
Under review as submission to TMLR

GPT-FL: Generative Pre-Trained Model-Assisted
Federated Learning

Anonymous authors
Paper under double-blind review

Abstract

In this work, we propose GPT-FL, a generative pre-trained model-assisted federated learning
(FL) framework. At its core, GPT-FL leverages generative pre-trained models to generate
diversified synthetic data. These generated data are used to train a downstream model
on the server, which is then fine-tuned with private client data under the standard FL
framework. We show that GPT-FL consistently outperforms state-of-the-art FL methods
in terms of model test accuracy, communication efficiency, and client sampling efficiency.
Through comprehensive ablation analysis, we discover that the downstream model generated
by synthetic data plays a crucial role in controlling the direction of gradient diversity during
FL training, which enhances convergence speed and contributes to the notable accuracy boost
observed with GPT-FL. Also, regardless of whether the target data falls within or outside
the domain of the pre-trained generative model, GPT-FL consistently achieves significant
performance gains, surpassing the results obtained by models trained solely with FL or
synthetic data.

1 Introduction

Federated learning (FL) is a privacy-preserving machine learning paradigm that allows a collection of clients
to collaboratively train a machine learning model without sharing their private data Zhang et al. (2021).
Most existing FL studies such as McMahan et al. (2016); Bonawitz et al. (2019) follow the standard FL
architecture, where each participating client trains a local model using its own private data and a central
server aggregates these locally trained models to update a global model and send it back to the clients for the
next round of training. However, although many efforts have been made Sahu et al. (2018); Karimireddy et al.
(2019); Reddi et al. (2020); Mishchenko et al. (2022), the performance of standard FL is still constrained by
client drift caused by the heterogeneity in private data distribution across the clients.

To enhance the performance of FL, recent studies propose to incorporate data collected from public spaces
such as the internet into the FL process Lin et al. (2020); Li et al. (2021); Itahara et al. (2020); Cho et al.
(2022). However, the performance of such public data-based approaches is heavily dependent on the quality
of the collected public data. Unfortunately, obtaining the desired public data can be extremely challenging in
practice and there is a lack of principled guidance on how to obtain them. To address the issues of public
data-based approaches, FL methods based on synthetic data emerge Zhang et al. (2022); Zhu et al. (2021);
Pi et al. (2022); Wijesinghe et al. (2023). In Zhang et al. (2022); Zhu et al. (2021), a generative model is
trained through knowledge distillation (KD) and the synthetic data are generated from the generative model
in an interleaved manner throughout the federated training iterations. Unfortunately, these approaches are
confronted with two limitations: (1) since the training of the generative model and the federated training
process interleave, the quality of the synthetic data generated by the generative model before it converges
can be extremely unstable. Such low-quality synthetic data would in turn jeopardize the federated training
process; (2) given that KD requires clients to report model weights as teachers to transfer knowledge, they
are incompatible with secure aggregation protocols Bonawitz et al. (2017); So et al. (2021), which limits their
privacy guarantee compared to standard FL.

1

Under review as submission to TMLR

Table 1: Comparison of GPT-FL with existing FL methods.

External Data
Limited to

Smaller
Client Model

Generate
Data

during FL

Data
Generator
Location

Client Access to
Public/Generated

Data

Support
Data

Modality

Compatibility
with Secure
Aggregation

FedAvg McMahan et al. (2016)

No No N/A N/A N/A Image/Audio/Text YesFedOpt Reddi et al. (2020)
FedProx Sahu et al. (2018)
SCAFFOLD Karimireddy et al. (2019)
FedDF Lin et al. (2020)

Public Data No N/A N/A
Not Required

Image/Audio/Text NoDS-FL Itahara et al. (2020) Required
Fed-ET Cho et al. (2022) Not Required
MOON Li et al. (2021) No No N/A N/A Not Required Only Image Yes
FedGen Zhu et al. (2021)

Generated Data Yes Yes
Client Required Only Image No

FedFTG Zhang et al. (2022) Server Not Required Only Image No
DynaFed Pi et al. (2022) Server Not Required Only Image Yes
GPT-FL (Ours) No No Server Not Required Image/Audio/Text Yes

In this work, we propose GPT-FL, a generative pre-trained model-assisted FL framework that effectively
addresses the issues of existing methods. The key idea behind GPT-FL is to leverage the knowledge from
the generative pre-trained models and to decouple synthetic data generation from the federated training
process. Specifically, GPT-FL prompts the generative pre-trained models to generate diversified synthetic data.
These generated data are used to train a downstream model on the server in the centralized manner, which is
then fine-tuned with the private client data under the standard FL framework. By doing this, the proposed
GPT-FL is able to combine the advantages of previous methods while addressing their limitations.

The proposed GPT-FL exhibits multifold merits compared to prior arts (Table 1): (1) In contrast to public
data-based FL methods, GPT-FL gets rid of the dependency on the availability of the desired public data,
offering much more flexibility in its applications. (2) Compared to other generative data-based approaches,
the leverage of generative pre-trained models and the decoupling between synthetic data generation from
the federated training process make the generated synthetic data in GPT-FL not impacted by private data
distribution on the clients and the structure of the model to be trained. (3) By leveraging the computational
resources on the server, GPT-FL provides a much more efficient way to utilize external data by incorporating
them into the pre-training of the downstream model, which significantly reduces the communication and
computation costs of FL. (4) The generation of downstream models using synthetic data takes place on the
server. As such, it thereby eliminates the need for clients to bear any additional computational burden. (5)
Lastly, as GPT-FL does not alter the standard FL framework, it is fully compatible with secure aggregation
protocols as in standard FL methods. More importantly, GPT-FL does not introduce any additional hyper-
parameters beyond the standard FL framework. This significantly simplifies the hyper-parameter optimization
process, making GPT-FL much more practically useful.

We evaluate the performance of GPT-FL by comparing it against state-of-the-art FL methods under three
categories: standard FL methods, public data-based methods, and generated data-based methods on five
datasets that cover both image and audio data modalities. We highlight five of our findings: (1) GPT-FL
consistently outperforms state-of-the-art FL methods under both low and high data heterogeneity scenarios
with significant advantages in communication and client sampling efficiency. (2) Under a zero-shot setting, i.e.
no real-world data is available, the downstream model after centralized training with synthetic images as part
of GPT-FL achieves higher performance compared to the global model based on standard FL training with
private data. On the contrary, the centralized training with synthetic audio performs worse than FL setups
due to the impact of data modality and the quality of the generative pre-trained models. (3) GPT-FL does
not fully rely on generated data. Regardless of whether the target data falls within or outside the domain of
the pre-trained generative model, GPT-FL can largely improve model performance beyond relying solely on
private data in a standard FL framework. (4) The downstream model generated by synthetic data controls
gradient diversity during FL training, improving convergence speed and leading to significant accuracy gains
with GPT-FL. (5) GPT-FL effectively leverages existing pre-trained downstream models to improve performance
in the FL setting, similar to methods under the standard FL framework.

2 Related Work

Standard Federated Learning. In standard federated learning (FL), clients perform local model training
on their private data whereas the central server aggregates these locally trained models to update a global

2

Under review as submission to TMLR

model, which is then sent back for the next round of training. To enhance privacy, Secure Aggregation (SA)
protocols Bonawitz et al. (2017); So et al. (2021) have been proposed to encrypt each model update and
reveal only the sum of the updates to the server. However, the performance of FL is jeopardized by client
drift which is caused by the heterogeneity of private data distribution. To tackle this issue, FedProx Sahu
et al. (2018) introduces a proximal term to the local subproblem to constrain the local update closer to the
global model; SCAFFOLD Karimireddy et al. (2019) leverages a variance reduction technique to mitigate
the effect of drifted local updates; and FedOpt Reddi et al. (2020) proposes to update the global model by
applying a gradient-based server optimizer to the average of the clients’ model updates. A recent proposed
algorithm ProxSkip Mishchenko et al. (2022); Malinovsky et al. (2022) offers an effective acceleration on
convergence and communication by skipping the expensive prox operator for local training in most rounds.

FL with Public Data. To further mitigate client drift, recent studies propose to utilize public data (e.g.,
collected from the internet) in the process of federated training. For example, FedDF Lin et al. (2020) leverages
public data at the server to aggregate client models through knowledge distillation (KD). DS-FL Itahara
et al. (2020) proposes a similar approach based on semi-supervised FL. MOON Li et al. (2021) proposes
to use contrastive loss to further improve the performance. Fed-ET Cho et al. (2022) introduces a weight
consensus distillation scheme using public data to train a large server model with smaller client models.
Mixed FL Augenstein et al. (2022) proposes offloading some intensive computations from clients to the
server with public data to reduce communication and client computation load. Xu et al. (2023) reveals
that applying pre-training on public data would improve privacy and system utility to federated learning
with differential privacy. Nguyen et al. (2022) and Chen et al. (2022) also highlight the importance and
applicability of utilizing pre-training in FL. FreD Hou et al. (2023) presents a privacy-preserving method for
pre-finetuning foundation models in FL by computing the Fréchet distance between embeddings from a Large
Language Model (LLM) on public and private federated datasets.. A recent study Wang et al. (2023) offers
to leveraging public datasets and LLMs for differentially private on-device FL model training, enhancing the
privacy-utility tradeoff through distillation in NLP tasks.

However, utilizing public data for FL has several limitations: the performance of FL heavily relies on the
selected public data. However, it is unclear to which extent should the publish data be related to the training
data to guarantee effective knowledge distillation, making it challenging to find appropriate public data for
every use case Stanton et al. (2021); Alam et al. (2022); Zhang et al. (2022). Moreover, the involvement
of KD requires clients to send model weights to the server. This requirement makes it incompatible with
secure aggregation protocols, making them vulnerable to backdoor attacks Wang et al. (2020). Furthermore,
some proposed methods Li et al. (2021); Lin et al. (2020) require clients to process the public data. Such
requirement adds an extra computational burden to clients.

FL with Synthetic Data. To address the issues of public data-based approaches, FL methods based on
synthetic data have been proposed Zhang et al. (2022); Zhu et al. (2021); Pi et al. (2022); Wijesinghe et al.
(2023). In particular, FedGen Zhu et al. (2021) proposes to train a lightweight generator on the server using
an ensemble of local models in a data-free manner. The generator is then sent to the clients to regularize
local training. FedFTG Zhang et al. (2022) trains a GAN-based generator where the global model acts
as the discriminator. The generated data are then used to fine-tune the global model on the server after
model aggregation. However, training of the generator relies heavily on the global model, which can lead
to poor performance under high data heterogeneity. Additionally, the quality of training the generator is
impacted by the structure of the global model Kim et al. (2022), making the quality of the synthetic data
unstable during training. Furthermore, these approaches are limited to image-related tasks, restricting their
applicability to other data modalities. Specifically, both FedGen and FedFTG rely on training MLP-based
or GAN-based lightweight generator networks to ensemble user information in a data-free manner, where
the lightweight generator may have limitations in generating high-fidelity data. In addition, the MLP-based
model is impractical to model temporal structures to signals such as audio and speech. Finally, some
approaches Zhang et al. (2022); Zhu et al. (2021) could not support secure aggregation protocols due to the
KD-based training, which could compromise the privacy of client data. As an alternative, DynaFed Pi et al.
(2022) proposes to generate synthetic data via gradient inversion by applying multi-step parameter matching
on global model trajectories and using the synthesized data to help aggregate the deflected clients into the
global model. However, using gradient inversion for generating synthetic data could encounter limitations

3

Under review as submission to TMLR

when dealing with high-resolution images Huang et al. (2021). In addition, this approach could not be
directly used for other data modalities such as audio Dang et al. (2021). In this work, we propose GPT-FL as
a solution to address these limitations.

3 GPT-FL: Generative Pre-Trained Model-Assisted Federated Learning

3.1 Overview

Consider the standard FL setting McMahan et al. (2016), in which the FL system is composed of a server
with K clients, whose data is only locally kept without sharing. The clients cooperate in training a global
model Wg with parameters θ with the aim to solve the optimization problem formulated as follows

min
θ

f(θ) :=
K∑

i=1
piFi(θ) (1)

where Fi(·) represents the local objective of client i and pi denotes the aggregation weight of client i satisfying
pi ≥ 0 and

∑C
i=1 pi = 1.

Algorithm 1: GPT-FL.
Input: G: generative pre-trained model, T : FL communication rounds

1 // Generate downstream model weight θinit from G on server S
2 for each client i ∈ {1, · · · , K} in parallel do
3 submit label names set yi to server S
4 end
5 global label name set ys ← aggregate ⟨yi⟩
6 synthetic dataset D′ ← G(ys)
7 θinit ← centralized training D′ on server S
8 // Finetune trained downstream model on private client data with FL
9 Server S sets θ0

s = θinit

10 for r ∈ {0, · · · , T − 1} communication rounds do
11 Sample n clients uniformly at random to define C, and send θr

s to clients in C
12 Clients c ∈ C in parallel do:
13 θr

c ← local model update
14 Server S do:
15 θr+1

s ← aggregate ⟨θr
c⟩

16 end
Output: θT

s

Under such formulation, the overall architecture of GPT-FL is illustrated in Figure 1. As shown, GPT-FL
consists of three steps. First, prompts are created based on the label names at the server. These prompts
are then utilized to guide the generative pre-trained models to generate synthetic data. The server uses
these generated synthetic data to train a downstream model and distributes the trained model to the clients.
Lastly, the clients use the trained model as the starting point, and finetune the model with their private data
under the standard FL framework until it converges. The pseudocode of GPT-FL is presented in Algorithm 1.
In the following, we describe the details in each step.

3.2 Create Prompts based on Label Names

As the first step of GPT-FL, a prompt that describes the desired content of the data is required to guide the
synthetic data generation process. To do so, GPT-FL requires the clients to provide the set of label names1

1To protect user data privacy in FL setting, GPT-FL only requests the set of distinct label names instead of detailed label
name distributions, and generates a uniform number of prompts for each label name.

4

Under review as submission to TMLR

“airplane”

“bird”

“dog”

.

.

.

“a positive
audio clip”

“large commercial airplane in the blue sky”

“tropical bird in paradise”

“happy dog in the snow”

.

.

.

“You’re a rockstar! Keep up the great work!”

Prompt
Engineering

Finetune the trained downstream model on private client data with FL4

Downstream Model

Create prompts based on the label names1 Generate synthetic data2

Train downstream model on synthetic data3

Finetune with
private data

Generative Pre-trained
Models

Stable
Diffusion SpeechT5

…

AudioLDM

Finetune with
private data

Finetune with
private data

Synthetic Data

AudioImage Speech

Figure 1: Overview of the proposed GPT-FL Framework.

of their private local data to generate prompts. However, prior research Shipard et al. (2023); He et al.
(2022) shows that using only label names to generate prompts could restrict the quality and diversity of the
generated synthetic data. Moreover, in FL, the server does not have access to detailed descriptions of the
private data. To address these issues, GPT-FL incorporates large language models (LLMs) such as GPT-3 to
expand each input class’s details and use them as prompts for synthetic data generation. As an example, for
the label name "airplane", GPT-FL uses the following query for the LLM to generate the prompt as follows:

Q: " _ _ _ _ a i r p l a n e _ _ _ _"
Please f i l l in the blank and make i t as a prompt to generate the image .
A: Large commercial a i r p l a n e in the blue sky .

Moreover, inspired by Shipard et al. (2023), we randomly set the unconditional guidance scale of the Stable
Diffusion model between 1 and 5 to further enrich the data diversity. In addition to the aforementioned
techniques, it is worth noting that GPT-FL is flexible and compatible with other prompt engineering techniques
that can be used to generate diversified synthetic data.

3.3 Integration of Invertible Bloom Lookup Tables (IBLT) to Enhance Label Privacy

It should be noted that GPT-FL can employ Invertible Bloom Lookup Tables (IBLT) to encode label names
before sending them to the server so that the label information of each client is not leaked to the server Gascón
et al. (2023). Specifically, each client locally encodes its unique label names into IBLT, a probabilistic data
structure that can encode items in an open domain efficiently. The server linearly aggregates these IBLTs via
the secure aggregation Bonawitz et al. (2016) and decodes the aggregated table for the union of unique label
names without revealing individual label information.

Within the GPT-FL framework, the set of distinct label names is sourced from an open domain. The server
lacks detailed length information on the set, making it challenging to directly encode the label names
properly for secure aggregation. To address this, we propose to locally encode the unique label names into
IBLT Goodrich & Mitzenmacher (2011) data structure, a randomized data structure efficient in storing
key-value pairs within an open domain. IBLT is a bloom filter-type linear data structure that supports the
efficient listing of inserted elements and their precise counts, with table size scaling linearly with unique keys.
IBLT sketches are amenable to linear summation, thus compatible with secure aggregation protocols.

In the GPT-FL framework’s IBLT integration, each client locally encodes its distinct label names into IBLT
and transmits it to the server. The server performs linear aggregation of these IBLTs through a secure

5

Under review as submission to TMLR

multi-party computation protocol, subsequently decoding the aggregated table to obtain total label name
counts without revealing individual label information. By leveraging the collective label name histogram,
the server determines the union of distinct label names for data generation, maintaining the privacy of
client-specific details. This approach finds validation in prior research Gascón et al. (2023), where IBLT
demonstrated its efficacy in addressing private heavy hitters within federated analytics.

To better demonstrate the integration of IBLT in GPT-FL, we provide an illustrated experiment as an example.
The experiment is conducted with the TensorFlow Federated IBLT API TensorFlow (2023). We partition
the CIFAR-10 dataset heterogeneously amongst 100 clients using the Dirichlet distribution DirK(α) with α
equal to 0.1. As the server does not know the length of the dataset initially, we set the capacity of the IBLT
sketch to 50, which is much larger than the total number of unique labels inside CIFAR-10 (i.e., 10). Each
client encodes its unique set of label names into IBLT and sends it to the server. The server would aggregate
them via the secure aggregation protocol, which means the server can not access the individual IBLT but
only knows the summation of IBLTs. After decoding the aggregated IBLT, the server only gets the following
information:

Number o f c l i e n t s p a r t i c i p a t e d : 100
Discovered l a b e l names and counts :
{ ’ dog ’ : 49 , ’ automobile ’ : 59 , ’ bird ’ : 50 , ’ horse ’ : 32 ,
’ cat ’ : 46 , ’ f rog ’ : 27 , ’ deer ’ : 44 , ’ truck ’ : 37 , ’ a i rp lane ’ : 50 , ’ ship ’ : 35}

The decode information only contains the number of participated clients and the histogram of the label
name, which the server could infer the union of distinct label names for data generation. For example, the
notation "’dog’:49" denotes there are 49 clients who include the label ’dog’ within their local datasets, but the
server lacks knowledge regarding the specific client identities associated with this ’dog’ label in the localized
data. It is crucial to emphasize that the server remains unable to access specific client details, such as the
labels held by individual clients. As suggested in the previous work TensorFlow (2023); Gascón et al. (2023),
this algorithm could be further enhanced by adding a differential privacy mechanism. In conclusion, this
IBLT-based algorithm will allow parties to jointly compute the union of unique label names without revealing
individual label information, addressing concerns about privacy and confidentiality.

3.4 Generate Synthetic Data from Generative Pre-trained Model

Next, the generated prompts are used as the inputs to the generative pre-trained models to generate synthetic
data. In this work, we utilize the state-of-the-art Latent Diffusion Model Rombach et al. (2021) loaded with
Stable Diffusion V2.1 weights to generate synthetic images for image-based FL applications; and we utilize
the state-of-the-art SpeechT5 model Ao et al. (2021) for text-to-speech and AudioLDM model Liu et al.
(2023) for text-to-audio to generate synthetic speech and audio data, respectively.

It should be noted that the proposed GPT-FL is a general framework that supports other generative pre-trained
models and data modalities beyond images and audio. Notably, GPT-FL treats the generative pre-trained
models as a service provider, utilizing only their APIs for synthetic data generation without modifying any
internal parameters or structures. This design concept enables AI practitioners and engineers to efficiently
develop customized AI models without deploying the foundation model on the server side, making it compatible
with the current trend of constructing downstream applications with API access to generative pre-trained
models. For example, popular large language models such as ChatGPT do not provide access to their model
parameters or architecture for deployment purposes, while they allow third-party to develop AI products
using the provided API services. This design feature enables GPT-FL to be widely applicable to a range of
pre-trained models, facilitating flexible and efficient synthetic data generation for FL.

3.5 Train Downstream Model on Generated Synthetic Data

With the generated synthetic data, GPT-FL trains a downstream model on the server in a centralized manner,
and distributes the trained model to the clients participated in FL. This trained model acts as the initialized
model for the following federated training process. One note should be emphasized from our empirical
experiences is that training with synthetic data is prone to overfitting, as synthetic data tend to be highly

6

Under review as submission to TMLR

patternized compared to real data. To mitigate the effects of overfitting, we adopt relatively large weight decay
hyperparameters and small learning rates compared to training with real data. The detailed hyper-parameter
selections are listed in Appendix A.

3.6 Finetune Trained Downstream Model on Private Client Data with FL

Lastly, the clients use the trained model distributed from the server as the starting point, and finetune the
model with their private data under the standard FL framework until the finetuning converges. As such,
GPT-FL does not alter the standard FL framework, making it fully compatible with secure aggregation protocols
as in standard FL methods. More importantly, unlike existing generated data-based approaches Zhang et al.
(2022); Zhu et al. (2021); Pi et al. (2022), GPT-FL does not introduce any additional hyper-parameters beyond
the standard FL framework. This significantly simplifies the hyper-parameter optimization process, making
GPT-FL much more practically useful.

4 Experiments

Datasets, Models, and Tasks. We evaluate the performance of GPT-FL on five datasets from three FL
applications: image classification, speech keyword spotting, and environmental sound classification. For
image classification, we conduct experiments on CIFAR-10, CIFAR-100 Krizhevsky (2009), and Oxford 102
Flower Nilsback & Zisserman (2008) using ConvNet Pi et al. (2022), ResNet18, ResNet50 He et al. (2015),
and VGG19 Simonyan & Zisserman (2014). Among them, CIFAR-10 and CIFAR-100 contain images from
diverse objects whereas Oxford 102 Flower only contains images of flowers but with higher resolutions for
fine-grained classification.

For audio-related tasks, we choose the Google Command speech dataset Warden (2018) for keyword spotting
and ESC-50 dataset Piczak for environmental sound classification. We followed the previous work Zhang
et al. (2023) to use the same model for these two datasets, where the model consists of two convolution layers
followed by one Gated Recurrent Units (GRU) layer and an average pooling layer is connected to the GRU
output, which is then fed through two dense layers to generate the predictions. More detailed information
about the data-preprocessing method and model setups is described in the Appendix.

Data Heterogeneity. For CIFAR-10 and CIFAR-100, the training dataset is partitioned heterogeneously
amongst 100 clients using the Dirichlet distribution DirK(α) with α equal to 0.1 and 0.5 following the
previous work Cho et al. (2022). With the same method, we partition Flowers102 into 50 subsets respectively
due to its relatively small size.

For audio datasets, Google Speech Command is partitioned over speaker IDs, making the dataset naturally
non-IID distributed. It contains a total of 105,829 audio recordings collected from 2,618 speakers. The
training set includes the recordings from 2,112 speakers and the test set includes the rest. To create non-IID
data distributions on ESC-50, we followed the previous work Zhang et al. (2023) to partition ESC-50 into 100
subsets using DirK(α) with α equal to 0.1.

Baselines and Evaluation Metrics. We compare GPT-FL against three categories of baselines: 1) standard
FL methods without the use of public or generated synthetic data – FedAvg, FedProx, and Scaffold; 2) FL
methods that involve the use of public data – MOON, FedDF, DS-FL, and Fed-ET; and 3) FL methods that
utilize generated synthetic data – FedGen and DynaFed2. We use the test accuracy of the trained model
as our evaluation metric. We run experiments with three different random seeds and report the average
and standard deviation. The details of the hyper-parameter selection of each dataset and experiment are
described in Appendix.

2We did not compare with FedFTG because its code is not open-source, and we could not reproduce their results following
the paper.

3Zhu et al. (2021); Pi et al. (2022) only reported results on ConvNet. We tested these two methods on VGG19 but they are
not converged.

7

Under review as submission to TMLR

Table 2: Model accuracy comparison between GPT-FL and existing FL methods. For public data-based
methods MOON, FedDF, DS-FL and Fed-ET, the results on CIFAR-10 and CIFAR-100 are obtained from Cho
et al. (2022), and the results on Flowers102 are marked as N/A given the practical challenge on finding a set
of suitable public data that can boost its performance.

Method Training
Model

High Data Heterogeneity (α = 0.1) Low Data Heterogeneity (α = 0.5)
CIFAR-10 CIFAR-100 Flowers102 CIFAR-10 CIFAR-100 Flowers102

FedAvg
VGG19

71.19 (± 0.27) 30.21 (± 0.32) 30.30 (± 0.16) 74.82 (± 0.23) 33.12 (± 0.13) 34.75 (± 0.90)
FedProx 72.45 (± 0.13) 31.51 (± 0.11) 33.23 (± 0.24) 75.24 (± 0.19) 33.64 (± 0.08) 40.56 (± 0.19)

SCAFFOLD 75.12 (± 0.20) 30.61 (± 0.57) 26.75 (± 0.50) 78.69 (± 0.15) 34.91 (± 0.61) 33.21 (± 0.41)
MOON

VGG19

75.68 (± 0.51) 33.72 (± 0.89) N/A 81.17 (± 0.41) 42.15 (± 0.72) N/A
FedDF 73.81 (± 0.42) 31.87 (± 0.46) N/A 76.55 (± 0.32) 37.87 (± 0.31) N/A
DS-FL 65.27 (± 0.53) 29.12 (± 0.51) N/A 68.44 (± 0.47) 33.56 (± 0.55) N/A
Fed-ET 78.66 (± 0.31) 35.78 (± 0.45) N/A 81.13 (± 0.28) 41.58 (± 0.36) N/A
FedGen ConvNet 3 42.05 (± 0.93) 26.64 (± 0.66) Not Converged 54.86 (± 0.13) 34.03 (± 0.42) Not Converged

DynaFed 71.59 (± 0.10) 36.08 (± 0.15) Not Converged 75.66 (± 0.21) 43.82 (± 0.30) Not Converged

GPT-FL VGG19 82.16 (± 0.13) 47.80 (± 0.32) 70.56 (± 0.34) 82.17 (± 0.20) 48.39 (± 0.17) 74.84 (± 0.43)
ConvNet 72.62 (± 0.24) 42.66 (± 0.19) 37.91 (± 0.43) 77.18 (± 0.21) 47.89 (± 0.28) 48.61 (± 0.51)

Figure 2: Communication costs of stan-
dard FL methods, public data-based
methods and GPT-FL to achieve the
target test accuracy.

Figure 3: Communication costs of
generated data-based methods and
GPT-FL to achieve the target test ac-
curacy.

4.1 Performance Comparison with State-of-the-Art FL Methods

First, we compare the performance of GPT-FL with state-of-the-art FL methods. To enforce fair comparisons,
in this experiment, we choose to evaluate on the three image datasets (CIFAR-10, CIFAR-100 and Flowers102)
since baseline methods MOON, FedGen and DynaFed only support image data. Moreover, we used the
same models (VGG19 and ConvNet) and experiment settings as previous work Cho et al. (2022); Pi et al.
(2022). In each communication round, we randomly sample 10 clients from 100 clients for CIFAR and use
all 50 clients for Flowers102. We choose FedAvg as the FL optimizer. All the training starts from random
initialization and total number of communication rounds is set to 500.

Overall Performance. Table 2 summarizes our results. We make three key observations: (1) GPT-FL
consistently outperforms all the baselines we selected in Table 2 under both low and high data heterogeneity
scenarios across all three datasets. (2) In direct comparison with state-of-the-art generated data-based FL
methods, although FedGen and DynaFed perform reasonably well on CIFAR-10 and CIFAR-100, they do
not converge on Flowers102 whose images have higher resolutions than CIFAR. Moreover, both FedGen and
DynaFed fail to converge when training a larger VGG19 model on Flowers102 and even lower-resolution
CIFAR-10/100. In contrast, GPT-FL not only converges but also achieves state-of-the-art accuracy on
Flowers102. More importantly, GPT-FL is able to support larger model, and its accuracy is significantly higher
than the smaller ConvNet. (3) For Flowers102, as both public data-based and generated data-based FL
methods are confronted with challenges, the only viable options are standard FL methods and GPT-FL. As
shown, with the same model, GPT-FL outperforms standard FL methods by a significant margin. We also
conduct ablation studies in the Appendix A.3, demonstrating that GPT-FL complements and benefits other
FL strategies, such as DynaFed.

8

Under review as submission to TMLR

Communication Efficiency. Besides model accuracy, we also compare the communication costs of GPT-FL
with existing FL methods on CIFAR-10/100 under high data heterogeneity, where communication cost is
measured as the total number of model parameters communicated between the server and clients during
federated training until reaching a target model test accuracy. Specifically, Figure 2 shows the communication
cost comparison between standard FL methods, public data-based methods4, and GPT-FL under VGG19; and
Figure 3 shows the communication cost comparison between generative data-based methods and GPT-FL
under ConvNet. The target test accuracies in Figure 3 are set to be lower given the low accuracies achieved
by FedGen. As shown, GPT-FL has the least communication cost among all the methods, achieving up to
94% communication reduction compared to the best-performed public data-based baseline Fed-ET and 98%
communication reduction compared to the best-performed generated data-based baseline DynaFed. These
results highlight the significant advantage of GPT-FL in communication reduction over state-of-the-art FL
methods.

Figure 4: Test accuracy of GPT-FL for
CIFAR-10/100 under different client
sampling rates.

Client Sampling Efficiency. One critical hyper-parameter of FL
is the client sampling rate in each communication round during
the federated training process. In Figure 4, we plot the test model
accuracies obtained by GPT-FL under low, medium, and high client
sampling rates on CIFAR-10/100 with VGG19 under high data
heterogeneity. As shown, even with a single participating client per
round, GPT-FL is able to achieve 80.44% and 43.07% test accuracy
on CIFAR-10 and CIFAR-100 respectively. This performance already
surpasses all the other FL methods listed in Table 2, which employs 9
times more clients for training per round. These results highlight the
significant advantage of GPT-FL in client sampling efficiency over state-
of-the-art FL methods, making GPT-FL a very attractive solution in
challenging scenarios where not many clients can participate at the
same time.

Quality of the Generated Synthetic Data As shown in Table 2, GPT-FL outperforms both generated
data-based approaches FedGen and DynaFed significantly across all experimental conditions. One plausible
reason for this could be associated with the quality of the generated synthetic data. Specifically, both FedGen
and DynaFed rely on training MLP-based generator networks to ensemble user information in a data-free
manner, where the lightweight generator may have limitations in generating high-fidelity data. The results
of Flowers102 provide empirical evidence that such a lightweight generator has constrained capabilities in
synthesizing image output on input images with larger sizes, making it challenging for the global model to
converge. To illustrate this, Figure 5 and Figure 6 illustrate the synthetic images generated by GPT-FL and
DynaFed, respectively. As shown, the learned generator of DynaFed fails to generate high-fidelity data as in
GPT-FL.

4.2 Understanding GPT-FL

(1) Can we only rely on centralized training with synthetic data to achieve competitive results
compared to Federated Learning with private data?

To answer this question, we compare the model performance between generated downstream model by
centralized training with synthetic data and the global model by standard FL training with private data
on both image and audio benchmark datasets. Different from the previous section, we select ResNet18 and
ResNet50 models for CIFAR-10 and CIFAR-100 dataset, respectively. We choose the models proposed in the
FedAudio Benchmark Zhang et al. (2023) for audio tasks. We report the best F1 score for the audio datasets.
The results are summarized in Table 3.

Impact of Out-of-Domain Data Generation. We choose the ESC-50 and Google Speech Commands
datasets to examine the impact of out-of-domain data generation for the generative pre-trained model. We did
not conduct a similar analysis for the image datasets as the LAION-5B Schuhmann et al. (2022) open-source

4We do not compare with FedDF and DS-FL as they do not achieve competitive model accuracy.

9

Under review as submission to TMLR

Figure 5: Synthetic CIFAR-10 data by GPT-FL. Figure 6: Synthetic CIFAR-10 data by DynaFed.

Table 3: Accuracy performance of the generated downstream model and standard FL on benchmark datasets.
"1x Synthetic" represents the size of synthetic data is one time as the real data.

Dataset 1x Synthetic 2x Synthetic 3x Synthetic FedAvg FedOpt

Image Data
CIFAR-10 61.48 (± 0.08) 67.41 (± 0.40) 75.65 (± 0.09) 64.48 (± 0.13) 72.68 (± 0.22)

CIFAR-100 24.70 (± 0.00) 33.41 (± 0.01) 41.76 (± 0.03) 25.89 (± 0.67) 20.85 (± 0.14)

Flowers102 24.94 (± 0.57) 28.26 (± 0.14) 31.29 (± 0.18) 30.30 (± 0.16) 26.43 (± 0.09)

Audio Data Google Command 24.78 (± 0.04) 25.65 (± 0.07) 26.24 (± 0.01) 73.68 (± 0.49) 83.01 (± 0.23)

ESC-50 6.89 (± 0.29) 8.68 (± 0.35) 12.72 (± 0.31) 22.76 (± 1.01) 32.49 (± 0.57)

dataset for training the Stable Diffusion model we used is a vast collection of publicly available datasets,
including nearly all relevant ones for our experiments.

Our experiments show that synthetic image outperforms synthetic audio regarding model performance when
using centralized training. We observed that centralized training with synthetic images achieves higher
accuracy than FL setups for all three image benchmark datasets. In contrast, centralized training with
synthetic audio performs worse than FL setups for ESC-50 and Google Speech Command datasets. The
finding from the Google Speech Command experiments aligns with the previous study Li et al. (2018) that
utilizes pure synthetic speech data to train the automatic speech recognition system leading to substantial
performance degradation. One plausible explanation is related to the relatively small training data sizes
(approximately 400M sentences) and constrained domain knowledge (book corpus) compared to training other
generative pre-trained models like Stable Diffusion. For example, using human inspection, we discovered
that the TTS model fails to synthesize simple spoken words like "house". This deficiency may originate
from the lack of short-spoken utterance samples in training data. In addition, the synthesized speech often

10

Under review as submission to TMLR

lacks diversity due to the limited range of speakers represented in the training dataset. On the other hand,
there is insufficient knowledge of the audio generation models, making the model performance of using the
synthesized audio data as training data remains unknown. However, our manual inspection revealed that the
model frequently encounters difficulties in generating audio samples, such as generated audio related to water
sounds often sounds like music. This issue could be largely associated with the relatively small data size in
pre-training compared to other foundation models.

Figure 7: Impact of synthetic data
sample number to the generated
downstream model.

Impact of Numbers of Synthetic Data. With both image and
audio data, one commonality is centralized training with synthetic
data can benefit from increasing the number of synthetic data. To
validate this finding, we test the impact of numbers of synthetic data
on the performance of the generated model on the Flowers102 dataset,
where we increase the size of the synthetic data up to ten times that
of the real data. As shown in Figure 7, our experimental results
demonstrate that as we enlarge the amount of synthetic data, the
performance of the model improves. One justification for this finding
is that enlarging the number of synthetic data enriches the diversity
and increases overlap between the synthetic and real data, allowing
the model to learn more robust and generalizable features. Even if
the data is generated randomly by the label name without any other
diversity-enriching guidance from the real data, with more synthetic
data, there is an increasing chance that some of these additional synthetic data overlap with the real data,
allowing the model to perform better on the real test data.

(2) Why GPT-FL needs to fine-tune the downstream models federatively?

Evaluating Client-isolated Fine-tuning against GPT-FL Performance. To underscore the effectiveness
of federation in fine-tuning, we present an ablation study comparing the performance of local fine-tuning in
isolation against FL fine-tuning. This study utilizes the Google Speech Command and CIFAR-100 datasets.
We partition the CIFAR-10 dataset using the Dirichlet distribution DirK(α) with α equal to 0.1 into 100
clients, and partition the Google Speech Command dataset over speaker IDs into 2,618 clients. We select the
VGG19 model for CIFAR-100 dataset to align with Table 2. In the isolated fine-tuning scenario, we select 10
clients at random, allowing each to fine-tune the synthetic-data-based downstream model independently with
its local data for 500 epochs. The average accuracy from these clients is then computed. For the GPT-FL
setup, we maintain the experimental parameters as per the setups described in Table 5. The results of these
experiments are summarized in Table 4. We also have conducted an ablation study to explore the impact of
distribution drift in synthetic data on GPT-FL’s performance in Appendix A.4, which highlights the efficacy
of the GPT-FL approach under diverse data distribution conditions.

Table 4: Accuracy performance comparison between locally fine-tune in isolation and GPT-FL with FedAvg.

Dataset Locally Fine-tune in Isolation GPT-FL w/ FedAvg

CIFAR-100 35.53% (± 0.57) 47.80% (± 0.32)

Google Speech Command 23.00% (± 0.13) 81.90% (± 0.20)

The results show that fine-tuning in isolation at the client level yields significantly lower accuracy compared
to the GPT-FL approach using FedAvg, which fine-tunes synthetic-data-based downstream model models
federatively using private data. The primary reason for this disparity is the limited amount and skewed
label distribution of the local data available to each client, which is insufficient for individually tuning the
model to achieve optimal performance. These findings clearly demonstrate the value of federated learning in
fine-tuning, especially given the limitations of local data in terms of volume and diversity.

(3) What benefits does GPT-FL bring?

We explore the benefits that GPT-FL provides for custom models that are built on top of downstream models
generated from synthetic data. Specifically, we want to examine how fine-tuning these downstream models
with private data under the FL framework can lead to performance improvements. To demonstrate how

11

Under review as submission to TMLR

GPT-FL can be integrated with existing FL server optimizers, we evaluate its performance with both FedAvg
and FedOpt as the server aggregator. Our experimental results are presented in Table 5.

Table 5: Accuracy comparison between generated downstream model, standard FL and GPT-FL. Differ from
the experiments shown in Table 1, the CIFAR-10 and Flowers102 datasets are trained with ResNet18 model
and the CIFAR-100 dataset is trained with ResNet50 model. "∆Metric" represents the accuracy increment by
GPT-FL on top of the generated downstream model.

Dataset 3x Synthetic FedAvg FedOpt GPT-FL w/ FedAvg GPT-FL w/ FedOpt ∆Metric

CIFAR-10 75.65 (± 0.09) 64.48 (± 0.13) 72.68 (± 0.22) 81.38 (± 0.05) 79.08 (± 0.17) ↑ 5.73

CIFAR-100 41.76 (± 0.03) 25.89 (± 0.67) 20.85 (± 0.14) 62.83 (± 0.31) 48.80 (± 0.12) ↑ 21.07

Flowers102 31.29 (± 0.18) 30.30 (± 0.16) 26.43 (± 0.09) 70.56 (± 0.34) 77.57 (± 0.03) ↑ 46.28

Google Command 26.24 (± 0.01) 73.68 (± 0.49) 83.01 (± 0.23) 81.90 (± 0.20) 83.46 (± 0.11) ↑ 57.22

ESC-50 12.72 (± 0.31) 22.76 (± 1.01) 32.49 (± 0.57) 41.80 (± 0.32) 43.46 (± 0.30) ↑ 30.74

Effectiveness of Private Data. Our experiments demonstrate the effectiveness of incorporating private
data with FL into the finetuning process of the downstream model generated from synthetic data. As shown
in Table 5, regardless of the modality and quality of the synthetic data used to generate the downstream
model, FL fine-tuning leads to significant performance gains, outperforming the ones trained solely with FL
or CL combined with synthetic training by a large margin. Furthermore, we observe that fine-tuning with
private data can especially benefit the cases for out-of-domain synthetic data, such as in the audio data. For
example, GPT-FL with FedOpt could achieve 43.46 test accuracy in the ECS-50 dataset, which nearly provides
two times increment than standard FL and three times increment than centralized training by synthetic data.
These results suggest that leveraging private data with FL in the fine-tuning process can greatly enhance the
performance of synthetic data-generated models, making them more suitable for real-world applications.

Communication Round

G
ra

di
en

t D
iv

er
si

ty

0

50

100

150

200

250

0 200 400 600 800

GPT-FL FedAvg

Figure 8: Smoothed Gradient diversity
of client updates during training on
Google speech commands dataset.

Communication Round

F1
-S

co
re

0

20

40

60

80

0 250 500 750

GPT-FL FedAvg

Figure 9: Learning curve of the
global model during training on Google
speech commands dataset.

Generated Downstream Model Helps FL Optimization. To gain a comprehensive understanding
of why the custom models built using GPT-FL provide benefits to performance improvements, we decided
to compare the gradient diversity between model weights initialized by GPT-FL and random initialization.
Specifically, we apply the definition of the gradient diversity introduced from Yin et al. (2018) by adapting
the gradients gi to client update ∆i:

∆S =
∑

i∈S ||∆i||2

||
∑

i∈S ∆i||2
(2)

where S is the set of sampled clients in each communication round and i represents the client index. As
shown in Figure 8, the gradient diversity plot for FedAvg reveals that GPT-FL displays lower initial gradient
diversity compared to random initialization. Over training time, both GPT-FL and random initialization

12

Under review as submission to TMLR

converge to similar gradient diversity levels, consistent with the performance curve in Figure 9, where a
larger ∆S corresponds to slower convergence rate. This aligns with prior findings Nguyen et al. (2022); Chen
et al. (2022), indicating that starting from a pre-trained model leads to less variation in local client updates,
potentially addressing the client drift issue.

Table 6: Accuracy performance comparison between generated downstream model, standard federated learning
and GPT-FL. All the training is initialized by ImageNet-based pre-train model.

Dataset 3x Synthetic FedAvg FedOpt GPT-FL w/ FedAvg GPT-FL w/ FedOpt

CIFAR-10 72.65 (± 0.05) 66.10 (± 0.03) 79.08 (± 0.39) 75.87 (± 0.73) 82.20 (± 0.61)

CIFAR-100 42.30 (± 0.01) 62.83 (± 0.03) 45.27 (± 0.10) 66.84 (± 0.05) 66.03 (± 0.02)

Flowers102 41.05 (± 0.26) 80.73 (± 0.01) 87.33 (± 0.29) 86.18 (± 0.04) 88.66 (± 0.40)

Harmonization With Existing Pre-train Model. As the standard FL framework, GPT-FL could also
benefit from other existing pre-train models. Specifically, besides training from scratch, GPT-FL could utilize
the existing pre-train model to start training the synthetic data to generate downstream model and finetune
it again with private data in FL. Table 6 presents the performance evaluation of GPT-FL on top of the
pre-trained models for image datasets. We follow the approach from prior work Nguyen et al. (2022); Chen
et al. (2022) and use the ImageNet pre-trained model available in the PyTorch Torchvision library. Our
experiments show that GPT-FL achieves better results compared to training solely with FL or synthetic data,
as reported in Table 5. Notably, the improvement in performance is consistent across three image benchmark
datasets, with a gain ranging from 1% to 11% compared to the results in Table 5. These results demonstrate
that GPT-FL can effectively leverage pre-trained models to improve performance in the FL setting.

5 Conclusion
We present GPT-FL, a generative pre-trained model-assisted federated learning framework. GPT-FL leverages
the generative pre-trained model to generate diversified synthetic data for a wide range of data modalities
before FL training. This synthetic data is then utilized to construct a downstream model, which undergoes
fine-tuning with private data within a standard FL framework. Our experimental results showcase the
remarkable performance of GPT-FL when compared to state-of-the-art FL methods. Moreover, through
detailed ablation studies, we demonstrate that GPT-FL is a flexible and applicable framework solution to the
challenges associated with cross-device FL scenarios.

Limitations and Future works. Due to the limitations in our computational resources, we cannot further
scale up the synthetic data volume in our study, as it may take several weeks for the generation. Besides, we
do not investigate the larger model sizes in our current study, which we will pursue it as our future work.
In addition, we want to explore the expansions of the GPT-FL framework. GPT-FL seamlessly integrates
with the vanilla FL framework, allowing for harmonization with most of the existing FL methods. We are
interested in exploring the combination of the public-data-based FL aggregation scheme and the GPT-FL
framework by replacing the public data with synthetic data. While we recognize the importance of theoretical
analysis, the inherent complexity and opacity of current LLMs pose significant challenges to formulating
comprehensive theoretical frameworks. Our proposed questions are pivotal in the context of leveraging LLMs
and foundational models, which often present as "black-box" systems with limited theoretical support. Our
detailed experimental analysis, therefore, serves as a foundational step toward understanding the interplay
between synthetic data generation, model fine-tuning, and federated learning in the context of LLMs and
foundation models. The proof of theoretical guarantees is designated for future work. We believe these
insights are invaluable for guiding future theoretical and empirical studies in this rapidly evolving field.

References
Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. Fedrolex: Model-heterogeneous federated learning with

rolling sub-model extraction. ArXiv, abs/2212.01548, 2022.

13

Under review as submission to TMLR

Junyi Ao, Rui Wang, Long Zhou, Shujie Liu, Shuo Ren, Yu Wu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei,
Yao Qian, Jinyu Li, and Furu Wei. Speecht5: Unified-modal encoder-decoder pre-training for spoken
language processing. In Annual Meeting of the Association for Computational Linguistics, 2021.

Sean Augenstein, Andrew Hard, Lin Ning, K. Singhal, Satyen Kale, Kurt Partridge, and Rajiv Mathews.
Mixed federated learning: Joint decentralized and centralized learning. ArXiv, abs/2205.13655, 2022. URL
https://api.semanticscholar.org/CorpusID:249151949.

K. A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for federated learning on
user-held data. In NIPS Workshop on Private Multi-Party Machine Learning, 2016. URL https://arxiv.
org/abs/1611.04482.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. B. McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine learning.
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov,
Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi, H. B. McMahan, Timon Van Overveldt, David Petrou,
Daniel Ramage, and Jason Roselander. Towards federated learning at scale: System design. ArXiv,
abs/1902.01046, 2019.

Hong-You Chen, Cheng-Hao Tu, Zi hua Li, Hang Shen, and Wei-Lun Chao. On the importance and applicability
of pre-training for federated learning. In International Conference on Learning Representations, 2022. URL
https://api.semanticscholar.org/CorpusID:253158053.

Yae Jee Cho, Andre Manoel, Gauri Joshi, Robert Sim, and Dimitrios Dimitriadis. Heterogeneous ensemble
knowledge transfer for training large models in federated learning. In International Joint Conference on
Artificial Intelligence, 2022.

Trung Dang, Om Thakkar, Swaroop Indra Ramaswamy, Rajiv Mathews, Peter Chin, and Franccoise Beaufays.
A method to reveal speaker identity in distributed asr training, and how to counter it. ICASSP 2022 -
2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4338–4342,
2021.

Adrià Gascón, Peter Kairouz, Ziteng Sun, and Ananda Theertha Suresh. Federated heavy hitter recovery under
linear sketching. ArXiv, abs/2307.13347, 2023. URL https://api.semanticscholar.org/CorpusID:
260154975.

Michael T. Goodrich and Michael Mitzenmacher. Invertible bloom lookup tables. 2011 49th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), pp. 792–799, 2011. URL
https://api.semanticscholar.org/CorpusID:11589877.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.

Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip H. S. Torr, Song Bai, and Xiaojuan Qi.
Is synthetic data from generative models ready for image recognition? ArXiv, abs/2210.07574, 2022.

Charlie Hou, Hongyuan Zhan, Akshat Shrivastava, Sida I. Wang, Sasha Livshits, Giulia C. Fanti, and
Daniel Lazar. Privately customizing prefinetuning to better match user data in federated learning. ArXiv,
abs/2302.09042, 2023. URL https://api.semanticscholar.org/CorpusID:257019611.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient inversion
attacks and defenses in federated learning. In Neural Information Processing Systems, 2021.

Sohei Itahara, Takayuki Nishio, Yusuke Koda, Masahiro Morikura, and Koji Yamamoto. Distillation-based
semi-supervised federated learning for communication-efficient collaborative training with non-iid private
data. IEEE Transactions on Mobile Computing, 22:191–205, 2020.

14

https://api.semanticscholar.org/CorpusID:249151949
https://arxiv.org/abs/1611.04482
https://arxiv.org/abs/1611.04482
https://api.semanticscholar.org/CorpusID:253158053
https://api.semanticscholar.org/CorpusID:260154975
https://api.semanticscholar.org/CorpusID:260154975
https://api.semanticscholar.org/CorpusID:11589877
https://api.semanticscholar.org/CorpusID:257019611

Under review as submission to TMLR

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In Inter-
national Conference on Machine Learning, 2019.

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-Woo Ha,
and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization. In International
Conference on Machine Learning, 2022.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https://api.
semanticscholar.org/CorpusID:18268744.

Jason Li, Ravi Gadde, Boris Ginsburg, and Vitaly Lavrukhin. Training neural speech recognition systems
with synthetic speech augmentation. arXiv preprint arXiv:1811.00707, 2018.

Qinbin Li, Bingsheng He, and Dawn Xiaodong Song. Model-contrastive federated learning. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10708–10717, 2021.

Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. Ensemble distillation for robust model fusion
in federated learning. ArXiv, abs/2006.07242, 2020.

Haohe Liu, Zehua Chen, Yiitan Yuan, Xinhao Mei, Xubo Liu, Danilo P. Mandic, Wenwu Wang, and MarkD .
Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. ArXiv, abs/2301.12503, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2017.

Grigory Malinovsky, Kai Yi, and Peter Richt’arik. Variance reduced proxskip: Algorithm, theory and
application to federated learning. ArXiv, abs/2207.04338, 2022. URL https://api.semanticscholar.
org/CorpusID:250426060.

H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In International Conference on Artificial
Intelligence and Statistics, 2016.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian U. Stich, and Peter Richt’arik. Proxskip: Yes! local
gradient steps provably lead to communication acceleration! finally! In International Conference on
Machine Learning, 2022. URL https://api.semanticscholar.org/CorpusID:246996874.

John Nguyen, Jianyu Wang, Kshitiz Malik, Maziar Sanjabi, and Michael G. Rabbat. Where to begin? on the
impact of pre-training and initialization in federated learning. ArXiv, abs/2210.08090, 2022.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes.
2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729, 2008.

Renjie Pi, Weizhong Zhang, Yueqi Xie, Jiahui Gao, Xiaoyu Wang, Sunghun Kim, and Qifeng Chen. Dynafed:
Tackling client data heterogeneity with global dynamics. arXiv preprint arXiv:2211.10878, 2022.

Karol J. Piczak. ESC: Dataset for Environmental Sound Classification. In Proceedings of the 23rd Annual
ACM Conference on Multimedia, pp. 1015–1018. ACM Press. ISBN 978-1-4503-3459-4. doi: 10.1145/
2733373.2806390. URL http://dl.acm.org/citation.cfm?doid=2733373.2806390.

Sashank J. Reddi, Zachary B. Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecný, Sanjiv
Kumar, and H. B. McMahan. Adaptive federated optimization. ArXiv, abs/2003.00295, 2020.

Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 10674–10685, 2021.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. arXiv: Learning, 2018.

15

https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:250426060
https://api.semanticscholar.org/CorpusID:250426060
https://api.semanticscholar.org/CorpusID:246996874
http://dl.acm.org/citation.cfm?doid=2733373.2806390

Under review as submission to TMLR

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa Kundurthy,
Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. Laion-5b: An open large-scale
dataset for training next generation image-text models. ArXiv, abs/2210.08402, 2022.

Jordan Shipard, Arnold Wiliem, Kien Nguyen Thanh, Wei Xiang, and Clinton Fookes. Diversity is definitely
needed: Improving model-agnostic zero-shot classification via stable diffusion. 2023.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014.

Jinhyun So, Chaoyang He, Chien-Sheng Yang, Songze Li, Qian Yu, Ramy E. Ali, Basak Guler, and Salman
Avestimehr. Lightsecagg: a lightweight and versatile design for secure aggregation in federated learning. In
Conference on Machine Learning and Systems, 2021.

Samuel Stanton, Pavel Izmailov, P. Kirichenko, Alexander A. Alemi, and Andrew Gordon Wilson. Does
knowledge distillation really work? ArXiv, abs/2106.05945, 2021.

TensorFlow. Private heavy hitters, 2023. URL https://www.tensorflow.org/federated/tutorials/
private_heavy_hitters.

Boxin Wang, Yibo Zhang, Yuan Cao, Bo Li, H. B. McMahan, Sewoong Oh, Zheng Xu, and Manzil Zaheer.
Can public large language models help private cross-device federated learning? ArXiv, abs/2305.12132,
2023. URL https://api.semanticscholar.org/CorpusID:258833462.

Hongyi Wang, Kartik K. Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal, Jy yong Sohn,
Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you really can backdoor federated
learning. ArXiv, abs/2007.05084, 2020.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. ArXiv, abs/1804.03209,
2018.

Achintha Wijesinghe, Songyang Zhang, and Zhi Ding. Ps-fedgan: An efficient federated learning framework
based on partially shared generative adversarial networks for data privacy. ArXiv, abs/2305.11437, 2023.
URL https://api.semanticscholar.org/CorpusID:258823139.

Zheng Xu, Yanxiang Zhang, Galen Andrew, Christopher Choquette, Peter Kairouz, Brendan Mcmahan, Jesse
Rosenstock, and Yuanbo Zhang. Federated learning of gboard language models with differential privacy. In
Sunayana Sitaram, Beata Beigman Klebanov, and Jason D Williams (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 5: Industry Track), pp. 629–639, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-industry.60.
URL https://aclanthology.org/2023.acl-industry.60.

Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran, and Peter Bartlett.
Gradient diversity: a key ingredient for scalable distributed learning. In International Conference on
Artificial Intelligence and Statistics, pp. 1998–2007. PMLR, 2018.

Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-Yu Duan. Fine-tuning global model via data-free
knowledge distillation for non-iid federated learning. 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 10164–10173, 2022.

Tuo Zhang, Lei Gao, Chaoyang He, Mi Zhang, Bhaskar Krishnamachari, and Salman Avestimehr. Federated
learning for the internet of things: Applications, challenges, and opportunities. IEEE Internet of Things
Magazine, 5:24–29, 2021.

Tuo Zhang, Tiantian Feng, Samiul Alam, Sunwoo Lee, Mi Zhang, Shrikanth S. Narayanan, and Salman
Avestimehr. Fedaudio: A federated learning benchmark for audio tasks. In ICASSP 2023 - 2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, 2023. doi:
10.1109/ICASSP49357.2023.10096500.

16

https://www.tensorflow.org/federated/tutorials/private_heavy_hitters
https://www.tensorflow.org/federated/tutorials/private_heavy_hitters
https://api.semanticscholar.org/CorpusID:258833462
https://api.semanticscholar.org/CorpusID:258823139
https://aclanthology.org/2023.acl-industry.60

Under review as submission to TMLR

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous federated
learning. Proceedings of machine learning research, 139:12878–12889, 2021.

17

Under review as submission to TMLR

A Appendix

A.1 Experiment Settings

A.1.1 Computing Infrastructure

All experiments are conducted via CPU/GPU simulation. The simulation experiments are performed on two
computing servers with ten GPUs. The server is equipped with AMD EPYC 7502 32-Core Processor and
1024G memory. The GPU is NVIDIA RTX A100.

A.1.2 Datasets and Models

CIFAR-10. The CIFAR-10 dataset Krizhevsky (2009) consists of 60,000 32x32 color images in 10 classes. It
has 50,000 training images and 10,000 test images. We normalize the images using the mean and standard
deviation of the dataset. For evaluation, we use ConvNet Pi et al. (2022), ResNet18 He et al. (2015), and
VGG19 Simonyan & Zisserman (2014) models. Following the previous work Pi et al. (2022), the ConvNet has
3 layers with a hidden dimension of 128. The dataset is partitioned using a Dirichlet distribution to emulate
a realistic non-iid distribution, following prior work Cho et al. (2022).

CIFAR-100. The CIFAR-100 dataset Krizhevsky (2009) is similar to CIFAR-10 but contains 100 classes,
with 600 images per class. We apply the same partitioning method as CIFAR-10. For evaluation, we use
ConvNet Pi et al. (2022), ResNet50 He et al. (2015), and VGG19 Simonyan & Zisserman (2014) models. The
ConvNet architecture is the same as used for CIFAR-10.

Oxford Flowers 102. The Oxford Flowers 102 Nilsback & Zisserman (2008) (Flowers102) dataset consists
of 102 types of flowers, with each type containing between 40 and 258 images. The images exhibit significant
variations in scale, angle, and lighting. Some flower categories also have substantial variations within the
category and contain several closely related categories. It is divided into training, validation, and test sets.
The training and validation sets consist of 10 images per class, totaling 1020 images each. The test set
contains the remaining 6149 images, with a minimum of 20 images per class. We resize all images to 224x224
pixels for consistency. For evaluation, we use ConvNet Pi et al. (2022), ResNet18 He et al. (2015), and
VGG19 Simonyan & Zisserman (2014) models. We apply the same partitioning method as CIFAR-10. The
ConvNet architecture is the same as used for CIFAR-10.

Google Command. The Google Command dataset Warden (2018) comprises 105,829 audio recordings
collected from 2,618 speakers. The training set includes recordings from 2,112 speakers, the validation set
includes 256 speakers, and the test set includes 250 speakers. It consists of 35 common words from everyday
vocabulary, such as "Yes," "No," "Up," and "Down." For evaluation, we use a lightweight model based on
related work Zhang et al. (2023) for a 35-class keyword spotting task, where the model consists of two
convolution layers followed by one Gated Recurrent Units (GRU) layer and an average pooling layer is
connected to the GRU output, which is then fed through two dense layers to generate the predictions. In this
work, to pre-process the raw audio data, a sequence of overlapping Hamming windows is applied to the raw
speech signal with a time shift of 10 ms. We calculate the discrete Fourier transform (DFT) with a frame
length of 1,024 and compute the Mel-spectrogram with a dimension of 128. The Mel-spectrogram is used for
training the keyword spotting model. We follow Zhang et al. (2023) for this setup.

ESC-50. The ESC-50 dataset Piczak consists of 2000 environmental audio recordings suitable for environmen-
tal sound classification. The dataset contains 5-second-long recordings categorized into 50 semantical classes,
with 40 examples per class. These classes are loosely arranged into five major categories: animals, natural
soundscapes & water sounds, human & non-speech sounds, interior/domestic sounds, and exterior/urban
noises. We employ the same data pre-processing method and model architecture as used in the Google
Command dataset.

A.1.3 Hyperparameter Settings

To determine the optimal hyperparameters, we conducted a search within specified ranges. The client learning
rate was searched in the range of 1.00E-09 to 1.00E-00, the server learning rate in the range of 1.00E-09 to

18

Under review as submission to TMLR

1.00E-00, weight decay in the range of 0.1 to 0.9, input batch size in the range of 8 to 256, and epoch number
for centralized training in the range of 100 to 500. The hyperparameter settings for the public data-based
methods and standard FL methods in Table 2 followed the settings from the previous work Cho et al. (2022).
The specific hyperparameter selections for the other experiments are provided below.

Hyperparameter Selection in Table 2. The detailed experiment setups for Table 2 are listed in Table 7,
Table 8, Table 9 and Table 10. For the experiments related to FedGen5 and DynaFed6, we evaluate them
with their official implementation code on GitHub.

Table 7: Experimental setup details of GPT-FL with VGG19 in Table 2

CIFAR-10 CIFAR-100 Flowers102
Local Epoch 1 1 1
Communication Rounds 500 500 500
Cohort Size 10 10 50
Batch Size 32 32 32

Client Learning Rate High Data Heterogeneity 1.00E-07 1.00E-06 5.00E-03
Low Data Heterogeneity 1.00E-07 1.00E-06 5.00E-03

Optimizer SGD SGD SGD
Momentum 0.9 0.9 0.9
Weight Decay 5.00E-04 5.00E-04 5.00E-04

Table 8: Experimental setup details of GPT-FL with ConvNet in Table 2

CIFAR-10 CIFAR-100 Flowers102
Local Epoch 1 1 1
Communication Rounds 500 500 500
Cohort Size 10 10 50
Batch Size 32 32 32

Client Learning Rate High Data Heterogeneity 2.00E-07 1.00E-04 1.00E-04
Low Data Heterogeneity 5.00E-06 1.00E-04 5.00E-03

Optimizer AdamW AdamW SGD
Betas (0.9, 0.999) (0.9, 0.999) N/A
Eps 1.00E-08 1.00E-08 N/A
Weight Decay 5.00E-04 5.00E-04 5.00E-04

Table 9: Experimental setup details of FedGen with ConvNet in Table 2

CIFAR-10 CIFAR-100 Flowers102
Local Epoch 1 5 5
Communication Rounds 500 500 500
Cohort Size 10 10 50
Batch Size 32 32 32
Generator Batch Size 32 32 32

Client Learning Rate High Data Heterogeneity 1.00E-02 1.00E-02 1.00E-02
Low Data Heterogeneity 1.00E-02 1.00E-02 1.00E-02

Ensemble Learning Rate 1.00E-04 1.00E-04 1.00E-04
Personal Learning Rate 1.00E-02 1.00E-02 1.00E-02
Optimizer Adam Adam Adam
Betas (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Eps 1.00E-08 1.00E-08 1.00E-08
Weight Decay 1.00E-02 1.00E-02 1.00E-02

Hyperparameter Selection in Table 3 and Table 5. For the centralized training in Table 3 and Table 5,
we used the following hyperparameter settings. For image data, the batch size was set to 32, and the optimizer

5FedGen: https://github.com/zhuangdizhu/FedGen
6DynaFed: https://github.com/pipilurj/DynaFed/tree/main

19

Under review as submission to TMLR

Table 10: Experimental setup details of DynaFed with ConvNet in Table 2

CIFAR-10 CIFAR-100 Flowers102
Local Epoch 1 1 1
Communication Rounds 500 500 500
Cohort Size 10 10 50
Batch Size 32 32 32
Synthetic Images Learning Rate 5.00E-02 5.00E-02 5.00E-02
Distill Interval 1 1 1
Distill Iteration 20 8 20
Distill Step 3000 200 500
Distill Learning Rate 1.00E-04 1.00E-04 1.00E-04

Client Learning Rate High Data Heterogeneity 1.00E-02 1.00E-02 1.00E-02
Low Data Heterogeneity 1.00E-02 1.00E-02 1.00E-02

Ensemble Learning Rate 1.00E-04 1.00E-04 1.00E-04
Personal Learning Rate 1.00E-02 1.00E-02 1.00E-02
Optimizer Adam Adam Adam
Betas (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Eps 1.00E-08 1.00E-08 1.00E-08
Weight Decay 1.00E-02 1.00E-02 1.00E-02

was AdamW with weight decay set to 0.9 and cosine annealing learning rate decay. The initial learning rate
was 1.00E-04 for CIFAR-10/CIFAR-100 and 3.00E-04 for Flowers102. For audio data, the batch size was set
to 64, and the optimizer was Adam with weight decay set to 1.00E-04. The initial learning rate was 5.00E-05
for both datasets.

For the standard FL training in Table 3 and Table 5, the hyperparameter settings are as follows. For image
data, the batch size is set to 32, and SGD is used as the local optimizer with weight decay set to 5.00E-04.
When using FedOpt as the server aggregator, Adam is chosen as the server optimizer. Specifically, for the
CIFAR-10 dataset, the local learning rate is set to 1.00E-01 with FedAvg as the server aggregator, and for
FedOpt as the server aggregator, the local learning rate is set to 1.00E-02 and the server learning rate is
set to 1.00E-03. For the CIFAR-100 dataset, the local learning rate is set to 1.00E-01 with FedAvg as the
server aggregator, and for FedOpt as the server aggregator, both the local and server learning rates are set to
1.00E-01. For the Flowers102 dataset, the local learning rate is set to 1.00E-01 with FedAvg as the server
aggregator, and for FedOpt as the server aggregator, the local learning rate is set to 1.00E-02 and the server
learning rate is set to 1.00E-02. For all audio data, the experimental settings strictly follow the FedAudio
benchmark Zhang et al. (2023).

For the GPT-FL training in Table 3 and Table 5, the hyperparameter settings are as follows. For image data,
the batch size is set to 32, and SGD is used as the local optimizer with weight decay set to 5.00E-04. When
using FedOpt as the server aggregator, Adam is chosen as the server optimizer. Specifically, for the CIFAR-10
dataset, the local learning rate is set to 5.00E-04 with FedAvg as the server aggregator, and for FedOpt as
the server aggregator, the local learning rate is set to 3.00E-04 and the server learning rate is set to 7.00E-04.
For the CIFAR-100 dataset, the local learning rate is set to 1.00E-04 with FedAvg as the server aggregator,
and for FedOpt as the server aggregator, the local learning rate is set to 5.00E-04 and the server learning rate
is set to 1.00E-03. For the Flowers102 dataset, the local learning rate is set to 5.00E-03 with FedAvg as the
server aggregator, and for FedOpt as the server aggregator, the local learning rate is set to 1.00E-04 and the
server learning rate is set to 1.00E-04. For audio data, the batch size is set to 16, and SGD is used as the local
optimizer with weight decay set to 5.00E-04. When using FedOpt as the server aggregator, Adam is chosen
as the server optimizer. We set the local learning rate to 5.00E-02 with FedAvg as the server aggregator, and
for FedOpt as the server aggregator, the local learning rate is set to 1.00E-03 and the server learning rate is
set to 5.00E-04 for both two datasets.

Hyperparameter Selection in Table 6. For the centralized training in Table 6, the hyperparameter
selection is follows. For all image data, we set the batch size to 32, and choose AdamW Loshchilov & Hutter
(2017) as the optimizer with weight decay equal to 0.9 and cosine annealing learning rate decay. For the
CIFAR-10 dataset, we used an initial learning rate of 8.00E-06; for the CIFAR-100 dataset, we used an initial
learning rate of 5.00E-06; for the Flowers102 dataset, we used an initial learning rate of 2.00E-05.

20

Under review as submission to TMLR

For the standard FL training in Table 6, we use the hyperparameter setting as follows. For all image data, we
set the batch size to 32, and choose SGD as the local optimizer with weight decay equal to 5.00E-04. With
FedOpt as the server aggregator, we choose Adam as the server optimizer. For the CIFAR-10 dataset, we
choose the local learning rate as 1.00E-01 with FedAvg as the server aggregator and choose the local learning
rate as 1.00E-03 and the server learning rate as 1.00E-03 with FedOpt as the server aggregator. For the
CIFAR-100 dataset, we choose the local learning rate as 1.00E-02 with FedAvg as the server aggregator and
choose the local learning rate as 5.00E-03 and the server learning rate as 7.00E-03 with FedOpt as the server
aggregator. For the Flowers102 dataset, we choose the local learning rate as 1.00E-02 with FedAvg as the
server aggregator and choose the local learning rate as 1.00E-04 and the server learning rate as 5.00E-04 with
FedOpt as the server aggregator.

For GPT-FL training in Table 6, we use the hyperparameter setting as follows. For all image data, we set the
batch size to 32, and choose SGD as the local optimizer with weight decay equal to 5.00E-04. With FedOpt
as the server aggregator, we choose Adam as the server optimizer. For CIFAR-10 dataset, we choose the local
learning rate as 1.00E-07 with FedAvg as the server aggregator and choose the local learning rate as 1.00E-07
and the server learning rate as 1.00E-05 with FedOpt as the server aggregator. For CIFAR-100 dataset, we
choose the local learning rate as 1.00E-04 with FedAvg as the server aggregator and choose the local learning
rate as 1.00E-04 and the server learning rate as 1.00E-05 with FedOpt as server aggregator. For Flowers102
dataset, we choose the local learning rate as 1.00E-02 with FedAvg as the server aggregator and choose the
local learning rate as 1.00E-04 and the server learning rate as 1.00E-04 with FedOpt as the server aggregator.

A.2 Additional Ablation Analysis

A.3 Harmonization with Other FL Strategy

Because GPT-FL does not alter the structure of FL framework, it is complementary to other FL training
methods as we shown in Table 1 and Table 2. Table 11 shows the performance evaluation of GPT-FL +
DynaFed with CIFAR-10 and CIFAR-100. We use the same experiment setup as we used in Table 2. The
results confirm that GPT-FL can improve upon existing FL methods while maintaining their original structures.

Table 11: Accuracy performance of existing FL baseline on top of GPT-FL. "∆Metric" represents the accuracy
increment by GPT-FL on top of DynaFed.

Dataset DynaFed DynaFed + GPT-FL ∆Metric

CIFAR-10 71.59% 74.20% 2.61%

CIFAR-100 36.08% 39.23% 3.15%

A.4 Impact of Label Distribution in Synthetic Data

In this section, we investigate the impact of distribution drift within synthetic data on GPT-FL’s performance.
Initially, our experiments generated an equal number of data samples for each label, resulting in an IID
distribution. In the following experiment, we partitioned the synthetic CIFAR-10 data into 10 distinct silos
using a Dirichlet distribution, where varying values of the parameter alpha were employed to simulate different
degrees of data distribution non-IIDness—from more IID (α=100) to highly non-IID (α=1) scenarios. For
each configuration, we selected a single silo of synthetic data for downstream model training and documented
the data distribution characteristics utilized in the analysis. The distribution of the synthetic CIFAR-10
labels with various degrees we used for experiments is shown in Figure 10. We adopt the same experiment
setup as we used in Table 5. The experiment results are shown in Table 12.

These results demonstrate a clear relationship between the non-IIDness of label distributions and model
performance, with the GPT-FL framework showing robustness even in the face of significant distribution
drift. Notably, the federated learning fine-tuning step consistently enhances performance, particularly when
downstream models are trained with highly skewed data. This finding substantiates the discussions in the

21

Under review as submission to TMLR

Figure 10: Distribution of synthetic CIFAR-10 labels across various degrees of Non-IIDness in experiments
documented in Table 12.

Table 12: Accuracy performance among various label distribution of synthetic data.

α = 1 α = 10 α = 50 α = 100

Synthetic Data Only 56.28% 65.04% 69.04% 69.68%

GPT-FL w/ FedAvg 70.02% 75.31% 77.80% 80.17%

GPT-FL w/ FedOpt 68.55% 76.30% 78.26% 77.11%

second part of Section 4.2 of our manuscript and highlights the efficacy of the GPT-FL approach under
diverse data distribution conditions.

It should be noted that the highest performance in Table 12 is slightly lower than the performance in Table 5.
This discrepancy primarily stems from utilizing approximately ten times less synthetic data in the experiments
of Table 12 compared to those in Table 5. This observation corroborates our discussion on the influence of
synthetic data volume on performance outcomes, as illustrated in Figure 7.

Furthermore, it’s important to emphasize that in the practical deployment of the GPT-FL algorithm, the
server is responsible for managing the nuances of data generation—including the quantity and distribution
of data—based on coarse label names collected from clients. This mechanism significantly mitigates the
likelihood of training downstream models on highly non-IID distributed datasets, ensuring a more controlled
and effective learning environment.

22

	Introduction
	Related Work
	GPT-FL: Generative Pre-Trained Model-Assisted Federated Learning
	Overview
	Create Prompts based on Label Names
	Integration of Invertible Bloom Lookup Tables (IBLT) to Enhance Label Privacy
	Generate Synthetic Data from Generative Pre-trained Model
	Train Downstream Model on Generated Synthetic Data
	Finetune Trained Downstream Model on Private Client Data with FL

	Experiments
	Performance Comparison with State-of-the-Art FL Methods
	Understanding GPT-FL

	Conclusion
	Appendix
	Experiment Settings
	Computing Infrastructure
	Datasets and Models
	Hyperparameter Settings

	Additional Ablation Analysis
	Harmonization with Other FL Strategy
	Impact of Label Distribution in Synthetic Data

