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Abstract

Developing predictive models for tabular data is essential across many industrial
applications. The primary challenge in addressing these tasks lies in handling
heterogeneous data schemas and diverse prediction targets. Recently, genera-
tive tabular learning (GTL) was developed to leverage the instruction-following
paradigm of large language models (LLMs) to enable universal tabular learning
across varied datasets. This method facilitates effective prompt-based transfers
to downstream tasks without the need for supervised tuning. However, the full
potential of GTL-enhanced LLMs remains largely unexplored due to limitations
in dataset size, sequence length, and model architecture, leading to notable perfor-
mance gaps compared to traditional tuning-based tabular models as the number
of training examples increases. In this study, we aim to unlock the full potential
of GTL from a scaling perspective. We expanded the pre-training datasets from
340 to 972, extended the sequence length from 4,096 to 16,384 tokens, and exper-
imented with different base LLMs. Our findings reveal that scaling datasets and
prediction tasks generally enhances generalization, although regression tasks tend
to reach saturation quickly. Increasing the number of in-context samples consis-
tently improves performance, especially during inference. Our optimized LLMs
demonstrate significant improvements, effectively closing the gap with and even
surpassing highly-optimized models when dealing with larger training samples.

1 Introduction

Developing predictive models for tabular data is a fundamental demand across various industrial ap-
plications, such as clinical diagnostics and prognostics [1], property price predictions [2], and product
sales forecasting [3]. The challenge lies in coping with heterogeneous data schemas across different
tabular datasets, which often feature varying columns and data types, as well as handling diverse
prediction targets, such as distinct classification categories and regression objectives. Consequently,
most existing methods tend to develop a specialized supervised model that is tightly bound to each
individual tabular dataset [4, 5, 6, 7, 8, 9, 10]. This approach can become a significant burden when
dealing with massive datasets and numerous tasks.

To move towards cross-table tabular learning, recent studies have begun exploring new architectures
and pre-training techniques across heterogeneous datasets [11, 12, 13, 14, 15, 16]. Nonetheless, these
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approaches still rely on supervised fine-tuning to adapt to specific downstream datasets, typically
involving non-trivial hyper-parameter tuning and optimization for each case to secure performance.

Recently, a novel approach called generative tabular learning (GTL) has been introduced [17],
aiming to integrate the popular instruction-following paradigm of modern large language models
(LLMs) [18, 19, 20] into tabular data learning. GTL advocates for the continual pre-training of
LLMs on extensive, language-formatted tabular data using a next-token prediction objective [18].
This enables universal tabular learning across heterogeneous datasets and, more significantly, allows
for simple yet effective prompt-based transferring to downstream tasks, breaking the necessity of
supervised tuning. According to [17], LLMs enhanced with GTL have shown impressive capabilities
in directly handling heterogeneous datasets, performing both zero-shot and in-context (few-shot)
learning effectively, and supporting a variety of classification and regression tasks.

However, the potential of GTL-enhanced LLMs remains largely unexplored, as the models developed
by [17] were only pre-trained on 340 Kaggle datasets, limited to a sequence length of 4, 096 tokens,
and confined to the LLaMA [21] architecture. This limitation restricts the effectiveness of their
prompt-based transfer learning in broader downstream applications, particularly those that involve
more training examples and call for longer sequence lengths. For instance, while these LLMs demon-
strate state-of-the-art performance in extremely few-shot scenarios, they significantly underperform
typical tree-ensemble models as the number of shots reaches 64.

In this work, we address this limitation by further scaling the GTL process, aiming to replicate the
success obtained in scaling LLMs [22, 23] and fully unlock the potential of GTL. Unlike vanilla LLM
pre-training, where data scale can simply be represented by the number of tokens, GTL involves
formatting instruction-oriented tabular data as a sequence of language tokens and imposes loss
calculations only for numerical feature and label tokens. Thus, we regard a single tabular data
example that involves loss calculations as a basic element when considering data scaling.

Moreover, since tabular data encompasses different datasets, intra-dataset samples share the same
data schema and follow the same distribution, while inter-dataset samples likely have very different
features and cover distinct patterns. Therefore, it is essential to distinguish between the number
of unique datasets in total and the number of samples (shots) within each dataset. Furthermore,
even within the same dataset, assigning different columns as prediction targets results in different
tasks. Samples from different tasks within the same dataset are more closely related than samples
from different datasets, necessitating a differentiation between the number of tasks per dataset.
Additionally, another factor to consider is the number of in-context samples, which can range from
zero (zero-shot) to an arbitrary large number, as long as the maximum sequence length permits.
Besides these data factors, we also experiment with different base LLMs to optimize our approach.

With these factors in mind, we significantly scale the GTL process described in [17]. Specifically, we
increase the number of pre-training datasets from 340 to 972 and extend the maximal sequence length
from 4, 096 tokens to 16, 384. Additionally, we experiment with two LLM families, LLaMA-2 [21]
and Phi-3 [24]. Through extensive experiments, we have obtained several interesting findings and
produced significantly improved GTL-enhanced LLMs.

• Scaling datasets and increasing prediction tasks per dataset generally follow a power-law
relationship, contributing to generalization performance on held-out classification tasks.
However, generalization capabilities on held-out regression tasks quickly saturate and begin
to oscillate with further scaling. We conjecture that this is because regression tasks are more
challenging, involving multi-step next-token predictions.

• Unfortunately, scaling the number of samples per dataset and per task hits an apparent ceiling
very early for both classification and regression. We speculate this is due to redundancy, as
more samples from the same task distribution bring fewer distinctive patterns.

• The good news is that increasing the number of in-context samples allowed during pre-
training contributes to steady improvements in in-context learning for held-out tasks, appli-
cable to both classification and regression. Specifically, all GTL-enhanced LLMs benefit
significantly from the increase in in-context samples during inference.

• Another interesting observation is that model scale plays a more critical role in regression
than in classification. Additionally, we find that the Phi-3 series excel in regression tasks
compared to the LLaMA-2 series. We speculate that this may be related to differences in
their pre-training data, although this is difficult to confirm.
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• Finally, by combining the best configurations of all scaling factors, we have developed new
GTL-enhanced LLMs with significantly improved performance. Notably, when the number
of training examples exceeds 64, our single-forward inference can still perform on par with
or even surpass highly optimized tabular models with only a single forward inference.

2 Related work

Paradigm evolution in tabular data learning We begin by providing a concise overview of
the evolution of tabular data learning paradigms. The most prominent approach has concentrated
on extracting crucial features or developing effective representations to enhance prediction tasks.
This category encompasses early tree-ensemble methods [4, 5, 6] and, with the advent of deep
learning [25], later neural models [26, 27, 28, 7]. The debate continues over whether tree-based
models or neural models are superior for tabular data [8, 10]. Unlike traditional tree-based models,
which are optimized independently for each tabular learning task, modern neural tabular models
have evolved with advanced mechanisms. These include the introduction of self-supervised learning
objectives [29, 30, 31, 32], cross-table learning [11, 12, 13, 14, 15, 16], and evaluating zero-shot [11,
33] and in-context [34, 35] learning capabilities. More recently, there has been a trend towards
integrating language models with tabular data learning [34, 33, 15, 17, 16].

When language models meet tabular data learning Several attempts have been made to combine
language models with tabular deep learning due to their unique advantages in encoding categorical
feature values, understanding semantic feature meanings, and providing prior knowledge. For
instance, LIFT [34] explored the tabular data learning capabilities of proprietary GPT models [19].
TabLLM [33] fine-tuned the T0 model [36] on various tabular classification datasets and observed
superior performance in few-shot scenarios. Despite achieving impressive results, these studies
directly applied a base language model to a tabular learning task without exploring cross-table learning,
thereby missing the opportunity to develop universal tabular learning capabilities. Subsequent
methods, such as TP-BERTa [15] and CM2 [16], have investigated cross-table pre-training using
customized BERT variants [37], but they still require fine-tuning to adapt to new learning tasks.
Distinct from these earlier efforts, GTL [17] has both performed cross-table pre-training and made
significant progress towards simple yet effective prompt-based adaptation for new tasks, initially
using the LLaMA series [21] for demonstrations. Therefore, we adhere to the GTL paradigm in this
work, which provides a more practical and user-friendly user interface in inference. Our focus is to
further enhance its performance from a scaling perspective.

Scaling language models Scaling is a critical factor in the development of modern LLMs, con-
tributing to their transformation into versatile generalists [18, 19, 21, 38]. To maximize the use of
limited computational resources and train LLMs to their fullest potential, researchers have devised
pre-training methodologies known as “scaling laws” [22, 23]. The fundamental insight behind these
laws is the power-law relationship between both data and model scales and their generalization
performance, allowing for predictive extrapolation. In this work, we aim to uncover analogous scaling
laws for GTL. However, this endeavor presents unique challenges, such as accounting for the number
of datasets, the number of tasks per dataset, the number of shots per dataset and per task, and the
number of in-context options. Additionally, we need to investigate which types of base LLMs are
most suitable for tabular data learning.

3 Data Construction for GTL

In this work, we introduce a hierarchical scaling approach to integrate tabular data with LLMs. The
scaling process operates as follows: We begin with a collection of datasets from various domains
to ensure diversity. For each dataset, we select multiple columns as labels to create different tasks.
This allows us to explore various prediction objectives within the same dataset. For each task, we
determine the number of in-context samples. Depending on whether we’re performing zero-shot or
in-context learning, we generate different templates which will be elaborated later. Finally, we decide
how many shots (training examples) to generate for each setting. This step allows us to scale the
amount of pre-training data.

The total size of the pre-training dataset is calculated using the following equation:
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Figure 1: Aggregated performance on held-out classification and regression tasks by scaling datasets
and tasks, where we differentiate different numbers of in-context examples (#ctx) used for inference.

N = NDataset ×NTask ×NContext ×NTemplate ×NShot,

where N , NDataset, NTask, NContext, NTemplate, NShot represent for the total dataset size, number
of datasets, number of tasks per dataset, number of context examples, number of templates, number
of shots respectively.

This hierarchical scaling strategy enables us to systematically expand the dataset and thoroughly
investigate the effects of each component on the model’s ability to learn from tabular data, which will
be elaborated in Section 4.

4 Scaling experiments and analyses

In this section, we illustrate how we scale our tabular dataset for LLMs at the dataset level (Sec-
tion 4.1), context level (Section 4.3), sample level (Section 4.2), and model level (Section 4.4). We
have conducted a series of experiments for each aspect and analyzed the effect of each scaling method
on the performance, evaluated using the Area Under the Receiver Operating Characteristic curve
(AUROC) for classification tasks and the Normalized Mean Absolute Error (NMAE) for regression
tasks. Regression tasks are more challenging than classification tasks because they require predicting
a sequence of digits, which can lead to unstable results. For both types of tasks, we examine zero-shot
and in-context learning scenarios. Zero-shot evaluation is extremely difficult because we evaluate the
model on holdout datasets entirely different from the pre-training datasets.

4.1 Scaling datasets and tasks

Scaling the number of datasets involved in pre-training is one of the most intuitive approaches when
working with tabular data. By increasing the quantity of datasets, the model is exposed to a broader
range of data areas, feature types, and distributions, including larger collections of categorical feature
values and broader ranges of numerical values. This enriches the model’s understanding of diverse
tabular data patterns.
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To build a diverse and comprehensive dataset for our experiments, we downloaded and processed
156 classification and 184 regression datasets from Kaggle2, as well as 505 classification and 127
regression datasets from OpenML3. This extensive collection spans a wide range of domains and
feature types. Additionally, we incorporated 18 classification and 18 regression datasets as holdout
sets for evaluation purposes, with detailed information provided in the Appendix A.1. Besides, we
follow the official implementation4 to run pre-training and perform held-out evaluation.

To investigate how the quantity of collected datasets influences performance, we conducted experi-
ments by training models on different numbers of datasets. As illustrated in Figure 1(a), we observed
that steadily increasing the number of datasets involved in the pre-training process leads to an overall
improvement in performance on both holdout classification and regression datasets. This trend
underscores the significance of dataset diversity and volume in enhancing the model’s ability to
generalize to unseen data. The performance improvement is more pronounced in zero-shot learning
and few-shot learning scenarios with limited context. This is likely because, with more pre-training
datasets, the model learns more universal and robust underlying patterns inherent in tabular data.
These patterns provide a foundational understanding that compensates for the lack of in-context
examples, enabling the model to make more accurate predictions even when contextual information
is absent or minimal.

Given a limited number of datasets, we aim to generate various types of prompts that effectively
utilize the available data. Following the method outlined in [17], the first approach is to generate
multiple templates to represent features in tabular data. Similar to natural language, which can be
naturally applied to LLMs, the T-lang template is introduced to convert each feature into a sentence,
with meta-information provided at the beginning of the prompt. While this approach ensures detailed
representation, it often results in repetitive descriptions and long prompts, which can be inefficient
for in-context learning. To address this, the T-table template is introduced, which uses a Markdown
table format to structure the tabular data, placing feature meanings at the start of the table. This
method provides a more concise and effective way of handling tabular data. Furthermore, the T-anony
template, a variant of the T-table format, omits all meta-information, simulating practical scenarios
where the background and feature meanings of tabular data samples are unknown. This template
focuses solely on the data itself, offering a approach for cases with limited prior knowledge. In our
experiments, we employ the T-lang and T-table templates for zero-shot learning, leveraging their
distinct ways of expressing tabular data features. For in-context learning, we utilize the T-table and
T-anony templates, with the former providing structured feature descriptions and the latter simulating
scenarios where feature meanings are unknown, focusing solely on the raw data itself.

To further enrich the diversity of pre-training datasets, we generated up to four unique tasks for each
dataset by strategically selecting different columns as labels, while using the remaining columns
as features. To examine the effect of increasing the number of tasks on model performance, we
designed a series of experiments where models were trained on data with varying numbers of tasks:
1 task, 2 tasks, and 4 tasks. As shown in Figure 1(b), even without adding more datasets to the
continual pre-training process, we observed a slight increase in performance. Given that the features
in our datasets are mostly numerical, expanding our training datasets through task scaling primarily
introduces additional regression tasks. Consequently, while the performance gains in classification
tasks are modest, the increase in performance is more pronounced and noteworthy in regression tasks,
although the results exhibit some instability.

4.2 Scaling examples per dataset and per task

While LLMs can learn data patterns effectively from a number of examples, achieving an optimal
balance in the sample size is crucial for maintaining strong performance. In sample level scaling,
a small set of examples—commonly referred to as "shots"—are used to help the model grasp the
underlying structure and relationships within the data, enhancing the model’s ability to generalize
across different tasks. However, including too many samples during training can lead to data
duplication, where one instance in dataset might be selected several times for training in random
selection. This duplication harms the independence of instances, leading to a bias where true diversity
and distribution of the dataset are not accurately reflected.

2https://www.kaggle.com/datasets
3https://www.openml.org/search?type=data
4https://github.com/microsoft/Industrial-Foundation-Models

5

https://www.kaggle.com/datasets
https://www.openml.org/search?type=data
https://github.com/microsoft/Industrial-Foundation-Models


1 2 4 8 16
Number of samples per dataset and per task

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

AU
RO

C #ctx=0
#ctx=4
#ctx=8
#ctx=16
#ctx=32
#ctx=64
#ctx=128

1 2 4 8 16
Number of samples per dataset and per task

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

NM
AE

#ctx=4
#ctx=8
#ctx=16
#ctx=32
#ctx=64
#ctx=128

(a) Sample scaling

4 8 16 32 64 128
Maximum number of examples in context

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
RO

C #ctx=0
#ctx=4
#ctx=8
#ctx=16
#ctx=32
#ctx=64
#ctx=128

4 8 16 32 64 128
Maximum number of examples in context

0.250

0.275

0.300

0.325

0.350

0.375

0.400

NM
AE

#ctx=4
#ctx=8
#ctx=16
#ctx=32
#ctx=64
#ctx=128

(b) Context scaling

Figure 2: Aggregated performance on held-out classification and regression tasks by scaling samples
per dataset and per task as well as in-context examples in pre-training, where we also differentiate
different numbers of in-context examples (#ctx) used for inference.

Sample scaling is the most delicate scaling method in our work. As shown in Figure 2(a), when we
select up to 4 samples for each setting, the performance increases as the number of samples grows.
However, once the number of samples reaches 4, further increasing the number leads to a plateau in
classification performance and even a decline in regression performance. This suggests that, in our
dataset, the model saturates when the number of samples reaches 4. Adding more samples beyond
this point incurs additional computational cost without improving model performance.

4.3 Scaling in-context samples in pre-training

Scaling up with context is crucial for improving the performance of LLMs when working with
tabular data. In-context learning, where models are provided with relevant examples or auxiliary
information during inference, enables the model to make more informed decisions by utilizing patterns
from similar data points. Tabular data, often characterized by its structured nature and complex
interrelationships between features, benefits significantly from additional contextual information, as
it allows the model to better understand the dependencies between features. By increasing the amount
of context provided to the model, we enhance the model’s ability to generalize across varied datasets
and adapt to new tasks.

Building on [17], our work scales maximum number of in-context examples to 128, resulting in seven
in-context scenarios: {0, 4, 8, 16, 32, 64, 128}. While increasing the number of in-context examples
provides the model with richer context, it also introduces the challenge of longer prompt lengths.
This can become a limiting factor for some LLMs, especially those with constraints on input length,
requiring careful consideration in practical applications.

To address the issue of long prompt lengths, which are capped at 16, 384 tokens in our experiments, we
utilize RoPE embeddings [39] instead of absolute or relative position embeddings. RoPE embeddings
have demonstrated superior performance when handling long sequences. Additionally, following the
approach in [38], we decrease the rotation angle by increasing the hyperparameter "base frequency
b" from 10, 000 to 500, 000, which helps mitigate the decaying effect of RoPE on distant tokens,
enhancing the model’s ability to process longer sequences.

We conducted a series of experiments by increasing the maximum number of context examples in
pre-training, as shown in Figure 2(b). We observed that the overall performance on both classification
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Figure 3: Aggregated performance on held-out classification and regression tasks by using different
base LLMs, where we differentiate different numbers of in-context examples (#ctx) used for inference.

and regression tasks improved significantly as we expanded the context length. Specifically, when
models were trained only on zero-shot learning and in-context learning with 4 context examples, we
found that in-context learning with contexts larger than 4 outperformed the setting with 4 context
examples, demonstrating the extrapolation ability of LLMs for tabular data. Additionally, adding
longer contexts during training also enhanced performance on shorter contexts. These findings
indicate that performance across different context lengths influences one another.

4.4 Scaling base LLMs

Scaling LLMs at the model level, primarily by increasing the number of parameters, has been shown
to significantly enhance their ability to handle a wider range of tasks. Larger models are capable
of capturing more complex patterns and relationships in data, making them better suited for tasks
that require deep understanding and nuanced decision-making. However, this scaling comes with
challenges, such as increased computational and memory requirements, as well as longer training
times. Despite these challenges, model level scaling remains a critical avenue for expanding the
capabilities of LLMs, allowing them to process more sophisticated datasets, including those with
complex tabular structures.

In this work, we build our models by continually pre-training from LLaMA2-7B/13B checkpoints,
as well as Phi3-3.8B/14B checkpoints (specifically, Phi-3-mini-instruct-128K and Phi-3-medium-
instruct-128K, respectively). By comparing these four models together in Figure 3, we observe
that larger models are better at understanding tabular data, leading to improved performance in
both classification and regression tasks. Notably, the Phi-3-3.8B model already demonstrates strong
performance on classification tasks despite its relatively smaller size compared to the other models.
However, in regression tasks, increasing the model size significantly enhances performance. Specifi-
cally, the NMAE measurement for in-context learning with contexts larger than 8 shows a monotonic
decreasing trend as model size increases—a pattern not observed in other scaling methods due to the
typically unstable nature of regression tasks. We attribute this result to the inherent differences in
task difficulty for LLMs: classification tasks require predicting a single digit representing a category,
whereas regression tasks involve multi-step predictions to generate continuous numerical outputs.

5 Comparative analyses

By scaling our tabular dataset at the dataset level, context level, and sample level, and also scaling
the base LLM at the model level, we propose a series of LLMs termed Generative Tabular Learning
with Scaling (GTL-S). To demonstrate the effectiveness of our GTL-S models, we conduct a relative
performance evaluation with GTL in Section 5.1, analyzing the improvements achieved through
our scaled tabular datasets. Furthermore, we perform an absolute performance evaluation against
competitive tabular models in Section 5.2 to showcase the competence of our GTL-S models.

5.1 Relative performance evaluation with GTL

To gain a deeper understanding of how scaling tabular datasets improves the performance of LLMs,
we conducted a detailed comparative analysis on evaluation datasets, examining each dataset per
context count. As illustrated in Figure 4, we arranged the evaluation tasks according to the length
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Figure 4: Performance comparisons between our optimized LLaMA2-13B-GTL-S and LLaMA2-
13B-GTL released by [17], where we calculate performance improvements in AUROC or NMAE
and use a blue line to indicate the boundary of 4K-tokens sequence length.

of sequences for each dataset and the number of context samples included. The values presented
represent the differences in evaluation metrics—specifically, the AUROC for classification tasks
and the NMAE for regression tasks. In previous GTL models, input sequences were truncated at
4,096 tokens, however, our GTL-S models extend the maximum sequence length to 16,384 tokens.
To better illustrate the improvements achieved by our GTL-S models, we included broken lines
in the figure; tasks represented below these lines have sequences exceeding 4,096 tokens. As is
evident from the figure, there are significant improvements in performance for both classification
and regression tasks when using GTL-S models. Importantly, for tasks with sequences shorter
than 4,096 tokens, both GTL and GTL-S models perform at an equivalent level. This observation
indicates that GTL-S models enhance performance on long-context tasks without sacrificing accuracy
on short-context tasks, effectively demonstrating their ability to handle extended sequences while
maintaining robustness across different context lengths.

5.2 Absolute performance evaluation against competitive tabular models

To demonstrate the competence of our GTL-S models in tabular learning, we performed an absolute
performance evaluation against competitive tabular models (detailed in the Appendix A.2), as shown
in Table 1 and Table 2. For zero-shot learning, LLMs fill the vacancy in supervised tabular learning,
as traditional models are incapable of zero-shot inference. In few-shot learning scenarios where the
number of context examples in evaluation is less than or equal to 16, both GTL and GTL-S models
exhibit significantly better performance than supervised tabular models. Unlike the performance
decrease observed in GTL [17], our GTL-S models maintain competitive performance even when
the number of context examples is greater than or equal to 32. They remain on par with outstanding
baselines such as TabPFN, CatBoost, and XGBoost, despite requiring only a single forward inference.
By comparing the performance with the original LLaMA2 and Phi3 models, we confirm that the
tabular learning abilities of GTL-S models are not merely inherited from their base models. Notably,
the original Phi3 models demonstrate better tabular learning abilities than LLaMA2, likely due to
differences in their pre-training datasets.

6 Conclusion

In this work, we introduce a series of Generative Tabular Learning with Scaling (GTL-S) models,
designed by scaling across several dimensions, including datasets, tasks, examples per dataset and
task, in-context samples, and the base LLMs. We notably increased the number of pre-training
datasets from 340 to 972 and extended the sequence length from 4,096 to 16,384 tokens. The GTL-S
models exhibit marked improvements in long-context tabular predictions, consistently matching or
surpassing the performance of traditional, highly optimized tabular models, even when working with
large context examples. These findings highlight the strong potential and capability of the GTL-S
models in addressing complex tabular data challenges.
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Table 1: Averaged AUROC subscripted with 25% and 75% quantiles on held-out classification tasks.
Model 0 4 8 16 32 64 128

LightGBM – 0.50[0.50,0.50] 0.50[0.50,0.50] 0.50[0.50,0.50] 0.50[0.50,0.50] 0.82[0.70,0.97] 0.88[0.82,0.98]
XGBoost – 0.54[0.50,0.51] 0.67[0.50,0.79] 0.76[0.66,0.92] 0.80[0.68,0.95] 0.86[0.77,0.96] 0.88[0.85,0.98]
CatBoost – 0.73[0.61,0.89] 0.78[0.69,0.90] 0.81[0.73,0.93] 0.85[0.74,0.97] 0.87[0.82,0.98] 0.89[0.87,0.98]

FTTransformer – 0.63[0.53,0.76] 0.65[0.54,0.76] 0.70[0.59,0.83] 0.67[0.53,0.81] 0.66[0.50,0.82] 0.68[0.53,0.80]
XTab – 0.55[0.43,0.69] 0.60[0.49,0.69] 0.67[0.54,0.77] 0.72[0.55,0.92] 0.78[0.66,0.94] 0.76[0.59,0.91]
LR – 0.71[0.55,0.87] 0.74[0.63,0.89] 0.80[0.73,0.93] 0.83[0.75,0.95] 0.85[0.76,0.96] 0.88[0.81,0.96]

TabPFN – 0.72[0.61,0.88] 0.76[0.63,0.88] 0.80[0.73,0.94] 0.84[0.75,0.96] 0.87[0.79,0.97] 0.90[0.83,0.98]

LLaMA2-7B 0.47[0.43,0.53] 0.53[0.48,0.59] 0.51[0.42,0.62] 0.51[0.44,0.57] 0.50[0.45,0.57] 0.50[0.44,0.57] 0.54[0.49,0.60]
LLaMA2-13B 0.52[0.45,0.62] 0.55[0.45,0.64] 0.54[0.44,0.64] 0.51[0.45,0.59] 0.53[0.45,0.61] 0.51[0.42,0.60] 0.53[0.42,0.63]

Phi3-mini 0.54[0.43,0.69] 0.53[0.40,0.63] 0.55[0.44,0.65] 0.58[0.48,0.66] 0.59[0.51,0.68] 0.63[0.52,0.73] 0.62[0.56,0.72]
Phi3-medium 0.62[0.51,0.71] 0.62[0.50,0.73] 0.62[0.49,0.76] 0.63[0.52,0.73] 0.58[0.52,0.66] 0.60[0.52,0.67] 0.60[0.51,0.70]

LLaMA2-7B-GTL 0.58[0.48,0.66] 0.75[0.60,0.90] 0.77[0.62,0.93] 0.77[0.65,0.93] 0.77[0.68,0.93] 0.66[0.50,0.85] 0.65[0.49,0.87]
LLaMA2-13B-GTL 0.63[0.51,0.78] 0.80[0.68,0.93] 0.82[0.72,0.96] 0.81[0.71,0.95] 0.81[0.71,0.95] 0.69[0.56,0.87] 0.65[0.46,0.89]

LLaMA2-7B-GTL-S 0.56[0.47,0.66] 0.77[0.65,0.91] 0.78[0.63,0.93] 0.80[0.66,0.95] 0.83[0.72,0.96] 0.84[0.76,0.96] 0.89[0.81,0.97]
LLaMA2-13B-GTL-S 0.62[0.47,0.72] 0.78[0.69,0.92] 0.81[0.65,0.97] 0.82[0.70,0.95] 0.84[0.74,0.98] 0.86[0.78,0.97] 0.89[0.81,0.96]

Phi3-mini-GTL-S 0.63[0.52,0.73] 0.76[0.64,0.91] 0.76[0.60,0.93] 0.79[0.65,0.94] 0.82[0.75,0.94] 0.83[0.75,0.95] 0.87[0.80,0.94]
Phi3-medium-GTL-S 0.64[0.56,0.78] 0.78[0.70,0.93] 0.80[0.66,0.93] 0.83[0.70,0.94] 0.85[0.78,0.97] 0.85[0.76,0.98] 0.88[0.86,0.95]

Table 2: Averaged NMAE subscripted with 25% and 75% quantiles on held-out regression tasks.
Model 0 4 8 16 32 64 128

LightGBM – 0.40[0.22,0.50] 0.38[0.22,0.50] 0.37[0.22,0.48] 0.37[0.23,0.47] 0.31[0.13,0.36] 0.24[0.06,0.29]
XGBoost – 0.44[0.20,0.47] 0.39[0.14,0.46] 0.36[0.12,0.39] 0.34[0.08,0.34] 0.29[0.07,0.42] 0.23[0.05,0.31]
CatBoost – 0.38[0.18,0.47] 0.30[0.14,0.37] 0.27[0.12,0.33] 0.25[0.11,0.30] 0.43[0.08,0.31] 0.29[0.04,0.27]

FTTransformer – 1.15[1.00,1.23] 1.08[0.96,1.16] 1.13[0.92,1.21] 1.07[0.94,1.16] 1.02[0.90,1.16] 1.06[0.89,1.20]
XTab – 0.57[0.24,0.68] 0.40[0.16,0.55] 0.34[0.15,0.42] 0.36[0.13,0.38] 0.37[0.12,0.37] 0.51[0.15,0.43]
LR – 0.41[0.15,0.51] 0.37[0.09,0.56] 0.33[0.05,0.51] 0.37[0.05,0.56] 0.55[0.09,0.39] 0.26[0.03,0.28]

LLaMA2-7B 1.37[0.81,1.00] 1.26[1.00,1.00] 1.32[1.00,1.00] 1.14[1.00,1.00] 1.00[1.00,1.00] 1.24[1.00,1.00] 1.21[1.00,1.00]
LLaMA2-13B 1.60[0.66,1.05] 1.56[0.51,1.00] 1.59[0.89,1.00] 1.55[0.75,1.00] 1.03[0.87,1.00] 1.20[1.00,1.00] 1.00[1.00,1.00]

Phi3-mini 1.03[1.00,1.00] 0.94[1.00,1.00] 0.91[1.00,1.00] 0.91[1.00,1.00] 0.90[1.00,1.00] 0.93[1.00,1.00] 0.93[1.00,1.00]
Phi3-medium 1.00[1.00,1.00] 1.00[1.00,1.00] 1.00[1.00,1.00] 1.00[1.00,1.00] 1.00[1.00,1.00] 1.00[1.00,1.00] 1.00[1.00,1.00]

LLaMA2-7B-GTL 0.54[0.27,0.71] 0.35[0.12,0.43] 0.30[0.09,0.42] 0.34[0.09,0.56] 0.33[0.07,0.54] 0.43[0.06,1.00] 1.46[1.00,1.00]
LLaMA2-13B-GTL 0.46[0.17,0.68] 0.55[0.10,0.46] 0.30[0.08,0.41] 0.30[0.07,0.43] 0.31[0.07,0.40] 0.50[0.15,1.00] 1.00[1.00,1.00]

LLaMA2-7B-GTL-S 0.61[0.27,0.62] 0.34[0.11,0.50] 0.29[0.08,0.42] 0.29[0.08,0.44] 0.28[0.08,0.35] 0.30[0.07,0.43] 0.26[0.07,0.31]
LLaMA2-13B-GTL-S 0.59[0.20,0.80] 0.30[0.08,0.33] 0.32[0.08,0.41] 0.25[0.07,0.35] 0.24[0.07,0.27] 0.26[0.05,0.36] 0.23[0.05,0.23]

Phi3-mini-GTL-S 0.55[0.21,0.74] 0.33[0.10,0.47] 0.30[0.09,0.46] 0.29[0.08,0.51] 0.29[0.08,0.41] 0.31[0.07,0.43] 0.26[0.06,0.29]
Phi3-medium-GTL-S 0.58[0.23,0.83] 0.30[0.07,0.40] 0.26[0.07,0.33] 0.24[0.07,0.30] 0.25[0.05,0.32] 0.25[0.07,0.32] 0.20[0.06,0.24]
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A Appendix

A.1 Holdout dataset information

We collected 18 classification datasets and 18 regression datasets from Kaggle for holdout evaluation.
Detailed information about these datasets is provided in Table 3.

Table 3: A summary of 36 holdout datasets for evaluation.
Index Dataset Tags Task # Rows # Classes # Num features # Cat features Label max Label min Feature max Feature min

1 utrecht-housing-dataset (url) housing Reg. 100 -1 10 4 1.34e+06 440000 1.14e+06 1
2 student-marks-dataset (url) education Reg. 100 -1 2 0 55.299 5.609 8 0.096
3 higher-education-students-performance-evaluation (url) research Reg. 145 -1 4 26 7 0 5 1
4 cholesterol (url) heart conditions Reg. 303 -1 4 9 564 126 202 0
5 body-fat-extended-dataset (url) exercise Reg. 436 -1 13 2 47.5 0 164.72 0.75
6 amsterdam-house-price-prediction (url) housing Reg. 920 -1 4 2 5.95e+06 175000 623 1
7 alcohol-effects-on-study (url) education Reg. 1044 -1 5 17 20 0 75 0
8 airfoil-selfnoise-dataset (url) earth and nature Reg. 1503 -1 5 0 140.987 103.38 20000 0
9 employeedataset (url) universities and colleges Reg. 3000 -1 0 21 5 1 - -
10 uncovering-trends-in-health-outcomes-and-socioec (url) housing Reg. 3047 -1 30 2 362.8 59.7 1.02e+07 0
11 abalone-age-prediction (url) earth and nature Reg. 3550 -1 7 3 29 1 565.1 0
12 dummy-advertising-and-sales-data (url) business Reg. 4566 -1 3 1 364.08 31.20 100 3.13e-05
13 gold-rate-history-in-tamilnadu-india (url) business Reg. 4971 -1 1 3 5687 768 5416 711
14 co2-emission-by-vehicles (url) earth and nature Reg. 7385 -1 6 5 522 96 69 0.9
15 melody-metrics-decoding-song-popularity (url) music Reg. 8020 -1 5 1 100 0 2022 1.67e-05
16 crop-yield-in-indian-states-dataset (url) india Reg. 19689 -1 6 3 21105 0 6.33e+09 0
17 cern-electron-collision-data (url) earth and nature Reg. 100000 -1 14 4 109.999 2.00 948.375 -840.987
18 car-prices-poland (url) europe Reg. 117927 -1 3 6 2.40e+06 500 2.80e+06 0
19 entrepreneurial-competency-in-university-students (url) universities and colleges Cls. 219 2 7 9 1 0 26 1
20 conversion-predictors-of-cis-to-multiple-sclerosis (url) diseases Cls. 273 2 4 14 1 0 77 0
21 breast-cancer-data (url) health Cls. 286 2 0 9 1 0 - -
22 disease-symptoms-and-patient-profile-dataset (url) medicine Cls. 349 2 1 8 1 0 90 19
23 go-to-college-dataset (url) universities and colleges Cls. 1000 2 4 6 1 0 1.00e+07 20
24 telecom-churn-datasets (url) business Cls. 3333 2 15 4 1 0 395 0
25 stroke-prediction-dataset (url) health Cls. 5110 2 3 7 1 0 271.74 0.08
26 predicting-credit-card-customer-attrition-with-m (url) business Cls. 10127 2 14 5 1 0 34516 0
27 nasa-near-earth-objects-information (url) earth and nature Cls. 24000 2 5 7 1 0 631.90 0.00
28 lending-club-loan-preprocessed-dataset (url) business Cls. 396030 2 12 11 1 0 8.71e+06 0
29 bank-account-fraud-dataset-neurips-2022 (url) finance Cls. 1000000 2 19 12 1 0 16754.96 -177
30 2d-clustering-data (url) clustering Cls. 336 3 2 0 2 0 698.54 201.33
31 datasets-in-it-ops-applied-ai (url) earth and nature Cls. 1000 3 3 4 2 0 1 0
32 maternal-health-risk-data (url) health Cls. 1014 3 6 0 2 0 160 6
33 iris-dataset-extended (url) earth and nature Cls. 1200 3 19 1 2 0 299.9 -1.55
34 stellar-classification-dataset-sdss17 (url) earth and nature Cls. 100000 3 9 6 2 0 58932 -9999
35 video-games-rating-by-esrb (url) video games Cls. 2395 4 0 33 3 0 - -
36 factors-affecting-children-anemia-level (url) africa Cls. 13136 4 4 11 3 0 218 1

A.2 Baselines

Our experiments include two categories of baselines: large language models (LLMs) and tradi-
tional tabular models. For the LLM baselines, we evaluate on the LLaMA2-7B and LLaMA2-13B
checkpoints, as well as the Phi3-3.8B and Phi3-14B checkpoints. On the traditional tabular model
side, we evaluate several approaches. LightGBM [5], XGBoost [4] and CatBoost [6] are gradient
boosting methods known for their strong performance in tabular data tasks. Logistic Regression
(LR) and Linear Regression (LR) are straightforward and efficient, often serving as baseline models
in classification and regression tasks respectively. FTTransformers [7] employs transformer-based
architectures for tabular data, providing a deep learning approach tailored to the specific challenges
of structured data. TabPFN [35] combines Positional Feature-wise Networks with transformer-based
architectures, offering another advanced deep learning model for tabular data. In order to optimize
the results for these baseline methods, we use z-score normalization for numerical features and labels,
and apply one-hot encoding for categorical features.

12

https://www.kaggle.com/datasets/ictinstitute/utrecht-housing-dataset
https://www.kaggle.com/datasets/yasserh/student-marks-dataset
https://www.kaggle.com/datasets/csafrit2/higher-education-students-performance-evaluation
https://www.kaggle.com/datasets/mathurinache/cholesterol
https://www.kaggle.com/datasets/simonezappatini/body-fat-extended-dataset
https://www.kaggle.com/datasets/thomasnibb/amsterdam-house-price-prediction
https://www.kaggle.com/datasets/whenamancodes/alcohol-effects-on-study
https://www.kaggle.com/datasets/fedesoriano/airfoil-selfnoise-dataset
https://www.kaggle.com/datasets/ravindrasinghrana/employeedataset
https://www.kaggle.com/datasets/thedevastator/uncovering-trends-in-health-outcomes-and-socioec
https://www.kaggle.com/datasets/sandeepmajumdar/abalone-age-prediction
https://www.kaggle.com/datasets/harrimansaragih/dummy-advertising-and-sales-data
https://www.kaggle.com/datasets/narendrageek/gold-rate-history-in-tamilnadu-india
https://www.kaggle.com/datasets/debajyotipodder/co2-emission-by-vehicles
https://www.kaggle.com/datasets/kanchana1990/melody-metrics-decoding-song-popularity
https://www.kaggle.com/datasets/akshatgupta7/crop-yield-in-indian-states-dataset
https://www.kaggle.com/datasets/fedesoriano/cern-electron-collision-data
https://www.kaggle.com/datasets/aleksandrglotov/car-prices-poland
https://www.kaggle.com/datasets/namanmanchanda/entrepreneurial-competency-in-university-students
https://www.kaggle.com/datasets/desalegngeb/conversion-predictors-of-cis-to-multiple-sclerosis
https://www.kaggle.com/datasets/faysalmiah1721758/breast-cancer-data
https://www.kaggle.com/datasets/uom190346a/disease-symptoms-and-patient-profile-dataset
https://www.kaggle.com/datasets/saddamazyazy/go-to-college-dataset
https://www.kaggle.com/datasets/mnassrib/telecom-churn-datasets
https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
https://www.kaggle.com/datasets/thedevastator/predicting-credit-card-customer-attrition-with-m
https://www.kaggle.com/datasets/adityaramachandran27/nasa-near-earth-objects-information
https://www.kaggle.com/datasets/gabrielsantello/lending-club-loan-preprocessed-dataset
https://www.kaggle.com/datasets/sgpjesus/bank-account-fraud-dataset-neurips-2022
https://www.kaggle.com/datasets/samuelcortinhas/2d-clustering-data
https://www.kaggle.com/datasets/aryashah2k/datasets-in-it-ops-applied-ai
https://www.kaggle.com/datasets/csafrit2/maternal-health-risk-data
https://www.kaggle.com/datasets/samybaladram/iris-dataset-extended
https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17
https://www.kaggle.com/datasets/imohtn/video-games-rating-by-esrb
https://www.kaggle.com/datasets/adeolaadesina/factors-affecting-children-anemia-level

	Introduction
	Related work
	Data Construction for GTL
	Scaling experiments and analyses
	Scaling datasets and tasks
	Scaling examples per dataset and per task
	Scaling in-context samples in pre-training
	Scaling base LLMs

	Comparative analyses
	Relative performance evaluation with GTL
	Absolute performance evaluation against competitive tabular models

	Conclusion
	Appendix
	Holdout dataset information
	Baselines


