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ABSTRACT

Many animals and humans process the visual field with varying spatial resolution
(foveated vision) and use peripheral processing to make eye movements and point
the fovea to acquire high-resolution information about objects of interest. This
architecture results in computationally efficient rapid scene exploration. Recent
progress in self-attention-based vision Transformers, an alternative to the tradi-
tionally convolution-reliant computer vision systems, allows global interactions
between feature locations and increases robustness to adversarial attacks. How-
ever, the Transformer models do not explicitly model the foveated properties of
the visual system nor the interaction between eye movements and the classification
task. We propose Foveated Transformer (FoveaTer) model, which uses pooling
regions and eye movements to perform object classification tasks using a Vision
Transformer architecture. Using square pooling regions or biologically-inspired
radial-polar pooling regions, our proposed model pools the image features from
the convolution backbone and uses the pooled features as an input to transformer
layers. It decides on subsequent fixation location based on the attention assigned
by the Transformer to various locations from past and present fixations. The model
uses a confidence threshold to stop scene exploration. It dynamically allocates
more fixation/computational resources to more challenging images before making
the final image category decision. We construct a Foveated model using our pro-
posed approach and compare it against a Baseline model, which does not contain
any pooling. Using five ablation studies, we evaluate the contribution of different
components of the Foveated model. We perform a psychophysics scene catego-
rization task and use the experimental data to find a suitable radial-polar pooling
region combination. We also show that the Foveated model better explains the
human decisions in a scene categorization task than a Baseline model. On the Im-
ageNet dataset, the Foveated model with Dynamic-stop achieves an accuracy of
8% below the Baseline model with a throughput gain of 76%. Using a Foveated
model with Dynamic-stop and the Baseline model, the ensemble achieves an ac-
curacy of 0.7% below the Baseline using the same throughput. We demonstrate
our model’s robustness against PGD adversarial attacks with both types of pooling
regions, where we see the Foveated model outperform the Baseline model.

1 INTRODUCTION

Many mammals, including humans, have evolved a locus (the fovea) in the visual sensory array with
increased spatial fidelity and use head and eye movements (Land, 2012; Marshall et al., 2014) to ori-
ent such locus to regions and objects of interest. The system design allows visual-sensing organisms
to accomplish two objectives: fast target detection crucial for survival and savings in computational
cost. Computational savings are accomplished by limiting the number of units with high computa-
tional costs (i.e., higher spatial resolution processing) to the fovea’s small spatial region. Fast target
detection is achieved by distributing the remaining computational power across a much larger area in
the periphery, with a lower spatial resolution with increasing distance from the fovea. Critical to the
design is an efficient algorithm to guide through eye movements the high-resolution fovea to regions
of interest using the low-resolution periphery (Hayhoe & Ballard, 2005; Strasburger et al., 2011;
Ludwig et al., 2014) and allow optimizing the target detection and scene classification. Various
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computational models were proposed to model the search using foveated visual system (Yamamoto
et al., 1996; Prince et al., 2005).

Computer vision has evolved from hand-crafted features to data-driven features in modern CNNs.
Due to their computational limitations, the objectives of the computer vision systems align well
with those of human visual system: to optimize visual detection and recognition with an efficient
computational and metabolic footprint. Approaches toward saving computational power can be seen;
for example, computer vision systems evolved from using sliding windows to RCNN’s (Girshick
et al., 2014) use of selective search and Faster-RCNN’s (Ren et al., 2015) use of Region Proposal
Network (RPN).

A system that mimics human vision by processing the scene with a foveated system and rational eye
movements has also been proposed. This approach to exploring the scene can be seen in models like
RAM (Mnih et al., 2014) for recognizing handwritten single-digits or detecting objects (Akbas &
Eckstein, 2017) where they sequentially process the image and decide what to process next by using
the peripheral information. These foveated models approach that of full-resolution models but using
a fraction of the computations. Foveated systems have also shown to result in more robustness (Luo
et al., 2015; Deza & Konkle, 2020; Kiritani & Ono, 2020; Vuyyuru et al., 2020) against adversarial
attacks.

There has been a recent innovation in computer vision using Transformers (Touvron et al., 2020;
Dosovitskiy et al., 2020) for object classification tasks that depart from the traditional over-reliance
on convolutions. Even after replacing the convolutions with attention modules and multilayer per-
ceptrons, Vision Transformers (Dosovitskiy et al., 2020; Touvron et al., 2020) achieve close to state-
of-the-art performance on the ImageNet dataset and provide better robustness against adversarial
attacks (Shao et al., 2021).

Due to the flattened architecture of the transformers, it is easier for multi-resolution features to
share the same feature channels. Transformers (Vaswani et al., 2017) have the added benefit of
self-attention, which facilitates the interaction of various parts of the image irrespective of distance.
No papers have evaluated the additional potential gains of incorporating a foveated architecture into
Vision Transformers for the task of ImageNet classification.

Here, we evaluate the effect of a foveated architecture and sequential eye movements on a state-
of-the-art transformer architecture. We compare the Foveated transformer relative to the Baseline
model in terms of classification accuracy and robustness to adversarial attacks. We perform a psy-
chophysics experiment for a scene classification task and evaluate the Foveated model agreement
with the human decision against that of the Baseline model. We first perform an object classifica-
tion task using multiple fixations, moving foveal attention across different parts of the image, and
using only a limited portion of the image information at each fixation, thereby reducing the input to
the transformer by many folds. The model decides on subsequent fixation location using the self-
attention weights accumulated from the previous fixations until the current step. Finally, the model
makes the final classification decision.

2 RELATED WORK

Transformers have achieved great success in Natural Language Processing since their introduction
by Vaswani et al. (2017) for machine translation. Recently, the application of Transformer mod-
els in Computer Vision has seen tremendous success. Vision Transformer (ViT) model introduced
by Dosovitskiy et al. (2020) achieved remarkable performance on ImageNet (Deng et al., 2009) by
using additional data from JFT 300M (Sun et al., 2017) private dataset. Subsequently, the DeiT
model (Touvron et al., 2020) introduced knowledge transfer concepts in transformers to leverage
the learning from existing models. Using augmentation and knowledge transfer, the DeiT model
achieved close to state-of-the-art performance using training data from the ImageNet dataset alone.

Sequential processing provides three main advantages in computer vision. Larochelle & Hinton
(2010) proposed a model based on the Boltzmann machine that uses foveal glimpses and can make
eye movements. First, it can limit the amount of information processed at a given instant to be
constant, i.e., the ability to keep computations constant irrespective of the input image size. Second,
sequential models can help model human eye movement strategies and help transfer that information
to build better computer vision systems. RAM (Mnih et al., 2014) introduced a sequential model
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capable of making a sequence of movements across the image to integrate information before classi-
fication. In addition, the hard-attention mechanism, implemented using reinforcement learning, was
used to predict the sequence of fixation locations. Ba et al. (2015) extended these ideas to recognize
multiple objects in the images on a dataset constructed using MNIST. Third, sequential processing
requires fewer parameters than a model using full-resolution image input. Other models (Xu et al.,
2015) have proposed image captioning models based on both hard-attention and soft-attention. Ad-
ditionally, the spatial bias introduced into CNNs due to padding (Alsallakh et al., 2021) can be
overcome using sequential models (Tsotsos, 2011). On the flip side, sequential models might suffer
longer processing times due to sequential processing and slow convergence times for reasons similar
to RNNs (Pascanu et al., 2013).

Computational models of categorization and eye movements have been proposed for rapid cat-
egorization in terms of low-level properties such as spatial envelopes (Oliva & Torralba, 2001)
and texture summary statistics (Rosenholtz et al., 2012). Saliency-based models (Koch & Ullman,
1987; Itti et al., 1998; Itti & Koch, 2000) traditionally tried to model eye movements by identifying
bottom-up properties in the image that will capture attention. Torralba et al. (2006) showed how
saliency could be combined with contextual information to guide eye movements. Low-resolution
periphery and high-resolution central fields are integrated with saliency to predict human-like eye
movements (Wloka et al., 2018). Data-driven scan path prediction models (Kümmerer et al., 2022)
train on image content and human fixations to predict the fixations under a free viewing but do
not consider decision accuracy in specific tasks after multiple fixations. Goal-directed attention
control (Zelinsky et al., 2021) showed the dependency of search patterns on target features and
scene context. Akbas & Eckstein (2017) implemented a biologically-inspired foveated architec-
ture (Freeman & Simoncelli, 2011) with a deformable parts model to build a foveated object de-
tector on PASCAL dataset (Everingham et al., 2014), whose accuracy was close to a full-resolution
model but using a fraction of the computations. Spatial transformer networks (Jaderberg et al.,
2015), an older technique different from the proposed Vision Transfomers, were used on CIFAR-10
dataset (Krizhevsky, 2009), with foveation to improve object localization using foveated convo-
lutions (Harris et al., 2019) and achieve better eccentricity performance (Dabane et al., 2021) on
MNIST dataset (LeCun et al., 1998).

FoveaTer combines biologically-inspired foveated architecture with a Vision Transformer Network.
Unlike the previous architectures (Akbas & Eckstein, 2017; Mnih & Gregor, 2014), we do not scale
the image and thereby retain the parallelism with biological mechanisms. We apply our model to
real-world images from the ImageNet dataset for image classification. In contrast, the previous
works were mainly limited to datasets with small image sizes or a smaller number of output classes.
They did not extend to large-scale real-world databases like ImageNet, which has 1000 class labels.
We also evaluate the functional roles of various components through ablation studies, including the
memory of foveal and peripheral information from previous fixations, inhibition of return, and eye
movement guidance algorithms.

A novel aspect of the proposed work is that the model also learns that all images are not equally
difficult to classify, adapting the exploration of eye movements to different images and thus vary-
ing computational resources used to classify different images successfully. The model implements
this idea using a confidence threshold to restrict the scene exploration to the necessary fixations to
classify the image.

Also novel is an evaluation of the adversarial robustness of our model to understand the contribu-
tions of the foveated architecture and that of sequential fixations towards defense against adver-
sarial attacks. We use the projected gradient descent method (Kurakin et al., 2017; Madry et al.,
2018), which iteratively computes the adversarial image. The architectural changes may not be triv-
ially transferable to a new architecture. End-to-End training and hyper-parameter settings might be
needed to adapt to the architectural differences.

3 MODEL

The model consists of three components, as shown in Figure 1 - convolution backbone, foveation
module, and transformer layers. Interactions between different feature locations are limited to local
regions in the convolution backbone. The Foveation module performs non-uniform pooling on the
input features, reducing feature dimensionality. The Foveation module can contain two types of
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Figure 1: PR refers to the pooling regions. Foveation with radial-polar pooling regions is more
biologically plausible than the square pooling regions but computationally slower and vice-versa.

(a) FoveaTer architecture: The foveation module performs fixation-
dependent pooling. Accumulator uses the attention weights from the
last transformer layer of past and present fixations to predict the next
fixation location. Model blocks within the yellow region are executed
for each fixation.

(b) Square pooling: Input fea-
ture map is pooled to generate
the pooled feature vectors. The
Fovea is shown in red containing
9 feature vectors. The first level
of pooling regions is of size 5×5
with stride 4 (green). The second
pooling region level is size 7× 7
with stride 7 (orange).

Figure 2: Network architecture

pooling regions, square pooling regions which provide computationally fast processing, or biologi-
cally plausible radial-polar pooling regions, (Freeman & Simoncelli, 2011). Under this non-uniform
average-pooling model, locations closer to the fixation location use smaller neighborhoods for pool-
ing than locations far from the fixation location. The last component consisting of the transformer
layers contributes in three ways - 1. They allow global interactions, which allows the possibility of
using context-based decision-making. 2. They eliminate the need to design convolution layers on
top of non-uniform sampled features from the Foveation module. 3. Self-attention weights of the
transformer layers can be helpful in fixation guidance.

For the square pooling regions, the input image is first passed through the convolution backbone
resulting in a feature vector of size [384, 14, 14]. After adding the sinusoidal position embedding
and performing fixation-dependent average-pooling using the Foveation module, the feature size
reduces to [384, 22]. Pooled features of size [384, 22] are passed through the transformer layers,
followed by the classification layer resulting in a logits vector. We use the self-attention weights
from the last transformer layer to predict the subsequent fixation location. We make five fixations on
each image during the model training. This choice keeps the computational cost relatively the same
as the Baseline model. Model architecture is shown in Figure 2a.

The convolution backbone consists of six convolution layers and is structured similarly to the initial
layers of the ResNet-18 model. Square pooling regions can exploit the fast average-pooling library
functions, whereas the pooling in the radial-polar pooling regions needs custom implementation.
Four architectural changes make it possible for the FoveaTer model to perform serial processing,
achieve throughput improvements and retain information across fixations. Firstly, the Foveation
module is a plug-in module that can be preceded or succeeded by the transformer layers. However,
additional changes would be required for the convolution layers to follow the foveation module.
Secondly, the periphery (i.e., the pooling regions other than Fovea) pools the feature vectors and, as
a result, reduces the number of features processed by the subsequent layers. Thirdly, the attention-
based fixation guidance mechanism (FGM) helps predict the subsequent fixation location using the
attention values of current and past fixations. Lastly, the features from the past fixation’s foveal
locations are retained and processed along with the foveal and peripheral features of the current
fixation. Thus, allowing the model to access memory.
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Retention of foveal features: The number of feature vectors processed by the Foveation module
varies across fixations due to the retention of foveal features from past fixations. For each fixation,
if the number of peripheral and foveal features are A and B, the number of features processed by the
foveation module at Nth fixation equals A+NB.

Initial fixation for the Foveated model: The input feature map to the Foveation module has a
spatial size of 14 × 14 for the condition of square pooling regions. All locations except the last
and first row/column are potential fixation locations, resulting in 144 locations. We select a random
location as the initial fixation point during training, and the model guides subsequent fixations.

Loss function: We use Cross-entropy for computing the classification loss. Loss from all fixations
is incorporated to get the mini-batch loss, loss =

∑N
i=1 LCE(Oi, y) Where i corresponds to the

fixation index, N = 5 for the Foveated model & N = 1 for the Baseline model, i.e., single-pass,
y corresponds to the target label, Oi corresponds to the network output for fixation i, and LCE

correspond to cross-entropy loss.

3.1 FOVEATION MODULE

The mean feature vector corresponding to each pooling region is computed using P =

(1/M)
∑M−1

j=0 Ej , Where Ej is a feature vector belonging to that pooling region, and M is the
number of feature vectors in that pooling region.

We use square pooling regions for computational speed-up. Each image in a mini-batch has a cor-
responding fixation location. The fixation location represents the center of the visual field, allowing
us to align the input image/feature map with the visual field. After aligning the input feature map
with the visual field, features falling within a pooling region are average-pooled, and the resultant
pooled vector represents that pooling region. We use pooling regions with receptive field sizes 1×1,
5 × 5, 7 × 7 blocks on a feature map of size 14 × 14 blocks, as shown in Figure 2b. Each block
corresponds to a [16, 16] pixel region in the input image of width and height 224. Central 3 × 3
red block represents the high-resolution Fovea, where there is no average pooling. The next ring of
pooling regions, where the pooling region is green, has a receptive field of 5× 5 which translates to
an average pooling of 25 feature vectors to generate the representative feature vector for that pooling
region. Similarly, the rings of orange-colored pooling centers have receptive fields of 7× 7.

3.2 ACCUMULATOR

Accumulator uses the self-attention weights from the last transformer layer for fixation guidance.
Using the attention weights of the current and past fixations along with inhibition of return, the
Accumulator (see below) predicts the subsequent fixation location. A confidence map (CMN ) is
constructed based on the fixation point location by putting these weights back on a 14×14 map at the
corresponding pooling region’s location, where 14× 14 corresponds to the size of the input feature
map. Inhibition of return (IoR) (Dukewich & Klein, 2015) refers to a tendency in human observers
not to attend to previously attended or fixated regions. Old accumulated attention map (AMN−1) is
weighted by 0.5 and added to the current confidence map to create the new accumulated attention
map: AMN = 0.5 ∗ AMN−1 + CMN . The inhibition of return (IORN ) map is initialized with
zeros and is the same size as the feature map. Locations corresponding to the current fovea location
are changed to 16. After subtracting the IOR map from the accumulated attention map, max location
of the resultant map is used as the next fixation location FixN+1 = argmax (AMN − IORN ).

3.3 DYNAMIC-STOP OF FIXATION EXPLORATION:

Due to various factors such as occlusion, camera angle, and brightness, the difficulty of making
a classification decision varies across object classes and images. To achieve higher computational
efficiency in our Foveated model during inference, we stop exploring the images with fixations
when the predicted class with the highest probability reaches a pre-defined threshold corresponding
to that class. We compute the threshold from the training dataset’s set of all the correct prediction
probabilities. The model stops if the top prediction is above the 50th percentile of probabilities for
that class and the second-best prediction is below the 5th percentile for that respective class.
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Table 1: Ablation Studies: Four network components
are considered, and the percentage accuracy drop after
five fixations with respect to the Benchmark model is
reported in the last row. Checkmark (✓) indicates that
the model includes the component, while the dashed-
line (—) indicates that the component has been re-
moved.

Network component Benchmark Study 1 Study 2 Study 3 Study 4
Foveation ✓ ✓ ✓ ✓ ✓

Peripheral features ✓ — ✓ ✓ ✓
Foveal features ✓ ✓ — ✓ ✓

Retention of foveal features ✓ ✓ — — ✓
Inhibition of return ✓ ✓ ✓ ✓ —

Accuracy@1 76.29 62.85 72.60 75.29 75.23
Percentage drop 17.6 4.8 1.3 1.4

Figure 3: Study 5: Self-attention guid-
ance outperforms the random fixations
by 63%. Initial fixation at the top-left
corner. Time taken for computing five
fixations is shown in brackets.

4 ABLATION STUDIES

We study the contribution of different network components to model performance in five ablation
studies. The model was trained on ImageNet for 300 epochs and fine-tuned for 30 epochs for
each ablation study. The first two studies asses the importance of peripheral and foveal features.
Studies three and four assess the importance of memory provided by past foveal features and IoR,
respectively. Lastly, we look at the contributions of the fixation guidance mechanism. Results are
shown in Table 1 and Figure 3.

Study 1: Contribution of peripheral features: Peripheral features are essential because they
contribute to image classification and help decide the subsequent fixation location. There is a sharp
17.6% drop in the network performance by removing the peripheral features.

Study 2: Contribution of foveal features: Foveal features provide high-resolution information.
By removing access to foveal features of current and past fixations, the model loses access to all full-
resolution information. There is a 4.8% drop in the network performance by removing the foveal
features.

Study 3: Retention of the foveal features: We incorporate memory by retaining the past foveal
features and processing them along with the foveal and peripheral features of the current fixation.
Even without this network component, the network has some memory as the model makes fixations
to more informative locations using guided fixations. In this experiment, we remove the usage of
foveal features from past fixations, and as a result, the model performance drops by 1.3%.

Study 4: Contribution of Inhibition of Return: By limiting the model’s ability to revisit the
fixation locations of the past, we force the model to explore rather than get stuck at one location.
We only see a slight drop in performance of 1.4% without the IoR, signifying that the model can
operate well without IoR. The results suggest that the model can learn not to revisit locations without
explicitly implementing IoR.

Study 5: Effectiveness of Fixation guidance mechanism: Objects in the ImageNet dataset often
occupy a large part of the image. As a result, image classification might be possible by fixating
anywhere on a large percentage of the image. The importance of guided fixation is best illustrated
when a few image regions are informative. To identify that subset of images, we separate the testing
images into two groups, one with moderate difficulty and the other with too few or too many infor-
mative locations. To identify these two groups of images, we run our model under a one-fixation
condition at each possible fixation location and calculate the percentage of locations (PoL) with the
correct classification in that image. We use this as the metric for image difficulty, i.e., higher PoL
signifies less difficulty and vice versa. As there are 144 locations, PoL ranges from 0 to 144. We
label all the images where the PoL is more than one-eighth the maximum value, i.e., greater than 18,
as too easy. Similarly, images with a PoL of zero are labeled as too difficult. After removing the im-
ages labeled as too easy or too difficult, approximately 8% images fall in the middle, i.e., moderately
difficult category. Figure 3 shows the comparison of random and guided fixations on this subset of
images, and guided fixations have approximately 63% improvement over random fixations. We also
compare the fixation guidance using the Itti-Koch, Graph Based Visual Saliency (Harel et al., 2006)
and the DeepGaze-II model, where they take the image without foveation as input. Fixations guided
by self-attention outperform the fixations guided by the Itti-Koch model and are as effective as those
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Figure 4: Fixation guidance by different models

Figure 5: PGD attack:
Strength of the attack is
represented in terms of equiv-
alent gray levels.

guided by the Deep-Gaze II for later fixations. Lower performance than Deep-Gaze II in the first
fixations is not surprising since Deep-Gaze II is predicting the most likely regions to be fixated by
humans (not the order).

Comparing the time taken for fixation prediction, our fixation guidance is the fastest as we leverage
the model’s internal attention weights rather than running a separate model. Time taken for comput-
ing five fixations - Guided by self-attention (1.9ms) < Itti-Koch (240ms) < Deep-Gaze (603ms) <
GBVS (8427ms). Sample image fixations are shown in Figure 4.

5 ACCURACY AND ROBUSTNESS ON IMAGENET

In the following sub-sections, we compare the performance, computational complexity, and adver-
sarial robustness of the Foveated model against the Baseline. The Foveated model is trained for
five fixations, although it can work with any desired number of fixations at test time. Baseline and
Foveated models have the same 24M parameters.

We use the Patchconvnet (Touvron et al., 2021) architecture. We initialize the convolution backbone
with the weights from ResNet-18 (He et al., 2016) model, and the transformer layers are initialized
with the weights of the DeiT-small (Touvron et al., 2020) model and trained for 300 epochs with an
initial learning rate of 5e − 4 and a minimum learning rate of 1e − 5. We use AdamW (Kingma
& Ba, 2014; Loshchilov & Hutter, 2019) optimizer with a decay of 1e − 8 and a cosine learning
rate schedule. We use ImageNet (Deng et al., 2009) dataset for the results shown in the following
sub-sections. We use RTX A6000 GPUs for training and testing purposes. We report the number of
inferences completed by the GPU during a one-second time interval to compare the computational
complexity of different models during inference time.

5.1 TOP-1 ACCURACY:

For the Dynamic-stop, we first compute the throughputs of the Foveated model for each of the one to
five fixation conditions, followed by the number of images belonging to each of those five fixation
conditions. The throughput of the Dynamic-stop model is computed as the weighted Harmonic
mean of the throughputs of individual fixation models. Ensemble refers to a model composed of
both the Foveated and Baseline models. When the Dynamic-stop is applied, and the model cannot
make a decision even after the maximum number of fixations, the Ensemble model transfers the
responsibility of making a decision to the Baseline model.

We present the results on the ImageNet dataset in Table 2. The Deit-Small model has a throughput
of 1699 and Top-1 accuracy of 79.83. The Baseline, which has the same architecture as the Foveated
model except for the foveation module, has a throughput of 1229 and an accuracy of 81.90. Since
the first level of the pooling region is of size 5 × 5, we construct a pooled version of the baseline
model using 5 × 5 average-pooling. We compare this with the Foveated model with two fixations,
with approximately the same throughput. The Foveated model with two fixations outperforms the
uniformly pooled Baseline model, as shown in row 6. Dynamic-stop and Ensemble performances
are shown in the last two rows. The performance of the ensemble model reaches close to the Baseline
model in terms of throughput and accuracy.
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Table 2: Throughput and Accuracy on ImageNet: We compare our models against the baseline
model using Top-1 accuracy and Image throughput. (Uniform pool - uniform 5 × 5 pooling, CF -
initial fixation at image center, Rand - random initial fixation)

Model Pooling type Fixations Type Throughput Acc@1

DeiT-Small 1699 79.83

Baseline 1229 81.90
Uniform pool 2506 70.90

Foveated Square

Rand-1 3820 69.80

CF-1 3820 72.80
CF-2 2307 74.70
CF-3 1506 75.40
CF-5 923 76.30

CF-3 Dynamic Stop 2169 75.30
CF-3 Ensemble 1236 81.30

Figure 6: Mean agreement values of the Baseline and the Foveated models with human decisions
(correct/incorrect). Error bars refer to the standard error across 22 participants. Paired t-test p values
indicate statistical significant agreement differences across scales, **p < 0.01, *p < 0.05.

5.2 ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

We consider the Projected Gradient Descent (PGD) attack to compare the robustness of Foveated
and Baseline models. PGD uses ten iterations with a step-size of ϵ/5 and l-infinity norm. We use
Cleverhans library (Papernot et al., 2018) for implementing the adversarial attacks. Figure 5 shows
the model accuracy after attacking the input image with the adversarial attack. Epsilon (ϵ) represents
the strength of the attack. Foveated model displays strong defense as compared to the Baseline
model. Foveated model consistently outperforms the Baseline model. A comparison with existing
models, showing the robustness of the foveated systems against adversarial attacks, is demonstrated
in Appendix A.3.

6 BIOLOGICALLY PLAUSIBLE FOVEATER

Radial-Polar pooling makes the model more biologically plausible. Through psychophysics exper-
iments of image discrimination and modeling, Freeman & Simoncelli (2011) showed that different
layers of the visual cortex correspond to different scales where the scale parameter determines how
many radial and polar pooling regions are present in that configuration. We use this model to predict
human decisions in a scene classification psychophysics task while maintaining fixation and cali-
brate the scaling parameters of the pooling regions of FoveaTer. Figure 6 shows examples of various
configurations.

6.1 CALIBRATION OF RADIAL-POLAR POOLING REGIONS

We used thirty scene categories from the places365 dataset (Zhou et al., 2018) to create the experi-
ment dataset. The task was to classify each image into one of the 30 categories. Sixty images were
presented, with each image subtending 22.7 x 22.7 degrees visual angle, and observers fixated at
the bottom-center or top-center within the images (2.2 degrees from the top or bottom edges of the
image, Figure 6). Real-time infra-red video eye tracking allowed for interruption of the displayed
image when observers made an eye movement.
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Table 3: Throughput and Accuracy on ImageNet using radial-
polar pooling regions with Scale 0.84: All foveated models made
three fixations. (CF - initial fixation at image center)

Model Type Throughput Acc@1

Baseline 1229 81.90

Foveated
(square)

1506 75.40
Dynamic Stop 2169 75.30

Ensemble 1236 81.30

Foveated
(Radial-
Polar)

117 76.69
Dynamic Stop 198 76.65

Ensemble 186 81.52

Figure 7: PGD attack on
Foveated model with radial-
polar pooling regions.

We tweaked the last convolutional layer so that the convolution backbone of the model outputs a
56 × 56 × 384 feature map instead of a 14 × 14 × 384 feature map, thus allowing us to apply the
pooling regions on a higher resolution feature map. We train multiple models with different scale
values for spatial pooling. For each scale, Foveated model is trained for 60 epochs after initializing
the weights with the square-pooled Foveated model trained on ImageNet.

Error consistency metric (Geirhos et al., 2020) produces the normalized decision agreement between
two observers, where the normalization is a function of the accuracy of both observers. We com-
puted the mean agreement between the human decisions and the Foveated model for a set of scales
as shown in Figure 6. We also computed the mean agreement between human decisions and the
Baseline model (independent of scale). For scales corresponding to V2 (scale-0.46) and V4 (scale-
0.84) layers of the visual cortex, we observe a significant difference between the mean agreement of
humans with Foveated and Baseline models. Although the accuracy of the Baseline model (0.93) is
higher than the Foveated model (0.86), human decisions with a mean accuracy of 0.83 are in better
agreement with the Foveated model. The fixation at the top-center or the bottom-center limited the
image information accessible to the human observers, which the Full-resolution fails to model. Our
findings suggest that human categorization of scenes within a single fixation can be better predicted
with FoveaTer with pooling regions that scale according to properties of the visual cortex (V1 and
V4).

6.2 ACCURACY AND ROBUSTNESS ON IMAGENET

We evaluated FoveaTer’s accuracy and robustness using pooling parameters (scaling 0.84, V4) that
predicted human scene classification decisions and were computationally efficient (relative to V1).
Results are shown in Table 3. The throughput of the Foveated model with radial-polar pooling
regions is very low due to the lack of library functions implementing the radial-polar pooling. As the
specialized hardware performing neuro-foveal pooling becomes available in the future, throughput
gaps will disappear, and the Foveated model will become competitive with the Baseline models.
Adversarial robustness of Foveated model against PGD attack with radial-polar pooling regions is
illustrated in Figure 7. As with the square pooling regions, Foveated model with radial-polar pooling
regions is also more adversarial robust than the Baseline model.

7 CONCLUSION

We provided a comprehensive framework for using foveal processing and fixation exploration on
a Vision Transformer architecture for image classification. The proposed architecture introduces a
way to limit computations required to process an image by flexibly adjusting the required number
of fixations, providing robustness to adversarial attacks, and giving us a model that can allocate
computational resources based on the difficulty of an image. Our ablation studies highlight the im-
portance of peripheral processed features, how the self-attention guiding eye movements learn to
inhibit revisits and results in accuracy similar to a model guided by predictions of human fixation
(DeepGaze). We also implemented a more biologically plausible implementation with radial polar
pooling and showed that pooling parameters corresponding to visual cortical areas V1 and V4 could
explain human scene categorization decisions better than the Baseline non-foveated model. In con-
clusion, we leveraged the most recent Vision Transformer architecture and combined it with ideas
from foveated vision to come up with a model which has multiple knobs in terms of the number of
fixations to be executed and limits on the computations performed so that the end-user will have the
flexibility to fine-tune depending on their needs.
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Bolei Zhou, Àgata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 mil-
lion image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40:1452–1464, 2018.

13

https://proceedings.neurips.cc/paper/2020/file/17256f049f1e3fede17c7a313f7657f4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/17256f049f1e3fede17c7a313f7657f4-Paper.pdf
http://proceedings.mlr.press/v37/xuc15.html
http://proceedings.mlr.press/v37/xuc15.html


Under review as a conference paper at ICLR 2023

(a) FoveaTer architecture: Solid black arrows denote the flow of image-related features.
N is the total number of transformer layers. The foveation module performs fixation-
dependent pooling. Accumulator uses the attention weights from the last transformer
layer of past and present fixations to predict the next fixation location. Model blocks
within the yellow region are executed for each fixation.

Figure 8

A APPENDIX

A.1 ALTERNATE MODEL

We present a less biologically plausible Foveated model in this section. With this architecture, the
ensemble model can outperform the Baseline model.

DeiT-Small Touvron et al. (2020): The DeiT-Small architecture begins with a convolution em-
bedding layer that transforms the [3, 224, 224] input image into a [384, 14, 14] representation whose
spacial size is 14 × 14, followed by a series of twelve transformer blocks, each sized for a 384-
dimensional embedding.

Foveated model: Model architecture is shown in Figure 8a. The Foveation module can be plugged-
in at any stage of the transformer architecture. The first m transformer layers process full-resolution
features, and the last (N-m) transformer layers process the pooled features from the foveation mod-
ule. The input image is first passed through the embedding layer resulting in a feature vector of size
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Table 4: Throughput and Accuracy on ImageNet: We compare our models against the baseline
model using Top-1 accuracy and Image throughput. (DS - Dynamic stop, Ens - Ensemble, Pool -
uniform 5× 5 pooling, CF - central fixation)

Condition Model Fixations Type Throughput Acc@1

Baseline DeiT-Small Baseline 323 79.83

Pooled DeiT-Small Pool 592 73.64
Model CF-1 564 75.2

Upper
bound

Oracle CF-3 DS 507 80.36
Oracle CF-3 Ens 388 84.27

Optimal CF-3 DS 489 78.31
CF-3 Ens 348 79.99

[384, 14, 14]. After adding the position embedding and flattening the spatial size of the embedding
layer output, the resultant full-resolution feature vector of size [384, 196] is passed through the m
transformer blocks along with a learnable vector of size 384 values, called a class token. As the
same size is maintained at the input and output of the transformer layer, a feature vector of size
[384, 196] is obtained at the input of the Foveation module. Then, we perform fixation-dependent
average-pooling using the Foveation module, resulting in features of size [384, 22]. Under this non-
uniform average-pooling model, locations closer to the fixation location use smaller neighborhoods
for pooling than locations far from the fixation location. Pooled features of size [384, 22] along with
the class token are passed through the remaining (N-m) transformer layers. We use the self-attention
weights corresponding to the class token from the last transformer layer to predict the next fixation
location. Finally, the classification layer transforms the class token into a logits vector. During
training, the total number of fixations is limited to five fixations.

We use a 6-6 configuration, i.e., six transformer layers before the Foveation module and six trans-
former layers after it. We present the results on the ImageNet dataset in Table 4. The original
full-resolution model is referred to as ’Baseline’, which has a throughput of 323 and Top-1 accuracy
of 79.83. Since the first level of the pooling region is of size 5 × 5, we construct a pooled version
of the baseline model using 5 × 5 average-pooling. We compare this with the foveated model with
one fixation at the image center, with approximately the same throughput. The foveated model with
single fixation outperforms the pooled baseline model, as shown in row 3. ’Oracle’ refers to the
model with perfect Dynamic-stop, i.e., it knows the ground truth and stops the model when the pre-
diction matches the ground truth. Since ’Oracle’ has the perfect stopping rule, it provides the upper
bound on the performance of the Dynamic-stop model. Dynamic-stop and Ensemble performance is
computed. Finally, the Foveated model’s ensemble model outperforms the Baseline model in terms
of throughput and accuracy.
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A.2 SCENE CATEGORIES USED FOR PSYCHOPHYSICS EXPERIMENT

Classes present in the scene classification task,

1. airport terminal
2. amphitheater
3. assembly line
4. bamboo forest
5. banquet hall
6. basement
7. beach
8. boxing ring
9. bus interior

10. canal natural
11. canyon
12. classroom
13. cliff
14. corn field
15. department store
16. desert sand
17. dining room
18. forest path
19. glacier
20. greenhouse indoor
21. gymnasium indoor
22. jail cell
23. museum indoor
24. phone booth
25. railroad track
26. sauna
27. subway station platform
28. water park
29. wind farm
30. zen garden
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A.3 COMPARISON OF FOVEATER WITH EXISTING MODELS

Luo (2016) Reddy (2020) Ours
Dataset ImageNet CIFAR10, ImageNet ImageNet, Places365 subset

Baseline Architecture CNN (AlexNet, VGG, GNT) CNN (ResNet) Vision Transformer (deit)
Image scaling Yes No No

Adversarial attacks BFGS, sign method FGSM, PGD PGD
Resource usage (N fix) 1x Retinal - Nx, Cortical - 1x 0.8x for 3 fix

Foveation Location Input image Input image can plug-in anywhere

Table 5: Comparison with existing models

Comparison with existing models, which show the robustness of the foveated systems against ad-
versarial attacks, is demonstrated in Table 5. Our model is based on Vision transformer architecture
compared to the other models on CNN architectures. Our model can also be extended to have a con-
volution backbone, as shown in the supplementary material. We do not perform any image scaling.
Our resource usage is 0.8× that of the full resolution model. We allow the possibility of applying
foveation to an intermediate feature map rather than restricting it to be applied only to the input
image.
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