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Abstract—It is well established that health and well-being 

greatly depends on a person’s amount of daily physical activity. 

Hence accurate measurement of physical activity has been deemed 

critical in assessing an individual’s current health state as well as 

in predicting future health issues. However, despite its 

importance, a method for accurately measuring physical activity 

has remained elusive due to various reasons ranging from 

technological to individual’s adherence and compliance in the 

measurement task. In this work, a novel automatic method is 

presented to measure the amount of physical activity directly from 

video thus bypassing many of the common barriers. Physical 

activity is measured in terms of the energy expended by a person 

per minute relative to their resting state using the standard units 

of metabolic equivalents (METs). The method uses a three-

dimensional convolutional neural network trained on videos that 

captured each subject doing activities of daily living while inside a 

whole-room calorimeter. The whole-room calorimeter provided 

gold standard energy expenditure values corresponding to each 

minute of the video which were used as targets for training the 

model. The experimental results using leave-one-subject-out 

cross-validation with seventeen subjects, each with twelve hours of 

video, showed that the method accurately estimated physical 

activity energy expenditure with overall root mean squared error 

of 0.71 METs per minute. This presents promising results to 

predict physical activity energy expenditure from video and 

warrants future studies that could be carried out in free-living 

naturalistic settings. 
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I. INTRODUCTION  

The amount of daily physical activity directly relates to a 
person’s health, well-being and longevity [1,2]. Conversely, 
lack of physical activity has been found to lead to numerous 
adverse health outcomes and is also a major risk factor for 
several diseases [3,4]. Hence measuring the amount of physical 
activity is of paramount importance for assessing a person’s 
health status as well as to make recommendations for preventing 
future illnesses [5]. This is especially important at places such 
as nursing homes and recovery and rehabilitation centers where 
a certain amount of physical activity may be prescribed to a 
patient and hence measuring it may be medically necessary for 
ascertaining compliance. 

Despite the importance of measuring the amount of physical 
activity, currently there is no satisfactory method for measuring 
it. While self-report questionnaires provide ease of use, they are 
often marred with self-report sociability biases [6]. Body-worn 
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accelerometers have recently emerged as tools for quantitatively 
assessing physical activity [7]. They measure the amount of 
acceleration over time which is then mapped to energy 
expenditure, typically using machine learning methods. 
However, heterogeneity in study design, data processing 
methods, and device wear location have led to large errors in 
estimating physical activity behavior metrics from these body-
worn devices. As such, disparate interpretations of the amount 
of physical activity required from device-based estimations to 
promote health have recently been published, complicating 
definitive public health recommendations [8,9]. 

In this work, we present an alternate method to quantitatively 
estimate the amount of a person’s physical activity. The method 
simply uses video observation. From the video, the method then 
estimates the energy expended by the person using deep 
learning, specifically a three-dimensional (3D) convolutional 
neural network (CNN) [10]. The network is trained using gold 
standard targets obtained for video recorded in a whole-room 
calorimeter [11]. The trained model can then be used to estimate 
energy expenditure only from a video. Unlike body-worn 
devices, such as accelerometers, the camera is detached from the 
person which makes it less invasive and more practical to assess 
free-living activity behaviors. This method is particularly 
suitable for monitoring a patient’s physical activities inside a 
room/building at places such as nursing homes and 
rehabilitation centers as well as is useful for emerging fields 
such as smart fitness [12]. To the best of our knowledge, no 
previous work had used 3D CNN for predicting energy 
expenditure from videos with precise ground truth energy 
expenditure values obtained using a whole-room calorimeter. 
Our experimental results using data of seventeen subjects, each 
with twelve hours of video, show that the method works well. 

II. RELATED WORK 

Although a significant amount of research has been done in 
recognizing the type of human activity from video [13-15] as 
surveyed in [16], as well as in estimating energy expenditure 
using wearable devices [31-33], relatively much less work has 
been done in estimating energy expenditure from video. In one 
such work, Peng et al. [17] collected several video clips from 
YouTube and other public sources and then annotated them with 
energy expenditure labels based on available physiological 
models and MET tables [18]. They compared deep learning 
methods on this dataset, but it should be noted that the energy 
expenditures in their dataset are only approximations which 



were retrospectively added, and unlike in our dataset, are not the 
actual values measured while performing the activities.  

Nakamura et al. [19] do activity detection and energy 
expenditure estimation using multimodal signals from heart rate 
monitors, accelerometers and videos. Their videos were 
captured by camera worn by subjects while performing the 
activities. They also did not measure the actual energy 
expenditure ground truth values but retrospectively added them 
to their dataset based on the type of the activity and MET tables 
[18]. 

In Perrett et al. [20] (as well as in earlier studies by some of 
the same authors [21,22]) the authors used a wearable indirect 
calorimetry device to measure the ground truth energy 
expenditure for subjects performing various activities. They 
used a temporal convolutional neural network to predict energy 
expenditure from silhouettes of the subject (i.e. foreground 
segmentation) in the video. The physical activities were from a 
predefined set of activities such as stand, sit, vacuum, etc. Their 
data had 10 subjects and the total time duration was 4.5 hours. 
Our dataset differs from theirs in multiple ways. Instead of a 
wearable calorimetry device, we used a whole-room calorimeter 
which allows the user to be freer thus better simulating free-
living conditions. The subjects in our data were not restricted to 
only a pre-defined set of activities but were also free to do 
anything they wanted. Our data is also much larger with 17 
subjects and a total time duration of around 204 hours. Our 
machine learning approach is also very different from their 
approach.      

III. METHODS 

A. Dataset 

Our dataset consisted of approximately 12-hour continuous 
video of each subject inside a whole-room calorimeter, for a 
total of 17 subjects. All subjects were healthy, and varied in age 
(22-74 years, with average age of 40.94 ± 18.4 years) and gender 
(7 male and 10 female). The subjects were provided a list of 
activities that they were asked to complete for a minimum of 5-
minutes duration during their stay. This included computer 
work, reading, exercising, washing dishes, dusting, and 
sweeping/mopping. Outside of these activities the subjects were 
permitted to do anything they wanted. The room was self-
contained for a subject to comfortably spend 12 hours.  The 

video camera was fixed at one corner of the room which 
captured full view of the room. Videos were recorded at 
1280x720 pixel resolution and at 30 frames per second. Each 12-
hour video of a subject was around 13 gigabytes in file size. Fig. 
1 shows a few screenshots from a video of one subject. In this 
figure the face has been covered with black rectangles for 
anonymity.  

Physical activity energy expenditure was measured using 
whole-room indirect calorimetry. Oxygen (O2) and carbon 
dioxide (CO2) concentrations were measured continuously using 
a fuel cell-based dual channel O2 analyzer (FC-2 Oxzilla, Sable 
Systems, International, Las Vegas, NV) and two infrared CO2 
analyzers (CA-10 CO2 analyzers, Sable Systems, International., 
Las Vegas, NV). O2 consumption (VO2) and CO2 production 
(VCO2) were calculated in 1-minute intervals using the flow rate 
and the differences in CO2 and O2 concentrations between 
entering and exiting air. The accuracy and precision of the 
system is confirmed monthly using propane combustion tests. 

The average O2 and CO2 recoveries are historically ≥98.0%. 

The amount of energy a person expends to do a physical 
activity depends on the body weight. Hence to keep energy 
expenditure values independent of the weight of a person, the 
measured minute-by-minute energy expenditure values were 
converted into metabolic equivalent (MET) values (1 MET is 
equivalent to resting energy expenditure per unit body weight, 
or 3.5 ml/kg/min of oxygen consumption). MET is a standard 
unit of energy normalized for body weight. Given that same 
amount of energy per unit body weight is needed to move in the 
same motion, other subject parameters are not important in 
predicting energy expenditure in METs from motion (an unfit 
person may feel more tired than a fit person, but the energy spent 
by both for the same motion will be the same per unit body 
weight). MET is also a current standard anchor to measure 
energy expenditure in the exercise science and public health 
field, and is linked to exercise prescription, promotion, and 
health outcomes. Whole-room energy expenditure values were 
then used as targets to train our machine learning method to 
estimate minute-by-minute MET values from every minute of 
video observation. In our dataset, the average energy 
expenditure per minute over all the subjects was 1.7 METs with 
a standard deviation of 0.91 METs. Fig. 2 shows the distribution 
of energy expenditure in our data over all the subjects. It can be 

Fig. 1. Screenshots taken from a 12-hour video of one subject doing different physical activities. Face is shown 

covered with black rectangles for anonymity. 



seen than most of the energy expenditure was between 1-2 
METs indicating that the subjects were not very active most of 
time which is typical of the contemporary sedentary lifestyle of 
most people and will be also typical for application domains 
such as nursing homes and rehabilitation centers. 

 
Fig. 2. Histogram showing energy expenditure distribution in the data. 

B. Machine Learning Approach 

Deep Learning Architecture: We built a model to predict 
energy expenditure of a person from one minute of video. Hence 
the input to the model is one minute of video and the output is 
energy expenditure in METs. Convolutional neural networks 
(CNNs) are deep neural networks designed to work for grid like 
input data such as images, and have proven to be very effective 
for prediction tasks with images as input [23]. Typically, 2-
dimensional (2D) CNNs are used for images as input. However, 
a video is a sequence of image frames hence a 3-dimesnional 
(3D) CNN is well-suited for a prediction task with videos as 
input in which time is treated as the third dimension. This 
enables the network to also learn temporal dependencies in the 
data. Therefore we built our model using a 3D CNN.  

As mentioned earlier, the video data was captured at 
1280x720 pixels with 30 frames per second. However, we found 
working with these dimensions computationally too demanding, 
especially with 12 hours of data per subject. This is also more 
granular than necessary for predicting energy per minute. Hence 
we reduced the frame size to 80x45. In our pilot experiments 
using a subset of data, we found that this frame size is sufficient 
for our task and the performance does not change much even 

when using 320x180 frame size. Besides reducing the frame 
size, we also used a lower frame rate of one frame per second 
instead of original 30 frames per second. Given that a person 
does not move a lot within one second, this rate is sufficient to 
predict energy expenditure. Hence an input of one minute video 
goes in as 60 frames of size 80x45 to our 3D CNN model. For 
such input the model has to predict the corresponding energy 
expenditure value. The red, green and blue components of each 
pixel are treated as three channels of CNN, as is commonly 
done.      

The 3D CNN architecture of our model is shown in Fig. 3. 
The 3D input of size 60x80x45 with three channels is followed 
by a 3D convolution layer with 32 filters of size 3x3x3 with 
“same” padding. This is followed by a 3D average pooling layer 
of size 2x2x2 which halves the lengths of every dimension. We 
intentionally chose average pooling instead of max pooling 
because in this task the network needs to capture all movements 
in the image frames in order to estimate the expended energy, 
but max pooling would tend to ignore some of the movements 
which are not maximum values in the pixel neighborhood. We 
repeat the combination of 3D convolution layer followed by 3D 
average pooling layer two more times.  

At this point, the size of the data is 7x10x5. Next, a 3D 
convolution layer with 32 filters of size 1x10x5 and “valid” 
padding is added, that is, with the same filter size as the size of 
the image at this point. The reason for this is that because the 
camera is at one corner of the room, any movement near it will 
manifest as a large change between image frames; conversely, 
any movement far from it will manifest as small change between 
image frames. Hence this task does not conform to translation 
equivariance, a property of CNN layers, that treats every part of 
the image equally which is achieved through weight sharing. By 
giving a filter size as big as the frame size at this point, the CNN 
layer has to use different weights for different parts of the image 
so that it can learn the relation between movement in image 
frames and energy expenditure separately for different parts of 
the image. We do not do this in the earlier layers because it 
would then dramatically increase the number of weights to learn 
because of the much larger image size in earlier layers. 
Additionally, it is better to let the earlier layers abstract away 
more granular features from the image.    

Fig. 3. The 3D CNN architecture used to estimate energy expenditure from one minute video. Blue rectangles are 3D convolution 

layers, green rectangles are 3D average pooling layers, brown rectangles are dense layers, and the white rectangle is a dropout 



The next layer is a dense layer with four nodes followed by 
a dropout layer with 0.1 parameter value which is added to 
prevent overfitting. Finally, a dense layer of one node with linear 
activation is used that outputs the energy expenditure. Except for 
this last layer, leaky ReLU activation is used in all other layers.          

Although deep learning methods, such as CNNs, can directly 
learn to predict from raw image frames, for our task it is clear 
that energy expenditure depends more on the change from one 
frame to another as the subject moves. Furthermore, more 
change between frames should correspond to more energy 
expenditure, while less or no change should correspond to less 
energy expenditure. It is possible that a 3D CNN can learn to 
pick this during the training process, however, it is also possible 
that it will waste its time during the training process focusing on 
various stationary objects in the room before it learns to isolate 
the person and then focus on the person’s movement between 
frames. Hence besides using the raw frames, we employed two 

methods, described below, that directly provide changes 
between frames as input to the model.   

Method Using Frame Differences: In this method, instead of 
giving the sequence of image frames (extracted from the video) 
as input, we give the difference between them, where the 
difference is simply pixel-wise subtraction for each of the red, 
green and blue components. Thus for 60 frames for one minute 
of video there will be 59 difference frames. If there has been no 
movement between the frames, the difference will be all zeros. 
Analogously, large movements will be captured by large values. 
Hence the difference between frames is likely to simplify the 
energy expenditure estimation task for the model. Fig. 4 shows 
an example of two frames and their computed difference frame. 
The difference frame clearly indicates with the non-black 
regions how the person moved between the two frames.  

Method Using Optical Flows: While difference is a simple 
and straightforward way to compute the change between two 

Fig. 4. Two consecutive frames and their difference frame. The non-black portion in the difference frame 

indicates change or movement between the original frames. 

Fig. 5. Two consecutive frames and their dense optical flow magnitudes and angles. 



frames which can be used as a proxy for the motion of objects, 
there exists a more principled method that captures the pattern 
of motion of objects between two image frames. This is called 
optical flow [24] which depicts the movement of points between 
two frames. Optical flow for all points (i.e. all pixels) between 
two frames is called dense optical flow which shows how every 
pixel moved from one frame to another. We used the well-
known Farneback algorithm [25] to compute dense optical flow 
which is computed as the magnitude and angle (i.e. direction) of 
motion for each pixel. We used these values as the two channels 
for our 3D CNN. As with the method using frame differences, 
for 60 original frames for one minute of video there will be 59 
optical flow frames. Fig. 5 shows an example of two frames, and 
their computed dense optical flow magnitudes and angles.   

We show in our results that both the methods using frame 
differences and optical flows perform significantly better in 
predicting energy expenditure compared to directly using raw 
image frames. 

C. Experimental Methodology 

Cross-validation: For experimental evaluation, leave-one-
subject-out cross-validation was done using the data of 17 
subjects described earlier. In this cross-validation, data of one 
subject was used for testing the model which was trained using 
the data of all the remaining subjects, and this entire process was 
repeated 17 times with a different test subject each time. The 
results were then averaged over these 17 folds and reported. 
Subject-wise cross-validation faithfully estimates how the 
system will perform on new subjects it will encounter when 
deployed.   

Evaluation Measures: Estimating the numerical values of 
energy expenditure is a regression task hence the standard 
evaluation metric for regression, root mean squared error 
(RMSE), was used. This metric computes square root of the 
mean of the squares of prediction errors over all test examples, 
as depicted in equation (1), where n is the number of test 
examples. The lower the RMSE, the better the performance, 
with zero RMSE being the perfect performance. 
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An advantage of RMSE is that it is in the same units as the 

predicted quantity which makes it easy to interpret. In our 
results, RMSE is in METs and hence can be interpreted directly 
as the error in METs in estimating energy expenditure. 
However, one disadvantage of RMSE is that it is a domain-
dependent relative measure and its exact numerical value (small 
or large) is not indicative of the performance in absolute terms. 
For example, when the target values are numerically large for a 
domain then a large RMSE may not be necessarily bad; on the 
other hand, when the target values are numerically small for a 
domain then a small RMSE may not be necessarily good. Hence 
besides RMSE, we used the evaluation metric of R-squared (R2) 
which measures regression performance in absolute terms 
independent of the domain. It compares the performance of the 
model on the test set with the performance of a model that 
always predicts the average target value from the test set, as 
depicted in equation (2), where n is the number of test examples 

and 	
��
�����������  is the average of test target values. The higher the 
R2, the better the performance, with R2 value of one being the 
perfect performance. An R2 value of zero indicates that the 
prediction model is not any better than a model that simply 
predicts the average target value.  
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Implementation Details: As described earlier, our dataset has 

around 12 hours of video for each subject which leads to around 
720 (12x60) one-minute examples for each subject, hence 
around 11,520 (720x16) examples for training for each cross-
validation fold. Given that each example itself consists of 60 
image frames (59 in case of difference and optical flow based 
methods), we found training with the entire available training 
data computationally extremely demanding. But we found that 
it is not necessary to train with the entire data because the 
learning curve plateaus with 10% of the training data (a learning 
curve is later shown in the Results). Hence 10% of the training 
data was found sufficient for learning to estimate energy 
expenditure in our dataset. In order to sample 10% examples 
during training, our method used every 10th example (or every 
10th minute) from the training data for each subject. Testing 
was, however, done on all the available test examples. 

We used Python computer vision library, OpenCV [26], to 
process videos and image frames as well as to compute dense 
optical flows. To compute dense optical flows, the library’s 
implementation of the Farneback’s algorithm was used whose 
parameter values were set based on a tutorial [27]. We used deep 
learning Python library Keras [28] to implement 3D CNNs. 
Mean squared error was used as the loss function and Adam [29] 
as the optimizer. For training the models, 15 epochs were found 
to be sufficient after which the training loss barely decreased. 
All other parameter values were kept at their default values. 

IV. RESULTS AND DISCUSSION 

Table I shows the results of estimating energy expenditure 
obtained using leave-one-subject-out cross-validation as 
described in the previous section. The table compares the results 
of directly using the original image frames, using the frame 
differences, and using the optical flows. For each case, a 
different model was trained but the same 3D CNN architecture 
was used. The table shows RMSE (in METs) and R2 means and 
standard deviations computed over the 17 subjects used in leave-
one-subject-out cross-validation. The best result is shown in 
bold and italics. The result which was not found to be 
statistically significantly different from the best result (as 
determined by two-tailed paired t-test using p-value < 0.01) is 
shown in bold.  

TABLE I 

RESULTS OF ESTIMATNG ENERGY EXPENDITURE 

Method RMSE Mean 

(Std. dev.) 

R2 Mean  

(Std. dev.) 

Original Frames 0.88 (0.42) -0.12 (0.21) 

Frame Differences 0.74 (0.37) 0.20 (0.28) 

Optical Flows 0.71 (0.34) 0.23 (0.35) 

 



It can be observed from Table I that optical flow based 
method obtained the best result with mean RMSE of 0.71 METs. 
This was closely followed by the difference based method with 
mean RMSE of 0.74 METs which was not found to be 
statistically significantly different from the optical flow based 
method’s result. Given that 1 MET corresponds to resting 
energy expenditure, these RMSE values are good. Directly using 
the original image frames obtained the worst result with mean 
RMSE of 0.88 which was statistically significantly different 
from the result of each of the other two methods. Its mean R2 is 
negative indicating that on average it did not perform any better 
than simply predicting the average test target value (but note that 
this average value is not known for any test subject during 
testing, hence simply predicting the average test target value 
cannot be considered as a legitimate baseline prediction 
method). This shows that directly using image frames does not 
always lead to meaningful learning of the relation between video 
and energy expenditure. On the other hand, both the difference 
and the optical flow based methods are able to capture the 
relation as indicated by their lower RMSE as well as positive 
mean R2 values.    

We note that the RMSE obtained in this study for estimating 
energy expenditure using videos falls in the range obtained by 
other studies using wearable devices (RMSE: 0.5-1.6 METs) 
[31-33], although these are not directly comparable to our results 
because the datasets as well as the data collection settings were 
different.  

 
Fig. 6. Subject-wise mean energy expenditure with standard deviation and 

RMSE obtained using the optical flow based method. 

For a closer look at the results, Fig. 6 shows subject-wise 
RMSE (in blue) obtained using the optical flow based method 
which obtained the best results. For comparison, the figure also 
shows the mean energy expenditure (in orange) of each subject 
along with its standard deviation (black line). It can be seen from 
the figure that the subjects varied greatly in how active they were 
in the 12-hour period. For example, subjects with IDs 4, 16 and 
17 were overall more active than others as well as had more 
variation in their activity levels leading to higher mean energy 
expenditure and standard deviation. In contrast, subjects with 
IDs 10 and 12 were relatively less active. It can be observed that 
subject-wise RMSE was generally proportional to the mean 
energy expenditure level of the subject and its standard 
deviation. This is not surprising because lower energy 
expenditure level indicates that the subject was sedentary for a 
majority of the time which makes it easier to predict their energy 
expenditure. On the other hand, higher energy expenditure level 
indicates that the subject was moving a lot, making it harder to 
accurately predict the energy expenditure. Furthermore, given 
that these subjects were more active than the rest, it makes their 
data different from the majority of the subjects on which the 
model was trained, thus leading to an inferior performance on 
these subjects. This indicates that in future, training may benefit 
if subjects with more varied levels of activity are included, 
especially some with higher activity levels. 

As an example of actual predictions over the entire 12-hour 
period, Fig. 7 shows the correct energy expenditure values for 
one of the subjects (Subject 8) and the values predicted by the 
model which was trained on the data of all the remaining 
subjects using the optical flow based method. It can be observed 
that for the most part, the model was able to make predictions 
very close to the correct values, however, it made prediction 
errors at some extreme values.  

 
Fig. 7. Correct and predicted energy expenditure values for a subject over 

12-hour period. 



 
Fig. 8. Learning curve obtained using increasing amount of training data for 

the frame difference based method. 

Fig. 8 shows a learning curve depicting the performance with 
increasing amount of training data obtained using the frame 
difference based method (optical flow based method gives a 
similar trend). To obtain this curve, leave-one-subject-out cross-
validation was done but using only a fixed percentage of training 
data every time. Testing was done on the entire available data 
for the test subject in each fold. As was pointed out in the 
previous section, the performance nearly plateaus with 10% of 
the training data (which is already more than 1,100 examples) 
and using more data is not helpful but only computationally 
more demanding. This also indicates that increasing the size of 
the training data by making the subjects stay in the room for 
longer durations will not benefit the performance of the method.  

On a good desktop computer (Intel Core i7-10700T 2GHz 
processor with 16 GB RAM), for each fold of cross-validation, 
it took 7.9 minutes on average to train (with 10% of the training 
data) and 7 seconds on average to test. Given that it takes only 7 
seconds to estimate energy for 12 hours of data, the trained 
system has the potential to be deployed in real time to do the 
energy estimation task. 

V. LIMITATIONS AND FUTURE WORK 

One limitation of this work is that the video data always had 
one person in the room whose energy expenditure was to be 
estimated. If the room had other people then the model will not 
work as desired. Additionally, if there were moving objects in 
the room (for e.g., a ceiling fan) then the model will likely be 
affected. In future, a method could be used to first isolate and 
track the person of interest [30] and then apply the model. 
Another limitation is that the same room was used for all the 
subjects. This was because it is very expensive to create a whole-
room calorimeter. The performance of the model could possibly 
degrade if a test subject is in a different room environment, 
although a model that uses optical flow or difference between 
frames is less likely to be affected by the room because it would 
only focus on the changes between the frames, as shown in Fig. 
4 and Fig. 5. However, in future, the method should be also 
tested in varied room environments as well as in more 
naturalistic settings. Finally, including more subjects with varied 
activity levels for training will likely lead to a model that 
generalizes better across subjects.   

VI. CONCLUSION 

Estimation of energy expenditure is important for a person’s 
health assessment, especially at places such as nursing homes 
and rehabilitation facilities. In this work, we presented an 
automatic method for energy expenditure estimation using only 
a person’s video. The method used 3D CNNs to predict energy 
expended by a person in every minute of the video. The method 
was trained and tested using data with precise ground truth 
energy expenditure values obtained using a whole-room 
calorimeter. Experiments were conducted using a large video 
data of 17 subjects, each of 12-hour duration. We also 
introduced methods based on the difference between image 
frames and optical flows which were shown to perform better 
than directly using the original frames from the videos. Results 
showed that the method is good at estimating physical activity 
energy expenditure from video. Future study designs could 
include more varied and naturalistic settings.      
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