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ABSTRACT

A central challenge in understanding generalization is to obtain non-vacuous guar-
antees that go beyond worst-case complexity over data or weight space. Among
existing approaches, PAC-Bayes bounds stand out as they can provide tight, data-
dependent guarantees even for large networks. However, in ReLU networks,
rescaling invariances mean that different weight distributions can represent the
same function while leading to arbitrarily different PAC-Bayes complexities. We
propose to study PAC-Bayes bounds in an invariant, lifted representation that re-
solves this discrepancy. This paper explores both the guarantees provided by this
approach (invariance, tighter bounds via data processing) and the algorithmic as-
pects of KL-based rescaling-invariant PAC-Bayes bounds.

1 INTRODUCTION

Deep neural networks generalize well despite being massively overparameterized, a fact that re-
mains only partially explained by statistical learning theory (Zhang et al., 2021} |Belkin et al., [2019;
Bartlett et al., |2021). Among existing approaches, PAC-Bayes bounds are especially promising:
they are data dependent and have yielded non-vacuous guarantees for large models (Dziugaite &
Roy, 2017} |Dziugaite et al.l 2021; Pérez-Ortiz et al., 2021} Letarte et al., 2019; Biggs & Guedj),
2021} |2022alb). A persistent limitation, however, is that standard PAC-Bayes analyses are carried
out in weight space VV: the prior P and posterior @) are distributions on parameters w € W, and
the complexity is typically a divergence such as the Kullback-Leibler (KL) one Dk, (Q||P). For
ReLU networks, neuron-wise rescaling symmetries imply that many parameterizations implement
the same predictor f,, while producing wildly different divergences. As a result, weight-space PAC-
Bayes bounds can vary arbitrarily across functionally equivalent models.

A motivating example. Consider the one-hidden-neuron ReLU network f,,(z) = we max(w;z,0)
with w = (wy,wy) € R2. For any A > 0, the rescaled parameters o*(w) := (Awy, wa/\) satisfy
for@w) = fuw. P ~ N(0,0°I3) and Q ~ N (w,diag(w?)), then the rescaled posterior og‘Q
induces a KL divergence D, (03 Q[P) ~ A?w?/o* when X tends to infinity, which can be made
arbitrarily large although the predictor is unchanged. This simple case already shows that weight-
space bounds are not aligned with functional equivalence.

Two complementary routes toward invariance. We adopt a viewpoint that makes rescaling in-
variance explicit and leads to a concrete program built around three questions.

Route A: deterministic (and stochastic) rescaling in weight space. A first natural idea is to keep
working in WV but to take the best bound over rescalings of the prior and posterior. Deterministic
rescaling uses the group action w + o*(w) at hidden units; we later broaden this to stochastic
rescaling that randomly rescales hidden units in a way that preserves f almost surely.

Route B: lifted (invariant) representations. A second idea is to lift parameters to an intermediate
space Z collapsing rescaling symmetries. Formally, consider a rescaling-invariant measurable map
(a “lift”) vb : W — Z and a measurable g : Z — F such that f,, = g(w(w)). An instance of 1 for
ReLU networksﬂ is the path+sign lift ¢(w) = (®(w), sign(w)), obtained by augmenting with the
signs the so-called “path-lifting” ®, a path-based representation of the weights that appears, e.g., in

"Theorem 4.1 in|Gonon et al.| (2025) shows that 1(w) = v(w’) implies f.,, = f.. Hence v is indeed a lift:
defining g : Im(y)) — F by g(z) := fu for any w with ¢)(w) = z yields the factorization f,, = (got))(w).
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(a) PAC-Bayes bounds for MLPs on MNIST. Each (b) PAC-Bayes bounds for CNN on CIFAR-10
vertical line = one architecture (hidden-layer widths (86% test accuracy). Each vertical line = one
on z-axis). Test accuracy: min 95.81%, mean (prior std, posterior std) pair.

97.49%, max 98.13%.

Figure 1: Impact of deterministic rescaling on PAC-Bayes bounds. Left (MNIST): MLPs with
varying hidden-layer widths. Right (CIFAR-10): CNN with varying (0prior; Oposterior). Circles:
original bounds; diamonds: bounds optimized over deterministic rescaling (which is an upper bound
on the lifted Dkr, by Equation @)). The red dashed line marks the non-vacuous threshold (< 1).

Neyshabur et al.| (2015)); [Kawaguchi et al.| (2017); Barron & Klusowski| (2019)); |Stock & Gribonval
(2023)); [Bona-Pellissier et al.| (2022); |Gonon et al.| (2024); |Gonon| (2024)); |Gonon et al.| (2025). We
then attempt to prove PAC-Bayes bounds with divergences between pushed-forward distributions,
e.g., Dxr (¥4 Qv P).

These two routes give rise to the following three questions that structure the paper.

Q1 — Validity (Section [3). Can we state standard PAC-Bayes bounds in a lifted space? We
show that it is indeed the case for KL-based PAC-Bayes bounds, the change-of-measure step
(Donsker—Varadhan) applies verbatim to the pushed-forward pair (¢4Q, 13 P) as soon as 1) is mea-
surable and 94() < 4P (which holds whenever () < P). The same argument extends to f-
divergences. For Wasserstein distances, we show that it suffices to assume that the factorizer g is
Lipschitz (so that Lipschitz losses remain Lipschitz in the lifted representation, i.e., after composi-

tion with g) (see Appendix [B22).

Q2 — Comparison of bounds (Section[d). How do the lifted and rescaling-optimized bounds relate
to the non-lifted one? For any measurable, rescaling-invariant lift ¢, the data processing inequality

yields
DxL(¥4@Qlv:P) < Dxi(Q[P).

Introducing stochastic rescaling o> (rescaling operator by a random X while preserving f) and the
deterministic special case o* (with a deterministic rescaling vector \), we establish the chain

Dv(Ql:P) < inf Dir(o7Ql o} P) < inf Dxw(ofQll e} P) < Dye(QIIP), (1)

which compares, in one stroke, the lifted, stochastic-rescaling, deterministic-rescaling, and non-
lifted KL terms. Thus, lifted bounds are never worse and can be strictly tighter when symmetries
are effectively collapsed.

Q3 — Computation (Section [5). What is tractable in practice? In general, neither the lifted KL
nor the stochastic-rescaling infimum admits a closed form, even for Gaussian (P, (). By contrast,
the deterministic infimum inf  »» Dk, (<>§‘Q|| %A’ P) is a computable upper-bound proxy for the
two harder terms in Equation (T). We devise an algorithm with global convergence to this infimum,
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via a hidden strict convexity that appears after an appropriate reparameterization. Empirically, this
optimization yields smaller KL terms (e.g., typically ~ x4 smaller in Figure [I)) and, consequently,
tighter PAC-Bayes bounds (e.g., typically ~ x2 smaller in Figure[I] turning some vacuous bounds
into non-vacuous ones).

Outline. Section [2| recalls the setting and notation (PAC-Bayes theory, rescaling invariances for
ReLU networks). Section[3]establishes the lifted PAC-Bayes bounds (validity). SectionH]introduces
stochastic rescalin{] and proves the comparison chain (I). Section|5|develops the algorithm for the
deterministic rescaling infimum and discusses the intractability of the lifted and stochastic-rescaling
terms, along with experiments. Section E] concludes and sketches directions for invariant, tractable
priors directly in lifted space.

2 BACKGROUND

This section fixes notation and recalls the ingredients used throughout: (i) classical PAC-Bayes
bounds (with a focus on KL in the main text), (ii)) DAG—ReLU networks and their neuron-wise
rescaling symmetry.

2.1 PAC-BAYES BOUNDS

PAC-Bayes theory (developed by |Shawe-Taylor & Williamson, (1997 [McAllester, {1998; [1999;
Seeger, 2002} (Catoni, [2007|— we refer to |Guedj}, 2019; |Alquier, [2024; |Hellstrom et al., [2025| for
comprehensive introductions) provides data-dependent generalization guarantees for randomized
predictors. Let £ : J x ) — R>( be a bounded loss, and let f : W — F map parameters w € W to
predictors f,, € F. For w € W, define the population and empirical risks

L(UJ) = E z,y) ND[ (fw( ) )] = %Z fw Iz z (2)

associated with a distribution D on X x ) and a collection S = ((atl, yl))" of n samples. The
classical McAllester-type bound states that for any prior P on the welghts (ﬁxed before observing
the samples S), bounded loss £ € [0, C] (e.g. C = 1 for the 0-1 loss in multi-class classification),
t > 0and§ € (0,1), with probability at least 1 — § over S ~ D®", the following holds uniformly
over all posterior () < P (so it might be chosen depending on S):

2
]EMNQ[L(’IU)] < EMNQ[LS(M)] + % + DKL(Q”P)t+ 10g(1/§) (3)
which means that the generalization gap L — Lg averaged over the weight-posterior () can be con-
trolled with the KL-divergence Dk1,(Q||P). Much of the literature tightens constants, relaxes as-
sumptions, or replaces Dk, by other divergences (f-divergences, Wasserstein), see e.g. (Maurer,
2004 |Catoni, 2007; |Alquier & Guedjl 2018; |Mhammedi et al., 2019} 2020; Biggs & Guedj, 2023;
Picard-Weibel & Guedj, 2022} [Clerico & Guedj, 2023 Haddouche & Guedj, [2023;; [Viallard et al.,
2023} [Adams et al., {2024} Hellstrom & Guedj), 2024; (Clerico et al.l 2025} [Haddouche et al., [2025)).
In the main text we focus on KL-based, as doing so already exposes the issues and benefits of
invariance and lifting; extensions are discussed in the appendix.

2.2 DAG-RELU NETWORKS AND NEURON-WISE RESCALING

We consider the classical formalism of DAG-ReLU networks specified by a directed acyclic graph
G = (V,E) with input, hidden, and output neurons denoted respectively by Vi,, H and Vo
(Neyshabur et al., 2015 [Kawaguchi et al., 2017; [DeVore et al., 2021; |Bona-Pellissier et al., 2022}
Stock & Gribonval, [2023; \Gonon et al., 2024). Parameters w € W = REYVV\Vin) collect edge
weights w,,_,, and (optional) biases b, = w, for v ¢ V;,. With ReLU activations, the network
realization f,, : R!Visl — RIVeutl is defined recursively by

Ty, 'Ue‘/irn
00 = b+ B i)y v = G0t
(4)

%and precisely defines the notation og‘Q, which mimics the notion of pushforward
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For simplicity, we omit pooling and identity neurons (which are often used to encode skip con-
nections). Our results, however, extend directly to networks that include them; see Definition 2.2
in|Gonon et al. (2024)) for the formal class of DAG-ReLLU networks covered.

Deterministic rescaling. Positive homogeneity of ReLU induces a neuron-wise rescaling symmetry.
Let H C V denote hidden neurons and let A = (A,)yen € ]RI;'O, extended by A, = 1lonV \ H.
Define the (deterministic) rescaling operator

M) by (Aw)),, = 2w (W), = Avw, ©

where the operations are applied on the weights w. of the edges e = uw — v as well as the bi-
ases w, = b, of neurons. We will use <>&\Q to denote the pushforward of a distribution Q by o™.
Importantly we have fox () = fu for every w.

Stochastic rescaling. We will also later consider stochastic rescaling o where X is a random
positive vector (Definition [2)).

3 VALIDITY: PAC-BAYES BOUNDS IN LIFTED SPACES

PAC-Bayes bounds provide generalization guarantees for randomized predictors. Conceptually, the
quantity of interest only depends on the functions realized by the network: one would ideally like
to measure the discrepancy between the induced distributions of predictors, through a divergence
D(f4@Q || fzP) between the pushforwards of the posterior and prior in function space. Unfortunately,
this ideal form is intractable in practice.

The standard workaround is to write PAC-Bayes bounds in terms of divergences between distribu-
tions over the weights themselves, D(Q|| P), because these are often tractable (e.g., closed form for
Gaussian priors/posteriors with KL). Yet this ignores symmetries: two parameter vectors w, w’ that
realize the same function f,, = f,, are still treated as distinct in D(Q|| P).

Lifting the representation. To address this, we consider measurable lifts ¢ : W — Z satisfying
the factorization property

fw = g (w)) for some measurable g : Z — F. (6)

The lift may be chosen rescaling-invariant, but invariance is not needed for validity. Lifts can
collapse weight-space redundancies and induce a funnel as in Figure 2]

w2z % F
suggesting that divergences may shrink as one moves closer to function space.

Can standard PAC-Bayes bounds, such as McAllester’s classical result (3)), be established in
terms of lifted divergences D(v;Q || ¢4 P)?

Answer: yes, by lifting the change of measure. Our first contribution is to revisit the clas-
sical McAllester’s bound and show that it can be stated directly in terms of any measurable
lift. The key point is that the change-of-measure inequality underpinning PAC-Bayes proofs (the
Donsker—Varadhan formula for KL) remains valid after lifting. Since the inequality only requires
measurability of the loss and absolute continuity 4@} < 3P (which holds whenever Q) < P),
the entire classical proof transfers verbatim (see Appendix [A]for details). We obtain the next lifted
analogue of McAllester’s bound:

Proposition 1 (McAllester’s bound in lifted space). Let ¥ : W — Z be a measurable lift satisfy-
ing (6). Let P be a prior over weights, fixed before observing the samples S. For any § € (0,1) and
t > 0, with probability at least 1 — § over n Li.d. samples S, the following holds uniformly over all
QK P:

t°C | Dxn(¥:Q || ¢:P) +1og(1/9)

Eunq[L(w)] < Eunglls(w)] + 7= + ; . )

Scope. While we focus on McAllester’s bound here since it is among the simplest PAC-Bayes
results, the same underlying argument (lifted change-of-measure) extends to other KL-based bounds.
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We focus on the KL-based bound above because it already highlights the benefits and obstacles
of lifting. We also show that the same “lift-then-change-of-measure” template extends to other
divergences used in PAC-Bayes in Appendix B}

* For f-divergences the corresponding variational forms carry over to (14 Q, 1y P) exactly as
for KL (Appendix [B.I|for details).

» For Wasserstein distances, one additionally requires that the generalization gap be Lipschitz
in the lifted coordinates (e.g., via a Lipschitz assumption on g, see Appendix [B.2).

In short, lifted PAC-Bayes bounds are established through lifted change-of-measures. This restores a
form of representation-awareness when the lift absorbs invariance, while keeping the standard proof
template intact. In the next sections we (i) compare lifted, stochastically/deterministically rescaled,
and non-lifted KL terms, and (ii) develop a tractable proxy based on deterministic rescalings.

4 COMPARISON: LIFTED, RESCALED, AND NON-LIFTED KL

This section compares four KL terms that can appear in PAC-Bayes bounds: (i) the lifted KL
Dy, (¢¥4Q||34 P) from Proposition (1| (ii) a stochastically rescaled (non-lifted) KL, (iii) a deter-
ministically rescaled (non-lifted) KL, and (iv) the initial non-lifted KL. We show that these form
a chain of inequalities, with the lifted term never larger than the others, and we clarify when (and
how) one may optimize over rescalings without affecting the loss-dependent side of the bound.

4.1 DETERMINISTIC AND STOCHASTIC RESCALING

Recall the neuron-wise rescaling operator o* from Equation : for A € ]RI;’O (extended by 1 on
non-hidden units),

(OA(w))u—m = /)\\*Z Wy—v, (Ok(w»v = Ay W,
which preserves the realized function: fox () = fu-

Deterministic rescaling of a distribution. For a distribution () on WV, its deterministically rescaled
version is og‘Q, the pushforward of @ by o*.

Stochastic rescaling (random, weight-dependent factors). While deterministic rescaling pre-
serves the induced function distribution, they are only a very special case of a more general family
of random rescaling. For PAC-Bayes analysis, it is indeed natural to allow rescaling factors them-
selves to be random, and even to depend on the weights. This motivates the more general notion of
stochastic rescaling.

Definition 2. Consider a random VariableE] A potentially dependent on the random weights w ~ @
(resp. w ~ P): in other words, (A, w) ~ C with C some joint distribution (or coupling). Given
any draw (A, w) the rescaled weights are defined as w’ := o*(w). This yields a stochastic rescaling
of w, with distribution w’ ~ @’ and by a slight abuse of the pushforward notation we denote
0@ = Q' (resp. w' ~ P’ =: o' P).

For a fixed A, if (A, w) ~ §) ® @ then we recover the deterministic rescaling )’ = og‘Q = og‘Q.

The next lemma shows that stochastic rescaling also preserves the induced distributions of functions,
paving the way to further optimization of the KL term of McAllester’s bound. It is the cornerstone
to establish a sequence of bounds interpolating between the lifted bound of Proposition (1| and the
non-lifted one of Equation (3).

Lemma 3 (Function and lift invariance under stochastic rescaling). Let v be any rescaling-invariant
lift (i.e., 1 0 o* = ) for all \). For any distribution QQ on W and any (possibly weight-dependent)
stochastic rescaling \,

fiQ = fi(01Q), V:Q = 1y (03Q). (8)

3We use bold as a mnemonic to distinguish from deterministic rescaling
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Figure 2: The information funnel W — Z — F. Weight-space symmetries (e.g., rescaling) could
be collapsed by the lift ¢, and the induced map to function space f further compresses information.
Divergences (e.g., KL) are expected to decrease along this chain, motivating the use of lifted-space
bounds.

4.2 A CHAIN OF KL TERMS

Let P, @) be prior/posterior distributions on W, and let ¢ satisfy the factorization f = g o ¢ from
Equation @) By Lemma Wy (og‘ ) = ¢¢Q and vy (og‘/P) = 94 P for any stochastic rescalings
A, . Applying data processing to the measurable map 1) gives

Dxi(:Q || ¥:P) = Dxr(¥3(o1Q) [|¥3(e P)) < Dir(e?Q| o P).

Taking the infimum over stochastic rescalings and then restricting to deterministic ones yields the
comparison chain (I)) as follows:

Dy (v4Q || 4 P)

IN

inf Dy (2Q | o3 P) ©
< inf Du(fQ o} P) < Dxw(QIIP).

The last inequality takes A = ' = 1.

In particular, the lifted divergence is never larger via data processing, and might actually be strictly
smaller when symmetries are collapsed (it can even turn vacuous bounds to non-vacuous ones as we
will observe in Figure|[T). This formalizes the funnel intuition W — Z — F illustrated in Figure[2]

Consequences for the PAC-Bayes bounds. Combining the lifted bound Equation with this
chain of inequality shows that the same PAC-Bayes bounds but with Dkr,(Q||P) replaced by any
of the three terms in Equation (9) yields a valid PAC-Bayes bound which is never larger than the
original one. We study in the next section what can be computed.

5 COMPUTATION: WHAT IS (NOT) TRACTABLE, AND A PRACTICAL PROXY

The comparison chain (I)) established in Section [ (see Equation (@) above), suggests two natural
computational routes beyond the raw weight-space KL: (i) push P, @ through a rescaling-invariant
lift v and compute the lifted KL; (ii) optimize the non-lifted KL over rescalings (stochastic or de-
terministic). We now explain why the first two targets are challenging, and then develop a tractable
and effective instance of the third one.

5.1 WHY THE LIFTED KL (WITH PATH + SIGN) IS CHALLENGING IN GENERAL

So far our discussion applied to any measurable lift ¢/ (sometimes additionally assumed invariant).
To make the lifted KL concrete, one must pick a specific lift. A lift that stands out in the literature
is the path + sign lift (®(w), sign(w)), where ® is the “path-lifting” which maps each weight vector
to the collection of path products in the networkE] This construction has played a central role in

4Strictly speaking, even though ® is called path-lifting in the literature, it is not a lift in the sense of Equa-
tion @; the sign component is needed to make it a lift, see Figure 6 in|Gonon et al.|(2025).
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recent advances on identifiability (Stock & Gribonval| 2023} [Bona-Pellissier et al., 2022)), training
dynamics (Marcotte et al., [2023), Lipschitz and norm-based bounds (Gonon et al., 2024} |2025)),
pruning (Gonon et al., 2025), and Rademacher-based generalization guarantees (Neyshabur et al.|
2015 Barron & Klusowski, 2019; |Gonon et al.| [2024).

We observe that for this lift, even when P, () are simple (e.g., factorized Gaussians on edges/biases),
computing Dxr, (¢4 @ || 4 P) is challenging for two independent reasons:

(i) Products already break closed forms. A single coordinate of ®(w) is a product of edge weights
along a path (Gonon et al.| 2024, Definition A.3). If edge weights are independent Gaussians,
that product has a non-Gaussian law (computable only in the two-variable case, with a Bessel-type
density) for which KLs rarely admit closed forms. Thus, even a univariate lifted KL term seems
already out of reach.

(i) Path coordinates are dependent. Two different paths can share edges. Their associated coor-
dinates in the products ®(w) therefore share terms, making the coordinates of ®(w) dependent even
if the coordinates of w are independent. Therefore, the pushforwards 1)y P and 14 @) do not factorize,
and multivariate KLs cannot be reduced to sums of independent one-dimensional terms.

Together, (i) and (ii) make exact lifted KLs impractical beyond toy cases, even before accounting
for the discrete sign part.

5.2 WHY THE STOCHASTIC-RESCALING INFIMUM IS CHALLENGING

The middle term in the chain (9) optimizes over stochastic rescalings: A may be random and depend
on w. Even if () is Gaussian, the pushforward og‘Q is then a data-dependent random mixture of
rescalings, which has no simple parametric form in general; computing inf x/ DKL(OQ\Q | og‘/ P)is
therefore out of reach analytically, and challenging even numerically as it would require to optimize
over the space of couplings (A, w). Interesting questions left to future work include understanding

whether the infimum is attained, how it could be approximated, and whether it coincides with the
left-hand side Dxr,(¥4Q || ¥4 P).

5.3 DETERMINISTIC RESCALING AS A TRACTABLE PROXY

Fortunately, the chain (9) includes a computable middle ground: the deferministic rescaling infimum

It upper-bounds the lifted KL and never exceeds the original weight-space KL. We now show it
reduces to a one-sided problem and can be solved globally (for standard Gaussian priors), yielding
a practical drop-in replacement in McAllester-style bounds.

Theorem 4 (Optimized deterministic rescaling for zero-mean Gaussian priors). Let G = (V, E) be a
ReLU DAG with hidden neurons H C V, and let o be the neuron-wise rescaling from Equation .

1. (Reduction) For general P, Q) and any divergence D(-||-) satisfying the data processing in-
equality, the two-sided rescaling problem reduces to a one-sided one:

inf  D(o}Q | o} P) = inf J(\) = inf J(N). (%)
AN ERT Aer!l Aerl
where ~ ]
J(A) == D(Q | o¢P) and J(\) := D(o}Q | P), AeRLy (10)

2. (Existence & uniqueness) If D(:||-) = Dkr(:||-), P ~ N(0, ¢"?1), and Q has finite second
moments and admits a density with respect to the Lebesgue measure, then

(a) J admits a unique global minimizer \*.

(b) (Convergence of block coordinate descent) Consider the block coordinate descent (BCD)
scheme that, given an order (vy,...,v|g|) of the hidden neurons, cyclically updates one
coordinate \,, at a time to its exact one-dimensional minimizer (which admits an analyti-

cal expression, see Algorithm[l|for a simple case, and Equation for the general case).

From any initialization \(*) € Rlﬂ) the sequence ()\(T))Qo converges to \*.
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Consequently,

Dy (Q1v5P) < inf D (3@} P) < inf JO) < Din(@IP),
A1 Aer)
———
computable by BCD

i.e., the deterministic-rescaling infimum is a tractable upper bound on the lifted-space KL and
a tighter proxy than the original weight-space KL.

The proof is given in Appendix|C| The existence of a unique global minimizer for P = N (0, 0"I) is
due to the strict convexity of z € Rl — J(exp(z)). The assumption on P is not a strong constraint
since it is very usual for a PAC-Bayes prior. The result remains valid for centered Gaussian P with
arbitrary diagonal covariance.

Takeaway. Exact lifted KLs (with path+sign) and stochastic-rescaling infima are generally in-
tractable. The deterministic-rescaling infimum is a principled, tractable proxy: it upper-bounds the
lifted KL, is never worse than the raw weight-space KL, and can be optimized globally (for common
Gaussian priors) with a simple, fast BCD scheme.

5.4 ALGORITHM IN THE SIMPLE CASE, AND THE GENERAL NEURONWISE UPDATE

We first give the updates in a simple setup and refer to the appendix for the general formula. The
proof in Appendix shows that convergence guarantees still apply if one updates in parallel any
set of neurons such that no two of them are neighbors (otherwise their updates would interact). In
layered fully-connected networks (LFCN), this allows odd—even parallel updates: rescale all odd
layers simultaneously, then proceed similarly with even layers, and iterate until convergence.

Square LFCN (d-by-d matrices). Let the network have depth L and all layers (input, hidden,
output) of width d. Denote by \, € R‘io the rescaling vector of layer ¢. For a centered Gaussian
prior P ~ N (0, 0"%I) and posterior  ~ N (0, 0%I), all coordinates of A, will have the same optimal
coordinatewise update

o 1/4
Aok (‘3) . k=1,....d (11)
Ay
where
d 1 d
Ay = 022/\2 5 Cy = 0'22)\?71,2"
j=1 "+l i=1

Algorithm 1 Odd-even minimization of the KL over deterministic rescalings on a square LFCN for
P ~ N(0,0"T) and Q ~ N(0, 1)

Require: Stds 0,0’ > 0, sweeps T'.

1: Initialize (implicitly) Ay = 14foré =1,..., L.

2: fort=1,...,7 do

3 (Odd layers, in parallel) For each odd ¢ € {1,3,...}:

40 Update Ay  (Co/A,)"* forallk =1,....d (by ()
5 (Even layers, in parallel) Same steps for even ¢ € {2,4, ... }.

6: end for

7: Output: Optimal A\*.

General neuronwise update. In general, Theorem [4] guarantees that the minimizer A* is reached
by block coordinate descent. The generic algorithm updates the rescaling factor A, of each neuron
v one by one (see Appendix|C.3) as

WP ERRN e (12)

2A, ’
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with A,, B,, C, given in Equations (I4) to (I6)), which covers much more general @, in particular
non-centered and with distinct variances over distinct coordinates, as is often the case in traditional
PAC-Bayes bounds. We deliberately keep these definitions in the appendix to avoid heavy notation
here.

Experiments. We test our proxy on MNIST MLPs (input 784, output 10) with varying hidden-
layer widths, ranging from 25K to 1.5M parameters for 55K training images, and on a CIFAR-
10 CNN with about 5.2M parameters for 50K training images. For each model, we compare the
standard PAC- Bayes bound (using Dk, (Q||P)) with its deterministic-rescaling version based on
infy x Dkr((0*)3Q || (0*")3P). Figure|l|shows that rescaling typically halves bound values, turn-
ing some vacuous bounds into non-vacuous ones. These results confirm that deterministic rescaling
can yield tighter and more practical guarantees. More details on the setups are given in Appendix [D]

6 CONCLUSION

We studied PAC-Bayes generalization through the lens of rescaling invariances in ReLU networks.
Lifting collapses symmetries and, by data processing, yields divergences that are never larger than
in weight space. Our main practical contribution is a deterministic-rescaling proxy: it bounds from
above the lifted KL, is never worse than Dk, (Q||P), and can be computed via a globally convergent
algorithm under standard Gaussian priors. Empirically, optimizing this proxy substantially tightens
PAC-Bayes bounds, often turning vacuous guarantees into non-vacuous ones.

Via a chain of inequalities, we also showed the potential of tighter bounds associated to exact lifted
KLs (e.g., path + sign) and stochastic-rescaling infima. Such bounds raise interesting mathematical
and computational challenges, and are expected to catalyze new developments around invariant
priors/posteriors and optimization schemes to bridge the remaining computability gap.
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A  MCALLESTER’S BOUND IN THE LIFTED SPACE

The derivation of PAC-Bayes bounds in the liffed space hinges on a change of measure argument,
especially leveraging the Donsker-Varadhan variational formula for KL-based PAC-Bayes bounds.

Sketch. The lifted PAC-Bayes framework extends classical PAC-Bayes bounds by working in a
lifted space Z, obtained via the measurable map ¢ : W — Z. The proof proceeds in three main
steps:

1. Change of measure: Apply the Donsker-Varadhan variational formula in Z, exploiting
the fact that pushforward distributions preserve absolute continuity.

2. Pullback to the weight space: Rewrite expectations and divergences in Z as expectations
and divergences in WV using the lift map .

3. Specialization to generalization error: Instantiate the variational formula with the gener-
alization error, and control the prior term via concentration inequalities.

The key insight is that the lifted structure allows us to derive bounds in Z while performing all
computations in W, preserving the interpretability and tractability of classical PAC-Bayes analysis.

Details. Step 1: Donsker—Varadhan variational formula in the lifted space. Let (W, B) be a mea-
surable space, and let ¢ : WW — Z be a surjective measurable map. The lifted space (Z,0(B,)))
is a measurable space, where o (B, ) is the final o-algebra generated by v. For any probability
distribution Pz over Z and any measurable function h : Z — R, the Donsker—Varadhan variational
formula states:

sup (Ez~q.[h(2)] — DxL(Qz| Pz)) = log Ez.p. [exp(h(Z))] .
Qz<K Pz

Since every distribution on Z is a pushforward of some distribution on W (i.e., for any Qz < Pz,
there exists @ € P(W) (P(W) denotes the set of all probability measures on W) such that Qz =
4@ and Pz = vy P for some P € P(WV)), and because ;1 < v implies ¢y < 13, we can rewrite
the supremum over distributions in W:

(Ez~y,@h(2)] — Dxu(¥4@Qllvy P)) = log Ezny, plexp(h(2))].

sup
QKP

By the change of variables formula, the expectations and divergences can be pulled back to the
weight space W:

sup (Ex~qlho¢(X)] — Dxr(¢4Qll¢4P)) = log Ex~plexp(h o ¢(X))] .
QKP

Thus, the variational formula in Z reduces to an expression entirely in terms of distributions and
expectations over W.

Step 2: Applying to the relevant function. For ac > 0, define

F:weWw a(L(fu) — Ls(fu))-

Because ) factorizes f : w — f,, it also factorizes F’, so there exists h such that F' = h o ).
Applying the lifted Donsker—Varadhan formula to h gives:

sup (Ex~q[F(X)] — Dki(¢4Q|v:P)) = log Ex~plexp(F(X))].
QKP

Step 3: Concentration inequalities on the prior. At this point, we are in the same position as in the
classical proofs of McAllester’s PAC-Bayesian bounds (or any KL-based PAC-Bayesian bound).
One can then follow the standard arguments (see, e.g., (Alquier, [2024, Theorem 2.1)), which mainly
involve applying concentration inequalities (sub-Gaussianity of the loss and Chernoff bounds) to the
prior term log Ex . p[exp(f(X))].
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B BEYOND KL: CHANGE-OF-MEASURE TOOLS IN LIFTED SPACES

Why this appendix. Section [3| establishes KL-based PAC-Bayes bounds in lifted spaces. The
message here is broader: the same “lift-then-bound” template extends to other divergences that admit
a change-of-measure principle. Divergences with this property used in known PAC-Bayes bounds
include f-divergences (of which the KL divergence is a special case), Wasserstein distances. This
matters because once a bound is valid in a lifted space, the same computational challenges reappear
as in the KL case (Section E[): the complexity term becomes a divergence between ;@) and 1 P,
which can be typically (i) tighter (e.g., by data processing), but also in general (ii) harder to compute.
Hence, for each divergence, we face the same three-step agenda: (validity - section[3)) prove a lifted
change of measure, (sharpness - section[d)) e.g. using DPIif applicable, and (computation - sectiond)
understand what is tractable in the chosen lifted space. Below, we discuss validity of PAC-Bayes
bounds based on other complexity measure than the KL divergence.

A generic lifted pattern. Let D(+||-) be a divergence endowed with a change-of-measure inequal-
ity that controls Eq[L — ﬁg] the generalization gap averaged over weights w ~ (), in terms of
D(Q||P) and an auxiliary term depending on P. If ¢y : W — Z is measurable and is a lift, in the
sense there is a function g : Z — F such that f = got) (factorization from Section[3), then the same
argument in general applies with @, P replaced by 3@, ¢y P, yielding a bound whose complexity
term is D (14 Q||¢4 P). Moreover, whenever D satisfies data processing,

D(yQllvyP) < D(Q|P),

it ensures the lifted bound is never looser at the level of the divergence term. The price to pay is
computational: evaluating D(14Q||1)4 P) can be more involved, exactly as we saw for KL.

B.1 f-DIVERGENCE

For f-divergences D(Q || P) fQ (dQ/dP)dP, a change of measure inequality exists. Specif-
ically, for two probability dlstrlbutlons Q,P such that () < P, the following inequality holds
(Nguyen et al., 2010; |[Picard-Weibel & Guedj, 2022} |Polyanskiy & Wul|2025)):
Dy(Q I P)= sup (Eqlg] —Ep[f*og])
g measurable
where f* denotes the Fenchel conjugate of f. Similarly to Appendix [A] this equality can be directly
applied to the pushforward distributions 3 Q, 14 P:
Dy(yQ || vyP) = sup (Ey,qlg] — Ey,p[f" 0g])

g measurable

Since v is a lift, we can further rewrite the expectations in terms of the distributions () and P:

Dy(@:Q || ¥sP) = sup (Eqlgoy]—Ep[f ogoy])
g measurable
This form is particularly useful in the PAC-Bayes framework, as the expectation terms are expressed
in terms of the weights, while the complexity term is evaluated in the lifted space. By the data-
processing inequality (which holds for f-divergences (Polyanskiy & Wul 2025, Theorem 7.4)), the
complexity term in the lifted space is at least as sharp, leading to bounds that cannot degrade the
usual ones.

Takeaway. All PAC-Bayes bounds derived from f-divergences admit a lifted counterpart with a
divergence term that can be only smaller. As in the KL case, the remaining question is computability
of D¢ (¥4Q||14 P) for the chosen lift ).

B.2 WASSERSTEIN DISTANCES

PAC-Bayes bounds based on Wasserstein distances rely on the change-of-measure in-
equality provided by Kantorovich-Rubinstein duality (Villani, 2009, Theorem 5.9). For
the 1-Wasserstein distance (with P, in the Wasserstein space of order 1 Py (W) :=
{wprobaon Ws.t. [, [Jw|1du(w) < co}),

KWi(Q,P) = sup (EQ[h}—Ep[h}).

IRllLip<r

14



Under review as a conference paper at ICLR 2026

This immediately implies
Eq[L — Ls] —Ep[L — Ls] < kwW1(Q,P)

as soon as the map w — (L — Lg)(w) is kyy-Lipschitz in weight space. However, in practice,
known upper bounds on the Lipschitz constant in weight space are usually very loose. The most
classical one scales as the product of spectral norms of the layers, which can grow exponentially
with depth and make the resulting bound vacuous.

To obtain a similar bound with the Wasserstein distance between the lifted distributions ;() and
Py P, one musﬂ therefore show that the generalization gap is Lipschitz in the lifted representation.
This question 1s well-posed: the loss depends on the weights w only through the function f,, im-
plemented by the network, and since f,, can be written as got(w) for some suitable g (e.g. in
path-based parametrizations), it follows that there exists a (possibly ugly) function h such that

(L= Ls)(w) = h($(w)).

In other words, the generalization gap depends on w only through its lifted coordinates z = ¥ (w).
If the map 2z — h(z) is itself Lipschitz, then Kantorovich—Rubinstein duality directly yields a
Wasserstein-based PAC-Bayes bound in lifted space.

Here lies a key difference with KL (and more generally f-divergences): for KL, the bound in the
lifted space follows automatically from the factorization of the generalization gap through v; for
Wasserstein, the lift must in addition preserve Lipschitzness.

The path+sign lift studied in Section [5] provides precisely such a property: the network output is
known to be Lipschitz in the path-lifting representation on each closed orthant of ¥V (Gonon et al.,
2025, Thereom 4.1). Since standard losses are themselves Lipschitz in the network outputs, this
implies that the loss gap is Lipschitz in the lifted coordinates, at least when restricted to a single
orthant. This suggests the following template.

Informal Statement 5 (lifted W, control under orthant-wise Lipschitzness). Assume there exists a
lifty : W — Z and a constant kz > 0 such that z — (L — Lg)(g(2)) is kz-Lipschitz on each
orthant of W. If Q and P are both supported on the same orthant (e.g., by conditioning on signs),
then

Eq[L — Ls] — Ep[L — Ls] < kz Wi(¥4Q, ¢ P).

In summary, the Wasserstein case illustrates well the three-step agenda of lifting divergences to
intermediary spaces between the function space and weight space.

(i) Validity. Thanks to the factorization (L — Lg)(w) = h(1(w)), it makes sense to ask whether the
generalization gap is Lipschitz in the lifted space. For path-based lifts enriched with signs, this is
indeed the case on each closed orthantﬂ that is, on each region of the weight space where the sign
of every coordinate is fixed (including the boundaries where some coordinates may be zero). So the
basic validity of a lifted Wasserstein bound is established.

(ii) Improvement. Unlike KL (where improvement is guaranteed by the data processing inequality),
here both sides of the inequality change: the divergence Wy (Q, P) becomes W (14Q, ¥4 P), and the
Lipschitz constant kyy becomes xz. Known bounds on xz E]for the path-lifting are still large, but
they are provably less pessimistic (sometimes dramatically so) than the naive weight-space bound
on kyy given by the product of spectral norms |Gonon|(2024)). This indicates that lifting can mitigate
part of the curse of depth of usual Lipschitz constants, and could help to improve Wasserstein-based

5 And one should also check that the lifted distributions 1@ and 1)y P are in the Wasserstein space of order
1 denoted by P1(W). This is true for the lift ¢» = (®,sign) based on the path-lifting ®, as in Section[3] for
every P, € P1(W) that factorizes along the coordinates w; (i.e., such that the coordinates are independents).

Indeed, consider p = ®‘;i:m<w> u; a probability distribution on W, then using | sign | < 1 and the definition of ®,

1
we get [, () [1dg(w) < [, [®@0)l|1dgtuw)+1 = 3, Ty oy, lwildp(wi)+1 < oo.
SThis follows from the Lipschitz property of the realization function f. with respect to the lift b, which car-
ries over to the generalization error (see|Viallard et al.| (2023); Haddouche & Gued;j|(2023) for two approaches).
"Which are derived from the bounds on the Lipschitz constant of the realization function f. with respect to
the lift ¢.
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bounds. However, the divergence term itself can also increase under lifting: for instance, in the case
of Dirac measures, one may encounter situations where

lw —w'l| < [l(w) = p(w)],
so that the Wasserstein distance grows after lifting. For instance, consider two weight vectors:
w = (3,3) and w’ = (0,0), representing the weights of a one-hidden-neuron neural network. We
have [[w — w'[ly = 6, but [iy(w) — (w')|y = [@(w) — S(w)]1 + | sign(w) — sign(w)[y =
|9 —0] 4|1 —0]+ |1 —0| = 11. This stands in stark contrast to the KL divergence case, where such
an increase is precluded by the data processing inequality.

(iii) Practicality. Two difficulties remain before such bounds become usable in practice: extend-
ing orthant-wise arguments to handle sign changes, and computing high-dimensional Wasserstein
distances between lifted distributions. These mirror the challenges already encountered for KL in
Section [3} lifting sharpens the complexity term in principle, but turning this into tractable, non-
vacuous guarantees requires further structural insights.

C PROOF OF THEOREM

We use as notations ant(v),suc(v) for antecedents/successors of a neuron v in the graph (in/out
neighbors), Dk, (+||-) for Kullback—Leibler and D(-||-) for a general divergence satisfying the data-
processing inequality D(FyQ||FyP) < D(Q||P) for any @, P and any pushforward F', and o* for
the neuron-wise rescaling action defined in (3)).

C.1 PROBLEM REDUCTION (TWO-SIDED TO ONE-SIDED)

Denoting A the diagonal matrix such that o*(w) = Aw for every w, and similarly A’ such that
oA (w) = ANw, we have og‘Q = A¢Q and <>&\'P = A,P. From the well-known group structure
of rescaling invariances both A and A’ are invertible and there exists A such that A := A’7'A is

a diagonal matrix such that A (w) = Aw. Since the data processing inequality (DPI) implies the
equality D(Q||P) = D(F;Q| FyP) for any distributions whenever F is an invertible function (DPI

applied to F' and to F'~! gives both < directions), we obtain that D(OB\QHQB\' P) = D(MQ|AP) =
D((A''A)Q||P) = D(oé\QHP), hence the result with J(\) := D(¢}Q||P). A similar reasoning
yields the result with J(A) = D(Q|| o} P).

C.2 EXISTENCE AND UNIQUENESS OF THE GLOBAL MINIMIZER

We now focus on the KL divergence and a centered Gaussian prior P = A (0, 0'T) (the proof easily
extends to arbitrary diagonal covariance for P), assuming also that the posterior () admits a density
with respect to the Lebesgue measure, and has finite second moments.

With the rescaling vector A € R%‘ and the corresponding diagonal matrix A as above, observe that
op P = AyP = N(0,0"*A?) so that for any vector w
[A™ wl]3
2072

for some constant ¢ that will be irrelevant when optimizing J (). It follows that

J(N) = Dx(Q 3 P) = Eyng[—log o} P(w)] — Eyng[—log Q(w)]

1

2572

20% Z (AZ202 + 20" log Ace) +¢
eeE

fa(w) = —logog‘P(w) = + logdet A + ¢

Euw~ol/ A w3 +logdet A + ¢

=:J())

where the sum is over edges of the graph G = (V,E) and 02 := E,..qw? is the variance of
the weight on the edge indexed by e (note that we have used above that () has finite second order
moments and is absolute continuous w.r.t. P).
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As detailed below, considering 2 = log A € R¥ we can express A as A = diag(exp(Bz)) (see
details below) where logarithms and exponentials are entrywise and B is some matrix with linearly
independent columns associated to the DAG structure of the considered network. Denoting b, the
e-th row of B we thus have A.. = exp((be, z)), and optimizing J(A) is equivalent to optimizing
J (M) or equivalently as a function of z (which we still denote by J by slight abuse of notations):

J(z) = Z (crgefﬂb‘“z> + 20" (b, z}) . (13)

As a sum of strictly convex continuous functions, J (z) is continuous and strictly convex, and since
the columns of B are linearly independent there is a constant such that max, |(be, z)| = || Bz||co >

c||z||, hence J(z) is also coercive. This shows the existence and uniqueness of a global minimizer.

Expressing A as a function of z = log A\. The key identity is that if e = v — v is an edge (from
neuron v to neuron v) then

Ay
(Aw), := (<>’\(w))e = We = exp(zy — 2y )We
hence A.. = exp(z, — 2,,). This yields the result where B is the matrix with entries
1, ife=wu— hforsomeu eV
Bep =1 -1, ife=h—vforsomev eV
0 otherwise.

It can be checked that B has linearly independent columns.

C.3 CONVERGENCE OF THE BCD SCHEME

By (13) and explicit expression of B, we expand J (z) as a sum of edgewise univariate functions

J(z) = Z Z (agﬁve*ﬂ'z”*“) + 20" (2, — zu)> .
véVin u€ant(v)
By the global coercivity of J, its level sets are compact, and by its strict convexity, each one-
dimensional block section ¢ — J (20 + tz1) has a unique minimizer with a closed-form expression
that we will explicit below. By Tseng’s essentially cyclic BCD theorem (Tseng), 2001, Thm. 4.1)
(see also|Stock et al.|(2019)) for a related use), we conclude that the iterates converge, and combine
with uniqueness to get convergence to z* = log A*.

We now seek one-dimensional minimizers on some coordinate indexed by vy € H. Since
j()‘) = Z Z (Uz—m(Au/)‘v)z + 20" IOg(/\v//\u)) )
véVin u€ant(v)

when fixing the values A, © # v and optimizing over the remaining variable )\, the function to
be optimized writes (up to a constant independent of A, ) as

AN+ ON,2 +2Blog Ay, = F(\2)) with F(X) := AX + C/X + Blog X

where
A=A,V = > T (14)
0 )\12) )
v€Esuc(vo)
C=Cu(Ni= Y ouuh, (15)
u€ant(vg)
B = B,, := ¢ (fant(vg) — tsuc(vp)) . (16)

Minimizing over \,, € Rso amounts to minimize F'(X) over X > 0, which reduces to finding a
positive root of its derivative, which is a positive root of the quadratic equation AX2+BX —C = 0.
This yields

—B++VB?+4AC

X5 () = o (17)

Ao (A) =/ X5, (N) (18)
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Remark (orders and parallel schedules). The proof above uses single-coordinate updates in any
essentially cyclic order (e.g., a topological order repeated). For LFCNs, neurons in the same layer
are independent given their neighbors, which permits parallel layerwise updates; moreover, the
odd-even (red-black) schedule is an essentially cyclic scheme and thus inherits the same conver-
gence guarantee.

Treating biases (optional). If biases are used, append a constant-1 input neuron and interpret
the bias of a neuron v as the weight of the edge going from the constant-1 input neuron to v. In
particular, this augments the set of predecessors of v by one in Equations (T4) to (T6).

Case of square LFCN without bias When Q = N (1, 2T) and the network is an LFCN without
biases we have B = 0 (each hidden neuron has as many incoming weights than ougoing weights).
This yields the simple expression in (11).

D EXPERIMENTAL DETAILS
All experiments were conducted on a MacBook Pro (M4, 2025) using PyTorch 2.7.0.

MNIST Models were trained with SGD (learning rate 0.1, no weight decay, batch size 256), using
a Gaussian prior (u = 0, 0 = 1) and a posterior defined by the trained weights as mean and a
fixed standard deviation ¢ = 0.03, selected via preliminary sweeps on the values of o using the
sweep agent of the Python library wandb. PAC-Bayes bounds were computed using McAllester’s
bound with confidence parameter § = 0.05. The total compute time for the sweep was 33 minutes
(10 runs, approximately 3 minutes per run). Trained models and raw results will be released in a
non-anonymous repository upon acceptance.

CIFAR-10 For CNN experiments, we used the architecture introduced in |Gitman & Ginsburg
(2017), which consists of 9 convolutional layers and 3 pooling layers, without batch normalization.
The model was trained following the protocol described in the original paper: SGD with a learning
rate linearly decayed from 0.01 to 1072, a weight decay of 0.002, a batch size of 128, and for a
total of 50 epochs. We employed a zero-mean Gaussian prior (44 = 0) and centered the posterior
on the trained weights. The prior standard deviation opor Was sampled uniformly from the interval
[0.01, 1], while the posterior standard deviation oposierior Was sampled uniformly from [0.0001, 0.05]
through a random sweep. The total training time for this model was 34 minutes, and the sweeper
required 4 hours to compute the different PAC-Bayes bounds.

E USE oF LLMSs

We made limited use of large language models during the preparation of this manuscript. Their role
was strictly restricted to grammar correction, improving clarity and conciseness and emphasizing
text (e.g., bolding). They were not used for generating technical content, suggesting new concepts,
or contributing to proofs or results. All ideas, proofs, experiments, and findings are entirely our own.
Every rephrased passage was carefully reviewed and validated by the authors to ensure correctness
and faithfulness to our original intent. No unverified or plagiarized content was introduced.
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