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Figure 1. We present SuperGSeg, a novel method that clusters similar Gaussians into superpoint-like representations, termed Super-
Gaussians (SuperGs). SuperGSeg enables efficient integration of diverse feature fields for comprehensive 3D scene understanding. Left:
Querying SuperGs’ language features enables open-vocabulary 3D object selection, producing consistent 3D masks that extend beyond 2D
visible surfaces, e.g., the leg of the sheep under the table. Middle: Grouping SuperGs by instance features enables promptable instance
segmentation. Right: Further splitting instances via hierarchical features enables fine-grained hierarchical segmentation.

Abstract

3D Gaussian Splatting has recently gained traction for
its efficient training and real-time rendering. While its
vanilla representation is mainly designed for view syn-
thesis, recent works extended it to scene understanding
with language features. However, storing additional high-
dimensional features per Gaussian for semantic informa-
tion is memory-intensive, which limits their ability to seg-
ment and interpret challenging scenes. To this end, we in-
troduce SuperGSeg, a novel approach that fosters cohesive,
context-aware hierarchical scene representation by disen-
tangling segmentation and language field distillation. Su-
perGSeg first employs neural 3D Gaussians to learn ge-
ometry, instance and hierarchical segmentation features

* Equal contribution.

from multi-view images with the aid of off-the-shelf 2D
masks. These features are then leveraged to create a
sparse set of Super-Gaussians. Super-Gaussians facilitate
the lifting and distillation of 2D language features into 3D
space. They enable hierarchical scene understanding with
high-dimensional language feature rendering at moderate
GPU memory costs. Extensive experiments demonstrate
that SuperGSeg achieves remarkable performance on both
open-vocabulary object selection and semantic segmenta-
tion tasks. More results at supergseg.github.io.

1. Introduction

3D Gaussian Splatting (3DGS) [1] has rapidly emerged as a
compelling alternative to NeRF [2] for its efficient training,
real-time rendering, and explicit 3D representation. These
advantages make 3DGS well-suited for a broad range of ap-

supergseg.github.io


plications, including 3D reconstruction [3–5], content gen-
eration [6], and scene understanding [7–12]. A particu-
larly promising direction involves extending 3DGS frame-
works to open-vocabulary understanding, enabling flexible,
language-driven interaction with 3D scenes [13, 14].

Several recent methods aim to enable such open-
vocabulary capabilities in 3DGS by distilling language fea-
tures from both 2D [7, 9, 15, 16] and 3D [11, 12] perspec-
tives. In 2D-based methods, language features extracted
from images are lifted into 3D by exploiting the multi-view
consistency inherent in 3DGS rendering. To reduce the
substantial memory and computation overhead of storing
and processing high-dimensional language features for each
Gaussian, these methods employ dimensionality reduction
techniques [7, 9]. However, this compression inevitably
discards fine-grained semantic information. Another limi-
tation is their inability to recognize partially occluded ob-
jects, which is often necessary in 3D understanding tasks.
Text queries are performed on rendered pixels, which only
capture the visible surface along each viewing ray. Con-
sequently, objects that are partially or fully hidden cannot
be retrieved. In contrast, 3D methods [11, 12] perform text
queries directly in 3D space at the point level, which enables
the retrieval of occluded objects by rendering the queried
Gaussians into masks (see Figure 5), but also introduces
new limitations. By directly associating language features
with individual Gaussians and decoupling alpha blending,
they cannot render consistent language feature maps in pixel
space, which in turn makes them unsuitable for tasks such
as pixel-wise dense semantic segmentation in 2D.

To address the aforementioned issues, we introduce a
novel approach that: (1) preserves high-dimensional lan-
guage feature embeddings without information loss, (2)
handles occlusions by operating directly in 3D space, and
(3) supports multi-granular segmentation, ultimately en-
abling open-vocabulary queries in both 2D and 3D, as
shown in Figure 1. Inspired by superpoints [17] in point
cloud analysis, our method clusters millions of Gaussians
into a compact set of Super-Gaussians (SuperGs). However,
due to the inherent noise in Gaussian point clouds, cluster-
ing solely based on Gaussian positions often produces sub-
optimal groupings. Instead, we leverage instance and hier-
archical features extracted from grouped SAM masks [18]
to guide clustering via an adaptive online clustering net-
work [19]. For open-vocabulary scene understanding, we
further distill 2D CLIP features [13] onto SuperGs that in-
tegrate both spatial and semantic information. This compact
representation allows language features to be assigned at the
SuperG level rather than to each individual Gaussian [7–
9], thereby reducing the number of learnable language fea-
tures from millions to only thousands, significantly lower-
ing memory usage while retaining the full descriptive power
of the original high-dimensional features.

Extensive experiments on the LERF-OVS [7] and Scan-
Net [20] datasets show that our method achieves remarkable
performance in open-vocabulary 3D object retrieval and
scene-level semantic segmentation, demonstrating superior
capability in producing complete and consistent masks for
3D object retrieval and capturing fine-grained scene details
for 2D dense pixel-wise segmentation. We summarize the
main contributions as follows:
• We introduce SuperGSeg, a novel 3D scene understand-

ing framework built on Super-Gaussian representations,
enabling effective high-dimensional language feature dis-
tillation without information loss.

• We propose a novel neural Gaussian rasterization pipeline
that distills instance and hierarchical feature fields, facil-
itating Super-Gaussian clustering and supporting multi-
granular scene understanding.

• We design an online clustering network that adaptively
fuses geometric, semantic, and appearance cues to gener-
ate Super-Gaussians, thus improving clustering quality.

2. Related Work
3D Open-Vocabulary Understanding. Advancements in
universal 2D scene understanding, driven by foundation
models such as CLIP [13] and SAM [21], have motivated
the integration of language-aligned features into 3D scene
representations. Early efforts incorporated these 2D fea-
tures [13, 22] into NeRF-based representations [23, 24],
enabling open-vocabulary queries in 3D scenes but at the
cost of slow rendering and high memory usage. More
recently, the emergence of 3DGS as a high-quality, real-
time alternative for novel view synthesis has inspired ex-
tensions toward 3D scene understanding. For example,
LangSplat [7] employs a scene-specific language autoen-
coder to compress high-dimensional CLIP features, provid-
ing clear object boundaries in rendered feature images while
reducing memory usage. Feature3DGS [9] introduces a par-
allel Gaussian rasterizer with a lightweight convolutional
decoder to distill high-dimensional features for tasks like
scene editing and segmentation. However, these dimension-
ality reduction techniques inevitably discard fine-grained
semantic information. OpenGaussian [11] instead directly
associates uncompressed, lossless CLIP features with 3D
Gaussians, preserving complete semantics and enabling the
retrieval of visually occluded objects by performing queries
directly in 3D space. Nevertheless, its decoupled language
codebook design makes per-pixel 2D language feature ren-
dering infeasible, thereby limiting performance on dense,
pixel-wise semantic prediction tasks.

Despite notable progress, most existing methods fo-
cus primarily on instance-level knowledge while neglect-
ing fine-grained part-level semantics [10, 11], or require
separate models for different semantic granularities [7].
While recent methods [18, 25] explore hierarchical 3D un-
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Figure 2. SuperGSeg Overview. We initialize the 3D Gaussians from a sparse set of anchor points, each generating k Gaussians with
corresponding attributes. First, we train the appearance and segmentation features using RGB images and segmentation masks generated
by SAM [21]. Next, we use the segmentation features and their spatial positions to produce a sparse set of Super-Gaussians, each carrying
a 512-dimensional language feature. Finally, we train this high-dimensional language feature using a 2D feature map from CLIP [13].

derstanding at the part-level, they lack support for open-
vocabulary language queries, leaving the joint modeling of
multi-granularity 3D representation with language feature
largely unexplored. In contrast, our method integrates both
instance and hierarchical features from 2D inputs, and in-
troduces a Super-Gaussian based language field that fuses
segmentation information with the spatial distribution of
3D Gaussians, thereby enabling open-vocabulary, multi-
granularity, and occlusion-robust 3D segmentation.

Superpoints. Superpoints have long served as funda-
mental primitives for various point cloud understanding
tasks [19, 26–31]. Early approaches, such as Voxel Cloud
Connectivity Segmentation (VCCS) [32], segment a vox-
elized 3D grid into spatially coherent regions using region-
growing variants of K-means clustering. More recent
works leverage learned point cloud representations [33, 34]
to infer superpoints directly from 3D scans [19, 27, 35].
Superpoints have also been adopted for open-vocabulary
3D segmentation [17], demonstrating robustness in com-
plex scenes. However, directly applying superpoint meth-
ods to 3DGS is challenging due to noisy Gaussian geom-
etry. To address this, we leverage instance- and part-level
cues from 2D foundation models to guide superpoint for-
mation, effectively bridging high-quality 2D features with
noisy 3D Gaussian representations.

3. Method

Given a set of posed RGB images, our goal is to reconstruct
a 3D scene with a compact language feature field that sup-
ports open-vocabulary querying of arbitrary concepts. To
achieve this, we propose a three-stage training paradigm,
as shown in Figure 2. In the first stage, we train a neural
variant of 3DGS [36] to reconstruct scene geometry using
N ′ anchor points, each having a geometry feature fg and a
segmentation feature fs. Anchor points are then spawned
into a set of neural Gaussians and optimized. In the second
stage, a learnable cluster network groups the anchors into
S SuperGs using fg , fs, and anchor position x, ensuring
geometric and semantic consistency. Since S ≪ N ′, this
yields a far more compact representation. In the third stage,
we learn a language feature f̂ l for each SuperG, enabling
open-vocabulary queries on just S SuperGs rather than mil-
lions of individual Gaussians.

3.1. Preliminaries: Neural Gaussian Splatting

We begin with Stage 1 of our pipeline: modeling the scene
geometry with Scaffold-GS [36] structure. Vanilla 3DGS
represents a scene with N Gaussians, each parameterized
by a center µ, opacity α, color c, scale s and quaternion q.
These Gaussians are projected onto the image plane [37]
and rendered into RGB images via α-blending. While



achieving leading rendering quality and speed, optimizing
each Gaussian independently often leads to overfitting, re-
dundancy, and degraded robustness in challenging regions
such as texture-less surfaces. Scaffold-GS addresses these
issues by voxelizing the scene into N ′ anchor points, each
at position x. From each anchor, k neural Gaussians are de-
rived, where centers are computed as x plus learnable off-
sets, and the remaining attributes (α, c, s, q) are produced
on the fly from the anchor’s geometry feature fg via ded-
icated MLPs. By tying Gaussians to anchors, Scaffold-GS
constrains their spatial distribution to the scene structure,
preventing uncontrolled growth and improving robustness.

Training in 3DGS typically relies on a photometric loss
LRGB , where rendered RGB images are supervised against
ground-truth views. Unlike vanilla 3DGS that optimizes
(µ, α, c, s, q)N , with N often reaching millions for com-
plex scenes, Scaffold-GS optimizes only (fg)N ′ , the Gaus-
sian offsets, and MLP weights, which significantly reduces
parameters. This anchor-based formulation naturally yields
a coarse partition of the Gaussian space, providing a strong
basis for our subsequent clustering into SuperGs.

3.2. Segmentation Feature Field Distillation

Given N ′ anchor points representing the scene geometry,
the next step is to group them into S superpoints, each form-
ing a SuperG through its derived neural Gaussians. Ideally,
each SuperG should align with a single semantic entity in
the scene. However, clustering anchors solely by their ge-
ometry features fg or positions x is suboptimal, since an-
chors from distinct objects can be spatially adjacent or ge-
ometrically similar. To overcome this limitation, we intro-
duce an additional segmentation feature fs, distilled from
2D SAM masks, which encodes both instance- and part-
level semantic cues to guide the SuperG clustering.

Hierarchical Partitioning of SAM Masks. Given an
input RGB image, SAM [21] generates a set of 2D seg-
mentation masks. These masks can, however, overlap with
each other, leading to pixels belonging to multiple masks
and thus obscuring the inherent part-instance hierarchy.
Prior works either train separate models for each mask
level [7, 38, 39], which is less efficient, or rely only on
coarse instance-level masks [11, 40], discarding the finer
part-instance relations. To overcome this, we adopt a hier-
archical representation [18] that restructures the masks into
non-overlapping instance-level masks M for whole objects
and part-level patches P for finer components, which to-
gether provide supervision for learning both object-level se-
mantics and intra-object details in the segmentation feature
field. Implementation details and example mask visualiza-
tions are provided in Appendix B.

Instance and Hierarchical Feature Field. As shown
in Figure 2, we assign each anchor point a segmentation
feature fs. We pass fs together with the anchor position x
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Figure 3. The architecture of the SuperG Cluster Network.

to a segmentation decoder to get the instance feature g and
hierarchical feature h for each neural Gaussian. Through
the vanilla Gaussian Splatting pipeline, we rasterize g and
h to generate the 2D instance feature map Ĝ ∈ RDg×H×W

and the 2D hierarchical feature map Ĥ ∈ RDh×H×W .
To train the segmentation features, we leverage a con-

trastive learning objective [18, 41] to enforce cross-view
consistency, encouraging features from the same mask
to be similar while pushing apart those from different
masks. Specifically, we represent the set of SAM-generated
instance-level masks as M = {mp ∈ RH×W | p =
1, . . . , |M|}. Given an instance mask mp, we collect all
rendered instance features whose pixels fall inside the mask,
and denote this set as ĝp = {ĝpt ∈ Ĝ | t = 1, · · · , |ĝp|}.
We compute the mean instance feature value within mp as
ḡp and the contrastive instance feature loss LIns is:

LIns = − 1

|M|

|M|∑
p=1

|ĝp|∑
t=1

log
exp (ĝpt · ḡp/τp)∑|M|
q=1 exp (ĝ

p
t · ḡq/τq)

, (1)

where τ is the cluster temperature. We adopt a similar hier-
archical feature loss LHier from Omniseg3D [18], but ap-
plied to part-level patches P to supervise our hierarchical
feature h. We refer to Appendix B for more details. Com-
bined with the reconstruction loss introduced in Section 3.1,
these objectives define the overall training loss for Stage 1:

Lstage1 = LRGB + λInsLIns + λHierLHier. (2)

3.3. Super-Gaussian Clustering

After learning anchor-level geometry and segmentation fea-
tures, we proceed to Stage 2, where anchors are grouped
into semantically meaningful SuperGs to form a compact
representation. However, contrastive learning struggles to
separate objects that never co-occur in training [25], po-
tentially grouping too distant Gaussians. To ensure spa-
tial compactness and semantic consistency, we incorpo-
rate the anchor positions x alongside segmentation features
fs, while geometric features fg provide appearance cues



for refinement. A straightforward baseline is to apply K-
means clustering [12] to the concatenated feature space of
{x,fg,fs}. Yet, this approach fails when appearance cues
misalign with semantics (e.g., diverse textures within an ob-
ject). Moreover, K-means assumes equal importance across
concatenated features, without the flexibility to adapt their
relative relevance during clustering.To improve the cluster-
ing quality, we instead propose a learnable SuperG cluster-
ing network (see Figure 3), inspired by [19]. It follows two
steps: initialization and iterative refinement.

Super-Gaussian Initialization. We apply the Farthest
Point Sampling algorithm [42] on anchor points to initial-
ize SuperGs, averaging each a position x̂. Each SuperG has
a geometry feature f̂g and segmentation feature f̂s, which
are initialized as the mean value of the corresponding an-
chors’ features {fg,fs}.

Super-Gaussian Update. We denote the nearest k Su-
perGs to the i-th anchor as Ni. The association probability
matrix A ∈ RN ′×k [19, 43] is used to weight the contri-
bution of each SuperG to its corresponding anchor, where
N ′ is the number of anchors and k is the number of nearest
SuperGs. Specifically, the association probability between
the j-th SuperG (j ∈ Ni) and the i-th anchor is:

Aij = Fsg

(
Fϕ(xi, x̂j), Fφ(f

s
i , f̂

s
j ), Fψ(f

g
i , f̂

g
j )
)
, (3)

where Fϕ, Fφ, and Fψ are lightweight MLP decoders
that output relevance weights in terms of spatial, semantic,
and geometric information, respectively. The concatenated
weights are then passed to the prediction decoder Fsg for the
normalized association probability matrix prediction. Un-
like K-means, this design dynamically adjusts the contri-
bution of each SuperG to its corresponding anchor.

We iteratively update SuperGs through the association
matrix A. At iteration t + 1, each SuperG’s position and
features are updated with its corresponding anchors:

êt+1
j =

1∑N ′

i=1 I(j ∈ Ni)At
ij

N ′∑
i=1

I(j ∈ Ni)A
t
ijei, (4)

where I denotes the indicator function, e ∈ {x,fg,fs} are
the anchor’s attributes and ê ∈ {x̂, f̂g, f̂s} are SuperG’s.

We optimize the SuperG clustering network to learn the
association matrix A, ensuring that the derived SuperG at-
tributes ê accurately reconstruct the anchor attributes e.
Note that e from Stage 1 (Section 3.2) are now frozen:

Lrecon,e =
1

N ′

N ′∑
i=1

∥ei −
∑
j∈Ni

Aij êj∥. (5)

However, anchors within the same SuperG may be se-
mantically similar yet spatially distant, especially when
contrastive learning fails to optimize instances that never
co-occur in the same view. To enforce spatial coherence,
we introduce a compactness objective:

Lcompact,X =
1

S

S∑
j=1

∑
x∈Xj

∥x− x̂j∥, (6)

where Xj is the set of anchors’ position assigned to the j-
th SuperG. This loss encourages assigned anchors to cluster
around their SuperG center and avoid fragmentation.

3.4. Language Field Distillation

Building on the clustering from Stage 2 (Section 3.3), in
Stage 3, we distill 2D CLIP features into our compact
set of S SuperGs, rather than into millions of individual
3D Gaussians to enable open-vocabulary 3D scene under-
standing. This design ensures consistent, robust, and high-
dimensional language representations, while avoiding the
feature degradation typically caused by the lossy compres-
sion used in Gaussian-based distillation approaches.

Since all Gaussians within a SuperG are expected to
share the same semantics, we assign each SuperG a learn-
able latent language feature f̂ l. As shown in Figure 2, this
latent feature, together with the SuperG position x̂, is de-
coded by a language feature MLP FL to produce a CLIP-
aligned feature: l̂ = FL(f̂

l, x̂). We then modify the ras-
terizer to render a language feature map L̂, using l̂ and
the anchor-SuperG association map A. For supervision, in-
stance masks obtained in Section 3.2 are encoded using the
CLIP image encoder to produce target 2D CLIP features L.
The latent features f̂ l and the decoder FL are jointly opti-
mized using a cosine similarity loss:

LLang = 1− cos(L̂,L). (7)

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate our method on the open-vocabulary
novel view semantic segmentation and object selec-
tion tasks using the ScanNet v2 [20] and LERF-OVS [7]
datasets. ScanNet v2 [20] includes posed RGB images
and 2D semantic labels of indoor scenes. We randomly
select 8 scenes from the dataset. These include a vari-
ety of indoor environments, e.g., living rooms, bedrooms,
kitchens, and offices. For each scene, we split the data into
a training set (composed of every 20th image from the orig-
inal sequence) and a test set (derived from the intermedi-
ate images between the training set samples). For semantic
segmentation, we specifically use the 20 object categories.
LERF-OVS [7] consists of complex in-the-wild scenes cap-
tured with consumer-level devices, annotated with ground
truth masks of textual queries to enable evaluation for open-
vocabulary object selection tasks.

Baselines and Metrics. We compare our method with
representative NeRF-based and 3DGS-based baselines, in-
cluding LERF [23], LangSplat [7], LEGaussian [8], and
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Figure 4. Qualitative comparison of semantic segmentation predictions on the ScanNet v2 dataset [20].

mean wall floor cabinet chair refrigerator curtain
Method mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc

LERF [23] 38.5 60.4 35.2 82.8 60.1 68.8 52.0 82.7 10.9 10.9 69.9 90.2 70.2 77.8
LEGaussians [8] 8.7 33.2 17.9 53.1 14.6 20.6 2.7 18.6 0.4 28.7 9.0 74.3 1.9 10.4
OpenGaussian [11] 24.1 68.7 13.4 96.6 31.2 74.4 0.3 22.9 36.5 83.4 88.0 98.3 17.7 79.2
LangSplat [7] 27.6 48.3 45.3 72.6 43.3 45.6 24.8 56.7 18.0 48.5 0.7 33.3 46.8 66.5
SuperGSeg [ours] 54.7 74.7 58.8 92.9 53.6 86.5 69.8 83.8 80.4 83.8 79.4 80.2 61.8 64.5

Table 1. Comparison on the ScanNet v2 dataset [20]. We report the mean result and detailed scores for the most common object categories,
following the evaluation protocol of [44]. Results for more categories are provided in the Appendix E.

OpenGaussian [11]. For the open-vocabulary semantic seg-
mentation task, CLIP-encoded text features are compared
with rendered 2D language feature maps via cosine similar-
ity to produce per-pixel semantic predictions [9], evaluated
with mean Intersection over Union (mIoU) and mean Accu-
racy (mAcc). For the open-vocabulary object selection task,
we perform text queries directly in 3D space [11], retrieving
the most relevant SuperGs and rendering them into 2D for
evaluation with mIoU and mAcc. Since NeRF is an implicit
representation without explicit 3D positions, LERF cannot
be applied to this task. We also report inference-time effi-
ciency, measuring both runtime and memory consumption
for text queries on trained 3D scenes. Specifically, we per-
form multiple queries from different viewpoints and report
the average query time. We consider this metric particularly
important for assessing the feasibility of deploying mod-
els on resource-constrained devices and enabling real-time
querying in practical scenarios.

Implementation Details. The training process is di-
vided into 3 stages. In the first stage, we train the Scaffold-
GS [36] with instance and hierarchical features for 30k it-
erations. In the second stage, we freeze the geometry and
segmentation features from stage one and train only the Su-
perG clustering network for another 30k iterations. In the

last stage, we freeze all other parameters and optimize the
language features for each SuperG for 10k iterations. For
more implementation details, we refer to Appendix B.

4.2. Open-Vocabulary Semantic Segmentation

Quantitative Results. As shown in Table 1, SuperGSeg
achieves the best overall scores in both mIoU and mAcc
among the compared methods, demonstrating its effective-
ness in capturing the open-set information of the scene,
yielding remarkable performance in a variety of object cat-
egories. In comparison, LEGaussian [16] shows lower per-
formance on both metrics, suggesting limited generalization
across multiple object categories. LangSplat [7] performs
better than LEGaussian but still shows reduced accuracy in
more diverse categories. OpenGaussian [11] obtains com-
petitive results on certain large structures such as wall and
floor, but its overall scene-level performance remains below
ours. LERF [23] achieves the second-highest mIoU, though
its relatively low mAcc suggests difficulties in producing
clear segmentation boundaries.

Qualitative Results. As shown in Figure 4, our method
produces sharper and more semantically consistent masks
than the compared methods. While OpenGaussian [11]
demonstrates competitive performance in 3D object-level
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“rubber duck” “red toy chair”

“nori” “chopsticks”

“stuffed bear” “coffee mug”

Figure 5. Qualitative comparison on the LERF-OVS dataset [23] for the open-vocabulary 3D object selection task. Text queries for each
scene are displayed in quotation marks. SuperGSeg delivers more precise and less noisy segmentation masks.

Inference mean figurines teatime ramen waldo kitchen
Method Time Mem. mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc

LangSplat [7] 3.28s 18GB 9.66 12.41 10.16 8.93 11.38 20.34 7.92 11.27 9.18 9.09
LEGaussians [8] 4.42s 5GB 16.21 23.82 17.99 23.21 19.27 27.12 15.79 26.76 11.78 18.18
OpenGaussian [11] 5.55s 9GB 38.36 51.43 39.29 55.36 60.44 76.27 31.01 42.25 22.70 31.82
SuperGSeg [ours] 0.50s 4GB 35.94 52.02 43.68 60.71 55.31 77.97 18.07 23.94 26.71 45.45

Table 2. Open-vocabulary 3D object selection comparison on the LERF-OVS dataset [7]. LERF [23] is not applicable for this task. We
report the mIoU and mAcc of compared methods as provided in [11], and measure inference cost using their official implementations.

semantic segmentation (Section 4.3), it struggles in dense
pixel-wise semantic segmentation. This is evident with oc-
clusions due to projections onto 2D-pixel space. Without al-
pha blending, the occluded Gaussians cannot be effectively
distinguished from one another. Instead, LangSplat [7] pro-
duces fine border segmentation but often includes incorrect
semantic labels and noisy predictions, likely due to the lossy
encoding of language information. LERF [23] presents ac-
curate semantic prediction but with imprecise boundaries,
limiting its applicability in fine-grained segmentation tasks.

4.3. Open-Vocabulary Object Selection

Quantitative Results. SuperGSeg improves over baseline
methods that assign and optimize language features per
Gaussian [7, 9, 16]. As shown in Table 2, clustering Gaus-
sians into SuperGs enhances both spatial and semantic ac-
curacy over per-Gaussian methods. We further compare Su-
perGSeg to OpenGaussian [11], another method exploring
3D Gaussian clustering. OpenGaussian’s direct 2D CLIP

feature association yields a slightly higher mIoU by avoid-
ing alpha-blending artifacts, but it underperforms in 2D se-
mantic segmentation on ScanNet (Section 4.2). In contrast,
SuperGSeg maintains competitive mIoU for 3D object se-
lection while surpassing OpenGaussian in 2D semantic seg-
mentation, enhancing its versatility across real-world appli-
cations. Our higher mAcc, especially in complex LERF-
OVS scenes such as figurines and waldo kitchen, reflects the
precision of Super-Gaussian clustering and instance group-
ing. By accurately segmenting Gaussians in 3D, SuperGSeg
renders more complete 2D masks with sharper boundaries,
improving semantic consistency in challenging settings. In
addition, SuperGSeg reduces inference latency to around
0.5s per query and decreases memory usage to 4GB, more
than 50% lower than the next best baseline at 9GB. These
improvements, enabled by SuperGs, demonstrate the poten-
tial for real-time querying on resource-constrained devices.

Qualitative Results. For visualization, we query lan-
guage features in 3D space and render the resulting 3D



masks to 2D. As shown in Figure 5, SuperGSeg delivers
precise 3D object selection without spurious outliers and
produces clearer boundaries. Thanks to the 3D understand-
ing capability, our SuperGSeg allows for effective localiza-
tion of occluded regions (e.g., the stuffed bear leg under
a table). Notably, its high-quality features distinguish the
coffee mug from its contents and spoon, showcasing the ef-
ficacy of distilling fine-grained features into SuperGs.

Ablation Study. We conduct ablation studies on vari-
ous components of our method to validate the necessity of
SuperGs, as summarized in Table 3. The baseline without
SuperG (case a) trains the language feature field by directly
optimizing per-anchor features, which results in limited se-
mantic consistency. To analyze how different feature types
affect SuperG formation, we evaluate grouping based solely
on anchor coordinates and geometric features (case b), in-
stance features (case c), and hierarchical features (case d).
The results indicate that grouping Gaussians into SuperG
improves semantic consistency compared to per-anchor op-
timization, but relying only on coordinates and geometry
remains suboptimal. Both instance and hierarchical fea-
tures contribute substantially to accurate SuperG assign-
ments, and the best performance is achieved with our full
model (case f), which combines both. We further compare
K-means clustering for Gaussian grouping (case e) with
our learnable SuperG assignment (case f). By dynamically
adapting to variations in the feature space, our learnable
predictor produces higher-quality SuperGs, yielding consis-
tently higher mIoU and improved mAcc. Additional abla-
tion studies on components of the SuperG clustering net-
work are provided in Appendix D.

# w/ Learned SuperG w/ ins w/ hier mIoU ↑ mAcc. ↑
a) 10.12 14.49
b) ✓ 12.08 16.95
c) ✓ ✓ 53.91 64.41
d) ✓ ✓ 49.04 66.10
e) ✓ ✓ 53.77 67.80
f) ✓ ✓ ✓ 55.31 77.97

Table 3. SuperG ablation study, teatime scene of LERF-OVS.

4.4. Application

Beyond language-based querying, SuperGs serve as a
multi-granularity representation of 3D scenes by integrat-
ing instance- and part-level knowledge, readily applicable
to tasks such as cross-frame segmentation and hierarchical
instance decomposition, without requiring task-specific re-
training. For example, a click on a reference image retrieves
SuperGs with matching hierarchical features, allowing the
selected part to be consistently rendered across views. In
addition to cross-view querying, SuperGSeg enables cross-
level queries: clicking on a part retrieves its parent object

using instance features, while clicking on an object reveals
its constituent parts, which supports seamless navigation
from parts to instances and vice versa, as illustrated in Fig-
ure 6. Furthermore, the granularity of instance-to-part seg-
mentation can be adjusted by varying the threshold on hier-
archical feature similarity, as shown in Figure 7. Additional
implementation details are provided in Appendix A.

Instance Level

Click

Click

Viewpoint 1 Viewpoint 2

Part Level

Figure 6. Cross-level and cross-frame segmentation visualization.
𝜏ℎ𝑖𝑒𝑟

Low High

Figure 7. Visualization of intra-object hierarchy definition.

5. Conclusion
We present SuperGSeg, a novel framework for 3D scene
understanding that represents scenes using compact Super-
Gaussians, ensuring semantic and appearance consistency.
By leveraging neural Gaussians, our method captures
instance- and part-level segmentation features, guiding
Super-Gaussian clustering through an adaptive online learn-
ing algorithm. Experiments show that integrating high-
dimensional language features significantly improves open-
set 3D language querying, demonstrating the framework’s
remarkable performance. Furthermore, the Super-Gaussian
representation is readily adaptable to a wide range of 3D
scene understanding tasks.
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