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Abstract

In real-world scenarios, text within images001
plays a crucial role in conveying information002
across various domains, including documents,003
everyday environments, and digital interfaces.004
Understanding text within its visual context005
remains a fundamental challenge for Vision-006
Language Models (VLMs), driving the devel-007
opment of text-rich Visual Question Answer-008
ing (VQA) datasets and evaluation benchmarks.009
However, low-resource languages remain un-010
derexplored, lacking appropriate benchmarks011
for real-world applications. In the absence012
of such benchmarks, systematic evaluation be-013
comes challenging, hindering iterative advance-014
ments in model performance and the refine-015
ment of fine-tuning strategies. To address this,016
we introduce KoTextVQA, a Korean Text-017
rich VQA benchmark for comprehensive VLM018
evaluation. KoTextVQA enables an in-depth019
evaluation of visual text understanding (Sys-020
tem 1) and reasoning (System 2) capabilities,021
while also supporting a multifaceted assess-022
ment across diverse image types and domains.023
Additionally, we release an automated VQA024
generation pipeline that leverages de facto stan-025
dard models to efficiently construct bench-026
marks, enabling the scalable creation of high-027
quality datasets. While our benchmark is de-028
signed for Korean, the proposed methodology029
is highly adaptable and can be extended to030
other languages, supporting broader multilin-031
gual VLM research.032

1 Introduction033

One of the core challenges in vision-language in-034

tegration is the effective interpretation of textual035

content within images. While text often conveys036

essential information, ranging from structured doc-037

uments to everyday signage, many existing models038

struggle to accurately capture and reason about tex-039

tual elements in realistic settings. Although recent040

Vision-Language Models (VLMs) (Liu et al., 2023;041

Figure 1: Automated VQA generation pipeline for text-
rich images

Bai et al., 2023; Wang et al., 2024) have achieved 042

significant progress in text-rich Visual Question 043

Answering (VQA) (Singh et al., 2019; Mishra et al., 044

2019), these advances largely concentrate on high- 045

resource languages, benefiting from abundant data 046

and standardized benchmarks that facilitate system- 047

atic evaluation. In contrast, low-resource languages 048

lack well-curated datasets, making it difficult for 049

researchers and practitioners to diagnose specific 050

model shortcomings or devise effective training 051

strategies. Without robust benchmarks and well- 052

defined evaluation protocols, refining VLMs for 053

diverse linguistic and cultural contexts continues 054

to be a significant challenge. 055

Recently, several multilingual text-VQA bench- 056

marks (Tang et al., 2024b; Sun et al., 2024) have 057

been proposed; however, covering all languages in 058

depth remains challenging, and Korean is no excep- 059

tion to this limitation. Existing Korean VQA bench- 060

marks (Ju et al., 2024), often focus on document- 061

based tasks or translated English datasets, over- 062

looking the varied real-world scenarios such as 063
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Figure 2: Examples from KoTextVQA, showcasing diverse domains and image types categorized under System 1
and System 2. The model input consists of an image, a Korean question, and multiple-choice options.

infographics, public signage, and digital interfaces,064

where text frequently serves domain-specific com-065

municative purposes.066

For instance, as shown in Figure 2, a predia-067

betes poster in the Medical & Healthcare domain068

use an infographic format to convey health guide-069

lines. However, recognizing all textual content070

does not guarantee correct answers if the model071

lacks domain knowledge or the ability to interpret072

image structure. Some tasks further require com-073

plex reasoning, adding another layer of difficulty.074

Despite these challenges, no comprehensive bench-075

mark fully accounts for domain-specific nuances,076

diverse image types, and varying levels of cognitive077

demand.078

To address these gaps, we introduce Ko-079

TextVQA, a benchmark specifically designed to080

evaluate VLMs on Korean text-rich images. Our081

contributions are threefold:082

1. A structured and multi-faceted evaluation083

framework: We adopt a dual-level reasoning084

framework (System 1 for basic understanding085

and System 2 for advanced reasoning) to evalu-086

ate both visual text recognition and reasoning087

tasks. Additionally, we classify images by088

domain and image type to better reflect real-089

world contexts where textual content serves 090

diverse functions. 091

2. An automated VQA generation pipeline: 092

We develop a systematic and scalable multi- 093

step pipeline that leverages de facto standard 094

models for dataset construction, incorporating 095

stepwise image decomposition, QA candidate 096

generation, evaluation and voting, and hard 097

negative option generation. This ensures a 098

rigorous benchmark with high data quality 099

and reliability. 100

3. A comprehensive benchmark for low- 101

resource language: By integrating the above 102

approaches, KoTextVQA establishes the text- 103

rich VQA benchmark for Korean. We fur- 104

ther release our prompts and code to facil- 105

itate adaptation to other low-resource lan- 106

guages, supporting broader multilingual VLM 107

research. 108

By providing a scalable and culturally adaptive 109

evaluation framework, KoTextVQA offers deeper 110

insights into how VLMs process Korean text-rich 111

images while guiding the development of domain- 112

specific fine-tuning strategies and robust reasoning 113

mechanisms for low-resource languages. 114
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2 Related Work115

2.1 Vision-Language Models116

Recent advancements in VLMs (Liu et al., 2023;117

Wang et al., 2024; Dai et al., 2023; Abdin et al.,118

2024; Wu et al., 2024; Chen et al., 2024; Yao et al.,119

2024) have broadened their capabilities beyond tra-120

ditional computer vision tasks, enabling not only121

contextual interpretation and reasoning across vari-122

ous visual domains but also a deeper integration of123

language and vision. However, general-purpose124

VLMs often struggle with text-rich images, as125

they focus on holistic scene interpretation rather126

than precise text comprehension. To address this,127

text-centric VLMs such as LLaVAR (Zhang et al.,128

2024b), LLaVA-Read (Zhang et al., 2024a), and129

TextSquare (Tang et al., 2024a) enhance reading130

abilities by refining text recognition and reasoning.131

While these models improve performance on text-132

heavy tasks, they remain largely limited to English,133

highlighting the need for multilingual VLMs capa-134

ble of handling diverse linguistic contexts, a critical135

challenge for Text-Rich VQA benchmarks.136

2.2 Text-Rich VQA Benchmarks137

Although general VQA benchmarks (Lu et al.,138

2022; Yue et al., 2024a; Yuan Liu, 2023) assess139

broad reasoning capabilities, benchmarks focused140

on text-rich VQA remain limited, especially across141

diverse languages. TextVQA (Singh et al., 2019)142

and OCR-VQA (Mishra et al., 2019) primarily143

address English text, focusing on images with144

printed content such as billboards and book covers.145

MTVQA (Tang et al., 2024b) provides multilin-146

gual annotations but is constrained in scale, while147

MUST-VQA (Vivoli et al., 2022) expands exist-148

ing datasets through automatic translation, which149

may fail to preserve language-specific nuances.150

Most text-focused VQA datasets prioritize high-151

resource languages or rely on translated English152

benchmarks, with limited support for Korean (Sun153

et al., 2024; Yue et al., 2024b). This lack of ded-154

icated benchmarks hinders systematic evaluation,155

fine-tuning, and model improvement for Korean156

text-rich images, which KoTextVQA aims to ad-157

dress.158

3 KoTextVQA Benchmark159

As shown in Table 1, the KoTextVQA benchmark is160

carefully designed to evaluate the ability of VLMs161

to understand and reason about text appearing in162

Benchmark Image
Type Forms Text-Centric

Reasoning
Image
Source Samples

KVQA (Kim et al., 2019) General Short - Ko 100,445
MTVQA-ko (Tang et al., 2024b) Multi-text Short - Ko 558
K-Viscuit (Baek et al., 2024) General MC - Ko 657
K-MMB (Ju et al., 2024) General MC - En 4,329
K-SEED (Ju et al., 2024) General MC - En 2,971
K-MMSTAR (Ju et al., 2024) General MC X En 1,500
K-DTCBench (Ju et al., 2024) Document MC X Ko 240
K-LLaVA-W (Ju et al., 2024) General Open - En 60

KoTextVQA (ours) Multi-text MC X Ko 2,577

Table 1: Overview of Korean VQA Benchmarks. The
Image Type column distinguishes between Document
(structured text images) and Multi-text (diverse text-
rich images). The Forms indicates whether the bench-
mark uses Open-ended (Open), Short answer (Short),
or Multiple-choice (MC) questions. The Image Source
column differentiates datasets with images originally in
Korean (Ko) from those translated from English (En).

images, spanning a diverse range of real-world con- 163

texts. The following subsections detail the dataset 164

statistic and categorization, the data collection pro- 165

cess, the automated VQA generation pipeline, and 166

the human annotation refinement process. 167

3.1 Data Statistics and Categorization 168

Our benchmark consists of 2,577 samples, each an- 169

notated with corresponding QA pairs. The images 170

cover 26 distinct types across 15 domains. Each 171

image is categorized into one or both reasoning lev- 172

els: System 1 (basic recognition and understanding) 173

and System 2 (advanced reasoning). In total, the 174

dataset includes 1,426 System 1 QA pairs and 1,151 175

System 2 QA pairs. Beyond the in-depth analysis 176

provided by the reasoning-based categorization, we 177

conduct a multi-faceted analysis of VLM perfor- 178

mance by categorizing images along two additional 179

dimensions: Domain and Image Type. 180

System 1 vs. System 2 To assess challenges in vi- 181

sual text understanding, we adopt a two-tiered cog- 182

nitive framework (Kahneman, 2011) distinguishes 183

basic recognition (System 1, fast thinking) from ad- 184

vanced reasoning (System 2, slow thinking). Sys- 185

tem 1 relies on intuitive and automatic recognition, 186

requiring direct text extraction and straightforward 187

interpretation. In contrast, System 2 demands ad- 188

vanced reasoning, such as contextual understand- 189

ing, multi-step decisions, numerical reasoning (e.g., 190

mathematical calculations) and integration of exter- 191

nal knowledge when necessary. By incorporating 192

both reasoning levels into our benchmark, we pro- 193

vide a comprehensive framework for the in-depth 194

evaluation of VLM capabilities, from fundamental 195

recognition to high-level reasoning. 196
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Figure 3: An overview of the automated VQA generation pipeline with prompts. Each step involves data processing
using either VLMs or LLMs, with corresponding prompts shown in the figure. The actual data generation process
uses Korean prompts. Some prompts, such as examples, are shortened or omitted for readability.

Domain To ensure that our domain classification197

aligns with real-world industrial applications, we198

refer to the Korean Standard Industrial Classifi-199

cation (KSIC) (Statistics, 2024) framework. We200

adapt this framework to suit our image data analy-201

sis, following a structured approach similar to the202

MMMU (Yue et al., 2024a), we define 13 primary203

domains: Public & Administration, Economics &204

Finance, Marketing & Advertising, Retail & Com-205

merce, Education & Academia, Medical & Health-206

care, Science & Technology, Arts & Humanities,207

Transportation & Logistics, Travel & Tourism, Hos-208

pitality & Food Service, Entertainment & Media,209

and Personal & Lifestyle.210

In addition, we incorporate CSAT (College211

Scholastic Ability Test) Science and History as212

separate domains. Unlike other domains generated213

through our pipeline, CSAT questions are carefully214

tailored from existing exam materials to ensure215

authenticity and alignment with real-world assess-216

ments. All questions within these domains are217

categorized as System 2 because they require com-218

plex reasoning across diverse disciplines. Collec-219

tively, these 15 domains establish a comprehensive220

framework for evaluating VLMs across diverse con-221

texts and provide insights for fine-tuning or domain-222

specific training strategies.223

Image Type Images are categorized based on 224

their inherent visual structures and the way they 225

convey information. To systematically analyze 226

VLM performance across different visual formats, 227

we classify all images into 26 distinct image types, 228

each representing a specific mode of text presen- 229

tation. These categories include charts and plots, 230

infographics, posters, mobile/PC screenshots, man- 231

uals, receipts, street signs, menus, among others, 232

spanning a spectrum from highly structured for- 233

mats (e.g., tables, receipts) to more dynamic and 234

visually complex representations (e.g., posters, PC 235

screenshots). By leveraging the image type classifi- 236

cation in KoTextVQA, we aim to examine whether 237

VLMs exhibit consistent performance across differ- 238

ent text-rich visual formats and to identify weak- 239

nesses in processing specific image types. 240

3.2 Data Collection 241

For this study, we have compiled a dataset of im- 242

ages by sourcing them from diverse online reposi- 243

tories with no copyright restrictions and by directly 244

capturing original photographs. To ensure com- 245

prehensive and balanced coverage of real-world 246

scenarios, we identify domain imbalances and mit- 247

igate them by adding more images. 248
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Model Size Overall
(2,577)

System 1
(1,426)

System 2
(1,151)

closed VLMs

GPT-4o (OpenAI, 2024) - 84.6 95.9 70.5
GPT-4o-mini (OpenAI, 2024) - 73.3 88.7 54.1
Gemini-2.0-flash (DeepMind, 2025) - 85.4 98.0 69.8
Claude-3.5-Sonnet (Anthropic, 2024) - 80.5 93.4 64.5

Open-source VLMs

LLaVA-OneVision (Li et al., 2024) 0.5B 42.3 49.6 33.3
Deepseek-VL2-tiny (Wu et al., 2024) 1B 48.8 60.8 34.0
Deepseek-VL2-small (Wu et al., 2024) 2.8B 53.3 67.3 36.1
Qwen2.5-VL (Wang et al., 2024) 3B 71.8 94.2 43.9
Ovis1.6-Llama3.2 (Lu et al., 2024) 3B 52.2 62.8 39.1
InternVL2.5 (Chen et al., 2024) 4B 70.7 90.7 45.9
Phi-3.5-Vision (Abdin et al., 2024) 4.2B 42.6 52.2 30.8

LLaVA-OneVision (Li et al., 2024) 7B 54.0 65.1 40.1
Qwen2.5-VL (Wang et al., 2024) 7B 68.5 94.5 36.1
InternVL2.5 (Chen et al., 2024) 8B 70.8 89.8 47.3
MiniCPM-V-2.6 (Yao et al., 2024) 8B 41.0 50.4 29.4
MiniCPM-o-2.6 (Yao et al., 2024) 8B 64.3 84.1 39.9
Ovis1.6-Gemma2 (Lu et al., 2024) 9B 58.4 68.9 45.4
VARCO-VISION (Ju et al., 2024) 14B 72.3 90.9 49.3

Table 2: Evaluation results of various VLMs on the
KoTextVQA benchmark. This table provides a detailed
comparison of closed and open-source models, high-
lighting their capabilities in tackling Korean text-rich
visual question answering tasks based on dual-level rea-
soning framework: System 1 and System 2.

3.3 Automated VQA Generation Pipeline249

To generate comprehensive and high-quality QA250

pairs for Korean text-rich visual understanding and251

reasoning, we propose a four-step pipeline, as illus-252

trated in Fig. 3. The pipeline begins with a stepwise253

image decomposition process, which includes im-254

age filtering and textual content extraction to ensure255

high-quality data input for subsequent steps.256

Step 1: Stepwise Image Decomposition In this257

step, we refine the dataset by filtering out low-258

quality images. Images with a shortest side of 384259

pixels or less are discarded to ensure text readabil-260

ity. To further ensure meaningful textual content,261

we use PaddleOCR1 to exclude images with fewer262

than 10 or more than 1,000 Korean characters.263

Following filtering process, multiple VLMs are264

employed to extract both textual and non-textual265

elements from each image with minimal halluci-266

nation and enhanced thoroughness. The decom-267

position process first analyzes non-textual visual268

attributessuch as the overall scene, document lay-269

out, key objects, and background detailsto estab-270

lish contextual understanding. It then examines the271

structural and semantic relationships between text272

and visual components before finally extracting273

and processing all textual content into a structured274

format. This method preserves contextual relation-275

1https://github.com/PaddlePaddle/PaddleOCR

ships between visual and textual elements, leading 276

to higher-quality outputs than direct text extraction. 277

Step 2: QA Candidates Generation and Clas- 278

sification Using the structured detailed captions 279

from Step 1, this step simultaneously generates 280

question-answer candidates via LLMs and classi- 281

fies images into their corresponding domain and 282

image type as defined in Section 3.1. The pipeline 283

offers flexible control over the number of QA can- 284

didates generated and the number of models used 285

in this process. QA generation follows the System 286

1 and System 2 framework, with prompts specifi- 287

cally designed to assess different levels of visual 288

text understanding and reasoning. Independently, 289

the classification step assigns each image to its 290

appropriate domain and image type based on the 291

structured captions from Step 1. 292

Step 3: QA Evaluation and Voting In this step, 293

multiple VLMs evaluate the generated QA can- 294

didates to determine the highest-quality question- 295

answer pair for each image. Drawing inspiration 296

from prior LLM evaluation research (Zheng et al., 297

2023; Fu et al., 2024), the process employs a set 298

of predefined criteria to systematically assess the 299

quality of each candidate. 300

For System 1 candidates, we evaluate QA pairs 301

using five metrics (Text Utilization, Clarity, Cor- 302

rectness, Naturalness, and Alignment) to ensure 303

they capture textual content accurately and coher- 304

ently. For System 2 candidates, two additional met- 305

rics (Complexity and Coherence) are introduced to 306

account for multi-step reasoning and logical infer- 307

ence, as illustrated in Figure 3. Each VLM assigns 308

a score from 0 to 5 for each metric, and the ag- 309

gregated scores are used to rank the candidates. A 310

voting mechanism then selects the highest-ranked 311

QA pair, with multiple VLMs helping to minimize 312

individual model biases. 313

Step 4: Hard Negatives Generation After se- 314

lecting the final QA pair, an LLM generates three 315

hard negative options that resemble the correct an- 316

swer while remaining distinct in meaning. These 317

options follow the correct answers structure and 318

context, making the multiple-choice format more 319

challenging. This step enhances the benchmarks 320

ability to assess fine-grained comprehension and 321

prevents models from relying on superficial cues. 322
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Model Size Overall
(2,577)

Gov.
(245)

Econ.
(104)

Mktg.
(145)

Comm.
(154)

Edu.
(215)

Med.
(90)

Tech.
(92)

Arts.
(83)

Transp.
(167)

Tour.
(108)

FnB.
(264)

Ent.
(168)

Life.
(204)

Sci.
(478)

Hist.
(60)

Closed

GPT-4o (OpenAI, 2024) - 84.6 93.5 92.3 97.2 90.3 96.7 91.1 96.7 100.0 84.4 93.5 93.6 97.0 95.1 44.1 93.3
GPT-4o-mini (OpenAI, 2024) - 73.3 82.4 82.7 85.5 84.4 87.4 83.3 80.4 89.2 80.2 84.3 81.4 86.3 87.3 30.3 45.0
Gemini-2.0-flash (DeepMind, 2025) - 85.4 95.1 95.2 99.3 96.1 96.7 92.2 93.5 98.8 90.4 98.1 93.2 95.2 96.6 44.1 78.3
Claude-3.5-Sonnet (Anthropic, 2024) - 80.5 93.5 91.3 92.4 87.0 93.0 91.1 87.0 91.6 84.4 94.4 89.8 92.3 92.2 37.4 70.0

Open-source

LLaVA-OneVision (Li et al., 2024) 0.5B 42.3 51.8 48.1 47.6 44.8 39.5 50.0 44.6 40.9 49.7 51.9 41.7 44.6 46.1 28.0 31.7
Deepseek-VL2-tiny (Wu et al., 2024) 1B 48.8 57.1 55.8 63.4 58.4 51.2 57.8 57.6 45.8 54.5 58.3 43.9 47.0 54.4 30.5 31.7
Deepseek-VL2-small (Wu et al., 2024) 2.8B 53.3 61.6 63.5 66.9 63.0 57.2 64.4 68.5 50.6 59.9 63.0 48.9 56.0 57.4 30.8 36.7
Qwen2.5-VL (Wang et al., 2024) 3B 71.8 81.6 76.9 85.5 77.9 87.4 80.0 79.3 85.5 75.4 84.3 76.9 87.5 83.3 33.9 36.7
Ovis1.6-Llama3.2 (Lu et al., 2024) 3B 52.2 64.5 69.2 60.7 57.1 55.8 54.4 62.0 51.8 60.5 61.1 56.8 52.4 49.5 30.5 31.7
InternVL2.5 (Chen et al., 2024) 4B 70.7 82.0 76.9 87.6 83.1 83.7 78.9 79.3 79.5 75.4 77.8 69.3 81.0 86.3 33.9 46.7
Phi-3.5-Vision (Abdin et al., 2024) 4.2B 42.6 53.5 55.8 40.0 49.4 43.3 40.0 53.3 50.6 44.3 46.3 42.8 43.5 44.6 27.6 36.7

LLaVA-OneVision (Li et al., 2024) 7B 54.0 64.1 63.5 63.4 63.6 58.6 55.6 64.1 45.8 68.3 65.7 55.3 55.4 55.9 30.8 33.3
Qwen2.5-VL (Wang et al., 2024) 7B 68.5 80.0 77.9 85.5 81.2 87.4 76.7 75.0 89.2 77.8 82.4 77.7 86.3 85.8 15.1 36.7
InternVL2.5 (Chen et al., 2024) 8B 70.8 81.6 76.9 85.5 81.8 83.7 81.1 77.2 78.3 76.0 83.3 74.2 78.6 85.8 34.1 38.3
MiniCPM-V-2.6 (Yao et al., 2024) 8B 41.0 50.2 54.8 50.3 53.2 44.7 41.1 52.2 33.7 43.7 48.1 43.6 45.8 46.1 18.2 25.0
MiniCPM-o-2.6 (Yao et al., 2024) 8B 64.3 75.9 83.7 79.3 75.9 76.7 65.6 75.0 73.5 69.5 79.6 67.8 77.4 74.0 25.5 25.0
Ovis1.6-Gemma2 (Lu et al., 2024) 9B 58.4 64.1 69.2 71.0 72.7 60.9 71.1 67.4 53.0 68.9 75.9 65.2 58.9 63.2 30.5 28.3
VARCO-VISION (Ju et al., 2024) 14B 72.3 81.6 87.5 83.4 83.1 84.2 86.7 84.8 79.5 82.6 83.3 76.1 81.5 85.3 33.7 31.7

Table 3: Evaluation results of various VLMs across 15 domains in the KoTextVQA benchmark. This table compares
closed and open-source models, highlighting their performance on Korean text-rich visual question answering tasks.
Abbreviations: Gov. (Public & Administration), Econ. (Economics & Finance), Mktg. (Marketing & Advertising), Comm.
(Retail & Commerce), Edu. (Education & Academia), Med. (Medical & Healthcare), Tech. (Science & Technology), Arts.
(Arts & Humanities), Transp. (Transportation & Logistics), Tour. (Travel & Tourism), FnB. (Hospitality & Food Service), Ent.
(Entertainment & Media), Life. (Personal & Lifestyle), Sci. (CSAT Science), Hist. (CSAT History).

3.4 Human Annotation Refinement323

The final QA pairs undergo a thorough human re-324

view process based on the same evaluation criteria325

used in Step 3. Adjustments are made if a ques-326

tion is answerable solely from textual content with-327

out image context (Text Utilization); QA pairs are328

verified to ensure alignment with the original pur-329

pose of the image (Alignment); for System 2, it is330

confirmed that the question requires at least one331

inferential step to avoid overly simple responses332

(Complexity); and the language, grammar, and fac-333

tual content are reviewed to ensure they are natural,334

unambiguous, and precise (Naturalness, Correct-335

ness, and Clarity). Additionally, to maintain dataset336

diversity, QA pairs for System 1 and System 2 are337

selected to cover a range of topics while removing338

overly repetitive or low-quality candidates.339

4 Empirical Analysis340

We leverage VLMEvalKit (Duan et al., 2024), an341

open-source evaluation toolkit designed to facili-342

tate the assessment of VLMs, including both pro-343

prietary APIs and open-source models. For fair344

comparison, we use multiple-choice prompts from345

MMMU (Yue et al., 2024a), following the format346

used in the original evaluation of each model.347

4.1 Performance across System 1 vs. System 2348

Table 2 presents the performance breakdown be-349

tween System 1 and System 2. Across both open-350

source and closed models, System 1 accuracy is351

significantly higher, indicating that most models 352

handle text recognition and simple contextual un- 353

derstanding well. Notably, Gemini-2.0-flash (Deep- 354

Mind, 2025) achieves 98.0% on System 1, reflect- 355

ing near-perfect perception. 356

However, System 2 reveal substantial perfor- 357

mance drops, particularly in open-source models. 358

Qwen2.5-VL-7B (Wang et al., 2024) drops sharply 359

from 94.5% in System 1 to 36.1% in System 2, 360

and Deepseek-VL2-small (Wu et al., 2024) falls 361

from 67.3% to 36.1%. In contrast, GPT-4o retain 362

stronger performance, achieving 70.5% in System 363

2. This suggests that open-source models still strug- 364

gle with complex reasoning, requiring further en- 365

hancements in external knowledge integration and 366

multi-step reasoning capabilities. 367

4.2 Performance across Domain 368

Table 3 demonstrates the evaluation results, com- 369

paring the performance of closed and open-source 370

models across various domains. Among closed 371

models, Gemini-2.0-flash achieves the highest over- 372

all score (85.4%), followed by GPT-4o with 84.6%. 373

Notably, GPT-4o demonstrates superior perfor- 374

mance in the CSAT History domain, achieving 375

93.3%, suggesting a strong capability in leveraging 376

historical and cultural context for reasoning. In con- 377

trast, Gemini-2.0-flash exhibits consistently high 378

performance across multiple domains, reflecting ro- 379

bust text recognition and contextual comprehension 380

in a real-world scenario. 381
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Figure 4: Comparison of open-source and closed models
across different domains on KoTextVQA. Bars show
the average scores of closed and open-source models
separately for System 1 and System 2 in each domain.

Open-source models exhibit a broad range of382

performance on KoTextVQA, with overall scores383

varying from 42.3% (LLaVA-OneVision (Li et al.,384

2024) at 0.5B) to 72.3% (VARCO-VISION (Ju385

et al., 2024)). Several models, such as Deepseek-386

VL2-tiny (Wu et al., 2024) (48.8%) and Phi-387

3.5-Vision (42.6%), fall below the 50% mark,388

while others like Qwen2.5-VL (3B) and In-389

ternVL2.5 (Chen et al., 2024) achieve scores in390

the low 70s. As such, open-source models exhibit391

significant variations in both overall and domain-392

specific performance, making it essential to care-393

fully consider model size, architecture, and domain-394

specific performance when selecting an appropriate395

model for a given application.396

Examining domain-specific results more closely,397

Figure 4 illustrates the System 1 and System 2398

performance gap between closed and open-source399

models across different domains on KoTextVQA.400

The disparity is particularly pronounced in Sys-401

tem 2 tasks, where closed models outperform open-402

source counterparts by up to 40.7 percentage points403

in Arts & Humanities, reflecting stronger cultural404

understanding. In contrast, the Science & Tech-405

nology domain shows a smaller System 2 gap of406

29.7 percentage points, suggesting more consistent407

handling of technical content. Standardized test408

settings further highlight this trend, with CSAT Sci-409

ence showing an 11.6 percentage point gap, while410

CSAT History reaches a 37.8 percentage point gap,411

underscoring the importance of background knowl-412

edge. These results indicate that when using open-413

source models for reasoning tasks in domains re-414

quiring extensive cultural and historical knowledge,415

such as Arts & Humanities and History, additional416

domain-specific training is necessary to bridge the417

Image Type Closed Open Sys1 - Sys2 Closed - Open

Sys1 Sys2 Sys1 Sys2 Closed Open Sys1 Sys2

Document

Chart and Plot 94.9 86.7 79.3 48.2 8.2 31.1 15.6 38.5
Table 91.0 75.0 70.9 42.3 16.0 28.6 20.1 32.7
Infographic 95.4 81.3 80.0 44.1 14.1 35.9 15.4 37.2
Slides 96.4 95.0 73.0 61.3 1.4 11.7 23.4 33.7
Book Cover 95.4 91.0 69.0 52.0 4.4 17.0 26.4 39.0
Product Detail 94.3 87.5 78.6 51.5 6.8 27.1 15.7 36.0
Poster 94.6 87.3 73.8 54.0 7.3 19.8 20.8 33.3
Mobile Screen 97.2 90.7 76.9 54.9 6.5 22.0 20.3 35.8
PC Screen 94.8 83.6 74.8 50.1 11.2 24.7 20.0 33.5

Scene Text

Street Signs 87.0 93.1 75.9 59.3 -6.1 16.6 11.1 33.8
Public Signs 88.6 69.4 71.2 42.0 19.2 29.2 17.4 27.4
Store Sign 91.4 85.3 70.6 42.0 6.1 28.6 20.8 43.3
Banner 94.6 91.1 78.2 46.2 3.5 32.0 16.4 44.9
Signage 94.7 85.9 78.5 54.3 8.8 24.2 16.2 31.6
Menu 91.9 79.9 69.5 40.3 12.0 29.2 22.4 39.6
Manual 91.2 71.1 73.2 42.1 20.1 31.1 18.0 29.0

Table 4: Performance comparison across image types
for closed and open-source models, showing differences
across System 1, System 2, and model categories. Only
image types with at least 50 VQA pairs are presented.

performance gap with closed models. 418

A particularly striking case is Qwen2.5-VL (7B), 419

which performs well in practical domains like 420

Marketing (85.5%) yet suffers an extreme drop 421

in CSAT Science (15.1%), even underperforming 422

its 3B counterpart. To better understand this phe- 423

nomenon, we further analyze the model’s reasoning 424

capabilities using Chain-of-Thought prompting in 425

Section 5. More broadly, the overall results pre- 426

sented in Table 3 indicate that domain-specific per- 427

formance metrics can guide model selection for 428

practical applications and inform the curation of 429

fine-tuning datasets to enhance model adaptability. 430

4.3 Performance across Image Type 431

Table 4 presents the performance of closed and 432

open-source models across different image types, 433

highlighting key trends in System 1 and System 2 434

tasks. Performance varies significantly by im- 435

age type, reflecting distinct model capabilities. 436

Document-based images, such as Tables and In- 437

fographics, achieve the high closed-source model 438

accuracy in System 1 (91.0%, 95.4%) and retain 439

relatively strong performance in System 2 (75.0%, 440

81.3%). However, open-source models struggle 441

more with these formats, particularly in Tables and 442

Infographics, where System 2 accuracy drops by 443

28.6.7% and 35.9%, respectively. Notably, Book 444

Covers exhibit the largest performance gap be- 445

tween closed and open models (26.4% in System 1, 446

39.0% in System 2), likely due to their complex 447

typography and mixed visual elements. 448

7



Scene text images present different challenges,449

with Street Signs showing an unusual trend where450

System 2 accuracy surpasses System 1 for closed451

models (93.1% vs. 87.0%). This may be due to mo-452

tion blur or low resolution from vehicle-captured453

images, hindering recognition in System 1. In con-454

trast, System 2 may rely on clearer images with455

better context, reducing the impact of noisy inputs.456

Open-source models perform particularly poorly457

in Banners and Store Signs, where the closed-open458

gap in System 2 reaches 44.9% and 43.3%, respec-459

tively, indicating difficulties in handling diverse460

fonts, occlusions, and unconventional layouts com-461

mon in real-world signage. These findings high-462

light the varying complexity of image types, em-463

phasizing the need for targeted improvements in464

both structured text processing and robust scene465

text understanding.466

5 Discussion467

While our benchmark effectively evaluates both468

basic and advanced reasoning in Korean text-rich469

VQA, several areas remain for further improve-470

ment. First, the current classification of System 2471

tasks groups diverse complex features, such as472

multi-step inference and external knowledge in-473

tegration, under a single category. A more fine-474

grained categorization could provide deeper in-475

sights into model limitations and inform targeted476

enhancements. Expanding the scope beyond ques-477

tion answering, for example, by incorporating doc-478

ument summarization or cross-referencing informa-479

tion across sections, would further assess higher-480

level comprehension and data processing abilities.481

Chain-of-Thought (CoT) As mentioned before,482

we evaluate the impact of Chain of Thought (CoT)483

prompting on model performance, following the484

approach demonstrated in MMMU-Pro (Yue et al.,485

2024c). Figure 5 reveals a pronounced gap between486

closed and open-source models, not only in terms487

of baseline performance but also in their ability to488

follow instructions and maintain structured reason-489

ing. Closed models consistently benefit from CoT490

strategies, showing notable improvements over de-491

fault prompting while maintaining stable perfor-492

mance across English and Korean inputs. This493

suggests a greater capacity for structured reasoning494

within these models, allowing them to effectively495

utilize CoT.496

In contrast, open-source models often struggle497

with reasoning-intensive tasks, leading to inconsis-498

Figure 5: Comparison of two closed and four open-
source models of varying sizes on KoTextVQA. The fig-
ure shows performance differences across three prompts:
Baseline, Chain-of-Thought in English and Korean.

tent or even degraded performance. Furthermore, 499

their sensitivity to prompt language variations un- 500

derscores fundamental limitations in structured rea- 501

soning and instruction following, often manifesting 502

as boiled response format problems. 503

Within our benchmark, System 2 tasks pose com- 504

plex multi-step reasoning challenges, offering a 505

meaningful testbed for advanced reasoning. While 506

high-reasoning VQA datasets remain scarce, we 507

hope System 2 task contributes to deeper evalua- 508

tions of testing-time compute in VLM research. 509

6 Conclusion 510

In this paper, we present KoTextVQA, a bench- 511

mark for evaluating VLMs on Korean text-rich 512

images. By adopting a dual-level reasoning frame- 513

work, System 1 and System 2, we enable structured 514

analysis of visual text recognition and reasoning. 515

Additionally, we devise a domain and image type 516

classification scheme aligned with real-world con- 517

texts, providing meaningful evaluation criteria for 518

practical applications. To support scalable dataset 519

construction, we develop an four-step automated 520

pipeline for generating high-quality VQA datasets. 521

Experimental results show that while models per- 522

form well on System 1, System 2 remains challeng- 523

ing, particularly for open-source models lacking 524

domain-specific or cultural knowledge and reason- 525

ing ability. These findings underscore the need for 526

domain-specific fine-tuning and advanced reason- 527

ing. Beyond Korean, our methodology offers a 528

scalable framework for evaluating VLMs in low- 529

resource languages, fostering more linguistically 530

and culturally adaptive vision-language models. 531
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Limitations532

While we provide a comprehensive evaluation of533

Korean Text-Rich VQA, several limitations high-534

light areas for future improvements. First, Ko-535

TextVQA focuses solely on single-image scenarios,536

restricting applicability in more complex settings537

involving multiple images or video-based contexts.538

Expanding coverage to these scenarios would en-539

hance relevance for real-world applications.540

Second, despite covering a diverse range of do-541

mains and image types, certain key areas remain542

underexplored. Mathematical reasoning and hand-543

written text, which are crucial for robust text un-544

derstanding, have not been sufficiently addressed.545

Future iterations could incorporate these aspects to546

provide a more holistic evaluation.547

Lastly, Chain-of-Thought (CoT) reasoning has548

been shown to improve performance on the System549

2 benchmark, but additional strategies for further550

enhancement have not been explored. Investigat-551

ing advanced reasoning techniques and optimiza-552

tion methods remains an open challenge for future553

research. We hope that KoTextVQA serves as a554

stepping stone for future advancements in this area,555

driving the development of more effective reason-556

ing strategies and robust vision-language models.557
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