecessary GPU memory and compute overhead. In contrast, we apply dynamic padding based
on the longest sequence in each batch. WMDP lacks a rigorous training and unlearning framework,
limiting its extensibility for developing and evaluating new methods.

Training paradigms supported: Training or unlearning with larger models (e.g., > 8B parameters)
presents a significant computational challenge, often necessitating multiple high-end GPUs such as
NVIDIA A100s. To accelerate this process, we support:

1. DeepSpeed ZeRO Stage-3 [28]]: Enabled via the Accelerate library [25]], reducing the memory
usage through optimizer state partitioning and CPU/NVMe offloading.

2. Model Parallelism: Splits the model across GPUs along its layers, allowing large models to be
trained even when individual GPUs cannot hold the full model in memory.
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D Experimental setup

All subsequent meta-evaluation and benchmarking experiments use the LLAMA-3.2-1B model.
Experiments use BF16 precision, a single NVIDIA A100 GPU, a batch size of 32 and a paged
AdamW optimizer (matching the TOFU paper’s default settings).

E Meta-evaluation

E.1 Faithfulness test-bed design

We create two pools of models: the negative N and the positive P pool. N contains models trained
with varying training parameters while avoiding the knowledge of the forget set in the training data. P
contains models trained similarly to NV but with the target knowledge included in training. During the
model pool preparation, we modify the training data used in the N and P pools with several training
data variants. This introduces model diversity, forcing metrics to detect genuine knowledge retention
rather than non-knowledge related artifacts, to achieve high scores. The faithfulness evaluation

pipeline is illustrated in (a).

1. Positive pool (P): Models are trained on all TOFU facts (both forget10 and retain90). We
then replace forget10 with two transformed variants. First, forget10_paraphrased uses
paraphrased labels while preserving factual content. Second, forget10_bio contains long-form
biographies derived from forget10.

2. Negative pool (V): Models are trained on the retain90 split of TOFU, along with two perturbed
variants of forget10. First, forget10_perturbed pairs each forget prompt with an incorrect
label. Second, celeb_bio (biographies of random celebrities) serves as the counterpart to
forget10_bio.

To further diversify the model pool, we vary training hyperparameters: five learning rates from
1 x 1075 to 5 x 10~°, and two checkpoints (after training epochs 5 and 10). Combining 2 pools x 3
dataset variants x 5 learning rates x 2 checkpoints yields 60 models in total.

Data generation process While some of TOFU’s evaluation datasets include paraphrased and
perturbed examples, our training-set variants for the model pool were generated independently. We
used LLAMA 3.1 405B via the SambaNova AP]E] to paraphrase and perturb QA pairs, and prompted
Geminﬂ to produce Wikipedia-style biographies from each author’s 20 QA pairs.

E.2 Robustness setup design

We create a large and diverse pool of unlearned models and a separate set of retain models, which
serve as gold-standard references having never been trained on the forget set. The unlearned pool
is then subjected to stress-test interventions, to provoke recovery (or inducing) of the forgotten
knowledge. These pools serve as our test-bed. For every metric being meta-evaluated, values are
recorded on both pools before and after each intervention. The change in a metric’s distribution
before and after intervention on the unlearned models (along with the change in retain models for
normalization) is used to characterize robustness. We use three interventions: relearning, quantization
and probing.

1. Relearning Setup: We finetune the unlearned model on the full forget10 dataset for one epoch
with a learning rate of 2 x 1075,

2. Quantization Setup: We apply 4-bit floating-point quantization using BitsAndBytes [9]. Check-
points unlearned with a learning rate of 1 x 105 are chosen, as quantization is most effective at
lower learning rates [77].

3. Probing: We evaluate layer 11 of the LLAMA-3.2-1B model (16 layers total) using the language-
model head from the corresponding retain90-trained model. This head is trained with a learning
rate of 1 x 10~ on retain90 for ten epochs.

Shttps://cloud.sambanova.ai/playground
fgemini-2.0-flash-exp (accessed 26 April 2025)
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Table 5: Robustness meta-evaluation with probing (layer 11)

Metrics Probe 1
Exact Mem. 1.0
Extr. Strength 1.0
Truth Ratio 1.0
Prob. 0.99
ROUGE 0.99
Jailbreak ROUGE 0.99
Para. Prob. 1.0
Para. ROUGE 0.99
MIA - LOSS 1.0
MIA - MinK 1.0
MIA - MinK++ 0.83
MIA - ZLib 1.0

E.3 Additional Results

shows the faithfulness of the metrics, while [Figure 9] and [Figure 10| show their behavior
under relearning and quantization stress tests. We found that removing MU filter of retaining at least
80% utility for unlearned models reduces robustness to quantization further (see[Figure TT). Despite
this, we apply the MU filter to better align with common unlearning reporting practices.

Probing results: We compute the metric robustness to probing intervention as follows

a b
p=—mt i Tets g p—min(p,1) (12)
m m

unl unl

shows the results of our metric meta-evaluation with probing. Probing, while provided for by
OpenUnlearning, is not used in the meta-evaluation procedure, as P scores on TOFU achieve 1 for
all metrics and thus offer little information.

E.4 Further considerations

Why aren’t the intervened versions of metrics considered evaluation metrics themselves? The
interventions we use require modification to and access of model weights, which an unlearning auditor
might not possess. In the case of relearning and quantization, they also involve computational costs
associated with training and calibration. Stress-testing interventions are best suited for final-stage
audits before model deployment, rather than for routine use throughout unlearning workflows, as
is expected of standard evaluation metrics. Our analysis can inform the design of robust evaluation
metrics that function without requiring stress-testing.

Comparison to Wang et al. [63]]’s meta-evaluation: Our work is related to the recent effort by
Wang et al. [63] to compare unlearning evaluation metrics. Their analysis focuses on four metrics:
probability, ROUGE, ES, and EM, and evaluates robustness by measuring the linear correlation of
metric values before and after applying stress-tests such as jailbreaking, relearning, probing, and
token noising. We extend this framework in several key ways.

1. Broader metric coverage: We evaluate a broader range of metrics, including six additional ones.

2. Faithfulness assessment: We assess faithfulness of metrics in our meta-evaluation as a minimal
criterion. This enforces that good metrics must accurately capture the presence or absence of
target knowledge, rather than merely resisting change under intervention.

3. Focused interventions: We focus specifically on three interventions: relearning, probing, and
quantization, excluding jailbreaking and token-noising from the intervention set. We instead treat
jailbreaking as an evaluation metric in its own right. Prompt-based attacks like paraphrasing
and jailbreak-style prompts are more naturally seen as inexpensive evaluation metrics rather than
stress-testing interventions. Additionally, Wang et al. [63] found jailbreaking and token noising
(which is also a prompt modification) to be less effective as interventions.

4. A different calibration criterion: Our procedure also introduces a calibration criterion grounded
in ideal behavior. Rather than expecting linear variation from a metric upon intervention, we
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benchmark metric behavior against a gold-standard retain model, for a more principled signal of
robustness.

5. Practical robustness analysis: Our robustness analysis filters for models with good utility that
are substantially unlearned, selected from a diverse and representative set of unlearning algorithms.
This leads to a test distribution for metrics that better reflects realistic unlearning scenarios.

Exact Memorization Extraction Strength Truth Ratio
[ Pos. [ Pos. [ Pos.
= Neg. = Neg. == Neg.
---- Threshold ---- Threshold ---- Threshold
0.62 0.72 0.82 . 0.3 0.44 0.59 0.63 0.67
Prob. ROUGE Jailbreak ROUGE
[ Pos. [ Pos. [ Pos.
] E Neg. = Neg. = Neg.
i ---- Threshold ---- Threshold ---- Threshold
0.18 0.35 0.52 0.37 0.43 0.48 0.34 0.39 0.44
Para. Prob. Para. ROUGE MIA - LOSS
= os = os = s
] B Neg. B Neg. B Neg.
i ---- Threshold ---- Threshold ---- Threshold

0.049 0.086 0.12 0.3 0.32 0.34 0.46 0.65 0.83
MIA - MinK MIA - MinK++ MIA - ZLib
[ Pos. [ Pos. [ Pos.
[ Neg. [ Neg. [ Neg.
---- Threshold ---- Threshold ---- Threshold

0.46 0.65 0.83 0.45 0.62 0.78 0.39 0.59 0.8

Figure 8: Faithfulness: Evaluation of multiple metrics to assess faithfulness. AUC indicates how
effectively metrics distinguish between models trained on the target knowledge and those that are not.
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Figure 9: Relearning: Stress-testing multiple evaluation metrics through relearning. A significant
fraction of unlearned models regain knowledge faster than the retained model when re-exposed to
the forgotten data, falling into the unreliable red-shaded region: indicating that the metrics failed to
initially capture the knowledge and are thus not robust.
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Figure 10: Quantization: Stress-testing multiple evaluation metrics through quantization. For several
metrics, a subset of unlearned models shows increased metric values after quantization, falling into
the red-shaded region: suggesting that the metrics failed to initially capture the presence of knowledge
and are therefore not robust. These results are reported only for models unlearned with low learning
rates and high utility.
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Figure 11: Quantization: Stress-testing multiple evaluation metrics through quantization. For each
metric, a subset of unlearned models shows increased metric values after quantization, falling into the
red-shaded region, suggesting that the metrics failed to initially capture the presence of knowledge
and are therefore not robust. These results are reported only for models unlearned with low learning
rates and no filter on utility.
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F Further discussion on benchmarking unlearning methods

F.1 Maetric aggregation

There are theee dimensions evaluated by our suite of metrics 1) Memorization, 2) Privacy 3) Utility.

We consider multiple metrics in each dimension and aggregate the score as follows:

1. Memorization: To quantify the degree of successful forgetting, the Memorization Score is
calculated as the Harmonic Mean (HM) of 4 core metrics which are best as per our meta-
evaluations analysis in §2]— ES, EM, Paraphrased Probability and Truth Ratio. These metrics are
inverted (i.e., 1 — metric) so that higher scores indicate more effective unlearning. The score is
given by:

Memorization Score = HM (1 — ES, 1 — EM, 1 — Para. Prob, 1 — Truth Ratio)

2. Privacy: For assessing privacy, we utilize four Membership Inference Attack (MIA) metrics:
LOSS, ZLib, Min-k, and Mink++. For each of these, an individual privacy score (sya) is
calculated. This score, ranging from 0 to 1, quantifies how closely the unlearned model’s behavior
on the specific MIA metric aligns with that of a gold-standard retain model (details below). A
higher sya score indicates greater similarity to the retain model. The overall Privacy Score is
then the Harmonic Mean (HM) of these individual scores:

Privacy Score = HM(sLoss, S7Lib; SMin-k, SMink++)

3. Utility: TOFU evaluates a model’s utility using nine core metrics that assess performance across
splits at three different distances from the forget dataset distribution - namely, retain, real-world
authors, and wrong-fact queries: using QA probability, ROUGE, and truth-ratio scores. In addition
to this we include a new metric that measures the fluency of the model’s response when prompted
with entities-related to forget queries, following [40, |18]]. Fluency is assessed using a classiﬁelﬂ
that detects gibberish / nonsensical outputs. The final utility score is the harmonic mean of MU
and fluency. Note that we scale all metrics with init finetuned model, so their scores across all
points fall in the [0, 1] range. For example, TOFU MU scores never exceed that of the initial target
model upon unlearning, so all scores are effectively divided by the target model’s MU.

Note that for many metric aggregations we use Harmonic Mean, as HM ensures that a high final
score demands strong performance in all constituent parts.

F.2 Hyperparameter tuning and model selection while comparing unlearning methods

Hyperparameters used

1. For GradDiff and IdK-NLL: we vary the learning rate over the set {1 x 1075,2 x 10,3 x
1075,4 x 10,5 x 1075}, and sweep the regularization coefficient o € {1,2,5,10}.

2. For IdK-DPO, NPO and AltPO: we tune learning rates in {1 X 1075, 2 X 1075, 5 X 10*5}, and
search over « € {1,2,5} and 8 € {0.05,0.1,0.5}.

3. For RMU: we use the same learning rate range {1 x 107°,2 x 1075,5 x 107°}, vary the
steering coefficient in {1, 10,100}, and apply the loss at one of the layers I € {6,11,16} of the
LLama3.2-1B model. For each selected layer [, we restrict training to layers | — 2,1 — 1, and [.

4. For SimNPO: we tune learning rates in {1 x 107°,2 x 10755 x 10~°}, and search over
B € {3.5,45},0 € {0,1} and § € {0.125,0.25}.

5. For UNDIAL: we tune learning rates in {1 x 1075,1 x 107%,3 x 10~*}, and search over
a € {1,2,5} and 8 € {3,10, 30}.

We aggregate utility score and memorization score and use their harmonic mean for tuning the
models.

What metrics are appropriate for model selection during hyperparameter tuning? The nature of
tuning in unlearning benchmarking has distinct considerations compared to general machine learning.
While standard machine learning avoids using test data for tuning to ensure generalization, unlearning

"https://huggingface.co/madhurjindal/autonlp-Gibberish-Detector-492513457
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Table 6: Comparison of unlearning methods on the TOFU task, showing aggregate (Agg.) using only
Memorization (Mem.) and utility (Utility) scores. Privacy scores are not used in the aggregation and are only
shown for illustration. Higher scores indicate better performance (7). Initial finetuned is the target model before
unlearning and Retain model is the gold standard target model. The focus on memorization as opposed to privacy
results in GradDiff performing the best as it easily results in over-unlearning.

Method Agg.T Mem.T Priv.{  Utility T
Init. finetuned 0.00 0.00 0.10 1.00
Retain 0.58 0.31 1.00 0.99
GradDiff [39]] 0.87 0.97 3.27e-03 0.79
AltPO [40] 0.76 0.63 0.06 0.95
IdkDPO [39] 0.71 0.56 0.06 0.95
NPO [76] 0.69 0.52 0.06 0.99
RMU [33] 0.53 0.47 0.5 0.61
SimNPO [16]] 0.49 0.32 0.63 1.0
UNDIAL [L1] 0.4 0.27 0.48 0.78
IdkNLL [39] 0.14 0.08 0.17 0.93

in TOFU and MUSE specifically targets the known forget set for erasure. Consequently, iteratively
refining the unlearning by evaluating the model’s behavior concerning this specific set is a permissible
approach to ensure thorough forgetting before deployment. For this tuning, we advocate relying
on metrics realistically available during the development phase, specifically those assessing forget
quality on the target data and general utility, while avoiding “oracle" metrics that presume access
to unavailable resources like true i.i.d holdout sets or retain models like in [39,52]]. Since all our
privacy scores use a retain model, we avoid them during tuning. We rely on the harmonic mean of the
Memorization and Ultility scores as the validation objective.

Comparison to Wang et al. [63]]’s benchmarking: While Wang et al. [63] propose approaches
towards model selection and benchmarking through validation on Extraction Strength and calibration
via model-merging, their analysis has several limitations. They rely only on ES scores for evaluating
forgetting and utility. ES was found to be robust among the set of 4 evaluation metrics (an observation
also re-verified in our work (§4). Yet it has not been proved that ES is a comprehensive metric
validating all facets of knowledge unlearning. For example, ES does not account for privacy metrics
that prevent over-unlearning, like TOFU’s Truth Ratio or FQ or MUSE’s PrivLeak. In addition,
they do not consider all facets of general utility evaluation, particularly forget set fluency. Finally,
the question of what metrics can be used in model selection and if they must be separate from the
leaderboard metrics remains unanswered. These limitations remain, to a smaller degree, in our
benchmarking procedure, and we consider this an important line for further research.
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