

NON-VACUOUS GENERALIZATION BOUNDS: CAN RESCALING INVARIANCES HELP?

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 A central challenge in understanding generalization is to obtain non-vacuous guar-
 012 antees that go beyond worst-case complexity over data or weight space. Among
 013 existing approaches, PAC-Bayes bounds stand out as they can provide tight, data-
 014 dependent guarantees even for large networks. However, in ReLU networks,
 015 rescaling invariances mean that different weight distributions can represent the
 016 same function while leading to arbitrarily different PAC-Bayes complexities. We
 017 propose to study PAC-Bayes bounds in an invariant, lifted representation that re-
 018 solves this discrepancy. This paper explores both the guarantees provided by this
 019 approach (invariance, tighter bounds via data processing) and the algorithmic as-
 020 pects of KL-based rescaling-invariant PAC-Bayes bounds.

1 INTRODUCTION

024 Deep neural networks generalize well despite being massively overparameterized, a fact that re-
 025 mains only partially explained by statistical learning theory (Zhang et al., 2021; Belkin et al., 2019;
 026 Bartlett et al., 2021). Among existing approaches, PAC-Bayes bounds are especially promising:
 027 they are *data dependent* and have yielded non-vacuous guarantees for large models (Dziugaite &
 028 Roy, 2017; Dziugaite et al., 2021; Pérez-Ortiz et al., 2021; Letarte et al., 2019; Biggs & Guedj,
 029 2021; 2022a;b). A persistent limitation, however, is that standard PAC-Bayes analyses are carried
 030 out in *weight space* \mathcal{W} : the prior P and posterior Q are distributions on parameters $w \in \mathcal{W}$, and
 031 the complexity is typically a divergence such as the Kullback–Leibler (KL) one $D_{\text{KL}}(Q||P)$. For
 032 ReLU networks, neuron-wise rescaling symmetries imply that many parameterizations implement
 033 the same predictor f_w while producing wildly different divergences. As a result, weight-space PAC-
 034 Bayes bounds can vary arbitrarily across functionally equivalent models.

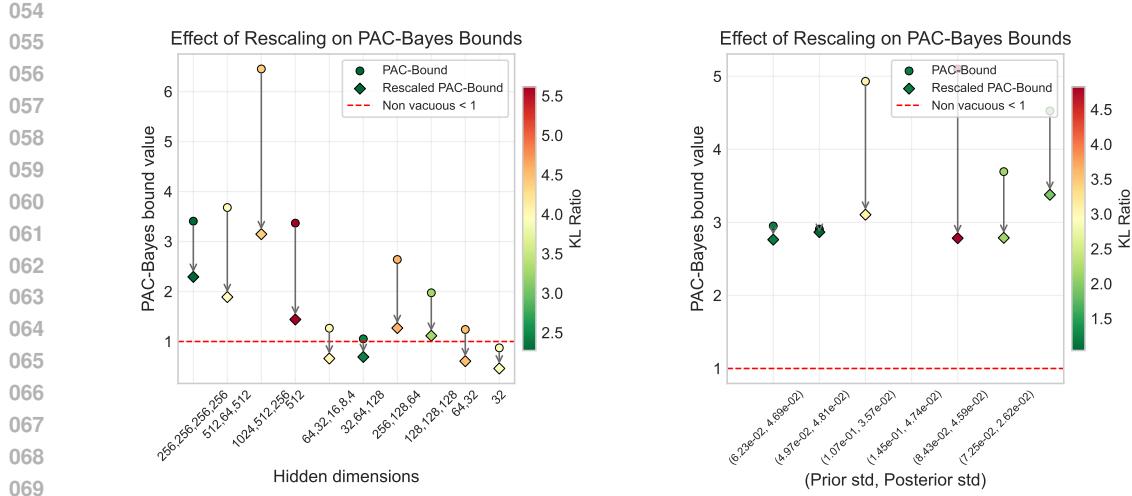
035 **A motivating example.** Consider the one-hidden-neuron ReLU network $f_w(x) = w_2 \max(w_1 x, 0)$
 036 with $w = (w_1, w_2) \in \mathbb{R}^2$. For any $\lambda > 0$, the rescaled parameters $\diamond^\lambda(w) := (\lambda w_1, w_2/\lambda)$ satisfy
 037 $f_{\diamond^\lambda(w)} = f_w$. If $P \sim \mathcal{N}(0, \sigma^2 I_2)$ and $Q \sim \mathcal{N}(w, \text{diag}(w^2))$, then the rescaled posterior $\diamond^\lambda Q$
 038 induces a KL divergence $D_{\text{KL}}(\diamond^\lambda Q||P) \sim \lambda^2 w_1^2 / \sigma^2$ when λ tends to infinity, which can be made
 039 arbitrarily large although the predictor is unchanged. This simple case already shows that weight-
 040 space bounds are not aligned with functional equivalence.

041 **Two complementary routes toward invariance.** We adopt a viewpoint that makes rescaling in-
 042 variance explicit and leads to a concrete program built around three questions.

043 *Route A: deterministic (and stochastic) rescaling in weight space.* A first natural idea is to keep
 044 working in \mathcal{W} but to take the best bound over rescalings of the prior and posterior. Deterministic
 045 rescaling uses the group action $w \mapsto \diamond^\lambda(w)$ at hidden units; we later broaden this to *stochastic*
 046 rescaling that randomly rescales hidden units in a way that preserves f almost surely.

047 *Route B: lifted (invariant) representations.* A second idea is to *lift* parameters to an intermediate
 048 space \mathcal{Z} collapsing rescaling symmetries. Formally, consider a *rescaling-invariant* measurable map
 049 (a “lift”) $\psi : \mathcal{W} \rightarrow \mathcal{Z}$ and a measurable $g : \mathcal{Z} \rightarrow \mathcal{F}$ such that $f_w = g(\psi(w))$. An instance of ψ for
 050 ReLU networks¹ is the path+sign lift $\psi(w) = (\Phi(w), \text{sign}(w))$, obtained by augmenting with the
 051 signs the so-called “path-lifting” Φ , a path-based representation of the weights that appears, e.g., in

052
 053 ¹Theorem 4.1 in Gonon et al. (2025) shows that $\psi(w) = \psi(w')$ implies $f_w = f_{w'}$. Hence ψ is indeed a lift:
 defining $g : \text{Im}(\psi) \rightarrow \mathcal{F}$ by $g(z) := f_w$ for any w with $\psi(w) = z$ yields the factorization $f_w = (g \circ \psi)(w)$.



(a) PAC-Bayes bounds for **MLPs on MNIST**. Each vertical line = one architecture (hidden-layer widths on x -axis). Test accuracy: min 95.81%, mean 97.49%, max 98.13%.

(b) PAC-Bayes bounds for **CNN on CIFAR-10** (86% test accuracy). Each vertical line = one (prior std, posterior std) pair.

Figure 1: Impact of deterministic rescaling on PAC-Bayes bounds. **Left (MNIST)**: MLPs with varying hidden-layer widths. **Right (CIFAR-10)**: CNN with varying $(\sigma_{\text{prior}}, \sigma_{\text{posterior}})$. Circles: original bounds; diamonds: bounds optimized over deterministic rescaling (which is an upper bound on the lifted D_{KL} by Equation (1)). The red dashed line marks the non-vacuous threshold (< 1).

Neyshabur et al. (2015); Kawaguchi et al. (2017); Barron & Klusowski (2019); Stock & Gribonval (2023); Bona-Pellissier et al. (2022); Gonon et al. (2024); Gonon (2024); Gonon et al. (2025). We then attempt to prove PAC-Bayes bounds with divergences between pushed-forward distributions, e.g., $D_{\text{KL}}(\psi_{\sharp}Q \parallel \psi_{\sharp}P)$.

These two routes give rise to the following three questions that structure the paper.

Q1 — Validity (Section 3). *Can we state standard PAC-Bayes bounds in a lifted space?* We show that it is indeed the case for KL-based PAC-Bayes bounds, the change-of-measure step (Donsker–Varadhan) applies *verbatim* to the pushed-forward pair $(\psi_{\sharp}Q, \psi_{\sharp}P)$ as soon as ψ is measurable and $\psi_{\sharp}Q \ll \psi_{\sharp}P$ (which holds whenever $Q \ll P$). The same argument extends to f -divergences. For Wasserstein distances, we show that it suffices to assume that the factorizer g is Lipschitz (so that Lipschitz losses remain Lipschitz in the lifted representation, i.e., after composition with g) (see Appendix B.2).

Q2 — Comparison of bounds (Section 4). *How do the lifted and rescaling-optimized bounds relate to the non-lifted one?* For any measurable, rescaling-invariant lift ψ , the data processing inequality yields

$$D_{\text{KL}}(\psi_{\sharp}Q \parallel \psi_{\sharp}P) \leq D_{\text{KL}}(Q \parallel P).$$

Introducing stochastic rescaling \diamond^{λ} (rescaling operator by a random λ while preserving f) and the deterministic special case \diamond^{λ} (with a deterministic rescaling vector λ), we establish the chain

$$D_{\text{KL}}(\psi_{\sharp}Q \parallel \psi_{\sharp}P) \leq \inf_{\lambda, \lambda'} D_{\text{KL}}(\diamond_{\sharp}^{\lambda}Q \parallel \diamond_{\sharp}^{\lambda'}P) \leq \inf_{\lambda, \lambda'} D_{\text{KL}}(\diamond_{\sharp}^{\lambda}Q \parallel \diamond_{\sharp}^{\lambda'}P) \leq D_{\text{KL}}(Q \parallel P), \quad (1)$$

which compares, in one stroke, the *lifted, stochastic-rescaling, deterministic-rescaling*, and *non-lifted* KL terms. Thus, lifted bounds are never worse and can be strictly tighter when symmetries are effectively collapsed.

Q3 — Computation (Section 5). *What is tractable in practice?* In general, neither the lifted KL nor the stochastic-rescaling infimum admits a closed form, even for Gaussian (P, Q) . By contrast, the *deterministic* infimum $\inf_{\lambda, \lambda'} D_{\text{KL}}(\diamond_{\sharp}^{\lambda}Q \parallel \diamond_{\sharp}^{\lambda'}P)$ is a computable upper-bound proxy for the two harder terms in Equation (1). We devise an algorithm with *global convergence* to this infimum,

108 via a hidden strict convexity that appears after an appropriate reparameterization. Empirically, this
 109 optimization yields smaller KL terms (e.g., typically $\sim \times 4$ smaller in Figure 1) and, consequently,
 110 tighter PAC-Bayes bounds (e.g., typically $\sim \times 2$ smaller in Figure 1, turning some vacuous bounds
 111 into non-vacuous ones).

112 **Outline.** Section 2 recalls the setting and notation (PAC-Bayes theory, rescaling invariances for
 113 ReLU networks). Section 3 establishes the lifted PAC-Bayes bounds (validity). Section 4 introduces
 114 stochastic rescaling² and proves the comparison chain (1). Section 5 develops the algorithm for the
 115 deterministic rescaling infimum and discusses the intractability of the lifted and stochastic-rescaling
 116 terms, along with experiments. Section 6 concludes and sketches directions for invariant, tractable
 117 priors directly in lifted space.

119 2 BACKGROUND

121 This section fixes notation and recalls the ingredients used throughout: (i) classical PAC-Bayes
 122 bounds (with a focus on KL in the main text), (ii) DAG-ReLU networks and their neuron-wise
 123 rescaling symmetry.

125 2.1 PAC-BAYES BOUNDS

127 PAC-Bayes theory (developed by Shawe-Taylor & Williamson, 1997; McAllester, 1998; 1999;
 128 Seeger, 2002; Catoni, 2007 – we refer to Guedj, 2019; Alquier, 2024; Hellström et al., 2025 for
 129 comprehensive introductions) provides data-dependent generalization guarantees for randomized
 130 predictors. Let $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_{\geq 0}$ be a bounded loss, and let $f : \mathcal{W} \rightarrow \mathcal{F}$ map parameters $w \in \mathcal{W}$ to
 131 predictors $f_w \in \mathcal{F}$. For $w \in \mathcal{W}$, define the population and empirical risks

$$132 L(w) := \mathbb{E}_{(x,y) \sim \mathcal{D}} [\ell(f_w(x), y)], \quad \hat{L}_S(w) := \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i), \quad (2)$$

134 associated with a distribution \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$ and a collection $S = ((x_i, y_i))_{i=1}^n$ of n samples. The
 135 classical McAllester-type bound states that for any prior P on the weights (fixed before observing
 136 the samples S), bounded loss $\ell \in [0, C]$ (e.g. $C = 1$ for the 0-1 loss in multi-class classification),
 137 $t > 0$ and $\delta \in (0, 1)$, with probability at least $1 - \delta$ over $S \sim \mathcal{D}^{\otimes n}$, the following holds uniformly
 138 over all posterior $Q \ll P$ (so it might be chosen depending on S):

$$139 \mathbb{E}_{w \sim Q}[L(w)] \leq \mathbb{E}_{w \sim Q}[\hat{L}_S(w)] + \frac{t^2 C}{8n} + \frac{D_{\text{KL}}(Q \| P) + \log(1/\delta)}{t} \quad (3)$$

140 which means that the generalization gap $L - \hat{L}_S$ averaged over the weight-posterior Q can be
 141 controlled with the KL-divergence $D_{\text{KL}}(Q \| P)$. Much of the literature tightens constants, relaxes as-
 142 sumptions, or replaces D_{KL} by other divergences (f -divergences, Wasserstein), see e.g. (Maurer,
 143 2004; Catoni, 2007; Alquier & Guedj, 2018; Mhammedi et al., 2019; 2020; Biggs & Guedj, 2023;
 144 Picard-Weibel & Guedj, 2022; Clerico & Guedj, 2023; Haddouche & Guedj, 2023; Viallard et al.,
 145 2023; Adams et al., 2024; Hellström & Guedj, 2024; Clerico et al., 2025; Haddouche et al., 2025).
 146 In the main text we focus on KL-based, as doing so already exposes the issues and benefits of
 147 invariance and lifting; extensions are discussed in the appendix.

149 2.2 DAG-RELU NETWORKS AND NEURON-WISE RESCALING

151 We consider the classical formalism of DAG-ReLU networks specified by a directed acyclic graph
 152 $G = (V, E)$ with input, hidden, and output neurons denoted respectively by V_{in} , H and V_{out}
 153 (Neyshabur et al., 2015; Kawaguchi et al., 2017; DeVore et al., 2021; Bona-Pellissier et al., 2022;
 154 Stock & Gribonval, 2023; Gonon et al., 2024). Parameters $w \in \mathcal{W} = \mathbb{R}^{E \cup (V \setminus V_{\text{in}})}$ collect edge
 155 weights $w_{u \rightarrow v}$ and (optional) biases $b_v = w_v$ for $v \notin V_{\text{in}}$. With ReLU activations, the network
 156 realization $f_w : \mathbb{R}^{|V_{\text{in}}|} \rightarrow \mathbb{R}^{|V_{\text{out}}|}$ is defined recursively by

$$158 v(w, x) = \begin{cases} x_v, & v \in V_{\text{in}}, \\ \text{ReLU}\left(b_v + \sum_{u: u \rightarrow v} w_{u \rightarrow v} x_u\right), & v \notin V_{\text{in}}, \end{cases} \quad f_w(x) = (v(w, x))_{v \in V_{\text{out}}}. \quad (4)$$

161 ²and precisely defines the notation $\diamond_{\sharp}^{\lambda} Q$, which mimics the notion of pushforward

162 For simplicity, we omit pooling and identity neurons (which are often used to encode skip
 163 connections). Our results, however, extend directly to networks that include them; see Definition 2.2
 164 in Gonon et al. (2024) for the formal class of DAG-ReLU networks covered.

165 **Deterministic rescaling.** Positive homogeneity of ReLU induces a neuron-wise rescaling symmetry.
 166 Let $H \subseteq V$ denote hidden neurons and let $\lambda = (\lambda_v)_{v \in H} \in \mathbb{R}_{>0}^H$, extended by $\lambda_v \equiv 1$ on $V \setminus H$.
 167 Define the (deterministic) rescaling operator

$$169 \quad \diamond^\lambda(w) \text{ by } (\diamond^\lambda(w))_{u \rightarrow v} = \frac{\lambda_v}{\lambda_u} w_{u \rightarrow v}, \quad (\diamond^\lambda(w))_v = \lambda_v w_v \quad (5)$$

171 where the operations are applied on the weights w_e of the edges $e = u \rightarrow v$ as well as the bi-
 172 ases $w_v = b_v$ of neurons. We will use $\diamond^\lambda \# Q$ to denote the pushforward of a distribution Q by \diamond^λ .
 173 Importantly we have $f_{\diamond^\lambda(w)} = f_w$ for every w .

174 **Stochastic rescaling.** We will also later consider *stochastic* rescaling \diamond^λ where λ is a random
 175 positive vector (Definition 2).

177 3 VALIDITY: PAC-BAYES BOUNDS IN LIFTED SPACES

180 PAC-Bayes bounds provide generalization guarantees for randomized predictors. Conceptually, the
 181 quantity of interest only depends on the *functions* realized by the network: one would ideally like
 182 to measure the discrepancy between the induced distributions of predictors, through a divergence
 183 $D(f_\# Q \| f_\# P)$ between the pushforwards of the posterior and prior in function space. Unfortunately,
 184 this ideal form is intractable in practice.

185 The standard workaround is to write PAC-Bayes bounds in terms of divergences between distributions
 186 over the *weights* themselves, $D(Q \| P)$, because these are often tractable (e.g., closed form for
 187 Gaussian priors/posteriors with KL). Yet this ignores symmetries: two parameter vectors w, w' that
 188 realize the same function $f_w = f_{w'}$ are still treated as distinct in $D(Q \| P)$.

189 **Lifting the representation.** To address this, we consider measurable lifts $\psi : \mathcal{W} \rightarrow \mathcal{Z}$ satisfying
 190 the factorization property

$$192 \quad f_w = g(\psi(w)) \quad \text{for some measurable } g : \mathcal{Z} \rightarrow \mathcal{F}. \quad (6)$$

193 The lift may be chosen rescaling-invariant, but *invariance is not needed for validity*. Lifts can
 194 collapse weight-space redundancies and induce a funnel as in Figure 2

$$195 \quad \mathcal{W} \xrightarrow{\psi} \mathcal{Z} \xrightarrow{g} \mathcal{F},$$

197 suggesting that divergences may shrink as one moves closer to function space.

198 **Can standard PAC-Bayes bounds, such as McAllester’s classical result (3), be established in
 199 terms of lifted divergences $D(\psi_\# Q \| \psi_\# P)$?**

200 **Answer: yes, by lifting the change of measure.** Our first contribution is to revisit the clas-
 201 sical McAllester’s bound and show that it can be stated directly in terms of any measurable
 202 lift. The key point is that the change-of-measure inequality underpinning PAC-Bayes proofs (the
 203 Donsker–Varadhan formula for KL) remains valid after lifting. Since the inequality only requires
 204 measurability of the loss and absolute continuity $\psi_\# Q \ll \psi_\# P$ (which holds whenever $Q \ll P$),
 205 the entire classical proof transfers verbatim (see Appendix A for details). We obtain the next lifted
 206 analogue of McAllester’s bound:

207 **Proposition 1** (McAllester’s bound in lifted space). *Let $\psi : \mathcal{W} \rightarrow \mathcal{Z}$ be a measurable lift satisfy-
 208 ing (6). Let P be a prior over weights, fixed before observing the samples S . For any $\delta \in (0, 1)$ and
 209 $t > 0$, with probability at least $1 - \delta$ over n i.i.d. samples S , the following holds uniformly over all
 210 $Q \ll P$:*

$$212 \quad \mathbb{E}_{w \sim Q}[L(w)] \leq \mathbb{E}_{w \sim Q}[\hat{L}_S(w)] + \frac{t^2 C}{8n} + \frac{D_{\text{KL}}(\psi_\# Q \| \psi_\# P) + \log(1/\delta)}{t}. \quad (7)$$

214 **Scope.** While we focus on McAllester’s bound here since it is among the simplest PAC-Bayes
 215 results, the same underlying argument (lifted change-of-measure) extends to other KL-based bounds.

We focus on the KL-based bound above because it already highlights the benefits and obstacles of lifting. We also show that the same “lift-then-change-of-measure” template extends to other divergences used in PAC-Bayes in Appendix B:

- For f -divergences the corresponding variational forms carry over to $(\psi_{\sharp}Q, \psi_{\sharp}P)$ exactly as for KL (Appendix B.1 for details).
- For Wasserstein distances, one additionally requires that the generalization gap be Lipschitz in the lifted coordinates (e.g., via a Lipschitz assumption on g , see Appendix B.2).

In short, lifted PAC-Bayes bounds are established through lifted change-of-measures. This restores a form of representation-awareness when the lift absorbs invariance, while keeping the standard proof template intact. In the next sections we (i) compare lifted, stochastically/deterministically rescaled, and non-lifted KL terms, and (ii) develop a tractable proxy based on deterministic rescalings.

4 COMPARISON: LIFTED, RESCALED, AND NON-LIFTED KL

This section compares four KL terms that can appear in PAC-Bayes bounds: (i) the *lifted* KL $D_{\text{KL}}(\psi_{\sharp}Q \parallel \psi_{\sharp}P)$ from Proposition 1, (ii) a *stochastically rescaled* (non-lifted) KL, (iii) a *deterministically rescaled* (non-lifted) KL, and (iv) the initial *non-lifted* KL. We show that these form a chain of inequalities, with the lifted term never larger than the others, and we clarify when (and how) one may optimize over rescalings without affecting the loss-dependent side of the bound.

4.1 DETERMINISTIC AND STOCHASTIC RESCALING

Recall the neuron-wise rescaling operator \diamond^{λ} from Equation (5): for $\lambda \in \mathbb{R}_{>0}^H$ (extended by 1 on non-hidden units),

$$(\diamond^{\lambda}(w))_{u \rightarrow v} = \frac{\lambda_v}{\lambda_u} w_{u \rightarrow v}, \quad (\diamond^{\lambda}(w))_v = \lambda_v w_v,$$

which preserves the realized function: $f_{\diamond^{\lambda}(w)} = f_w$.

Deterministic rescaling of a distribution. For a distribution Q on \mathcal{W} , its deterministically rescaled version is $\diamond_{\sharp}^{\lambda}Q$, the pushforward of Q by \diamond^{λ} .

Stochastic rescaling (random, weight-dependent factors). While *deterministic rescaling* preserves the induced function distribution, they are only a very special case of a more general family of *random* rescaling. For PAC-Bayes analysis, it is indeed natural to allow rescaling factors *themselves* to be random, and even to depend on the weights. This motivates the more general notion of *stochastic rescaling*.

Definition 2. Consider a random variable³ $\boldsymbol{\lambda}$ potentially *dependent* on the random weights $w \sim Q$ (resp. $w \sim P$): in other words, $(\boldsymbol{\lambda}, w) \sim C$ with C some joint distribution (or *coupling*). Given any draw $(\boldsymbol{\lambda}, w)$ the rescaled weights are defined as $w' := \diamond^{\boldsymbol{\lambda}}(w)$. This yields a *stochastic rescaling* of w , with distribution $w' \sim Q'$ and by a slight abuse of the *pushforward* notation we denote $\diamond_{\sharp}^{\boldsymbol{\lambda}}Q := Q'$ (resp. $w' \sim P' =: \diamond_{\sharp}^{\boldsymbol{\lambda}}P$).

For a fixed λ , if $(\boldsymbol{\lambda}, w) \sim \delta_{\lambda} \otimes Q$ then we recover the deterministic rescaling $Q' = \diamond_{\sharp}^{\boldsymbol{\lambda}}Q = \diamond_{\sharp}^{\lambda}Q$.

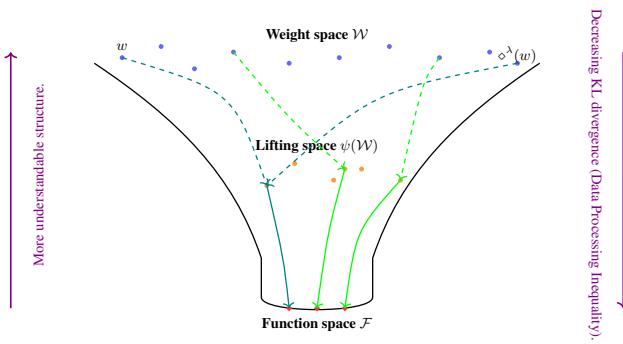
The next lemma shows that stochastic rescaling also preserves the induced distributions of functions, paving the way to further optimization of the KL term of McAllester’s bound. It is the cornerstone to establish a sequence of bounds interpolating between the lifted bound of Proposition 1 and the non-lifted one of Equation (3).

Lemma 3 (Function and lift invariance under stochastic rescaling). *Let ψ be any rescaling-invariant lift (i.e., $\psi \circ \diamond^{\lambda} = \psi$ for all λ). For any distribution Q on \mathcal{W} and any (possibly weight-dependent) stochastic rescaling $\boldsymbol{\lambda}$,*

$$f_{\sharp}Q = f_{\sharp}(\diamond_{\sharp}^{\boldsymbol{\lambda}}Q), \quad \psi_{\sharp}Q = \psi_{\sharp}(\diamond_{\sharp}^{\boldsymbol{\lambda}}Q). \quad (8)$$

³We use bold as a mnemonic to distinguish from deterministic rescaling λ

270
271
272
273
274
275
276
277
278
279
280
281



282 Figure 2: The information funnel $\mathcal{W} \rightarrow \mathcal{Z} \rightarrow \mathcal{F}$. Weight-space symmetries (e.g., rescaling) could
283 be collapsed by the lift ψ , and the induced map to function space f further compresses information.
284 Divergences (e.g., KL) are expected to decrease along this chain, motivating the use of lifted-space
285 bounds.

287 4.2 A CHAIN OF KL TERMS

288 Let P, Q be prior/posterior distributions on \mathcal{W} , and let ψ satisfy the factorization $f = g \circ \psi$ from
289 Equation (6). By Lemma 3, $\psi_{\sharp}(\diamond_{\sharp}^{\lambda} Q) = \psi_{\sharp}Q$ and $\psi_{\sharp}(\diamond_{\sharp}^{\lambda} P) = \psi_{\sharp}P$ for any stochastic rescalings
290 λ, λ' . Applying data processing to the measurable map ψ gives

$$292 D_{\text{KL}}(\psi_{\sharp}Q \parallel \psi_{\sharp}P) = D_{\text{KL}}(\psi_{\sharp}(\diamond_{\sharp}^{\lambda} Q) \parallel \psi_{\sharp}(\diamond_{\sharp}^{\lambda'} P)) \leq D_{\text{KL}}(\diamond_{\sharp}^{\lambda} Q \parallel \diamond_{\sharp}^{\lambda'} P).$$

293 Taking the infimum over stochastic rescalings and then restricting to deterministic ones yields the
294 *comparison chain* (1) as follows:

$$295 D_{\text{KL}}(\psi_{\sharp}Q \parallel \psi_{\sharp}P) \leq \inf_{\lambda, \lambda'} D_{\text{KL}}(\diamond_{\sharp}^{\lambda} Q \parallel \diamond_{\sharp}^{\lambda'} P) \quad (9)$$

$$296 \leq \inf_{\lambda, \lambda'} D_{\text{KL}}(\diamond_{\sharp}^{\lambda} Q \parallel \diamond_{\sharp}^{\lambda'} P) \leq D_{\text{KL}}(Q \parallel P).$$

297 The last inequality takes $\lambda = \lambda' = \mathbf{1}$.

298 In particular, the lifted divergence is never larger via data processing, and might actually be strictly
299 smaller when symmetries are collapsed (it can even turn vacuous bounds to non-vacuous ones as we
300 will observe in Figure 1). This formalizes the funnel intuition $\mathcal{W} \rightarrow \mathcal{Z} \rightarrow \mathcal{F}$ illustrated in Figure 2.

301 **Consequences for the PAC-Bayes bounds.** Combining the lifted bound Equation (7) with this
302 chain of inequality shows that the same PAC-Bayes bounds but with $D_{\text{KL}}(Q \parallel P)$ replaced by any
303 of the three terms in Equation (9) yields a valid PAC-Bayes bound which is never larger than the
304 original one. We study in the next section what can be computed.

309 5 COMPUTATION: WHAT IS (NOT) TRACTABLE, AND A PRACTICAL PROXY

310 The comparison chain (1) established in Section 4 (see Equation (9) above), suggests two natural
311 computational routes beyond the raw weight-space KL: (i) push P, Q through a rescaling-invariant
312 lift ψ and compute the *lifted* KL; (ii) optimize the *non-lifted* KL over rescalings (stochastic or de-
313 terministic). We now explain why the first two targets are challenging, and then develop a tractable
314 and effective instance of the third one.

317 5.1 WHY THE LIFTED KL (WITH PATH + SIGN) IS CHALLENGING IN GENERAL

318 So far our discussion applied to any measurable lift ψ (sometimes additionally assumed invariant).
319 To make the lifted KL concrete, one must pick a specific lift. A lift that stands out in the literature
320 is the *path + sign* lift $(\Phi(w), \text{sign}(w))$, where Φ is the “path-lifting” which maps each weight vector
321 to the collection of path products in the network.⁴ This construction has played a central role in

322
323 ⁴Strictly speaking, even though Φ is called path-lifting in the literature, it is not a lift in the sense of Equation
324 (6); the sign component is needed to make it a lift, see Figure 6 in Gonon et al. (2025).

recent advances on identifiability (Stock & Gribonval, 2023; Bona-Pellissier et al., 2022), training dynamics (Marcotte et al., 2023), Lipschitz and norm-based bounds (Gonon et al., 2024; 2025), pruning (Gonon et al., 2025), and Rademacher-based generalization guarantees (Neyshabur et al., 2015; Barron & Klusowski, 2019; Gonon et al., 2024).

We observe that for this lift, even when P, Q are simple (e.g., factorized Gaussians on edges/biases), computing $D_{\text{KL}}(\psi_{\sharp}Q \parallel \psi_{\sharp}P)$ is challenging for two independent reasons:

(i) Products already break closed forms. A single coordinate of $\Phi(w)$ is a *product* of edge weights along a path (Gonon et al., 2024, Definition A.3). If edge weights are independent Gaussians, that product has a non-Gaussian law (computable only in the two-variable case, with a Bessel-type density) for which KLs rarely admit closed forms. Thus, even a *univariate* lifted KL term seems already out of reach.

(ii) Path coordinates are dependent. Two different paths can share edges. Their associated coordinates in the products $\Phi(w)$ therefore share terms, making the coordinates of $\Phi(w)$ *dependent* even if the coordinates of w are independent. Therefore, the pushforwards $\psi_{\sharp}P$ and $\psi_{\sharp}Q$ do not factorize, and multivariate KLs cannot be reduced to sums of independent one-dimensional terms.

Together, (i) and (ii) make exact lifted KLs impractical beyond toy cases, even before accounting for the discrete sign part.

5.2 WHY THE STOCHASTIC-RESCALING INFIMUM IS CHALLENGING

The middle term in the chain (9) optimizes over *stochastic* rescalings: λ may be random *and* depend on w . Even if Q is Gaussian, the pushforward $\diamond_{\sharp}^{\lambda}Q$ is then a *data-dependent random mixture of rescalings*, which has no simple parametric form in general; computing $\inf_{\lambda, \lambda'} D_{\text{KL}}(\diamond_{\sharp}^{\lambda}Q \parallel \diamond_{\sharp}^{\lambda'}P)$ is therefore out of reach analytically, and challenging even numerically as it would require to optimize over the space of couplings (λ, w) . Interesting questions left to future work include understanding whether the infimum is attained, how it could be approximated, and whether it coincides with the left-hand side $D_{\text{KL}}(\psi_{\sharp}Q \parallel \psi_{\sharp}P)$.

5.3 DETERMINISTIC RESCALING AS A TRACTABLE PROXY

Fortunately, the chain (9) includes a computable middle ground: the *deterministic* rescaling infimum

$$\inf_{\lambda, \lambda'} D_{\text{KL}}(\diamond_{\sharp}^{\lambda}Q \parallel \diamond_{\sharp}^{\lambda'}P).$$

It upper-bounds the lifted KL and never exceeds the original weight-space KL. We now show it reduces to a one-sided problem and can be solved globally (for standard Gaussian priors), yielding a practical drop-in replacement in McAllester-style bounds.

Theorem 4 (Optimized deterministic rescaling for zero-mean Gaussian priors). *Let $G = (V, E)$ be a ReLU DAG with hidden neurons $H \subset V$, and let \diamond^{λ} be the neuron-wise rescaling from Equation (5).*

1. *(Reduction) For general P, Q and any divergence $D(\cdot \parallel \cdot)$ satisfying the data processing inequality, the two-sided rescaling problem reduces to a one-sided one:*

$$\inf_{\lambda, \lambda' \in \mathbb{R}_{>0}^{|H|}} D(\diamond_{\sharp}^{\lambda}Q \parallel \diamond_{\sharp}^{\lambda'}P) = \inf_{\lambda \in \mathbb{R}_{>0}^{|H|}} J(\lambda) = \inf_{\lambda \in \mathbb{R}_{>0}^{|H|}} \bar{J}(\lambda). \quad (\star)$$

where

$$J(\lambda) := D(Q \parallel \diamond_{\sharp}^{\lambda}P) \quad \text{and} \quad \bar{J}(\lambda) := D(\diamond_{\sharp}^{\lambda}Q \parallel P), \quad \lambda \in \mathbb{R}_{>0}^{|H|} \quad (10)$$

2. *(Existence & uniqueness) If $D(\cdot \parallel \cdot) = D_{\text{KL}}(\cdot \parallel \cdot)$, $P \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$, and Q has finite second moments and admits a density with respect to the Lebesgue measure, then*

- (a) *J admits a unique global minimizer λ^* .*
- (b) *(Convergence of block coordinate descent) Consider the block coordinate descent (BCD) scheme that, given an order $(v_1, \dots, v_{|H|})$ of the hidden neurons, cyclically updates one coordinate λ_{v_ℓ} at a time to its exact one-dimensional minimizer (which admits an analytical expression, see Algorithm 1 for a simple case, and Equation (12) for the general case). From any initialization $\lambda^{(0)} \in \mathbb{R}_{>0}^{|H|}$ the sequence $(\lambda^{(r)})_{r \geq 0}$ converges to λ^* .*

Consequently,

$$D_{\text{KL}}(\psi_{\sharp}Q \parallel \psi_{\sharp}P) \leq \inf_{\boldsymbol{\lambda}, \boldsymbol{\lambda}'} D_{\text{KL}}\left(\diamond_{\sharp}^{\boldsymbol{\lambda}} Q \parallel \diamond_{\sharp}^{\boldsymbol{\lambda}'} P\right) \leq \underbrace{\inf_{\lambda \in \mathbb{R}_{>0}^{|H|}} J(\lambda)}_{\text{computable by BCD}} \leq D_{\text{KL}}(Q \parallel P),$$

i.e., the deterministic-rescaling infimum is a tractable upper bound on the lifted-space KL and a tighter proxy than the original weight-space KL.

The proof is given in Appendix C. The existence of a unique global minimizer for $P = \mathcal{N}(0, \sigma'^2 \mathbf{I})$ is due to the strict convexity of $z \in \mathbb{R}^{|H|} \mapsto J(\exp(z))$. The assumption on P is not a strong constraint since it is very usual for a PAC-Bayes prior. The result remains valid for centered Gaussian P with arbitrary diagonal covariance.

Takeaway. Exact lifted KLS (with path + sign) and stochastic-rescaling infima are generally intractable. The deterministic-rescaling infimum is a principled, tractable proxy: it upper-bounds the lifted KL, is never worse than the raw weight-space KL, and can be optimized globally (for common Gaussian priors) with a simple, fast BCD scheme.

5.4 ALGORITHM IN THE SIMPLE CASE, AND THE GENERAL NEURONWISE UPDATE

We first give the updates in a simple setup and refer to the appendix for the general formula. The proof in Appendix C.3 shows that convergence guarantees still apply if one updates in parallel any set of neurons such that no two of them are neighbors (otherwise their updates would interact). In layered fully-connected networks (LFCN), this allows *odd–even* parallel updates: rescale all odd layers simultaneously, then proceed similarly with even layers, and iterate until convergence.

Square LFCN (d-by-d matrices). Let the network have depth L and all layers (input, hidden, output) of width d . Denote by $\lambda_\ell \in \mathbb{R}_{>0}^d$ the rescaling vector of layer ℓ . For a centered Gaussian prior $P \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$ and posterior $Q \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$, all coordinates of λ_ℓ will have the same optimal coordinatewise update

$$\lambda_{\ell,k} \leftarrow \left(\frac{C_\ell}{A_\ell} \right)^{1/4}, \quad k = 1, \dots, d, \quad (11)$$

where

$$A_\ell = \sigma^2 \sum_{j=1}^d \frac{1}{\lambda_{\ell+1,j}^2}, \quad C_\ell = \sigma^2 \sum_{i=1}^d \lambda_{\ell-1,i}^2.$$

Algorithm 1 Odd-even minimization of the KL over deterministic rescalings on a square LFCN for $P \sim \mathcal{N}(0, \sigma'^2 \mathbf{I})$ and $Q \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$

Require: Stds $\sigma, \sigma' > 0$, sweeps T .

1: Initialize (implicitly) $\lambda_\ell \equiv \mathbf{1}_d$ for $\ell = 1, \dots, L$.

2: **for** $t = 1, \dots, T$ **do**

3: **(Odd layers, in parallel)** For each odd $\ell \in \{1, 3, \dots\}$:

4: Update $\lambda_{\ell, k} \leftarrow (C_\ell / A_\ell)^{1/4}$ for all $k = 1, \dots, d$

5. (Even layers in parallel) Same steps for even $\ell \in \{2, 4, \dots\}$

5. (Ev)
6: end for

7: **Output:** Optimal λ^* .

General neuronwise update. In general, Theorem 4 guarantees that the minimizer λ^* is reached by block coordinate descent. The generic algorithm updates the rescaling factor λ_v of each neuron v one by one (see Appendix C.3) as

$$\lambda_v \leftarrow \sqrt{\frac{-B_v + \sqrt{B_v^2 + 4A_vC_v}}{2A_v}}, \quad (12)$$

432 with A_v, B_v, C_v given in Equations (14) to (16), which covers much more general Q , in particular
 433 non-centered and with distinct variances over distinct coordinates, as is often the case in traditional
 434 PAC-Bayes bounds. We deliberately keep these definitions in the appendix to avoid heavy notation
 435 here.

436 **Experiments.** We test our proxy on MNIST MLPs (input 784, output 10) with varying hidden-
 437 layer widths, ranging from $25K$ to $1.5M$ parameters for $55K$ training images, and on a CIFAR-
 438 10 CNN with about $5.2M$ parameters for $50K$ training images. For each model, we compare the
 439 standard PAC-Bayes bound (using $D_{\text{KL}}(Q\|P)$) with its deterministic-rescaling version based on
 440 $\inf_{\lambda, \lambda'} D_{\text{KL}}((\diamond^\lambda)_{\sharp} Q \| (\diamond^{\lambda'})_{\sharp} P)$. Figure 1 shows that rescaling typically halves bound values, turn-
 441 ing some vacuous bounds into non-vacuous ones. These results confirm that deterministic rescaling
 442 can yield tighter and more practical guarantees. More details on the setups are given in Appendix D.
 443

444 6 CONCLUSION

445 We studied PAC-Bayes generalization through the lens of rescaling invariances in ReLU networks.
 446 Lifting collapses symmetries and, by data processing, yields divergences that are never larger than
 447 in weight space. Our main practical contribution is a deterministic-rescaling proxy: it bounds from
 448 above the lifted KL, is never worse than $D_{\text{KL}}(Q\|P)$, and can be computed via a globally convergent
 449 algorithm under standard Gaussian priors. Empirically, optimizing this proxy substantially tightens
 450 PAC-Bayes bounds, often turning vacuous guarantees into non-vacuous ones.
 451

452 Via a chain of inequalities, we also showed the potential of tighter bounds associated to exact lifted
 453 KLs (e.g., path + sign) and stochastic-rescaling infima. Such bounds raise interesting mathematical
 454 and computational challenges, and are expected to catalyze new developments around invariant
 455 priors/posteriors and optimization schemes to bridge the remaining computability gap.
 456

457 458 REFERENCES

459 Reuben Adams, John Shawe-Taylor, and Benjamin Guedj. Controlling multiple errors simul-
 460 taneously with a PAC-Bayes bound. In *Advances in Neural Information Processing Sys-
 461 tems [NeurIPS]*, 2024. URL <https://openreview.net/forum?id=lwpfH9wVko¬eId=S0U03Z3phQ>.
 462

463 Pierre Alquier. User-friendly introduction to pac-bayes bounds. *Found. Trends Mach. Learn.*,
 464 17(2):174–303, 2024. doi: 10.1561/2200000100. URL <https://doi.org/10.1561/2200000100>.
 465

466 Pierre Alquier and Benjamin Guedj. Simpler PAC-Bayesian bounds for hostile data. *Machine
 467 Learning*, 107(5):887–902, 2018. ISSN 1573-0565. doi: 10.1007/s10994-017-5690-0. URL
 468 <https://doi.org/10.1007/s10994-017-5690-0>.
 469

470 Andrew R. Barron and Jason M. Klusowski. Complexity, statistical risk, and metric entropy of deep
 471 nets using total path variation. *CoRR*, abs/1902.00800, 2019. URL <http://arxiv.org/abs/1902.00800>.
 472

473 Peter L. Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
 474 *Acta Numer.*, 30:87–201, 2021. doi: 10.1017/S0962492921000027. URL <https://doi.org/10.1017/S0962492921000027>.
 475

476 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
 477 learning practice and the classical bias–variance trade-off. *Proceedings of the National Academy
 478 of Sciences*, 116(32):15849–15854, 2019. doi: 10.1073/pnas.1903070116. URL <https://www.pnas.org/doi/abs/10.1073/pnas.1903070116>.
 479

480 Felix Biggs and Benjamin Guedj. Differentiable PAC-Bayes objectives with partially aggregated
 481 neural networks. *Entropy*, 23(10), 2021. ISSN 1099-4300. doi: 10.3390/e23101280. URL
 482 <https://www.mdpi.com/1099-4300/23/10/1280>.
 483

486 Felix Biggs and Benjamin Guedj. On margins and derandomisation in PAC-Bayes. In Gustau
 487 Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), *Proceedings of The 25th Inter-*
 488 *national Conference on Artificial Intelligence and Statistics [AISTATS]*, volume 151 of *Pro-*
 489 *ceedings of Machine Learning Research*, pp. 3709–3731. PMLR, 28–30 Mar 2022a. URL
 490 <https://proceedings.mlr.press/v151/biggs22a.html>.

491 Felix Biggs and Benjamin Guedj. Non-vacuous generalisation bounds for shallow neural networks.
 492 In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
 493 Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning [ICML]*,
 494 volume 162 of *Proceedings of Machine Learning Research*, pp. 1963–1981. PMLR, July 2022b.
 495 URL <https://proceedings.mlr.press/v162/biggs22a.html>.

496 Felix Biggs and Benjamin Guedj. Tighter PAC-Bayes generalisation bounds by leveraging exam-
 497 ple difficulty. In *Proceedings of The 26th International Conference on Artificial Intelligence
 498 and Statistics [AISTATS]*, volume 206, pp. 8165–8182. PMLR, 2023. doi: 10.48550/arXiv.2210.
 499 11289. URL <https://proceedings.mlr.press/v206/biggs23a.html>.

500 Joachim Bona-Pellissier, François Malgouyres, and François Bachoc. Local identifiability of deep
 501 relu neural networks: the theory. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
 502 K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems 35: Annual Con-*
 503 *ference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,*
 504 *November 28 - December 9, 2022*, 2022.

505 Olivier Catoni. *PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical Learn-*
 506 *ing*, volume 56 of *Lecture Notes — Monograph Series*. Institute of Mathematical Statistics, 2007.
 507 ISBN 0940600722, 978-0940600720.

508 Eugenio Clerico and Benjamin Guedj. A note on regularised NTK dynamics with an application to
 509 PAC-Bayesian training. *Transactions on Machine Learning Research [TMLR]*, 2023. ISSN 2835-
 510 8856. doi: 10.48550/ARXIV.2312.13259. URL <https://openreview.net/forum?id=21a55BeWwy>.

511 Eugenio Clerico, Tyler Farghly, George Deligiannidis, Benjamin Guedj, and Arnaud Doucet.
 512 Generalisation under gradient descent via deterministic PAC-Bayes. In *International Confer-
 513 ence on Algorithmic Learning Theory [ALT]*, 2025. doi: 10.48550/ARXIV.2209.02525. URL
 514 <https://arxiv.org/abs/2209.02525>.

515 Ronald A. DeVore, Boris Hanin, and Guergana Petrova. Neural network approximation. *Acta
 516 Numer.*, 30:327–444, 2021. doi: 10.1017/S0962492921000052. URL <https://doi.org/10.1017/S0962492921000052>.

517 Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for
 518 deep (stochastic) neural networks with many more parameters than training data. In Gal Elidan,
 519 Kristian Kersting, and Alexander Ihler (eds.), *Proceedings of the Thirty-Third Conference on
 520 Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017*. AUAI
 521 Press, 2017. URL <http://auai.org/uai2017/proceedings/papers/173.pdf>.

522 Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, Gabriel Arpino, and Daniel Roy. On
 523 the role of data in PAC-Bayes bounds. In Arindam Banerjee and Kenji Fukumizu (eds.), *Pro-*
 524 *ceedings of The 24th International Conference on Artificial Intelligence and Statistics*, volume
 525 130 of *Proceedings of Machine Learning Research*, pp. 604–612. PMLR, 13–15 Apr 2021. URL
 526 <https://proceedings.mlr.press/v130/karolina-dziugaite21a.html>.

527 Igor Gitman and Boris Ginsburg. Comparison of batch normalization and weight normalization
 528 algorithms for the large-scale image classification. *CoRR*, abs/1709.08145, 2017. URL <http://arxiv.org/abs/1709.08145>.

529 Antoine Gonon. *Harnessing symmetries for modern deep learning challenges : a path-lifting
 530 perspective*. Theses, Ecole normale supérieure de Lyon - ENS LYON, November 2024. URL
 531 <https://theses.hal.science/tel-04784426>.

540 Antoine Gonon, Nicolas Brisebarre, Elisa Riccietti, and Rémi Gribonval. A path-norm toolkit for
 541 modern networks: consequences, promises and challenges. In *International Conference on Learn-*
 542 *ing Representations, ICLR 2024 Spotlight, Vienna, Austria, May 7-11*. OpenReview.net, 2024.
 543 URL <https://openreview.net/pdf?id=hiHZVUIYik>.

544 Antoine Gonon, Nicolas Brisebarre, Elisa Riccietti, and Rémi Gribonval. A rescaling-invariant
 545 lipschitz bound based on path-metrics for modern relu network parameterizations. In *Proceedings*
 546 *of the 2025 International Conference on Machine Learning (ICML 2025)*, 2025. URL <https://icml.cc/virtual/2025/poster/45188>.

547 Benjamin Guedj. A primer on PAC-Bayesian learning. In *Proceedings of the second congress of the*
 548 *French Mathematical Society*, volume 33, 2019. URL <https://arxiv.org/abs/1901.05353>.

549 Maxime Haddouche and Benjamin Guedj. Wasserstein pac-bayes learning: Exploiting optimisa-

550 tion guarantees to explain generalisation. 2023. URL <https://arxiv.org/abs/2304.07048>.

551 Maxime Haddouche, Paul Viallard, Umut Şimşekli, and Benjamin Guedj. A pac-bayesian link
 552 between generalisation and flat minima. In *International Conference on Algorithmic Learning*
 553 *Theory [ALT]*, 2025. doi: 10.48550/ARXIV.2402.08508. URL <https://arxiv.org/abs/2402.08508>.

554 Fredrik Hellström, Giuseppe Durisi, Benjamin Guedj, and Maxim Raginsky. Generalization bounds:
 555 Perspectives from information theory and pac-bayes. *Found. Trends Mach. Learn.*, 18(1):1–223,
 556 2025. doi: 10.1561/2200000112. URL <https://doi.org/10.1561/2200000112>.

557 Fredrik Hellström and Benjamin Guedj. Comparing comparators in generalization bounds. In *Pro-*
 558 *ceedings of The 27th International Conference on Artificial Intelligence and Statistics [AISTATS]*,
 559 2024. doi: 10.48550/arXiv.2310.10534. URL <https://arxiv.org/abs/2310.10534>.

560 Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
 561 *CoRR*, abs/1710.05468, 2017. URL <http://arxiv.org/abs/1710.05468>.

562 Gaël Letarte, Pascal Germain, Benjamin Guedj, and François Laviolette. Dichotomize and gen-
 563 eralize: PAC-Bayesian binary activated deep neural networks. In Hanna M. Wallach, Hugo
 564 Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
 565 *Advances in Neural Information Processing Systems 32: Annual Conference on Neural Infor-*
 566 *mation Processing Systems [NeurIPS] 2019, 8-14 December 2019, Vancouver, BC, Canada*, pp.
 567 6869–6879, 2019.

568 Sibylle Marcotte, Rémi Gribonval, and Gabriel Peyré. Abide by the law and follow the flow: Conser-
 569 vation laws for gradient flows. *CoRR*, abs/2307.00144, 2023. doi: 10.48550/arXiv.2307.00144.
 570 URL <https://doi.org/10.48550/arXiv.2307.00144>.

571 Andreas Maurer. A note on the PAC bayesian theorem. *CoRR*, cs.LG/0411099, 2004. URL <http://arxiv.org/abs/cs.LG/0411099>.

572 David A. McAllester. Some pac-bayesian theorems. In Peter L. Bartlett and Yishay Mansour (eds.),
 573 *Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT 1998,*
 574 *Madison, Wisconsin, USA, July 24-26, 1998*, pp. 230–234. ACM, 1998. doi: 10.1145/279943.
 575 279989. URL <https://doi.org/10.1145/279943.279989>.

576 David A. McAllester. Some pac-bayesian theorems. *Mach. Learn.*, 37(3):355–363, 1999. doi:
 577 10.1023/A:1007618624809. URL <https://doi.org/10.1023/A:1007618624809>.

578 Zakaria Mhammedi, Peter Grünwald, and Benjamin Guedj. PAC-Bayes un-expected Bernstein in-
 579 equality. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
 580 Emily B. Fox, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems 32:*
 581 *Annual Conference on Neural Information Processing Systems [NeurIPS] 2019, 8-14 December*
 582 *2019, Vancouver, BC, Canada*, pp. 12180–12191, 2019. URL <http://papers.nips.cc/paper/9387-pac-bayes-un-expected-bernstein-inequality>.

594 Zakaria Mhammedi, Benjamin Guedj, and Robert C. Williamson. PAC-Bayesian bound for the
 595 conditional value at risk. In Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina
 596 Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: An-
 597 nual Conference on Neural Information Processing Systems [NeurIPS] 2020, December 6-12,
 598 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/d02e9bdc27a894e882fa0c9055c99722-Abstract.html>.

600 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neu-
 601 ral networks. In Peter Grünwald, Elad Hazan, and Satyen Kale (eds.), *Proceedings of The
 602 28th Conference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015*, volume 40
 603 of *JMLR Workshop and Conference Proceedings*, pp. 1376–1401. JMLR.org, 2015. URL
 604 <http://proceedings.mlr.press/v40/Neyshabur15.html>.

605 XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan. Estimating divergence func-
 606 tionals and the likelihood ratio by convex risk minimization. *IEEE Transactions on Information
 607 Theory*, 56(11):5847–5861, November 2010. ISSN 0018-9448, 1557-9654. doi: 10.1109/TIT.
 608 2010.2068870. arXiv:0809.0853 [math].

610 Antoine Picard-Weibel and Benjamin Guedj. On change of measure inequalities for f-divergences.
 611 *CoRR*, abs/2202.05568, 2022. URL <https://arxiv.org/abs/2202.05568>.

612 Yury Polyanskiy and Yihong Wu. *Information Theory: From Coding to Learning*. Cambridge
 613 University Press, 2025.

615 Maria Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba SzepesvÁri. Tighter risk cer-
 616 tificates for neural networks. *Journal of Machine Learning Research*, 22(227):1–40, 2021. URL
 617 <http://jmlr.org/papers/v22/20-879.html>.

618 Matthias W. Seeger. Pac-bayesian generalisation error bounds for gaussian process classifica-
 619 tion. *J. Mach. Learn. Res.*, 3:233–269, 2002. URL <https://jmlr.org/papers/v3/seeger02a.html>.

622 John Shawe-Taylor and Robert C. Williamson. A PAC analysis of a bayesian estimator. In Yoav Fre-
 623 und and Robert E. Schapire (eds.), *Proceedings of the Tenth Annual Conference on Computational
 624 Learning Theory, COLT 1997, Nashville, Tennessee, USA, July 6-9, 1997*, pp. 2–9. ACM, 1997.
 625 doi: 10.1145/267460.267466. URL <https://doi.org/10.1145/267460.267466>.

626 Pierre Stock and Rémi Gribonval. An embedding of ReLU networks and an analysis of their iden-
 627 tifiability. *Constr. Approx.*, 57(2):853–899, 2023. ISSN 0176-4276,1432-0940. doi: 10.1007/
 628 s00365-022-09578-1. URL <https://doi.org/10.1007/s00365-022-09578-1>.

630 Pierre Stock, Benjamin Graham, Rémi Gribonval, and Hervé Jégou. Equi-normalization of neural
 631 networks. In *7th International Conference on Learning Representations, ICLR 2019, New Or-
 632 leans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=r1gEqiC9FX>.

634 Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimiza-
 635 tion. *Journal of Optimization Theory and Applications*, 109(3):475–494, 2001. doi: 10.1023/A:
 636 1017501703105.

637 Paul Viallard, Maxime Haddouche, Umut Şimşekli, and Benjamin Guedj. Learning via Wasserstein-
 638 based high probability generalisation bounds. In *Advances in Neural Information Processing
 639 Systems 36: Annual Conference on Neural Information Processing Systems [NeurIPS] 2023*,
 640 2023. doi: 10.48550/arXiv.2306.04375. URL <https://arxiv.org/abs/2306.04375>.

642 Cédric Villani. *Optimal Transport: Old and New*, volume 338 of *Grundlehren der mathematischen
 643 Wissenschaften*. Springer Berlin Heidelberg, 2009. ISBN 978-3-540-71050-9. doi: 10.1007/
 644 978-3-540-71050-9.

645 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 646 deep learning (still) requires rethinking generalization. *Commun. ACM*, 64(3):107–115, 2021.
 647 doi: 10.1145/3446776. URL <https://doi.org/10.1145/3446776>.

648 A McALLESTER’S BOUND IN THE LIFTED SPACE
649650 The derivation of PAC-Bayes bounds in the *lifted space* hinges on a *change of measure* argument,
651 especially leveraging the Donsker-Varadhan variational formula for KL-based PAC-Bayes bounds.
652653 **Sketch.** The lifted PAC-Bayes framework extends classical PAC-Bayes bounds by working in a
654 *lifted space* \mathcal{Z} , obtained via the measurable map $\psi : \mathcal{W} \rightarrow \mathcal{Z}$. The proof proceeds in three main
655 steps:
656657 1. **Change of measure:** Apply the Donsker-Varadhan variational formula in \mathcal{Z} , exploiting
658 the fact that pushforward distributions preserve absolute continuity.
659 2. **Pullback to the weight space:** Rewrite expectations and divergences in \mathcal{Z} as expectations
660 and divergences in \mathcal{W} using the lift map ψ .
661 3. **Specialization to generalization error:** Instantiate the variational formula with the gener-
662 alization error, and control the prior term via concentration inequalities.
663664 The key insight is that the lifted structure allows us to derive bounds in \mathcal{Z} while performing all
665 computations in \mathcal{W} , preserving the interpretability and tractability of classical PAC-Bayes analysis.
666667 **Details.** *Step 1: Donsker-Varadhan variational formula in the lifted space.* Let $(\mathcal{W}, \mathcal{B})$ be a
668 measurable space, and let $\psi : \mathcal{W} \rightarrow \mathcal{Z}$ be a surjective measurable map. The lifted space $(\mathcal{Z}, \sigma(\mathcal{B}, \psi))$
669 is a measurable space, where $\sigma(\mathcal{B}, \psi)$ is the final σ -algebra generated by ψ . For any probability
670 distribution $P_{\mathcal{Z}}$ over \mathcal{Z} and any measurable function $h : \mathcal{Z} \rightarrow \mathbb{R}$, the Donsker-Varadhan variational
671 formula states:

672
$$\sup_{Q_{\mathcal{Z}} \ll P_{\mathcal{Z}}} (\mathbb{E}_{Z \sim Q_{\mathcal{Z}}} [h(Z)] - D_{\text{KL}}(Q_{\mathcal{Z}} \| P_{\mathcal{Z}})) = \log \mathbb{E}_{Z \sim P_{\mathcal{Z}}} [\exp(h(Z))].$$

673

674 Since every distribution on \mathcal{Z} is a pushforward of some distribution on \mathcal{W} (i.e., for any $Q_{\mathcal{Z}} \ll P_{\mathcal{Z}}$,
675 there exists $Q \in \mathcal{P}(\mathcal{W})$ ($\mathcal{P}(\mathcal{W})$ denotes the set of all probability measures on \mathcal{W}) such that $Q_{\mathcal{Z}} =$
676 $\psi_{\sharp} Q$ and $P_{\mathcal{Z}} = \psi_{\sharp} P$ for some $P \in \mathcal{P}(\mathcal{W})$), and because $\mu \ll \nu$ implies $\psi_{\sharp} \mu \ll \psi_{\sharp} \nu$, we can rewrite
677 the supremum over distributions in \mathcal{W} :

678
$$\sup_{Q \ll P} (\mathbb{E}_{Z \sim \psi_{\sharp} Q} [h(Z)] - D_{\text{KL}}(\psi_{\sharp} Q \| \psi_{\sharp} P)) = \log \mathbb{E}_{Z \sim \psi_{\sharp} P} [\exp(h(Z))].$$

679

680 By the change of variables formula, the expectations and divergences can be pulled back to the
681 weight space \mathcal{W} :

682
$$\sup_{Q \ll P} (\mathbb{E}_{X \sim Q} [h \circ \psi(X)] - D_{\text{KL}}(\psi_{\sharp} Q \| \psi_{\sharp} P)) = \log \mathbb{E}_{X \sim P} [\exp(h \circ \psi(X))].$$

683

684 Thus, the variational formula in \mathcal{Z} reduces to an expression entirely in terms of distributions and
685 expectations over \mathcal{W} .
686687 *Step 2: Applying to the relevant function.* For $\alpha > 0$, define
688

689
$$F : w \in \mathcal{W} \mapsto \alpha(L(f_w) - \hat{L}_S(f_w)).$$

690

691 Because ψ factorizes $f : w \mapsto f_w$, it also factorizes F , so there exists h such that $F = h \circ \psi$.
692 Applying the lifted Donsker-Varadhan formula to h gives:
693

694
$$\sup_{Q \ll P} (\mathbb{E}_{X \sim Q} [F(X)] - D_{\text{KL}}(\psi_{\sharp} Q \| \psi_{\sharp} P)) = \log \mathbb{E}_{X \sim P} [\exp(F(X))].$$

695

696 *Step 3: Concentration inequalities on the prior.* At this point, we are in the same position as in the
697 classical proofs of McAllester’s PAC-Bayesian bounds (or any KL-based PAC-Bayesian bound).
698 One can then follow the standard arguments (see, e.g., (Alquier, 2024, Theorem 2.1)), which mainly
699 involve applying concentration inequalities (sub-Gaussianity of the loss and Chernoff bounds) to the
700 prior term $\log \mathbb{E}_{X \sim P} [\exp(f(X))]$.
701

702 B BEYOND KL: CHANGE-OF-MEASURE TOOLS IN LIFTED SPACES 703

704 **Why this appendix.** Section 3 establishes KL-based PAC-Bayes bounds *in lifted spaces*. The
705 message here is broader: the same ‘‘lift-then-bound’’ template extends to other divergences that admit
706 a change-of-measure principle. Divergences with this property used in known PAC-Bayes bounds
707 include f -divergences (of which the KL divergence is a special case), Wasserstein distances. This
708 matters because once a bound is valid in a lifted space, the **same computational challenges** reappear
709 as in the KL case (Section 5): the complexity term becomes a divergence between $\psi_{\sharp}Q$ and $\psi_{\sharp}P$,
710 which can be typically (i) tighter (e.g., by data processing), but also in general (ii) harder to compute.
711 Hence, for each divergence, we face the same three-step agenda: (*validity* - section 3) prove a lifted
712 change of measure, (*sharpness* - section 4) e.g. using DPI if applicable, and (*computation* - section 5)
713 understand what is tractable in the chosen lifted space. Below, we discuss validity of PAC-Bayes
714 bounds based on other complexity measure than the KL divergence.
715

716 **A generic lifted pattern.** Let $D(\cdot \parallel \cdot)$ be a divergence endowed with a change-of-measure inequality
717 that controls $\mathbb{E}_Q[L - \hat{L}_S]$, the generalization gap averaged over weights $w \sim Q$, in terms of
718 $D(Q \parallel P)$ and an auxiliary term depending on P . If $\psi : \mathcal{W} \rightarrow \mathcal{Z}$ is measurable and is a lift, in the
719 sense there is a function $g : \mathcal{Z} \rightarrow \mathcal{F}$ such that $f = g \circ \psi$ (factorization from Section 3), then the same
720 argument in general applies with Q, P replaced by $\psi_{\sharp}Q, \psi_{\sharp}P$, yielding a bound whose *complexity term*
721 is $D(\psi_{\sharp}Q \parallel \psi_{\sharp}P)$. Moreover, whenever D satisfies data processing,
722

$$723 D(\psi_{\sharp}Q \parallel \psi_{\sharp}P) \leq D(Q \parallel P),$$

724 it ensures the lifted bound is never looser at the level of the divergence term. The price to pay is
725 computational: evaluating $D(\psi_{\sharp}Q \parallel \psi_{\sharp}P)$ can be more involved, exactly as we saw for KL.
726

727 B.1 f -DIVERGENCE 728

729 For f -divergences $D_f(Q \parallel P) = \int_Q f(dQ/dP)dP$, a change of measure inequality exists. Specifically,
730 for two probability distributions Q, P such that $Q \ll P$, the following inequality holds
731 (Nguyen et al., 2010; Picard-Weibel & Guedj, 2022; Polyanskiy & Wu, 2025):

$$732 D_f(Q \parallel P) = \sup_{g \text{ measurable}} (\mathbb{E}_Q[g] - \mathbb{E}_P[f^* \circ g])$$

733 where f^* denotes the Fenchel conjugate of f . Similarly to Appendix A, this equality can be directly
734 applied to the pushforward distributions $\psi_{\sharp}Q, \psi_{\sharp}P$:
735

$$D_f(\psi_{\sharp}Q \parallel \psi_{\sharp}P) = \sup_{g \text{ measurable}} (\mathbb{E}_{\psi_{\sharp}Q}[g] - \mathbb{E}_{\psi_{\sharp}P}[f^* \circ g])$$

736 Since ψ is a lift, we can further rewrite the expectations in terms of the distributions Q and P :
737

$$738 D_f(\psi_{\sharp}Q \parallel \psi_{\sharp}P) = \sup_{g \text{ measurable}} (\mathbb{E}_Q[g \circ \psi] - \mathbb{E}_P[f^* \circ g \circ \psi])$$

739 This form is particularly useful in the PAC-Bayes framework, as the expectation terms are expressed
740 in terms of the weights, while the complexity term is evaluated in the lifted space. By the data-
741 processing inequality (which holds for f -divergences (Polyanskiy & Wu, 2025, Theorem 7.4)), the
742 complexity term in the lifted space is at least as sharp, leading to bounds that cannot degrade the
743 usual ones.
744

745 **Takeaway.** All PAC-Bayes bounds derived from f -divergences admit a lifted counterpart with a
746 divergence term that can be only smaller. As in the KL case, the remaining question is *computability*
747 of $D_f(\psi_{\sharp}Q \parallel \psi_{\sharp}P)$ for the chosen lift ψ .
748

749 B.2 WASSERSTEIN DISTANCES 750

751 PAC-Bayes bounds based on Wasserstein distances rely on the change-of-measure inequality
752 provided by Kantorovich–Rubinstein duality (Villani, 2009, Theorem 5.9). For
753 the 1-Wasserstein distance (with P, Q in the Wasserstein space of order 1 $\mathcal{P}_1(\mathcal{W}) :=$
754 $\{\mu \text{ proba on } \mathcal{W} \text{ s.t. } \int_{\mathcal{W}} \|w\|_1 d\mu(w) < \infty\}$),
755

$$\kappa W_1(Q, P) = \sup_{\|h\|_{\text{Lip}} \leq \kappa} (\mathbb{E}_Q[h] - \mathbb{E}_P[h]).$$

756 This immediately implies
 757

$$\mathbb{E}_Q[L - \hat{L}_S] - \mathbb{E}_P[L - \hat{L}_S] \leq \kappa_{\mathcal{W}} W_1(Q, P)$$

760 as soon as the map $w \mapsto (L - \hat{L}_S)(w)$ is $\kappa_{\mathcal{W}}$ -Lipschitz in weight space.
 761 However, in practice, known upper bounds on the Lipschitz constant in weight space are usually very loose.
 762 The most classical one scales as the product of spectral norms of the layers, which can grow exponentially
 763 with depth and make the resulting bound vacuous.

764 To obtain a similar bound with the Wasserstein distance between the *lifted* distributions $\psi_{\sharp}Q$ and
 765 $\psi_{\sharp}P$, one must⁵ therefore show that the generalization gap is Lipschitz in the lifted representation.
 766 This question is well-posed: the loss depends on the weights w only through the function f_w im-
 767 plemented by the network, and since f_w can be written as $g \circ \psi(w)$ for some suitable g (e.g. in
 768 path-based parametrizations), it follows that there exists a (possibly ugly) function h such that

$$(L - \hat{L}_S)(w) = h(\psi(w)).$$

771 In other words, the generalization gap depends on w only through its lifted coordinates $z = \psi(w)$.
 772 If the map $z \mapsto h(z)$ is itself Lipschitz, then Kantorovich–Rubinstein duality directly yields a
 773 Wasserstein-based PAC-Bayes bound in lifted space.

774 Here lies a key difference with KL (and more generally f -divergences): for KL, the bound in the
 775 lifted space follows *automatically* from the factorization of the generalization gap through ψ ; for
 776 Wasserstein, the lift must in addition preserve Lipschitzness.

777 The path+sign lift studied in Section 5 provides precisely such a property: the network output is
 778 known to be Lipschitz in the path-lifting representation on each closed orthant of \mathcal{W} (Gonon et al.,
 779 2025, Thereom 4.1). Since standard losses are themselves Lipschitz in the network outputs, this
 780 implies that the loss gap is Lipschitz in the lifted coordinates, at least when restricted to a single
 781 orthant. This suggests the following template.

782 **Informal Statement 5** (lifted W_1 control under orthant-wise Lipschitzness). *Assume there exists a
 783 lift $\psi : \mathcal{W} \rightarrow \mathcal{Z}$ and a constant $\kappa_{\mathcal{Z}} > 0$ such that $z \mapsto (L - \hat{L}_S)(g(z))$ is $\kappa_{\mathcal{Z}}$ -Lipschitz on each
 784 orthant of \mathcal{W} . If Q and P are both supported on the same orthant (e.g., by conditioning on signs),
 785 then*

$$\mathbb{E}_Q[L - \hat{L}_S] - \mathbb{E}_P[L - \hat{L}_S] \leq \kappa_{\mathcal{Z}} W_1(\psi_{\sharp}Q, \psi_{\sharp}P).$$

786 In summary, the Wasserstein case illustrates well the three-step agenda of lifting divergences to
 787 intermediary spaces between the function space and weight space.

788 (i) *Validity.* Thanks to the factorization $(L - \hat{L}_S)(w) = h(\psi(w))$, it makes sense to ask whether the
 789 generalization gap is Lipschitz in the lifted space. For path-based lifts enriched with signs, this is
 790 indeed the case on each closed orthant⁶, that is, on each region of the weight space where the sign
 791 of every coordinate is fixed (including the boundaries where some coordinates may be zero). So the
 792 basic validity of a lifted Wasserstein bound is established.

793 (ii) *Improvement.* Unlike KL (where improvement is guaranteed by the data processing inequality),
 794 here both sides of the inequality change: the divergence $W_1(Q, P)$ becomes $W_1(\psi_{\sharp}Q, \psi_{\sharp}P)$, and the
 795 Lipschitz constant $\kappa_{\mathcal{W}}$ becomes $\kappa_{\mathcal{Z}}$. Known bounds on $\kappa_{\mathcal{Z}}$ ⁷ for the path-lifting are still large, but
 796 they are provably less pessimistic (sometimes dramatically so) than the naive weight-space bound
 797 on $\kappa_{\mathcal{W}}$ given by the product of spectral norms Gonon (2024). This indicates that lifting can mitigate
 798 part of the curse of depth of usual Lipschitz constants, and could help to improve Wasserstein-based

802 ⁵And one should also check that the lifted distributions $\psi_{\sharp}Q$ and $\psi_{\sharp}P$ are in the Wasserstein space of order
 803 1 denoted by $\mathcal{P}_1(\mathcal{W})$. This is true for the lift $\psi = (\Phi, \text{sign})$ based on the path-lifting Φ , as in Section 5, for
 804 every $P, Q \in \mathcal{P}_1(\mathcal{W})$ that factorizes along the coordinates w_i (i.e., such that the coordinates are independents).
 805 Indeed, consider $\mu = \otimes_{i=1}^{\dim(\mathcal{W})} \mu_i$ a probability distribution on \mathcal{W} , then using $|\text{sign}| \leq 1$ and the definition of Φ ,
 806 we get $\int_{\psi(\mathcal{W})} \|\psi(w)\|_1 d\psi_{\sharp}\mu(w) \leq \int_{\psi(\mathcal{W})} \|\Phi(w)\|_1 d\psi_{\sharp}\mu(w) + 1 = \sum_{\text{paths } p} \prod_{i \in p} \int_{\mathcal{W}_i} |w_i| d\mu(w_i) + 1 < \infty$.

807 ⁶This follows from the Lipschitz property of the realization function f , with respect to the lift ψ , which car-
 808 ries over to the generalization error (see Viallard et al. (2023); Haddouche & Guedj (2023) for two approaches).

809 ⁷Which are derived from the bounds on the Lipschitz constant of the realization function f , with respect to
 810 the lift ψ .

810 bounds. However, the divergence term itself can also increase under lifting: for instance, in the case
 811 of Dirac measures, one may encounter situations where

$$812 \quad \|w - w'\| \leq \|\psi(w) - \psi(w')\|,$$

813 so that the Wasserstein distance grows after lifting. For instance, consider two weight vectors:
 814 $w = (3, 3)$ and $w' = (0, 0)$, representing the weights of a one-hidden-neuron neural network. We
 815 have $\|w - w'\|_1 = 6$, but $\|\psi(w) - \psi(w')\|_1 = \|\Phi(w) - \Phi(w')\|_1 + \|\text{sign}(w) - \text{sign}(w')\|_1 =$
 816 $|9 - 0| + |1 - 0| + |1 - 0| = 11$. This stands in stark contrast to the KL divergence case, where such
 817 an increase is precluded by the data processing inequality.
 818

819 *(iii) Practicality.* Two difficulties remain before such bounds become usable in practice: extending
 820 orthant-wise arguments to handle sign changes, and computing high-dimensional Wasserstein
 821 distances between lifted distributions. These mirror the challenges already encountered for KL in
 822 Section 5: lifting sharpens the complexity term in principle, but turning this into tractable, non-
 823 vacuous guarantees requires further structural insights.
 824

825 C PROOF OF THEOREM 4

826 We use as notations $\text{ant}(v), \text{suc}(v)$ for antecedents/successors of a neuron v in the graph (in/out
 827 neighbors), $D_{\text{KL}}(\cdot\|\cdot)$ for Kullback–Leibler and $D(\cdot\|\cdot)$ for a general divergence satisfying the data-
 828 processing inequality $D(F_{\sharp}Q\|F_{\sharp}P) \leq D(Q\|P)$ for any Q, P and any pushforward F , and \diamond^{λ} for
 829 the neuron-wise rescaling action defined in (5).
 830

831 C.1 PROBLEM REDUCTION (TWO-SIDED TO ONE-SIDED)

832 Denoting Λ the diagonal matrix such that $\diamond^{\lambda}(w) = \Lambda w$ for every w , and similarly Λ' such that
 833 $\diamond^{\lambda'}(w) = \Lambda' w$, we have $\diamond_{\sharp}^{\lambda}Q = \Lambda_{\sharp}Q$ and $\diamond_{\sharp}^{\lambda'}P = \Lambda'_{\sharp}P$. From the well-known group structure
 834 of rescaling invariances both Λ and Λ' are invertible and there exists $\hat{\lambda}$ such that $\hat{\Lambda} := \Lambda'^{-1}\Lambda$ is
 835 a diagonal matrix such that $\diamond_{\sharp}^{\hat{\lambda}}(w) = \hat{\Lambda}w$. Since the data processing inequality (DPI) implies the
 836 *equality* $D(Q\|P) = D(F_{\sharp}Q\|F_{\sharp}P)$ for any distributions whenever F is an invertible function (DPI)
 837 applied to F and to F^{-1} gives both \leq directions), we obtain that $D(\diamond_{\sharp}^{\lambda}Q\|\diamond_{\sharp}^{\lambda'}P) = D(\Lambda_{\sharp}Q\|\Lambda'_{\sharp}P) =$
 838 $D((\Lambda'^{-1}\Lambda)_{\sharp}Q\|P) = D(\diamond_{\sharp}^{\hat{\lambda}}Q\|P)$, hence the result with $\bar{J}(\lambda) := D(\diamond_{\sharp}^{\lambda}Q\|P)$. A similar reasoning
 839 yields the result with $J(\lambda) = D(Q\|\diamond_{\sharp}^{\lambda}P)$.
 840

841 C.2 EXISTENCE AND UNIQUENESS OF THE GLOBAL MINIMIZER

842 We now focus on the KL divergence and a centered Gaussian prior $P = \mathcal{N}(0, \sigma'^2 \mathbf{I})$ (the proof easily
 843 extends to arbitrary diagonal covariance for P), assuming also that the posterior Q admits a density
 844 with respect to the Lebesgue measure, and has finite second moments.
 845

846 With the rescaling vector $\lambda \in \mathbb{R}_{>0}^{|H|}$ and the corresponding diagonal matrix Λ as above, observe that
 847 $\diamond_{\sharp}^{\lambda}P = \Lambda_{\sharp}P = \mathcal{N}(0, \sigma'^2 \Lambda^2)$ so that for any vector w
 848

$$849 \quad f_{\lambda}(w) := -\log \diamond_{\sharp}^{\lambda}P(w) = \frac{\|\Lambda^{-1}w\|_2^2}{2\sigma'^2} + \log \det \Lambda + c$$

850 for some constant c that will be irrelevant when optimizing $J(\lambda)$. It follows that
 851

$$852 \quad \begin{aligned} J(\lambda) &= D_{\text{KL}}(Q\|\diamond_{\sharp}^{\lambda}P) = \mathbb{E}_{w \sim Q}[-\log \diamond_{\sharp}^{\lambda}P(w)] - \mathbb{E}_{w \sim Q}[-\log Q(w)] \\ &= \frac{1}{2\sigma'^2} \mathbb{E}_{w \sim Q} \|\Lambda^{-1}w\|_2^2 + \log \det \Lambda + c' \\ &= \frac{1}{2\sigma'^2} \underbrace{\sum_{e \in E} (\Lambda_{ee}^{-2} \sigma_e^2 + 2\sigma'^2 \log \Lambda_{ee})}_{=: \bar{J}(\lambda)} + c' \end{aligned}$$

853 where the sum is over edges of the graph $G = (V, E)$ and $\sigma_e^2 := \mathbb{E}_{w \sim Q} w_e^2$ is the variance of
 854 the weight on the edge indexed by e (note that we have used above that Q has finite second order
 855 moments and is absolute continuous w.r.t. P).
 856

As detailed below, considering $z = \log \lambda \in \mathbb{R}^H$ we can express Λ as $\Lambda = \text{diag}(\exp(Bz))$ (see details below) where logarithms and exponentials are entrywise and B is some matrix with linearly independent columns associated to the DAG structure of the considered network. Denoting b_e the e -th row of B we thus have $\Lambda_{ee} = \exp(\langle b_e, z \rangle)$, and optimizing $J(\lambda)$ is equivalent to optimizing $\hat{J}(\lambda)$ or equivalently as a function of z (which we still denote by \hat{J} by slight abuse of notations):

$$\hat{J}(z) := \sum_e \left(\sigma_e^2 e^{-2\langle b_e, z \rangle} + 2\sigma'^2 \langle b_e, z \rangle \right). \quad (13)$$

As a sum of strictly convex continuous functions, $\hat{J}(z)$ is continuous and strictly convex, and since the columns of B are linearly independent there is a constant such that $\max_e |\langle b_e, z \rangle| = \|Bz\|_\infty \geq c\|z\|$, hence $\hat{J}(z)$ is also coercive. This shows the existence and uniqueness of a global minimizer.

Expressing Λ as a function of $z = \log \lambda$. The key identity is that if $e = u \rightarrow v$ is an edge (from neuron u to neuron v) then

$$(\Lambda w)_e := (\diamond^\lambda(w))_e = \frac{\lambda_v}{\lambda_u} w_e = \exp(z_v - z_u) w_e$$

hence $\Lambda_{ee} = \exp(z_v - z_u)$. This yields the result where B is the matrix with entries

$$B_{eh} := \begin{cases} 1, & \text{if } e = u \rightarrow h \text{ for some } u \in V \\ -1, & \text{if } e = h \rightarrow v \text{ for some } v \in V \\ 0 & \text{otherwise.} \end{cases}$$

It can be checked that B has linearly independent columns.

C.3 CONVERGENCE OF THE BCD SCHEME

By (13) and explicit expression of B , we expand $\hat{J}(z)$ as a sum of edgewise univariate functions

$$\hat{J}(z) = \sum_{v \notin V_{\text{in}}} \sum_{u \in \text{ant}(v)} \left(\sigma_{u \rightarrow v}^2 e^{-2(z_v - z_u)} + 2\sigma'^2 (z_v - z_u) \right).$$

By the global coercivity of \hat{J} , its level sets are compact, and by its strict convexity, each one-dimensional block section $t \mapsto \hat{J}(z_0 + tz_1)$ has a unique minimizer with a closed-form expression that we will explicit below. By Tseng's essentially cyclic BCD theorem (Tseng, 2001, Thm. 4.1) (see also Stock et al. (2019) for a related use), we conclude that the iterates converge, and combine with uniqueness to get convergence to $z^* = \log \lambda^*$.

We now seek one-dimensional minimizers on some coordinate indexed by $v_0 \in H$. Since

$$\hat{J}(\lambda) = \sum_{v \notin V_{\text{in}}} \sum_{u \in \text{ant}(v)} \left(\sigma_{u \rightarrow v}^2 (\lambda_u / \lambda_v)^2 + 2\sigma'^2 \log(\lambda_v / \lambda_u) \right),$$

when fixing the values λ_u , $u \neq v_0$ and optimizing over the remaining variable λ_{v_0} , the function to be optimized writes (up to a constant independent of λ_{v_0}) as

$$A\lambda_{v_0}^2 + C\lambda_{v_0}^{-2} + 2B \log \lambda_{v_0} = F(\lambda_{v_0}^2) \text{ with } F(X) := AX + C/X + B \log X$$

where

$$A = A_{v_0}(\lambda) := \sum_{v \in \text{suc}(v_0)} \frac{\sigma_{v_0 \rightarrow v}^2}{\lambda_v^2}, \quad (14)$$

$$C = C_{v_0}(\lambda) := \sum_{u \in \text{ant}(v_0)} \sigma_{u \rightarrow v_0}^2 \lambda_u^2, \quad (15)$$

$$B = B_{v_0} := \sigma'^2 (\#\text{ant}(v_0) - \#\text{suc}(v_0)). \quad (16)$$

Minimizing over $\lambda_{v_0} \in \mathbb{R}_{>0}$ amounts to minimize $F(X)$ over $X > 0$, which reduces to finding a positive root of its derivative, which is a positive root of the quadratic equation $AX^2 + BX - C = 0$. This yields

$$X_{v_0}^*(\lambda) := \frac{-B + \sqrt{B^2 + 4AC}}{2A} \quad (17)$$

$$\lambda_{v_0}^*(\lambda) := \sqrt{X_{v_0}^*(\lambda)} \quad (18)$$

918 **Remark (orders and parallel schedules).** The proof above uses single-coordinate updates in any
 919 essentially cyclic order (e.g., a topological order repeated). For LFCNs, neurons in the same layer
 920 are independent given their neighbors, which permits parallel layerwise updates; moreover, the
 921 odd-even (red-black) schedule is an essentially cyclic scheme and thus inherits the same conver-
 922 gence guarantee.

923 **Treating biases (optional).** If biases are used, append a constant-1 input neuron and interpret
 924 the bias of a neuron v as the weight of the edge going from the constant-1 input neuron to v . In
 925 particular, this augments the set of predecessors of v by one in Equations (14) to (16).

926 **Case of square LFCN without bias** When $Q = \mathcal{N}(\mu, \sigma^2 \mathbf{I})$ and the network is an LFCN without
 927 biases we have $B = 0$ (each hidden neuron has as many incoming weights than outgoing weights).
 928 This yields the simple expression in (11).

931 D EXPERIMENTAL DETAILS

932 All experiments were conducted on a MacBook Pro (M4, 2025) using PyTorch 2.7.0.

933 **MNIST** Models were trained with SGD (learning rate 0.1, no weight decay, batch size 256), using
 934 a Gaussian prior ($\mu = 0$, $\sigma = 1$) and a posterior defined by the trained weights as mean and a
 935 fixed standard deviation $\sigma = 0.03$, selected via preliminary sweeps on the values of σ using the
 936 sweep agent of the Python library wandb. PAC-Bayes bounds were computed using McAllester's
 937 bound with confidence parameter $\delta = 0.05$. The total compute time for the sweep was 33 minutes
 938 (10 runs, approximately 3 minutes per run). Trained models and raw results will be released in a
 939 non-anonymous repository upon acceptance.

940 **CIFAR-10** For CNN experiments, we used the architecture introduced in Gitman & Ginsburg
 941 (2017), which consists of 9 convolutional layers and 3 pooling layers, without batch normalization.
 942 The model was trained following the protocol described in the original paper: SGD with a learning
 943 rate linearly decayed from 0.01 to 10^{-5} , a weight decay of 0.002, a batch size of 128, and for a
 944 total of 50 epochs. We employed a zero-mean Gaussian prior ($\mu = 0$) and centered the posterior
 945 on the trained weights. The prior standard deviation σ_{prior} was sampled uniformly from the interval
 946 $[0.01, 1]$, while the posterior standard deviation $\sigma_{\text{posterior}}$ was sampled uniformly from $[0.0001, 0.05]$
 947 through a random sweep. The total training time for this model was 34 minutes, and the sweeper
 948 required 4 hours to compute the different PAC-Bayes bounds.

949 E USE OF LLMs

950 We made limited use of large language models during the preparation of this manuscript. Their role
 951 was strictly restricted to grammar correction, improving clarity and conciseness and emphasizing
 952 text (e.g., bolding). They were not used for generating technical content, suggesting new concepts,
 953 or contributing to proofs or results. All ideas, proofs, experiments, and findings are entirely our own.
 954 Every rephrased passage was carefully reviewed and validated by the authors to ensure correctness
 955 and faithfulness to our original intent. No unverified or plagiarized content was introduced.

956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971