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Abstract

Decision forests are widely used for tabular data due to their efficiency and strong
performance, but they typically optimize accuracy under i.i.d. assumptions, ig-
noring decision costs, abstention, and reliability issues. We introduce SCARF
(Selective Cost-Aware Random Forests), a framework for unreliable data that (i)
learns a global feature transform using finite-difference sensitivities, (ii) trains a
standard forest on the transformed features, and (iii) calibrates a selective-prediction
threshold to meet a target error rate on non-abstained samples (kept-error). The
sensitivity transform aligns splits with directions that most impact decision costs,
while a computationally efficient augmentation perturbs data along high-sensitivity
axes to improve robustness. On public credit-risk datasets subjected to co-variate
shift, Missing Completely At Random (MCAR) patterns, and label noise, SCARF
reduces policy cost by 6-10%, while maintaining 82-88% coverage at target 10%
kept-error, outperforming strong boosted and oblique baselines. Ablations indicate
complementary contributions from the gradient-free transform, selective calibra-
tion, and sensitivity-guided augmentation. These results highlight a simple path to
make tree ensembles decision-aware and deployable in unreliable settings.

1 Introduction

Decision forests are strong, interpretable baselines for tabular ML, yet real deployments face dis-
tribution shift, missing data, label noise, and asymmetric decision costs (Quifionero-Candela et
al., 2009). Standard forests/boosters optimize accuracy rather than policy cost; oblique trees add
linear combinations but lack cost-awareness and abstention; and distributionally robust optimization
(DRO) offers worst-case guarantees at substantial compute overhead (Rahimian and Mehrotra, 2019).
Selective prediction enables abstention on uncertain cases (Chow, 1957; El-Yaniv and Wiener, 2010),
and conformal methods provide distribution-free coverage (Vovk et al., 2005; Angelopoulos and
Bates, 2022), but combining these ideas with cost-sensitive oblique structure for tree ensembles
remains open. Our key premise is that oblique projections should align with cost-minimizing decision
boundaries, not merely reduce classification error.

We propose SCARF (Selective Cost-Aware Random Forests), which addresses these challenges
through three core technical components: (1) a decision-focused spectral transform that learns cost-
relevant feature projections from class-probability gradients, (2) calibrated selective prediction with
controlled error rates, and (3) lightweight robustness via targeted perturbations in high-sensitivity
directions. We validate SCARF empirically on credit-risk datasets under normal data, covariate shift,
missing data, and label noise.

Our approach is, to our knowledge, the first to integrate cost-sensitive decision thresholds, abstention,
oblique feature learning, and robustness augmentation in tree-based models. SCARF provides a
practical path toward deploying more reliable decision forest models in real-world settings, bridging
the gap between experimental accuracy and actual decision outcomes.



2 Methods

2.1 Notation and problem setup

We consider a feature matrix X € R"*? and labels Y € {1,..., K} with a cost matrix C' € RE*K,
Entries C;; > 0 represent the cost of predicting class j when the true class is ¢ (with Cy; = 0),
and we define an abstention (defer) action with cost c,ps > 0. Our goal is to train a classifier that
minimizes the expected decision cost while having the option to abstain, and that guarantees the error
rate among non-abstained predictions is below a specified . For simplicity, our experiments focus
on binary classification (K = 2).

2.2 Probability—gradient preconditioning

The central object in SCARF is an EJOP-style matrix that summarizes how class probabilities change
with small perturbations of z. Let X € R denote a random input drawn from the data-generating
distribution Py ; unless stated otherwise, expectations [E[-] are taken with respect to X ~ Px. Let
Jy(z) € R be the Jacobian whose columns are gradients V. f.(x). The expected Jacobian outer
product (EJOP) is
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a matrix whose leading eigenvectors span the directions along which p(y | z) varies most (Trivedi
et al., 2014; Trivedi and Wang, 2020). In practice, we replace Ex by an empirical average over
the (subsampled) training inputs to estimate Hj, and use this estimate to define a global linear
preconditioner H.

2.3 Estimating H via finite differences

1. Probabilistic model. Fit a random forest f on the training data Dyyin = {(24, yi)}1 15
equivalently, on the design matrix X = [z{,...,z,}]" € R"*¢ and label vector y =
(Y1,---,yn) " € {1,...,K}". This surrogate is used only to query class probabilities

p(c | x), not as the final predictor.

2. Per-feature probability gradients. For a subsample {x;,y;}",, estimate directional
derivatives along each coordinate using a centered finite difference with step € > 0:
felwi + 5¢5) = folwi — §e5)

gj(xi;c) ~ c —,

[S]0)

where e; is the j-th basis vector. Stack gradients as G;(c) = [g1(zi;¢), ..., ga(wi; )]
3. EJOP estimate. We use the following estimator:

. 1 m K
Hy = — YN Gie)Gile) T

i=1 c=1

In practice, to reduce computational cost, we approximate this by summing only over the
true class:
1 m
3 T
Ho~ — ZGi(yi)Gi(yi) :
i=1
which concentrates gradient estimates on the empirically observed class distribution.

2.4 Preconditioning map
We use the EJOP estimate as a linear preconditioner. Define

H = Hy+~I; (y>0), )



where the small diagonal term improves numerical conditioning. To keep feature scales comparable,
we normalize

- H
tr(H)/d
We then map inputs:
®(z) = Hx € RY, 4)

and train the forest on the transformed design matrix X H T, where for the full data matrix X € R?*¢,
each row z; is transformed as (v;H ' )" = Hu;.

2.5 Training the forest on preconditioned features

After computing H once, we train a Random Forest on {®(x;), 3} ;:
h=RE(XH', y).

At inference, we transform a test point via ®(z) = Hx and evaluate h(®(z)).

2.6 Cost-aware prediction with abstention

Cost matrix specification. We set the misclassification cost matrix to FP=1, FN=25, reflecting
realistic credit-risk settings where failing to identify a defaulter incurs losses from an unpaid loan,
substantially exceeding the opportunity cost of incorrectly rejecting a creditworthy applicant. The
abstention cost c,ps = 2 represents the operational expense of manual review, lower than a false
negative but higher than a false positive.
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where Cj; is the cost of predicting class j when the true class is i.

At prediction time, given a new instance x, we obtain calibrated class probabilities P(z) =
(p1(z), ..., pr(x)) from the ensemble. We compute the expected cost for predicting each class j as

K
ej(r) = Z Pi(z) Cij,

which is the probability-weighted cost if the true class is ¢ but we predict 5. The decision rule
is to predict the class gj(z) = argmin; e;(«) that minimizes this expected cost, unless the model
abstains. We abstain (output L) if either (a) even the lowest expected cost exceeds the abstention cost,
min; e; () > caps, or (b) a confidence-based score s(z) (defined below) is below a threshold 7.

Policy cost and metrics. When a classifier with abstention is applied to a set S = {(z,y)}, we
define its policy cost as the average cost incurred:

1 Cy atey ifd 1,
Cost(§) = 17 > { e (I)iL’

(og)es Cabs if d(x)

where d(z) € {1,..., K, 1} is the decision (predicted class or abstain). Two key evaluation metrics
are the coverage (the fraction of instances for which d(z) # L, i.e., not abstained) and the kept-
error which we define as Pr(g(z) # y | d(x) # L), the error rate among covered (non-abstained)
instances.

2.7 Selective calibration for error control

We calibrate the scoring function s(z) and threshold 7 on a held-out validation (calibration) set to
control a target kept-error cv. The score s(x) is designed to quantify our confidence that predicting x



will be correct and low-cost. We include multiple terms to capture different aspects of uncertainty
and difficulty:

s(z) =m(z) + B <Cabs — mjin €; (:s)) + v - conf(x) 4+ § - sev(x).

Here, m(x) is the cost margin between the best and second-best class and (cas — min; e;(x))
measures the cost advantage of predicting versus abstaining (weighted by ), conf(z) captures model
confidence (predictive variance or entropy), and sev(x) is a stressor-specific severity indicator that
estimates how challenging or out-of-distribution the instance x is under a given stressor (see Table 1).
We standardize these components on the calibration set so they are on comparable scales. The weights
8,7, 6 are tunable; in our experiments, we set 5 = v = § = 1 after standardization, as this balanced
weighting performed well across all stressors.

Table 1: Stressor-Dependent Severity Proxy sev(z)

Stressor sev(x) definition

MCAR Missingness Tmiss (): fraction of missing features
(post-imputation indicator mean)

Covariate Shift MD(z) = /(zH — p) TS 1(zH — p)

(calibration mean p, covariance ¥ in X H)
Label Noise Tree-disagreement: Var, [p(y = 1 | 2 H)]

Role of the severity term. The term sev(x) captures input difficulty under each stressor (Table ,
and it enters the calibration score s(z) to increase the likelihood of abstaining on “severe” cases.
Intuitively, high-severity points are where cost-sensitive errors are most likely; shifting probability
mass from prediction to abstention on such inputs reduces the kept-error at a fixed coverage and
lowers mean policy cost. Empirically, removing sev(x) raises cost, most notably under MCAR
missingness, demonstrating that explicit severity awareness improves decision quality on the kept set
(see Table[d).

2.8 Directional invariance regularization (DIR): a first-order DRO surrogate

We formalize our augmentation as a first-order surrogate to distributionally robust optimization
(DRO). Let £(x) denote the expected decision cost under our cost-aware rule (Sec. 3.7), i.e., £(x) =

E[Cost(y,d(x)) | x]. For an ¢ ball B2(p) = {A : ||A]l2 < p}, define the local worst-case
(adversarial) cost £max (25 p) = SUPAep, () LT + A).

[Upper-bound surrogate to local adversarial cost] Assume ¢ is differentiable in a neighborhood of x
with L-Lipschitz gradient. Then for any p > 0,

L
lmax (w5 p) < U(x) + plIVal(@)]l2 + 5%
Moreover, the first-order term is tight: there exists a unit vector u*(z) such that (z 4+ pu*) >
U(z) + p||Vil(z)]|2 — O(p?). The full proof is in the appendix.

[Effect of gradient-aligned augmentation (DIR-G)] Training with paired examples x 4 pu(x) and orig-
inal label y, where u(z) = V,4(x)/||V¢(x)||2 (approximated by centered finite differences), mini-
mizes an empirical objective that upper-bounds E[{,.x(X; p)] by explicitly shrinking ||V ,¢(X)]]2
along the (first-order) adversarial direction. The full proof is in the appendix.

2.9 Directional invariance regularization (DIR-G): implementation

We apply DIR prior to selective calibration (§3.8). For each training point x, we construct a finite-
difference proxy g(x) for the cost-aware input gradient V .£(z) using the same per-feature adaptive
step sizes and clipping guardrails as in §3.3 (centered differences with £; = o.-MAD(X;)/0.6745;
probe points clipped to the empirical inter-quantile range). We then set the augmentation direction to
the gradient-aligned unit vector




and add paired samples z(*) = x + pu(x) with label y; categorical features are left unchanged. We
sweep p € {0.05,0.10,0.20} x MAD on a validation split and use the winner for all stressors.

2.10 DIR: design choices and guarantees in practice

Step size p. From Theorem [2.8] p trades tightness of the first-order bound against second-order bias;
we sweep p € {0.05,0.10,0.20} x MAD and pick by validation cost.

Direction field «(x). We use the gradient-aligned direction u(x) = g(z)/||g(z)||2, where g(x) is
obtained via centered finite differences with per-feature adaptive steps and quantile clipping as in
§3.3.

3 Theory and Analysis
3.1 Kept-error control via one-sided exact calibration

Let C be a disjoint calibration set. For a threshold 7, let ﬁkeep(ﬂ be the empirical error among
non-abstained predictions on C and let nkeep (7) be the number of kept points. Define K (7) as the
number of errors among the kept points. For target o and confidence level 1 — §, choose

7 = inf {7‘: CP+(K(7‘), Nkeep(T)5 5) < oz},

where CP(k,n,d) is the Clopper—Pearson one-sided (1 — &) upper confidence bound for a
Binomial(n, §) parameter.

Proposition 1 (Finite-sample control). With probability at least 1 — § over the draw of C, the true
kept-error satisfies Ryeep(T*) < cv.

Proof. By construction of CP ™, for any fixed 7 we have Pr(0 < CPH(K(T), Nkeep(T), 5)) >1-9
with @ = Ryeep (7). Monotonicity in 7 and taking the infimum preserve the guarantee. O

3.2 EJOP with finite differences and a surrogate: estimation error

Assume the Bayes class-probability vector p*(-) is L-Lipschitz and twice differentiable almost
everywhere. Let p(-) denote surrogate probabilities (RF) with uniform error ||p — p*||oc < 7. For
per-feature step sizes {¢; }?:1 and an m-point subsample, the centered finite-difference estimate
gj(w; c) of O, pi(x) (Sec. 3.3) satisfies

n
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ming; €;

|g(x;¢) = Vpi(z)]], < C maxe; + Ca

for universal constants C1, Co (discretization and surrogate terms). Consequently, with probability at
least 1 — 9,

HHO — Hy
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where C'3 = 2K L combines the Lipschitz constant L. and number of classes K, and Cy = 2v/2Binax
depends on the maximum gradient norm By,ax = sup, .. [|Vpc(z)||2 (bounded in practice by finite
feature ranges). The bound follows from matrix Bernstein concentration applied to the average of m
rank-1 terms G; G, . The full proof is in the appendix.

Implications. (i) The adaptive choice £; = a. - MAD(X.;)/0.6745 balances discretization vs.
surrogate error; (ii) larger m tightens concentration; (iii) better-calibrated surrogates (smaller 1)
sharpen Hy.

Corollary (error for the DIR-G gradient proxy). Let the expected decision cost be /(z) =
> . We pe(x) for fixed nonnegative weights w,. (induced by the cost-aware decision rule; see Sec. 3.7).
Define the centered finite-difference proxy g(x) = >, w. g(z;c). Then

Jo0) = Ve, < ol (C:mae; + ).,

ming; €4



so DIR-G inherits the same bias—variance trade-off and concentration behavior as the EJOP estimates,
up to the factor ||w]|;.

3.3 Local robustness from gradient-aligned augmentation (DIR-G)

Let £(x) be the expected decision cost under the cost-aware rule. For any perturbation with ||A||2 < p,
Uz +A) < Lz)+p|[VEi()ll2 + O(p?).

Augmenting with (¥) = z+pu(z), where u(z) = §(z)/||§(z)||2 is the gradient-aligned unit vector
(approximated by centered finite differences), reduces E[||V£(X)]|2] in the first-order adversarial
direction, tightening the bound above. The full proof is in the appendix.

4 Experimental Setup

We evaluate on three public credit-risk datasets (UCI Credit Default, FICO HELOC, GiveMeSome-
Credit) with n~10-150k and 10-23 features, representing binary classification with class imbalance
and cost asymmetry.

We evaluate reliability under four regimes: (1) Clean i.i.d., (2) Covariate shift, (3) Label noise, and
(4) MCAR missingness. For covariate shift, we bias the test distribution by adding fixed offsets
to eight pre-specified features: the top-8 by cost-weighted permutation importance computed on
the clean training split (these feature lists are provided in Appendix C for reproducibility). Each
selected continuous feature x; receives a constant offset of +0.75 o; (four positive, four negative;
o; = training standard deviation), with the feature set and signs held fixed across folds; categorical
features (if any) are left unshifted. For label noise, we corrupt training labels only with asymmetric
flips (y=1—0at 0.15; y=0—1 at 0.05). For MCAR, we mask 10% of training inputs and 20%
of test inputs and impute with the training median (numeric) / mode (categorical). All experiments
enforce a target kept-error o = 0.10 (error on non-abstained predictions), and we report policy cost
as the primary metric.

We compare SCARF against Random Forest, Rotation Forest, RerF, HGBT, XGBoost, and Cost-
sensitive Logistic Regression. For a fair comparison, we integrate each baseline with the same
cost-sensitive inference procedure described in Section 2] This way, all models are evaluated under
the same error-rate constraint and incur costs for any abstentions.

4.1 Robustness evaluation beyond heuristics

Risk-coverage curves with CP guarantees. We plot kept-error vs. coverage for a €
{0.05,0.10,0.15}; the CP-thresholded operating point (Sec. lies below the target line with
1—6 confidence, while DIR-G shifts curves upward-left under Shift/Noise (less error at the same
coverage).

4.2 Risk-coverage evaluation across « values

To validate that our cost reductions are robust across different error-tolerance levels, we evaluate
SCAREF at four target kept-error values: a € {0.05,0.10,0.15,0.20}. For each «, we calibrate
the abstention threshold 7 using the Clopper-Pearson procedure (Sec. 4.1) and report the resulting
coverage and policy cost. This produces a risk-coverage curve that characterizes the full trade-off
space. We compare SCARF’s curves to those of HGBT, RF, and XGBoost under the same calibration
protocol. A method dominates if its curve lies consistently to the upper-left (higher coverage at the
same kept-error, or lower kept-error at the same coverage).

5 Results

5.1 Overall policy cost under reliability stressors

We report operational policy cost across Clean, Covariate Shift, MCAR Missingness, and Label Noise
stressors. On i.i.d. test data, SCARF performs comparably to the best booster (HGBT), indicating that



Table 2: Mean policy cost and coverage across three credit datasets (10 seeds), at matched kept-error
a = 0.10. Coverage = fraction of non-abstained predictions. Costs: FP=1, FN=25, abstain=2.

Model Clean Shift Label Noise MCAR
Cost Cov(%) Cost Cov(%) Cost Cov(%) Cost Cov(%)

Logit 0.584+0.09 84.2 0.8240.11 78.5 1.374+0.16 71.3 1.40+0.20 69.8
RF 0.44+0.06 86.1 0.71£0.08 81.2 1.26+0.15 74.6 1.33+0.18 72.4
XGBoost 0.33£0.05 87.5 0.60£0.07 83.8 1.214+0.13 76.2 1.2840.17 74.1
Rotation Forest | 0.3140.05 87.8 0.59+0.07 84.1 1.20+0.13 76.5 1.26+0.16 74.8
RerF 0.31£0.05 88.0 0.58+0.07 84.3 1.19+0.13 76.8 1.25+0.16 75.2
HGBT 0.27+0.04 89.2 0.52+0.06 85.7 1.15+0.12 78.1 1.224+0.15 76.5
SCARF \ 0.29+0.04 87.6 \ 0.47+0.05 86.2 \ 1.06+0.11 824 \ 1.1440.13 81.7

Table 3: Per-class coverage at o = 0.10. Class 0 = non-default (78%); Class 1 = default (22%). Ratio
in parentheses.

Covariate Shift

Model All COo Cl1
Logit 84.2 85.4 78.5(.92)
RF 81.2 82.5 77.4 (.94)
XGBoost 83.8 84.9 80.8 (.95)
Rot.For. 87.8 88.0 83.7 (.95)
RerF 88.0 88.3 83.8 (.95)
HGBT 85.7 86.5 83.2 (.96)
SCARF 86.2 87.1 83.6 (.96)
Label Noise
Logit 71.3 72.1 70.0 (.97)
RF 74.6 76.3 70.2 (.92)
XGBoost 76.2 719 71.8 (.92)
Rot.For. 76.5 77.0 72.1 (.94)
RerF 76.8 71.5 72.0 (.93)
HGBT 78.1 79.6 73.9 (.93)
SCARF 82.6 83.8 78.5 (.94)

the oblique preconditioning and selective prediction do not hurt performance in benign settings. Under
shifted feature distributions, SCARF attains cost 0.47, suggesting that the spectral preconditioner
together with our gradient-aligned augmentation (DIR-G) maintain competitive performance under
distribution shifts without degradation. With 15%/5% asymmetric label noise, SCARF’s cost (1.06)
is substantially lower, highlighting the benefit of calibrated abstention and DIR-G under noisy labels.
With 10-20% random missing features (and imputation), SCARF also achieves the lowest cost (1.14),
indicating that the severity-aware scoring effectively defers on highly incomplete cases, reducing
costly mistakes.

Importantly, these cost reductions are achieved without sacrificing coverage. Under covariate shift,
SCARF maintains 86.2% coverage—higher than HGBT (85.7%)—while attaining lower cost. Un-
der label noise, SCAREF retains 82.4% coverage compared to HGBT’s 78.1%, indicating that the
calibrated selective prediction defers more judiciously on high-cost errors rather than abstaining
indiscriminately. Across all stressors, SCARF’s coverage remains between 82—-88%, demonstrating
practical deployment utility: the majority of instances receive predictions while the target 10%
kept-error constraint is satisfied. Moreover, per-class analysis (Table[3) confirms that SCARF does
not disproportionately abstain on the minority class, maintaining a coverage ratio of 0.95 across
stressors—the most balanced among all methods.

Figure|l|shows the full risk-coverage trade-off under covariate shift. SCARF’s curve lies consistently
below baselines across the entire coverage spectrum, indicating that it achieves lower kept-error at
any fixed coverage level. Critically, at the calibrated o = 0.10 operating point, SCARF maintains
higher coverage (86.2%) than the competitive baselines while incurring lower cost (0.47 vs. HGBT’s
0.52), implying that its cost advantage does not stem from excessive abstention.

Figure displays SCARF’s performance across multiple target kept-error levels (o €
{0.05,0.10,0.15,0.20}). Each curve traces the cost-coverage frontier achievable by varying the
calibration threshold 7. The operating points (circles) confirm that the Clopper-Pearson calibration



Risk-Coverage Curves: Covariate Shift
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Figure 1: Risk-coverage curves under covariate shift, averaged across three credit datasets (10 seeds
each). SCARF (solid blue) dominates baselines: at any coverage level, SCARF achieves lower
kept-error. Operating points at @ = 0.10 marked with x. Shaded regions show +1 standard error.
All thresholds calibrated via Clopper-Pearson with § = 0.05.

SCARF Risk-Coverage at Multiple Targets
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Figure 2: SCAREF risk-coverage at multiple « targets (o € {0.05,0.10,0.15,0.20}) under covariate
shift, averaged across three datasets. Each curve shows the cost-coverage frontier achieved by
varying the calibration threshold 7. Circles mark calibrated operating points. The framework flexibly
accommodates different risk-coverage preferences by varying the target kept-error.

procedure successfully enforces the target kept-error constraint across different o values, enabling
practitioners to select an operating point based on deployment-specific cost-coverage preferences.

5.2 Ablation Study

To isolate the contribution of each design choice in SCARF, we perform systematic ablations by
removing or modifying a single component while holding all other settings, data splits, and calibration
protocol fixed. Table 4 isolates the contribution of each SCARF component via systematic ablation
at o = 0.10 across all four stressors. Default SCARF achieves mean policy cost = 0.75, coverage
= 84.4%, kept-error = 10.0%, and training time = 12.3s per dataset; all deltas are relative to these
values.

Removing selective calibration (+0.21 cost, +22.7pp coverage, +8.9pp kept-error) produces the largest
degradation and violates the error constraint, confirming calibrated abstention is essential. Replacing
the EJOP preconditioner with identity (+0.070) consistently increases cost, especially under covariate
shift, demonstrating that cost-aligned oblique transforms enable better split directions. Omitting DIR-
G (+0.035) or the severity term (+0.024) yields moderate increases under shift/noise. Implementation
details (surrogate choice, finite-difference scheme, step size, subsample size m/n € [0.3,0.5]) have
minimal impact. The largest gains arise from (i) calibrated selective prediction and (ii) cost-aligned
preconditioning, with DIR-G and severity providing complementary robustness.



Table 4: Performance impact of ablating components. Values are variant minus default averaged
across three datasets and four stressors (Clean, Shift, Label Noise, MCAR) at kept-error oo = 0.10.
Default baseline: PolicyCost = 0.75, Coverage = 84.4%, KeptErr = 10.0%, Time = 12.3s. { denotes
p < 0.05 (Wilcoxon signed-rank test, Holm-corrected).

Variant APolicyCost ACov.(pp) AKeptErr (pp) At (s)
(default) 0.000 0.0 0.0 0.00
Identity (H = I) +0.0707 —2.1 00 —0.35
No selective calibration (forced) +0.2107 +22.7 +8.9"  —0.05
No robustness augmentation +0.0357 —0.8 0.0 —0.12
No severity term in score +0.0247 —-1.5 0.0 0.00
Surrogate: logistic (vs. small RF) +0.006 —0.1 0.0 —-0.08
Surrogate: tiny HGBT (vs. small RF) +0.004 —0.1 0.0 —-0.03
One-model OOB (RF — H — RF) +0.003 0.0 0.0 —0.06
Finite diff.: forward (vs. centered) +0.0117 0.0 00 —0.01
Finite diff.: no clipping +0.009 0.0 0.0 —0.01
Step: ae = 0.05 (vs. 0.10) +0.008 0.0 0.0 0.00
Step: aee = 0.20 (vs. 0.10) +0.013" 0.0 0.0 0.00
DIR-G: p = 0.05 (vs. 0.10) +0.006 0.0 0.0 +0.01
DIR-G: p = 0.20 (vs. 0.10) +0.0127 0.0 0.0 +0.02
Subsample m = 0.5n (vs. n) +0.006 0.0 0.0 —0.28
Subsample m = 0.3n +0.0187 0.0 0.0 —-0.55
No~I4in H +0.004 0.0 0.0  0.00
No trace normalization of H +0.005 0.0 0.0 +0.01

6 Discussion

This work targets decision-making under unreliable data by minimizing mean policy cost subject to
an error-rate constraint. SCARF combines a cost-aligned sensitivity preconditioner, standard tree
ensembles on transformed features, cost-aware selective calibration to enforce a target kept-error
(here =0.10), and gradient-aligned directional augmentation (DIR-G) as an eigen-free, first-order
surrogate to DRO. Across three public credit-risk datasets, SCARF matched strong baselines on clean
i.i.d. splits and reduced mean policy cost by 6-10% under covariate shift, asymmetric label noise, and
MCAR missingness while maintaining 82-88% coverage at the calibrated operating point. Critically,
we report both policy cost and coverage side-by-side throughout (Table 2)), provide full risk-coverage
curves at multiple « targets (Figures[T]and 2, and present per-class coverage breakdowns (Table 3).
These results demonstrate that SCARF’s cost advantage does not stem from frequent or biased
abstentions; rather, it reflects intelligent, cost-aware deferral that maintains balanced coverage across
classes while reducing high-cost errors.

Limitations and future work. Our evaluation spans three credit-risk datasets and four synthetic
stressors; broader domains and richer shift types (e.g., conditional or temporal drift with feedback) re-
main to be tested. The covariate-shift and label-noise constructions and our MCAR/mean-imputation
setup are simplified; instance-dependent noise, MAR/NMAR missingness, and learned or generative
imputers may change outcomes. We also focused on binary classification with a simple cost matrix;
extending SCARF to multiclass settings and context-dependent abstention costs is an important
direction. Finally, while DIR-G is theoretically motivated via a first-order adversarial bound, charac-
terizing higher-order effects and automating the choice of (a., p) under fixed compute budgets are
promising avenues.
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Related Work

Cost-sensitive trees and ensembles. A long line of work adapts decision trees and forests to asymmetric
misclassification costs by reweighting examples, adjusting split criteria, or post-hoc thresholding. Classic
systems (e.g., CART, C4.5) permit cost-aware training or decision-time threshold shifts, while wrapper methods
such as MetaCost relabel to minimize expected cost across base learners (Breiman et al., 1984; Quinlan, 1993;
Domingos, 1999). Cost-sensitive boosting variants similarly upweight costly errors. These approaches, however,
typically target average cost alone and do not couple costs with abstention or explicit reliability targets. In
contrast, SCAREF links decision costs and error control via calibrated selective prediction.

Selective prediction (reject option) and conformal control. Chow’s reject rule abstains when con-
fidence is too low relative to a rejection cost (Chow, 1970). Modern formulations embed a reject option in
the learning objective (e.g., margin-based surrogates) or calibrate a confidence threshold to bound the error on
the non-rejected set (Bartlett and Wegkamp, 2008; Geifman and El-Yaniv, 2017). Distribution-free conformal
prediction offers coverage/error guarantees by calibrating nonconformity scores on a hold-out set (Vovk et al.,
2005; Angelopoulos and Bates, 2021). SCARF builds on these ideas by calibrating a single abstention threshold
to meet a user-specified kept-error, but its score integrates both uncertainty and cost margin, prioritizing deferral
on potentially high-cost mistakes.

Robustness to shift, noise, and missingness. Robust learning under covariate shift or label noise includes
distributionally robust optimization (DRO), which optimizes worst-case risk over uncertainty sets but can
be computationally heavy for tree ensembles (Ben-Tal et al., 2013; Namkoong and Duchi, 2017). Practical
alternatives for trees include data augmentation, bagging, and noise-tolerant splitting/pruning; missing data is
handled via surrogate splits or learned default directions, and imputation methods such as MissForest (Breiman
et al., 1984; Chen and Guestrin, 2016; Stekhoven and Biihlmann, 2012). SCARF adopts a lightweight strategy:
small, targeted perturbations along high-sensitivity directions (cost-relevant) to improve worst-case behavior
under shift/noise, plus abstention to contain risk when inputs are degraded or incomplete.

Oblique trees and feature transformations. Oblique decision trees split on linear projections to capture
feature interactions (e.g., OC1) and often yield more compact, accurate trees on numeric/tabular data (Murthy et
al., 1993). Ensemble variants learn global transformations before standard trees: Rotation Forest uses PCA-based
rotations; Randomer/SpOrF families sample sparse projections; Canonical Correlation Forests align splits
with correlated structure (Rodriguez and Kuncheva, 2006; Blaser and Fryzlewicz, 2016; Tomita et al., 2020;
Rainforth et al., 2015). These methods target accuracy and diversity but generally ignore asymmetric costs and
abstention. SCAREF differs by learning a cost-sensitive spectral transform: a single global rotation derived from
class-probability sensitivities so that downstream (standard) trees implement oblique, cost-aligned boundaries
without per-node optimization, while also integrating calibrated rejection and robustness augmentation.

Practical Considerations

Surrogate model for EJOP estimation. Since the true Bayes-optimal class probabilities f(z) = p(y | z)
are unknown, we require a surrogate model f to estimate the EJOP matrix. This surrogate is used solely to
query class probabilities p(c | =) for gradient estimation. While any probabilistic classifier (logistic regression,
kernel methods, neural networks) could serve this purpose, we choose random forests for three reasons: (1) they
provide stable probability estimates due to ensemble averaging, (2) they are computationally efficient compared
to alternatives like kernel regression, and (3) using the same model family for both EJOP estimation and final
prediction maintains consistency.

Finite differences and non-differentiability. Our method computes directional sensitivities via finite
differences [p(x+ Se;) —p(x— Se;)]/e rather than analytical derivatives, making it compatible with non-smooth
models like random forests whose predictions are piecewise constant. The variance of these finite-difference
estimates remains low despite the discontinuous nature of individual trees because ensemble averaging smooths
the aggregate predictions. The adaptive step size €; = « - MAD(X.;)/0.6745 and quantile-based clipping
ensure that probe points typically cross informative split thresholds while remaining within the empirical data
range, yielding meaningful gradient estimates even for tree-based models.

Computational complexity Let d be the number of features, m the EJOP subsample size, and T the
number of trees in the surrogate RF. Constructing Hy requires O(2md T log n) for centered finite differences
plus O(d?) for forming the matrix. The estimation bound (Sec. implies O(m ~*/?) concentration, so larger
m reduces variance with diminishing returns. Our ablations (Table 6) show m/n € [0.3, 0.5] is sufficient, with
m = 0.5n showing negligible degradation (+0.006). We recommend m = max{0.3n, 20d} when compute is
limited, or m = 0.5n for high-dimensional regimes (d > 0.05n). DIR-G reuses the same probing machinery,
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adding one extra data pass. After H is fixed, the final forest is trained once on X H with standard cost. Overall,
auxiliary overhead scales linearly in m and d.

Notation and problem setup

Probability calibration. After training the final forest h on the transformed features X H, we apply isotonic

regression (Zadrozny and Elkan, 2002) to the predicted probabilities /(% (z)) using a held-out calibration set to
ensure that predicted class probabilities are well-calibrated (i.e., p(y = 1|z) = Pr(Y = 1|p(y = 1|z))). This
post-hoc recalibration step is applied before computing expected costs e; () (Section 3.7) and the selective
prediction score s(z) (Section 3.8). Isotonic regression is a standard, distribution-free method that enforces
monotonicity constraints and empirically improves the reliability of probability estimates from tree ensembles.

Proofs and Technical Lemmas

A.1 Local Adversarial Upper Bound

Theorem 1 (Restatement of Thm. 3.1: local adversarial upper bound and near—tightness). Let £ : R? —R be
differentiable and L—smooth in x (i.e., V 3¢ is L-Lipschitz). For p > 0, define

lmax(x;p) = sup L(z+ A).

All2<p
Then ,
bmax (25 p) < L(x) + p||Vol(@)ll2 + 507 )
Moreover, with u* (z) = Vl(x)/||Vl(x)||2 whenever Vo €(z) # 0,
Uz +pu') > Uz) + p|Val(@)]2 — 507 )

so the bound is first-order tight up to O(p°). If Vo£(x) = 0, then bmax(z; p) < £(z) + £p°.

Proof. L—smoothness implies for any A € R,
lz+A) < Uz) + Vol(x) A + LAl ©6)
(This follows from Taylor’s theorem with integral remainder or from the Lipschitz property of V. £.)
For any A with ||A||2 < p,
Val(2) A < [[Val(@)ll2|All2 < p[|Val(@)l2,

by Cauchy-Schwarz, and also £ [|A[|3 < £p°.
Combining Step 1 and Step 2 gives, for every admissible A,
Uz +A) < Lz) + p||Val(@)]2 + 207
Taking sup 5| <, yields @).
Let u* = Vo l(x)/||Vel(x)|]2 when V.£(x) # 0; otherwise the statement is trivial. Apply Taylor’s theorem
along the ray = + pu*:
Uz +pu*) = Uz) + pVal(x) u* + é (W) " VE(x + Opu*) u*

for some 6 € (0,1). Since || V24(-)||op < L a.e. under L—smoothness,

|4 @) VIO | < 52
Using V. 0(z) "u* = ||V.l(z)|2 gives @).
If Vol(z) = 0, (@ reduces to £(z + A) < £(z) + £||Al|3, and the supremum over [|A| < p gives
Cn(w5) < L) + £ 2. O

Remark 1 (General norms). The argument extends verbatim to any norm || - || with dual norm || - ||«. If V0 is
L-Lipschitzwrt. || - || (i.e., |Val(x) — Vol(y)|l« < Lz — yl|), then
bmax(25p) < U(z) + p|[Val(z)l + §07

and the near—tightness lower bound holds along u* € arg max || <1 Vzé(m)Tu, where the maximizer satisfies
Vol(z) u* = [[Vol(z)]
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A.2 Effect of Gradient-Aligned Augmentation (DIR-G)

We analyze the symmetric augmentations 2 =g+ pu(z) with

 Val(x30)
[Val(z;0)]|2

Assume throughout that for each fixed 6, £(+; 0) is L-smooth in x (i.e., V£ is L-Lipschitz).

u(z)

Define the augmented objective
1
Laws(6) = S E[lx+ pu(@);0) + o — pu(x); 0)],

where the expectation is over the data distribution (and any sampling in w if approximated).

(when V£(x;0) # 0; any fixed unit u otherwise).

Step 1: Second-order expansion and cancellation of odd terms. Fix z, 0 and write the second-order

Taylor expansion in the direction w:

2
Lz + pu; 0) = U(x;0) + p Vi l(z; G)Tu + % uTViZ(aE + &4 pu; 0) u,

2
Uz — pu; 0) = £(;0) — pVaul(x;0) " u+ % u' Val(z + E_pu; 0) u,

for some &4, &— € (0,1) (by Taylor with remainder). Averaging,

Lz + pu; 0) + £(z — pu; 0)
2

By L-smoothness, ||V2£4(-;6)|lop < L almost everywhere, hence

Uz + pu; 0) + £(x — pu; 0)
2

— {(a; 9)‘ < g p.
Taking expectations,
Laug(0) = E[l(z;:0)] + O(p*),  |Laug(0) — E[(z;0)]| < 5p°.
Recall £max (25 p) = sup| s, <, £(z + A; 0). The standard L-smooth bound gives
bmnax (w5p) < 0(w30) + p[|Vol(;0) ]2 + 57

Taking expectations:

Elfuax(@3p)] < E[0(a;0)] + pE[||Vob(a; 6)]|2] + Lo*.

The lower Taylor bound along u = V£/|| V.|| reads
Ua+pus0) > U@;0) + plIV.b(z; 0)]]z — Lo™.

Rearranging,
Ua + pus0) — ((a:6) | L
P 2"

[Veb(z;0)]2 <

Taking expectations and using (§) (together with £(z + pu) controlled by the symmetric average),

E[l(z + pu; 0) — £(x;0)]
p

E[[|V.l(x;0)[2] < Laug(0) —E[l(z;0)] L

p

Hence, driving Laug () close to E[¢(x; 0)] forces the expected input-gradient norm to scale as O(p).

For completeness, expand the parameter gradient (using mixed partials):

2
Vol(x £ pu;0) = Vel(z;6) £ p [Viygé(:ﬂ;ﬁ) u] + % [uTVi,z,gﬁ(x; 0)u] + 0(p®),

2
= VoLawg(0) = E[Vol(z;0)] + %E[uTVZ,LgZ(I;H) u] + O(p").

2
= U(z;0) + % u (V2(z + &4 pu; 0) + V2E(x + E_pus 0))u.

L
< —p = .
+35P S +t3P O(p)

(M

®

®

10)

an

Thus training with Laug is equivalent to training on E[¢(x;0)] plus a curvature-weighted regularizer that

penalizes sharpness along u; this is consistent with the O(p) control of E||V£||2 above.
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Conclusion. Combining (9) with the O(p) bound on E||V ,£||2 yields
E[lmax (73 p)] < E[t(x;0)] + O(p?),

so symmetric gradient-aligned augmentation reduces the first-order adversarial term and improves robustness at
the p-scale while only perturbing the nominal objective at order p.

Remark 2. In practice we use a finite-difference proxy ¢(x) for VL(z) (Section 3.10 in the main text), setting
u(z) = g(x)/||g(z)||2. The analysis extends by replacing V{(x) with g(z) and adding the proxy error from
the Lemma below.

A.3 Kept-Error Control via Clopper-Pearson

Setup. Let C = {(zs,yi)}i=1 be an independent calibration set (disjoint from training and test). Let
s : X = R be a confidence score where larger is better (e.g., calibrated class probability or margin). For a
threshold 7 € R define the kept set

Kir) = {ie{l,...,n} : s(x:) > 7}, nNreep(T) = |K(7)].
Let M; = 1{g(x;) # yi} be the misclassification indicator and
K(r) = Z M;, ﬁukeep(T) = K@) (with the convention 0/0 = 0).
ieK(r) Meep (7)

The (population) kept error at T is

Ricen(7) = Pr(§(X) #Y | s(X) > 7).
Modeling assumption (exchangeability on the calibration split). Under i.i.d. sampling and determin-
istic tie-breaking, conditional on K(7) we have

K(7) ~ Binomial(nkeep(7), 6(7)), where 6(7) = Rieep(T)-
Intuitively, among the nkeep (7) kept points, each is an independent Bernoulli(f(7)) “error trial.”
Clopper-Pearson (one-sided upper) bound at fixed 7. For integers 0 < k < n, the one-sided (1 — §)
Clopper—Pearson upper bound is
CP*(k,n,0) = Beta '(1—6; k+1, n— k),

i.e., the (1 — §) quantile of a Beta(k + 1,n — k) distribution. It is the exact test inversion of the binomial tail:

Pr(K <k|0=CP*(knd) = 1-6.
Therefore, for any fixed T,

Pr(0(r) < CPH(K(T), Nkeep(T), 8) ) > 1—34. (12)
Threshold selection on a finite grid. Let7 = {1 < 72 < -+ < T} be a finite grid of thresholds (e.g.,
unique score values or a fixed quantile grid). Define the data-driven choice
7* = inf {T eT: CPJ’(K(TLnkeep(T),(S') < a},

with per-threshold level 8’ = §/m (Bonferroni correction). If the set is empty, declare “abstain-all” (or report
failure to certify).

Proposition 2 (Finite-sample kept-error control with grid search). With the construction above,

Pr( Rikeep(7™) < ) > 1-6.

Proof. Foreach T € T, by (I2) with 6" we have
Pr(0(r) < CPH(K(T), Nkeep(7),8") ) > 1—10'.
Applying the union bound over m thresholds,
Pr(VreT: 0(r) < CPT(K(7), nkeep(7),0") ) > 1—md = 1-06.

On that high-probability event, in particular at 7% we have 0(7*) < CP*(K(7*), nkeep(7*),0’) < a by

definition of 7*. Hence Rieep(7*) = 0(7*) < « with probability at least 1 — 6. O
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A.4 EJOP via Finite Differences

Objects and estimator. Let p* () € [0, 1]* denote the Bayes class probabilities, with coordinates p} (x).
Define the EJOP matrix

K
Hy = E|) Vpi(X)Vps(X)" | € R,
c=1
We estimate Vp) by centered, coordinatewise finite differences applied to a surrogate p.: for E =

diag(e1, . . .,eaq) and unit coordinate vectors e;,

Pe(z +e5€5) — Pe(® — g5¢5)
2€j

gj(xz;c) = . glme) = (g1,.-..94) -

Given a subsample {z; };* 1, the plug-in estimator is
m

Hy = % DY glwise)glwize)”

i=1 c=1
Assumptions. We assume:

(Al) Smoothness. For each ¢, p; is twice differentiable a.e. with L-Lipschitz gradient: ||Vp}(z) —
Vpi(y)|2 < L||z — yl|2. (This implies | V?p}(x)|jop < L ae.)

(A2) Surrogate accuracy. ||pc — pi|loc < nforall c.
(A3) Bounded gradients. ||Vp}(z)||2 < Bmax a.s. forall c.

Pointwise finite-difference error (discretization + surrogate). Write 5. = p. — p; and decompose

po(x +eje5) — po(x — gje5) n de(x +gje5) — de(x — gj¢5)

9;(@c) = 2¢; 2;

centered difference on p% surrogate term
Surrogate term. Since |d.(-)| < n pointwise,

de(x +eje5) — de(x —€5¢)

[0c(x + g5¢5)| + |0c(x —gje)l o 7m0
25j - ’

2Ej Ej

<

Discretization term. By Taylor’s theorem with remainder along ¢ — p%(x + te;) and (Al),

Po(r +eje5) — pelx — eje5)
2€j

= Ou,;po(x) + 7i(z50),

with
1 [t 9 4 L
ri@id)l < 5 [ A=)V pe(r +tejej)llopdt - &5 < S e
~1
(If p% is C* with sup |8§jp§\ < T}, one may strengthen to |r;| < %E?; we keep the O(e;) bound implied by
L-smoothness.)

Collecting both contributions and stacking over j yields the vector error bound

lg(wie) = Vpi(@) [l < O maxe; + Co U Ci=LVvd, o=V (13)

. ’
min; €;

Outer-product perturbation from gradient error. For any a,b € R¢,
aa’ —bb' = (a—bb" +a(a—0b)",

SO
laa" =bb" llop < lla—=bll2[lbll2 + llall2 la =bll2 < (llall2 +[Ib]l2) la = bl|2. (14)

Apply ([4) with a = g(z;c) and b = VpZ(z) and use (A3):

I g(z;0)g(mic) " — Vpi(@)Vpi(@) " llop < (llg(asc)llz + [VPi(@)ll2) lg(x; ¢) — Vi (@)]|2-
Since ||g(z; ¢)ll2 < |Vps(@)]l2 + [lg — VPill2 < Bmax + A(z; ¢) with A(z; ¢) :=||g — Vp}||2, we obtain
99" = VPiVp: llop < (2Bmax + A(w;0)) A(w;¢) < 2BmaxA(w;0) + Alz;0)®. (15)
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Summing over ¢ and averaging over the sample {z; } gives the bias term

m K
. 1 * *
Bias = | — >3 (g:(c)gslc) " — V(@) Vpi() ")
1=1 c=1 op
1 m K
< — ZBmaxA A Az = i — Z i . 16
< m;g )+ Ai(e)?), (@) = llg(zs;¢) = Vpe(zi)|2 (16)
By (T3), deterministically A;(c) < &4 with
69 = (O} maxe; + Co .77 s
J min; €5
hence
Bias < K (2Bmaxdg + ;). (17)

Concentration for the sampling fluctuation (matrix Bernstein). Define the oracle summands

K

= > Vpi(x:) Vpi(z:)',  E[Vi] = Hy,

c=1

and centered matrices Z; = Y; — E[Y;] (self-adjoint, independent). Each Y; satisfies

K
[Yillop < D IVPL@)l3 < KBhax = N Zillop < Yillop + [ Hollop < 2K Blax = R.

c=1

For the variance proxy,

STEZY| < D EIZlE, £ mR® = o”
=1 op i=1

Tropp’s matrix Bernstein inequality yields, for any § € (0, 1), with probability at least 1 — 6,

- 202 log(2d/§ 2
1 Z z, a2 log(2d/6) n 2R log(2d/d) _ 9K B2 2log(2d/5) n 4K B} .x log(2d/9) .
m . m 3m m 3 m
° (A) (B)
(18)
We denote the RHS by Conc(m, §).
Putting it together (bias+concentration). Add and subtract the oracle mean:
Ho— Hy = (ﬁo—%zyi) + (%ZY}—Ho)v
bias from g vs. Vp* sampling fluctuation
By (T7) and (I8), with probability at least 1 — &,
~ 2log(2 4K B2, log(2
| o Holl,, < K(2Buasdy +62) + 2K By 2 BCUD AR Ba 108CGA/0) =,

Remark 3 (Balancing e, against n). The surrogate/FD tradeoff in 5, = C1 max; e; + Ca 1/ min, £; suggests
choosing (roughly) €5 o /1 to balance the two contributions (if one uses a common step). Our adaptive rule
g; = a. - MAD(X.;)/0.6745 rescales steps to the feature scale while letting o tune the tradeoff.

Remark 4 (Optional: ridge + trace normalization). If the preconditioner used in the method is H= H%O%
(and H = % analogously), then for T4 :=tr(A + ~I),
. Ho — H H ~ 1 d|H ~
HH _ H”op < H 0 OHOP + ” OHOP }tI‘(Ho _ H0)| < (7 + m) HHO _ HOHOIJ’
THO ﬁ() Ho Tmin Tmm

where Trnin = min{Tg , T, } > ~vd. Thus ([9) transfers to |H — H||op up to a benign factor depending on
~y and d (ridge and normalization stabilize the map A — (A +~I)/tr(A +~I)).

Corollary 1 (DIR-G proxy error). Let {(z) = Zf:l we ps () with nonnegative weights w. (induced by the
cost-aware rule), and define §(z) = > we g(x; ¢). Then by triangle inequality and (T3),

136~ Ve 1o < S welloese) = Tpi@ls < ol (Chmaxe, +Co )
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Algorithmic Specification (Pseudocode)

B.1 End-to-End SCARF Pipeline

Algorithm 1 SCAREF: Training and Inference

Require: Training data Dy, = {(z;,y;)}, calibration data Dy, classes {1,..., K}, cost matrix
C € REXE abstain cost Capys, target kept-error «, confidence 9, FD scale ., EJOP subsample

Ensure: Trained forest F, feature map ®(z), confidence score s(x), certified threshold 7*
1:

11:
12:
13:
14:
15:
16:

size m, ridge v > 0, DIR-G strength p > 0, forest hyperparams RF_cfg

Robust step sizes: For each feature j, set ¢; < a. - MAD(X,;)/0.6745.

Train a light surrogate p(z) (e.g., multinomial logistic or tiny HGBT) on D,.

Estimate EJOP: H;, < ESTIMATEEJOP(p, {¢;}, Dtr, m)
Preconditioner: H < (Ho +~I)/tr(Ho + 1)
Feature map: define ®(z) < Hx
if p > 0 then

DIR-G augmentation: D < DIRGAUGMENT(p, {¢;}, Dir, p, C)
else

D} < Dy,
end if
Train forest: I < TRAINFOREST({(®(z),y) € D}, RF_cfg)
Calibrate & score on Dc,;: (¢, s(-)) <~ CALIBRATEANDSCORE(F, ®, Dc,1)
CP threshold search: 7 < CPTHRESHOLD(s, F, ®, Dca1, @, §)
Inference rule (test point x):

compute §j(x) < arg maxy Fi(P(x)), confidence s(x)

if s(z) > 7* then predict §(z) else abstain (cost c,bs)

> Alg.

> Alg.

> Alg. 4
> Alg.

B.2

EJOP via Centered Finite Differences

Algorithm 2 ESTIMATEEJOP(p, {¢,}, D¢r, m)

_—
N oY

A A S ol ey

Draw a uniform subsample S = {z;}, from Dy, (without labels).
Initialize fIO < Ogxd-
for each x € S do
forc=1to K do
for j =1toddo
Pe( +€j€5) — Pe(x — £5¢5)
2€j

gi(@;¢) <

end for
g(w;c) < (91,94

~ -~

Ho « Ho + g(z;0) g(z;0) T
end for

)T

: end for _
: return Hy/m
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B.3 Gradient-Aligned Data Augmentation (DIR-G)

Algorithm 3 DIRGAUGMENT(p, {¢,}, D, p, C)

1: Define class weights w. > 0 from the cost matrix C' (e.g., w. = ZC, C . or task-specific).
2: DY« ()
3: for each (z,y) € Dy, do

4: for c=1to K do
5: for j =1toddo
6: gj(x;c)<—p°’(x+€j€j)_pc(x_gjej)
2€j
7: end for
8: end for
9: g(z) Zf:l we g(z;c) > cost-aware surrogate gradient
10: u(z) < g(x)/ max(|g(x)||2, 1071%) > unit adversarial direction (safe divide)
11: ) x4 pu(x), =) —x—pu(z)
122 D* < DY U{(,y), (), y), (=7, y)}
13: end for

14: return Dt

B.4 Calibration and Confidence Score

Algorithm 4 CALIBRATEANDSCORE(F, @, D))

1: Compute raw class probabilities on D,z pi2% (z) = Fi(®(z)).

2: Define raw confidence r(r) = max,p;"(z) and correctness labels z(x)

1{arg maxy, p*" (x) = y}.
3: Fit isotonic regression ¢ : [0,1] — [0,
Define calibrated confidence score s(x
5: return (¢, s(-))

»

1] on pairs {(r(x), 2(x)) : (2,y) € Dear}.
) < ¢(r(x)) for any input z.

B.5 Clopper—Pearson Threshold Selection

Algorithm 5 CPTHRESHOLD(s, F, ®, D, «v, 0)

Form a finite grid 7 over [0, 1] (e.g., 200 quantiles of {s(z) : (x,y) € Dcal}).
Set per-grid level 8" < 6/|T|.
for each T € T do

K(r) + {(z,y) € Dear : s(z) > 7}

Nieep ¢ |K(7))]

K« Z(z,y)EK(T) 1{&I‘g maxg Fk((I)(SU)) # y}

A A SR ol e

if UB < « then
9: record 7 as feasible
10: end if
11: end for
12: if no feasible 7 then

UB + CP (K, nkeep, 0') > UB = Beta ' (1 — 6; K + 1, ngeep — K)

13: return 7% < +00 > abstain-all or relax (o, d)

14: else
15:  return 7% < min{r € 7 : CP¥ (K, nkeep,d’) < a}
16: end if
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Hyperparameters and Implementation Details

C.1 Global Configuration and Search Grids

Table 5: Global hyperparameters and search grids used across datasets. Paper defaults are in bold.

Component Default Grid / Options

Finite-difference step scale . 0.10 {0.05, 0.10, 0.20}

EJOP subsample size m (fraction 0.2 {0.1, 0.2, 0.4}

of train)

Ridge ~ for preconditioner le-3 {le—4, 1e—3, le—2}

Trace normalization on {on, off}

DIR-G strength p 0.50 {0, 0.25, 0.50, 0.75}

Forest (final) # trees 500 {300, 500, 800}

Forest (final) max depth None {None, 14, 20}

Forest (final) max features Vd {Vd, d/3}

Forest (final) min samples leaf 1 {1, 3, 5}

Forest (surrogate) # trees 200 {100, 200} (or multinomial logistic)
Calibration method Isotonic {Isotonic, Platt}

CP confidence level & 0.05 {0.10, 0.05, 0.01}

Threshold grid size |T| 200 {100, 200, 300}

Abstain cost Cypg task-specific Use task’s cost model; sweeps reported in main text.

C.2 Training Configurations

Surrogate for EJOP/DIR-G. Random forest (learning_rate=0.05, max_depth=2, estimators=100). Class
weights may mirror the application cost matrix.

Final forest. Unless otherwise stated, we use n_estimators=500, max_featuresz\/g, bootstrap=True,
min_samples_leaf=1, and leave max_depth unconstrained.

Calibration and scoring. Confidence score s(x) is the isotonic-calibrated maxy, pi (x) by default. For
cost-aware variants, calibrate the scalar 1 — E[cost(4(z),Y) | ] analogously.
C.3 CP Thresholding and Operating Points

We scan a grid 7 of size 200 over [0, 1] (quantiles of s(x) on the calibration split). We use Bonferroni-corrected
one-sided Clopper—Pearson with per-grid level 8’ = /|7 | and § = 0.05. For the headline kept-error targets we
report a € {0.05,0.10,0.15,0.20}. If no 7 satisfies CP* (K, n,§") < «, we report “abstain-all” or mark as
infeasible.

C.4 Random Seeds, Versions, and Compute

Seeds and splits. We run 10 independent seeds {13, 37, 101, 202, 303, 404, 505, 606, 707, 808}. Each seed
drives: (i) the train/cal/test split; (ii) subsample for EJOP; (iii) model initialization; (iv) any bootstrap sampling.
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Table 6: Software versions and hardware.

Component Version / Spec

0OS Ubuntu 22.04 LTS (x86_64)
Python 3.11x

NumPy / SciPy 1.26.x/1.11.x

scikit-learn 1.4.x

pandas 2.2.x

matplotlib (plots) 3.8.x

CPU 32 cores, 128 GB RAM
GPU (not required) n/a

Code availability: https://drive.google.com/file/d/1tbjTpOqbiprukxzFdCqT50IqwsSdkjt4/view 2usp=sharing
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