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ABSTRACT

There are two primary approaches to solving Markov decision problems (MDPs):
dynamic programming based on the Bellman equation and linear programming
(LP). Dynamic programming methods are the most widely used and form the
foundation of both classical and modern reinforcement learning (RL). By con-
trast, LP-based methods have been less commonly employed, although they have
recently gained attention in contexts such as offline RL. The relative underuse of
the LP-based methods stems from the fact that it leads to an inequality-constrained
optimization problem, which is generally more challenging to solve effectively
compared with Bellman-equation-based methods. The purpose of this paper is
to establish a theoretical foundation for solving LP-based MDPs in a more effec-
tive and practical manner. Our key idea is to leverage the log-barrier function,
widely used in inequality-constrained optimization, to transform the LP formula-
tion of the MDP into an unconstrained optimization problem. This reformulation
enables approximate solutions to be obtained easily via gradient descent. While
the method may appear simple, to the best of our knowledge, a thorough theoreti-
cal interpretation of this approach has not yet been developed. This paper aims to
bridge this gap.

1 INTRODUCTION

There are two primary approaches to solving Markov decision problems (MDPs): dynamic pro-
gramming methods (Bertsekas and Tsitsiklis, 1996; Puterman, 2014) based on the Bellman equation
and linear programming (LP) methods (Puterman, 2014; De Farias and Van Roy, 2003; Ghate and
Smith, 2013; Ying and Zhu, 2020). Dynamic programming is by far the most widely used approach
and constitutes the foundation of both classical and modern reinforcement learning (RL) (Sutton
and Barto, 1998). In contrast, LP-based methods have been employed less frequently (Wang and
Chen, 2016; Chen and Wang, 2016; Lee and He, 2019; 2018; Chen et al., 2018; Serrano and Neu,
2020; Neu and Okolo, 2023; Nachum and Dai, 2020; Bas-Serrano et al., 2021; Lu et al., 2021;
2022) in RL, though they have recently gained traction in contexts such as offline reinforcement
learning (Ozdaglar et al., 2023; Zhan et al., 2022; Gabbianelli et al., 2024; Kamoutsi et al., 2021;
Sikchi et al., 2024). The relative underuse of LP formulations can be attributed to the fact that they
result in inequality-constrained optimization problems, which are generally more difficult to solve
effectively compared to Bellman-equation-based methods.

Recently, the LP formulation of MDPs has recently received renewed interest, especially in the
offline-RL literature (Ozdaglar et al., 2023; Zhan et al., 2022; Gabbianelli et al., 2024; Kamoutsi
et al., 2021; Sikchi et al., 2024), because it offers several advantages over Bellman-equation–based
approaches. Unfortunately, LP-based RL methods typically rely on primal-dual schemes (Wang
and Chen, 2016; Chen and Wang, 2016; Lee and He, 2019; 2018; Chen et al., 2018; Serrano and
Neu, 2020; Neu and Okolo, 2023; Nachum and Dai, 2020; Bas-Serrano et al., 2021; Lu et al., 2021;
2022), which are known to often exhibit relatively slow convergence and higher computational costs
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in practice compared to standard RL approaches. For these reasons, we believe there is a clear need
to develop effective alternatives for solving the LP form.

The purpose of this paper is to establish a theoretical foundation for addressing LP-based MDPs
in a more effective and practical manner. The key idea is to employ the log-barrier function (Boyd
and Vandenberghe, 2004), widely used in inequality-constrained optimization, to reformulate the LP
representation of the MDP into an unconstrained optimization problem. This reformulation allows
approximate solutions to be obtained efficiently using gradient descent (Nesterov, 2018; Bertsekas,
1999). While this approach may appear simple, to the best of our knowledge, a comprehensive
theoretical interpretation has not yet been developed. This paper aims to bridge this gap.

More specifically, we investigate the single-objective function fη induced by the log-barrier formu-
lation with the barrier parameter η > 0, whose minimizer yields an approximate solution, Q̃η , to the
original MDP. This approximate solution, Q̃η , corresponds to an approximate optimal Q-function.
We first conduct an error analysis, deriving not only an upper bound but also a lower bound on the
error norm, ∥Q̃η − Q∗∥∞, between the approximate solution, Q̃η , and the true optimal Q-function
Q∗. These bounds depend linearly on the log-barrier parameter η, which implies that both the upper
and lower bounds decrease linearly as η becomes smaller. Beyond the error norm, we also establish
error bounds for the MDP objective function Jπ itself. In particular, our framework yields both a
primal approximate solution Q̃η and a dual approximate solution λ̃η , from which the corresponding
primal policy and dual policy are derived. For each case, we derive bounds on the deviation of their
objective values from the optimal objective value, and these bounds likewise diminish linearly with
η.

In addition, we establish several properties of the objective function fη , including its convexity,
properties of its domain, and properties of its sublevel set. As mentioned earlier, the approximate
LP solution can be obtained via gradient descent, and we provide an analysis of the convergence
behavior of this gradient descent method. Lastly, we explore the applicability and extension of the
proposed theoretical foundation to deep RL. Specifically, we introduce a novel loss function, derived
from the log-barrier formulation, which serves as an alternative to the conventional mean-squared-
error Bellman loss in deep Q-network (DQN) (Mnih et al., 2015) and deep deterministic policy
gradient (DDPG) (Lillicrap et al., 2015). This yields a new deep RL algorithm within the DQN and
DDPG frameworks. The effectiveness of the proposed method is demonstrated through comparative
evaluations with standard DQN and DDPG across multiple OpenAI Gym benchmark tasks. The
experimental results demonstrate that the proposed method performs on par with conventional DQN
across the evaluated environments, and achieves markedly superior performance in specific tasks.
In addition, experimental results show that incorporating the proposed method into DDPG yields
markedly improved learning performance compared to the conventional DDPG algorithm in a wide
range of tasks. Finally, the main contributions are briefly summarized as follows: (1) Log-barrier
LP for MDPs & error bounds: we introduce a novel log-barrier formulation of the MDP LP and
derive rigorous error bounds for the approximate solution, explicitly quantifying how the approx-
imation error scales with the barrier weight η. (2) Analytic properties & convergence: We prove
structural properties of the objective (convexity, local strong convexity, local Lipschitzness, convex
feasible domain) and show exponential convergence of deterministic gradient descent in the tabular
setting. (3) Preliminary deep-RL evaluation: we propose a deep-RL variant (log-barrier loss) and
provide empirical results showing stable training and, in several environments, superior performance
to standard deep-RL baselines.

2 RELATED WORKS

Research on MDPs has traditionally been dominated by dynamic programming (DP) methods based
on the Bellman equation (Bertsekas and Tsitsiklis, 1996; Puterman, 2014; Sutton and Barto, 1998),
which underpin classical RL algorithms and modern deep RL methods such as DQN (Mnih et al.,
2015), but these approaches can become less flexible in large-scale or constrained settings. As an
alternative, linear programming (LP) formulations of MDPs (Puterman, 2014) have been studied
extensively: De Farias and Van Roy (2003) introduced approximate linear programming (ALP),
which reduces the number of decision variables by using linear function approximations; Malek
et al. (2014) further exploited the dual LP with stochastic convex optimization methods in the
average-cost setting, showing performance guarantees relative to a restricted policy class; Lakshmi-

2



Published as a conference paper at ICLR 2026

narayanan et al. (2017) proposed the linearly relaxed ALP (LRALP), which alleviates computational
load by projecting constraints into a lower-dimensional subspace while controlling approximation
error. More recent developments have advanced convex formulations such as convex Q-learning (Lu
et al., 2021; 2022), logistic Q-learning (Bas-Serrano et al., 2021), and primal-dual algorithms (Wang
and Chen, 2016; Lee and He, 2018; Serrano and Neu, 2020; Neu and Okolo, 2023) with growing
attention in offline RL where environment interaction is limited (Nachum and Dai, 2020; Zhan et al.,
2022; Ozdaglar et al., 2023; Gabbianelli et al., 2024). In parallel, optimization and RL communities
have explored barrier-based techniques: the log-barrier method is a classical tool in convex opti-
mization (Boyd and Vandenberghe, 2004; Nesterov, 2018; Bertsekas, 1999), and has recently been
adapted for safe RL, e.g., Zhang et al. (2024a;b) introduced a constrained soft actor-critic variant us-
ing a smoothed log-barrier for stable constraint handling in continuous control tasks. Despite these
advances, existing LP-based approaches have not leveraged barrier functions to resolve inequality-
constrained formulations, and existing barrier-based RL methods have not been applied to the LP
representation of MDPs. Our work closes this gap by introducing a log-barrier reformulation of the
LP approach to MDPs, yielding an unconstrained objective amenable to gradient-based optimization
while retaining the structural advantages of LP formulations.

3 PRELIMINARIES

3.1 MARKOV DECISION PROBLEM

We consider the infinite-horizon discounted Markov decision problem (Puterman, 2014) and Markov
decision process, where the agent sequentially takes actions to maximize cumulative discounted re-
wards. In a Markov decision process with the state-space S := {1, 2, . . . , |S|} and action-space
A := {1, 2, . . . , |A|}, where |S| and |A| denote cardinalities of each set, the decision maker se-
lects an action a ∈ A at the current state s ∈ S, then the state transits to the next state s′ ∈ S
with probability P (s′|s, a), and the transition incurs a reward r(s, a, s′) ∈ R, where P (s′|s, a) is
the state transition probability from the current state s ∈ S to the next state s′ ∈ S under ac-
tion a ∈ A, and r(s, a, s′) is the reward function. For convenience, we consider a deterministic
reward function and simply write r(sk, ak, sk+1) =: rk+1, k ∈ {0, 1, . . .}. A deterministic pol-
icy, π : S → A, maps a state s ∈ S to an action π(s) ∈ A. The objective of the Markov
decision problem is to find an optimal policy, π∗, such that the cumulative discounted rewards
over infinite time horizons is maximized, i.e., π∗ := argmaxπ∈Θ E

[∑∞
k=0 γ

krk+1

∣∣π], where
γ ∈ [0, 1) is the discount factor, Θ is the set of all deterministic policies, (s0, a0, s1, a1, . . .) is
a state-action trajectory generated by the Markov chain under policy π, and E[·|π] is an expecta-
tion conditioned on the policy π. Moreover, Q-function under policy π is defined as Qπ(s, a) =
E
[∑∞

k=0 γ
krk+1

∣∣ s0 = s, a0 = a, π
]
, (s, a) ∈ S × A, and the optimal Q-function is defined as

Q∗(s, a) = Qπ∗
(s, a) for all (s, a) ∈ S × A. Once Q∗ is known, then an optimal policy can be

retrieved by the greedy policy π∗(s) = argmaxa∈A Q∗(s, a). Throughout, we assume that the
Markov decision process is ergodic so that the stationary state distribution exists. In this paper, we
define an upper bound of the reward function as |r(s, a, s′)| ≤ rmax, (s, a, s

′) ∈ S ×A× S.

3.2 LP FORMULATION OF MDP BASED ON Q-FUNCTION

In this paper, for the sake of clarity and brevity, the majority of technical proofs are presented in
Appendix. It is well known that a Markov decision problem (MDP) can be formulated as a linear
program (LP) (Luenberger et al., 1984; Puterman, 2014). While the LP formulation is typically
expressed in terms of the value function (Puterman, 2014), one can also consider an LP formulation
based on the Q-function. To this end, let us consider the following LP:

min
Q∈R|S||A|

∑
(s,a)∈S×A

ρ(s, a)Q(s, a) (1)

subject to

R(s, a) + γ
∑
s′∈S

P (s′|s, a)Q(s′, a′) ≤ Q(s, a), (s, a, a′) ∈ S ×A×A,

where R(s, a) is the expected reward conditionend on (s, a) ∈ S × A, ρ denotes any probability
distribution over S × A with strictly positive support. For convenience, in this paper, we define the

3



Published as a conference paper at ICLR 2026

following Bellman operators

(TQ)(s, a) :=R(s, a) + γ
∑
s′∈S

P (s′|s, a)maxa′∈AQ(s′, a′)

(FQ)(s, a, a′) :=R(s, a) + γ
∑
s′∈S

P (s′|s, a)Q(s′, a′).

Note that we can always find a strictly feasible solution of the above LP. For instance, if we choose
Q(s, a) = rmax+ε

1−γ > 0, (s, a) ∈ S×Awith any ε > 0, then R(s, a)+γ
∑

s′∈S P (s′|s, a)Q(s′, a′)−
Q(s, a) = R(s, a) − rmax − ε < 0. The LP formulation in Equation (1) constructed on the basis
of the Q-function (Lee and He, 2019; 2018) has not been extensively studied compared to the LP
formulation based on the value function. Although the LP formulation involving the Q-function
was considered in Lee and He (2019; 2018), it differs significantly from the LP discussed above.
In particular, the LP in Lee and He (2019; 2018) involves not only the Q-function but also an addi-
tional value function, thereby employing a somewhat more indirect approach compared to the above
formulation. Accordingly, we begin by briefly introducing several theoretical properties and inter-
pretations of this formulation, prior to presenting our main results. As a preliminary but fundamental
result, it is straightforward to show that the solution of the above LP is unique and corresponds to
the optimal Q-function, Q∗ (Section A). In addition, the dual (Boyd and Vandenberghe, 2004, Chap-
ter 5) of the above LP can be derived in the following form (Section B).
Lemma 1. The dual problem of the LP in Equation (1) is given by

max
λ≥0

∑
(s,a,a′)∈S×A×A

λ(s, a, a′)R(s, a) (2)

subject to∑
i∈A

λ(s, a, i)− γ
∑

(i,j)∈S×A

P (s|i, j)λ(i, j, a) = ρ(s, a), ∀(s, a) ∈ S ×A. (3)

The original LP in Equation (1) is referred to as the primal LP (or primal problem), while the above
LP in Equation (2) is called the dual LP (or dual problem). The variable Q in the primal LP is
referred to as the primal variable, while the variable λ in the dual LP is called the dual variable.
We can examine several important properties and interpretations of the dual LP. For instance, the
optimal dual variable λ∗ corresponds to a probability distribution, which represents the stationary
state–action–next-action distribution under the optimal policy π∗ constructed from the dual variable
as follows:

π∗(·|s) :=
[

λ∗(s,1)∑
a∈A λ∗(s,a)

λ∗(s,2)∑
a∈A λ∗(s,a) · · · λ∗(s,|A|)∑

a∈A λ∗(s,a)

]
We note that when the optimal policy is deterministic, then the above policy becomes a one-hot
vector indicating the optimal action (Chen and Wang, 2016). Similarly, if Q∗ is the primal optimal
solution (the solution of Equation (1)), then β∗(s) := argmaxa∈A Q∗(s, a) likewise induces an
optimal policy. Additional details can be found in Appendix (Sections C and D).

4 LOG-BARRIER FUNCTION APPROACH

In the previous section, we provided a brief discussion of the LP formulation in Equation (1) based
on the Q-function. We now turn to the main results of this paper. First of all, note that Equation (1)
involves inequality constraints. A common approach to handling such constraints is to introduce
the Lagrangian together with Lagrange multipliers, or dual variables (Bertsekas, 1999; Boyd and
Vandenberghe, 2004). One then seeks the primal and dual variables through first-order primal–dual
iterations (Kojima et al., 1989). However, this method typically suffers from slow convergence
and does not, in general, guarantee convergence in many practical settings (Applegate et al., 2021).
Another practical and widely used approach to handling inequality constraints is the use of barrier
functions, most notably the log-barrier function (Boyd and Vandenberghe, 2004). This method
imposes a large (or even infinite) penalty on variables that violate the inequality constraints, thereby
forcing the iterates to remain within the feasible region while enabling the optimization problem to
be solved. In this paper, we apply the log-barrier function to the LP formulation in Equation (1), and
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we undertake an in-depth study and interpretation of this barrier-based approach to solving MDPs.
This line of research represents an approach that has not yet been addressed in the existing literature.

The log-barrier function is a classical tool in constrained optimization used to handle inequality
constraints. For a constraint of the form g(x) ≤ 0, the log-barrier introduces a penalty term
ηφ(x) := −η ln(−g(x)), where η > 0 is a barrier parameter. This function approaches infin-
ity as g(x) gets close to zero, and thus, it prevents the iterates from leaving the feasible region.
As η decreases, the solution of the barrier-augmented problem converges to the solution of the
original constrained optimization problem. Moreover, one can prove that the log-barrier function
φ(x) := − ln(−x) is strictly convex in its domain {x ∈ R : x < 0}. Using the log-barrier function,
the inequality constraints can be integrated into a single objective function as follows:

fη(Q) :=
∑

(s,a)∈S×A

Q(s, a)ρ(s, a) + η
∑

(s,a,a′)∈S×A×A

w(s, a, a′)φ ((FQ)(s, a, a′)−Q(s, a)),

(4)

where η > 0 is the barrier parameter (weight) and w(s, a, a′) > 0, (s, a, a′) ∈ S×A×A are weight
parameters of the inequality constraints, which are introduced in order to consider random sampling
approaches in stochastic implementations later. For instance, in the deep-RL variant later, w should
be interpreted as the empirical distribution of state–action pairs induced by the replay buffer or by
mini-batch sampling. Moreover, we can also set w(s, a, a′) = 1 for all (s, a, a′) ∈ S ×A×A. The
objective function fη has the following domain:

D :=
{
Q ∈ R|S||A| : (FQ)(s, a, a′)−Q(s, a) < 0, (s, a, s′) ∈ S ×A×A

}
,

which can be also seen as the strictly feasible set. Moreover, it can be shown thatD is convex, open,
bounded below, and unbounded above. Moreover, the objective function fη is strictly convex in D.
To proceed, let us define the level set of the objective function for c > 0

Lc := {Q ∈ D : fη(Q) ≤ c}.

We can also establish thatLc is convex, closed, bounded, and fη is strongly convex and has Lipschitz
continuous gradient in Lc with any c > 0. The detailed theoretical analysis is given in Sections E
to G.

The introduction of the log-barrier function enables us to reformulate the MDP as an unconstrained
optimization problem. Consequently, a natural approach to address this problem is to employ gradi-
ent descent. For this purpose, we first establish the closed-form expression of the gradient presented
in the following lemma, which can be proved via direct calculations.
Lemma 2. The gradient of fη(Q) for Q ∈ D is given by

(∇Qfη(Q))(s, a) = ρ(s, a) + γ
∑

(s′,a′)∈S×A

P (s|s′, a′)λη(s
′, a′, a)−

∑
a′∈A

λη(s, a, a
′)

for (s, a) ∈ S ×A, where λη(s, a, a
′) := ηw(s,a,a′)

Q(s,a)−(FQ)(s,a,a′) .

Using the closed-form gradient obtained above, we can gain insight into the solution of the opti-
mization problem. To this end, let us assume that Q̃η is a minimizer of fη(Q)

Q̃η := argminQ∈D fη(Q).

The corresponding first-order optimality condition, ∇Qf(Q)|Q=Q̃η
= 0, is given by(

∇Qf(Q)|Q=Q̃η

)
(s, a) =ρ(s, a) + γ

∑
(s′,a′)∈S×A

λ̃η(s
′, a′, a)P (s|s′, a′)−

∑
a′∈S

λ̃η(s, a, a
′)

=0, (s, a) ∈ S ×A.

where λ̃η(s, a, a
′) := ηw(s,a,a′)

Q̃(s,a)−(FQ̃η)(s,a,a′)
.

As mentioned earlier, since fη is strictly convex over the domain, this first-order condition consti-
tutes the necessary and sufficient condition for the optimal solution. We can observe that the above
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equation is exactly identical to the equality constraints in the dual problem with λ̃η as the dual vari-
ables. In other words, λ̃η approximates the true optimal dual variable λ∗. Therefore, from the above
solution Q̃η , we can consider two types of policies. Interpreting the solution as an approximate
solution to the LP formulation of the MDP, we may derive a greedy policy based on Q̃η , as well as a
policy constructed from the approximate dual variable λ̃η which also depends on Q̃η . Hereafter, we
refer to the policy induced by the primal optimal solution Q̃η as the primal η-policy, and the policy
induced by the dual optimal solution λ̃η as the dual η-policy. In particular, the primal η-policy,
which is deterministic, can be written as

β̃η(s) = argmaxa∈A Q̃η(s, a),

and the dual η-policy, which is stochastic, can be written as

π̃η(·|s) :=
[

λ̃η(s,1)∑
a∈A

λ̃η(s,a)

λ̃η(s,2)∑
a∈A

λ̃η(s,a)
· · · λ̃η(s,|A|)∑

a∈A
λ̃η(s,a)

]
,

where λ̃η(s, a) :=
∑

a′∈A λ̃η(s, a, a
′). By minimizing the above objective function, we can obtain

an approximate solution of the primal LP. Since the objective function is strictly convex, the approx-
imate solution can be efficiently found with a gradient descent algorithm. We can prove that, under
certain mild conditions, this gradient descent with a constant step-size converges exponentially to Q̃η

(Sections H and I).

Next, note that the minimizer of the log-barrier-based objective function provides only an approx-
imate solution to the LP formulation of the MDP, rather than an exact one. Nevertheless, by de-
creasing the barrier parameter η, the solution is permitted to approach the boundary of the inequality
constraints, i.e., the equality constraints, and thus progressively converges to the exact LP solution.
In the limit as η → 0, the solution converges to the true solution of the MDP. Building on this insight,
we can express the error between Q̃η and Q∗ as a function of η. The following lemma establishes
such an error bound between Q̃η and Q∗, and, in addition, presents a bound on the Bellman error
corresponding to Q̃η (Section J).

Theorem 1. We have

1. η min
(s,a,a′)∈S×A×A

w(s, a, a′) <
∥∥∥Q̃η −Q∗

∥∥∥
∞
≤

η
∑

(s,a,a′)∈S×A×A
w(s,a,a′)

min(s,a)∈S×Aρ(s,a)

2. η(1− γ) min
(s,a,a′)∈S×A×A

w(s, a, a′) <
∥∥∥Q̃η − TQ̃η

∥∥∥
∞
≤

(1+γ)η
∑

(s,a,a′)∈S×A×A
w(s,a,a′)

min(s,a)∈S×Aρ(s,a)

From the above result, we can establish both upper and lower bounds on the l∞-norm of the optimal-
ity error and the Bellman error. Both bounds depend on η and are shown to be linear functions of η.
Hence, as η → 0, the upper and lower bounds of the error norms decrease linearly, i.e., Q̃η → Q∗.
Moreover, these bounds also reveal the interplay between the bounds and other hyperparameters.
In the above result, we established bounds on the norm of the error. In addition, we can also de-
rive upper and lower bounds on the MDP objective function itself. The following theorem presents
such bounds for the objective functions corresponding to the primal η-policy and the dual η-policy,
expressed relative to the optimal objective value Jπ∗

(Section K).

Theorem 2. We have

1. Jπ∗ − η
∑

(s,a,a′)∈S×A×A
w(s, a, a′) ≤ J π̃η ≤ Jπ∗

2. Jπ∗ −
η(1+γ)

∑
(s,a,a′)∈S×A×A

w(s,a,a′)

(1−γ)min(s,a)∈S×Aρ(s,a) ≤ J β̃η ≤ Jπ∗

3. −
η(1+γ)

∑
(s,a,a′)∈S×A×A

w(s,a,a′)

(1−γ)min(s,a)∈S×Aρ(s,a) ≤ J β̃η − J π̃η ≤ η
∑

(s,a,a′)∈S×A×A
w(s, a, a′)
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The above theorem shows that the upper and lower bounds of the objective functions corresponding
to the primal η-policy and the dual η-policy also depend linearly on η. Hence, as η → 0, the objective
functions associated with both the primal and dual η-policies converge to the optimal objective value
J∗.

5 POLICY EVALUATION

Although the primary focus of this paper is on computing the optimal Q-function, the proposed
framework is equally applicable to policy evaluation. In this section, we therefore provide a brief
account of its application to the policy evaluation setting. To this end, let us assume a given policy π,
and consider the problem of finding its corresponding Q-function Qπ . This problem can be solved
through the following LP:

min
Q∈R|S||A|

∑
(s,a)∈S×A

ρ(s, a)Q(s, a)

subject to (TπQ)(s, a) ≤ Q(s, a), (s, a) ∈ S ×A,
where R(s, a) is the expected reward conditioned on (s, a) ∈ S × A, ρ denotes any probability
distribution over S ×A with strictly positive support, and

(TπQ)(s, a) := R(s, a) + γ
∑

(s′,a′)∈S×A

P (s′|s, a)π(a′|s′)Q(s′, a′), (s, a) ∈ S ×A.

Then, analogous to the case of finding the optimal Q-function, we can derive the following results
through a similar theoretical analysis. In particular, we can prove that the unique optimal solution
of the above LP is Qπ . Moreover, let us consider the objective function with log-barrier function

fπ
η (Q) :=

∑
(s,a)∈S×A

Q(s, a)ρ(s, a) + η
∑

(s,a)∈S×A

w(s, a)φ ((TπQ)(s, a)−Q(s, a))

where η > 0 is a weight parameter and w(s, a) > 0, (s, a) ∈ S × A are weight parameters of
the inequality constraints. Then, we can prove that the corresponding optimal solution Q̃π

η :=
argminQ∈D fπ

η (Q) approximates Qπ . Many of the analytical results established in the previous
section can be applied in a similar manner. For brevity, all related details are provided in Section L.

6 DEEP RL VARIANTS

Thus far, we have provided a theoretical analysis of the approximate solution to the LP formulation
of MDPs using the log-barrier function. Although the primary focus of this paper is on theoretical
analysis with tabular setting, in this section we further explore the potential extension of the proposed
framework to deep RL. In particular, we introduce a novel DQN algorithm inspired by the idea
of standard DQN (Mnih et al., 2015). Note that when a deep neural network is used, the model
becomes a nonlinear function of the parameters θ, and the precise theoretical results derived for the
tabular setting no longer apply directly. Nevertheless, the tabular analysis in the previous sections
provides useful intuition and insights on deep RL extensions. Similar to the conventional DQN
framework, we employ an experience replay buffer D and mini-batch sampling B. Furthermore,
in the definition of fη , the probability density is replaced with samples from the mini-batch, which
leads to the following loss function:

L(θ) :=
1

|B|
∑

(s,a,r,s′)∈B,a′∈A

[Qθ(s, a) + ηφ(r + γQθ(s
′, a′)−Qθ(s, a))],

where B is a mini-batch uniformly sampled from the experience replay buffer D, |B| is the size
of the mini-batch, Qθ is a deep neural network approximation of Q-function, θ ∈ Rm is the
parameter to be determined, and (s, a, r, s′) is the transition sample of the state-action-reward-
next state. The loss function can be seen as a stochastic approximation of fη , where ρ and w
can be set to probability distributions corresponding to the replay buffer. However, this stochas-
tic approximation is generally biased because it approximates a function in which the state tran-
sition probabilities appear outside the log-barrier function. In fact, by applying Jensen’s in-
equality, we can show that the above loss function is essentially an unbiased stochastic approx-
imation of an upper bounding surrogate funciton of fη (Section M). However, note that in the
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deterministic case, the upper surrogate function coincides with the true objective function with
zero Jenson gap. In this setting, L(θ) becomes an unbiased stochastic approximation of fη .
For example, a dynamical system expressed as sk+1 = f(sk, ak) is deterministic, and hence
the upper bound coincides with fη . Therefore, the loss function L can be regarded as an un-
biased stochastic approximation of fη as follows: fη(Qθ) =

∑
(s,a)∈S×A Qθ(s, a)ρ(s, a) +

η
∑

(s,a,a′)∈S×A×A w(s, a, a′)φ (r(s, a, f(s, a)) + γQθ(f(s, a), a
′)−Qθ(s, a)) ∼= L(θ). Another

difference from the conventional DQN is that the algorithm proposed in this paper does not employ
target variables, and hence the update of target variables is also omitted. Apart from this distinc-
tion, the remaining components are similar to those of standard DQN. The overall pseudocode of the
algorithm and implementation details for stabilization of the algorithm are summarized in Section N.

Next, we briefly discuss the extension of policy evaluation, previously introduced, to the deep RL
setting. In particular, we consider its potential application to DDPG (Lillicrap et al., 2015). Here,
the policy is deterministic, and the following loss function can be formulated:

Lcritic(θ;πχ) :=
1

|B|
∑

(s,a,r,s′)∈B

[Qθ(s, a) + ηφ(r + γQθ(s
′, πχ(s

′))−Qθ(s, a))],

where πχ denotes the deterministic policy being learned, and χ is its parameter vector. A discussion
similar to that of the preceding loss function applies here, and the corresponding modified DDPG
algorithm along with its implementation details is provided in Section O. Finally, we note that we
can heuristically apply several alternative choices (e.g., SoftPlus) instead of the log-barrier func-
tion. While these alternatives often yield reasonable performance, the proposed method typically
performed better in our experiments.

7 EXPERIMENTS

To validate the performance of the proposed method, we conduct experiments in both discrete and
continuous control environments. We implement our deep RL variant as described in Section 6,
naming our algorithms Log-barrier DQN and Log-barrier DDPG, respectively. For discrete con-
trol tasks, we compare our algorithm with the standard DQN (Mnih et al., 2015), and for continuous
control tasks, we benchmark it against the standard DDPG (Lillicrap et al., 2015). Additional al-
gorithmic details are provided in Section N and Section O, with detailed hyperparameters listed
in Section P.

Log-Barrier DQN For our DQN experiments, we chose five environments form the Gymna-
sium library (Acrobot-v1, CartPole-v1, LunarLander-v3, MountainCar-v0, and Pendulum-v1). For
MountainCar-v0, we replace the original sparse reward with a dense shaping reward, and for
Pendulum-v1 we discretize the continuous action space to enable DQN training. As shown in Fig-
ure 1, the results reveal a remarkable point that the Log-barrier DQN demonstrates rapid adaptation
and significant stability in the CartPole environment, where the agent’s survival is threatened by a
critical angle criterion. We hypothesize that this is due to the sharp decision boundary between states
where the agent survives and states where the episode is terminated. Standard DQN, which relies
on Bellman updates with an mean square error (MSE) loss, can suffer from error propagation across
this boundary. In contrast, the proposed approach, which uses the LP form, can globally mitigate
this hazard. Instead of estimating value from neighboring states, our method directly minimizes its
objective while satisfying the LP constraints.

Log-Barrier DDPG In the continuous control experiments, we applied the proposed method for
the policy evaluation task in DDPG. The resulting DDPG variant demonstrated superior performance
on four complex MuJoCo environments (Ant, Walker2d, HalfCheetah, Humanoid), while showing
no significant advantage on the simpler Hopper task, as shown in Figure 2. We attribute this success
to a fundamental property of critic update mechanism of the proposed algorithm. We conjecture that
the core of the advantage arises from the fact that the LP form is inherently a minimization objective,
which naturally counteracts the Q-value overestimation bias prevalent in actor-critic methods. Stan-
dard DDPG critics learn by minimizing the MSE to a target value, a process that simply follows the
target without regard for its potential bias. If the target is inflated, the critic learns an inflated value,
leading to a feedback loop of compounding overestimation. In contrast, the proposed approach min-
imizes the value function itself, subject to the constraints of Bellman consistency. This systematic
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Figure 1: Learning curves comparing the Log-barrier DQN and standard DQN on the Gymnasium
control environments. Each curve represents the average return over 10 random seeds, with the
shaded area indicating one standard deviation from the mean.

search for the tightest and lowest possible Q-values that still satisfy the dynamics acts as a powerful,
implicit regularizer against optimistic value estimates. This results in a more conservative and stable
critic, which provides a more reliable gradient to the actor, leading to superior final performance.
Consequently, this allows the proposed method to overcome the limitations of standard DDPG, and
to successfully solve environments such as Ant and Humanoid that were previously thought to be
beyond its capabilities.

Figure 2: Learning curves comparing the Log-barrier DDPG and standard DDPG on the Mujoco
continuous control environments. Each curve represents the average return over 8 random seeds,
with the shaded area indicating one standard deviation from the mean.

8 CONCLUSION

In this paper, we have developed a theoretical framework for solving MDPs via their LP formulation
using a log-barrier term. Reformulating the LP into a single objective fη , we have showed that
gradient descent efficiently produces approximate solutions Q̃η and prove error bounds (including
∥Q̃η − Q∗∥∞) that scale linearly with the barrier parameter η. We have also characterized primal
and dual approximate solutions, their induced policies, and proved structural properties of fη (e.g.,
convexity, local strong convexity/Lipschitzness) together with exponential convergence of gradient
descent in the tabular setting. Practically, we have derived a novel log-barrier loss for deep RL and
evaluate it in DQN and DDPG: the method matches standard DQN in most cases and outperforms
conventional DDPG in several tasks. While experiments are limited in scope and the approach
requires careful hyperparameter tuning, the empirical results support the promise of the log-barrier
formulation; fuller large-scale validation and robustness improvements remain important directions
for future work.
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learning with smoothed log barrier function. arXiv preprint arXiv:2403.14508.

11


	Introduction
	Related works
	Preliminaries
	Markov decision problem
	LP formulation of MDP based on Q-function

	Log-barrier function approach
	Policy evaluation
	Deep RL variants
	Experiments
	Conclusion
	Appendix: lemma:optimality
	Appendix: proof of lemma:dual-LP
	Appendix: prop:dual-property1
	Appendix: prop:dual-property12
	Appendix: lemma:bounded-D
	Appendix: lemma:bounded-levelset
	Appendix: lemma:properties1
	Appendix: thm:convergence-GD
	Appendix: Gradient descent example
	Appendix: proof of thm:bounds2
	Appendix: proof of thm:bounds3
	Appendix: policy evaluation problem
	Appendix: prop:upper-surrogate
	Appendix: log-barrier DQN algorithm
	Appendix: log-barrier DDPG algorithm
	Appendix: hyperparameters
	General Remarks
	Appendix: additional experiments of log-barrier Q-learning approach with linear function approximation
	Environment
	Markov Decision process setting
	Linear function approximation
	Standard Q-learning
	Log-barrier Q-learning
	Algorithm

	Experiment Results
	Practical Considerations for Hyperparameter Selection
	Tabular Setting under Stochastic sampling
	-greedy Sampling
	-reverse-greedy sampling


	Appendix: comparison of log-barrier Q-learning and primal-dual Q-learning
	Appendix: ablation and additional experiments of deep learning variants
	Ablation study on deep learning variants
	Additional experiments of log-barrier DDPG

	Appendix: experiments of maximization bias

