

000
001
002
003
004
005
006 **THE PENSIEVE PARADIGM: STATEFUL LANGUAGE
007 MODELS WITH LEARNED MEMORY MANAGEMENT**

008
009
010 **Anonymous authors**
011 Paper under double-blind review

012 **ABSTRACT**

013 In the world of Harry Potter, when Dumbledore’s mind is overburdened, he extracts
014 memories into a Pensieve to be revisited later. In the world of AI, while we possess
015 the Pensieve—mature databases and retrieval systems, our models inexplicably
016 lack the “wand” to operate it. They remain like a Dumbledore without agency,
017 passively accepting a manually engineered context as their entire memory.

018 This work finally places the wand in the model’s hand. We introduce StateLM,
019 a new class of foundation models endowed with an internal reasoning loop to
020 manipulate their own state. We equip our model with a suite of tools, such as
021 dynamic indexing, context pruning, and note-taking, and train it to actively manage
022 this loop. By learning to dynamically construct its own context, our model breaks
023 free from the architectural prison of a fixed window.

024 The results are prominent: our state-management approach decouples performance
025 from context window size, delivering strong accuracy and sustainability under
026 extremely long contexts with linear inference cost. We demonstrate this by showing
027 StateLM reliably retrieves a “needle” from a 1-million-token haystack, a task far
028 beyond the reach of conventional models. On practical document QA tasks from
029 NovelQA and ∞ Bench, StateLM outperforms strong instruct baselines while
030 using only 1/4 of their active context. An ablation further shows that our curated
031 training pipeline is more effective for learning memory management than agent-
032 like prompting. Together, these results mark a shift from passive predictors to
033 state-aware systems where reasoning becomes a stateful and manageable process.

034 **1 INTRODUCTION**

035 A fundamental limitation of current LLMs is their stateless, autoregressive nature. At their core,
036 they are passive predictors, architecturally designed to perform sequence completion within an
037 externally-provided context. This forces them to operate like a mind with no long-term memory of its
038 own, unable to actively manage or alter their own reasoning process. This core limitation has pushed
039 the area towards brittle, external workflows of “Context Engineering”, where complex reasoning is
040 offloaded to human-written scripts that orchestrate a series of isolated LLM calls. Whether through
041 brute-force context window expansion or scripted workflows, the model itself remains a passive
042 component without the capability to strategize or manage its own memory.

043 This dilemma evokes a powerful analogy from the world of *Harry Potter*. With a touch of his wand,
044 Dumbledore extracts, stores, and organizes his memories in a Pensieve. He possesses complete
045 agency: he decides what to offload, what to revisit, and even how to share his thoughts with others
046 like Harry. This vision of active memory management stands in stark contrast to our current reality in
047 AI. A profound paradox exists: while we have built the Pensieve—our vast databases and retrieval
048 systems—we have never given the model the wand. Instead, we humans, act as the wizards. We
049 use our own “spells” (e.g., context engineering) to pull out what we think is relevant information,
050 and then force-feed it into the model’s context. The model is not the wizard; it is merely a passive
051 observer of the magic we perform on its behalf.

052 The central question of our work is therefore simple: What happens when we finally place the wand
053 in the model’s hand? We answer this by introducing **Stateful Language Models** (referred to as

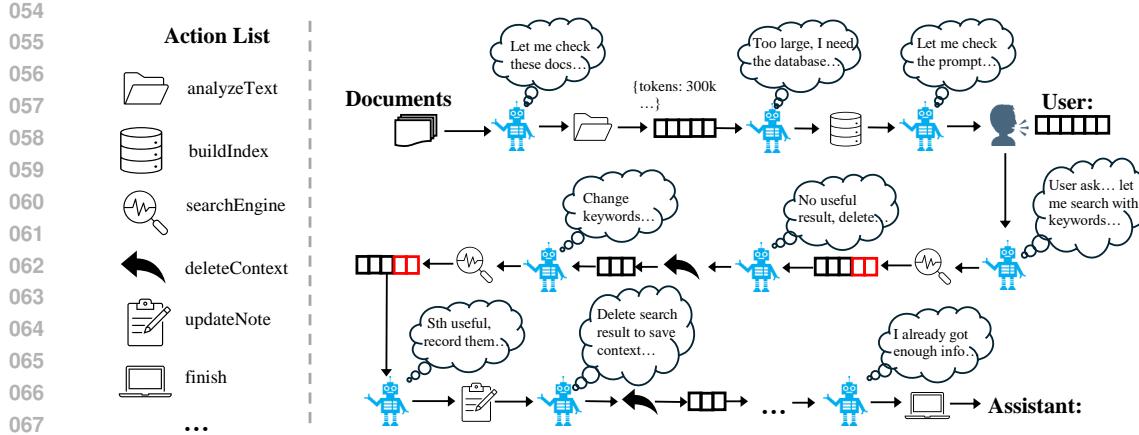


Figure 1: The internal reasoning loop of the StateLM. Faced with a large document (300k tokens), it 1) first recognizes the input is “too large” and *build an index*. (2) After an initial *searchEngine* call yields “No useful result,” the model prunes the useless information from its working memory using *deleteContext*, and retries the search with new keywords. (3) Upon finding a relevant result, it uses *updateNote* to record the key insight and again uses *deleteContext* to keep its context clean and focused. (4) Finish: the loop continues until the model determines “I already got enough info.”

StateLMs, or SLMs, a new class of foundation models endowed with an internal reasoning loop to manipulate their own state. As illustrated in Figure 1, our StateLM operates not as a single-shot predictor, but as an autonomous agent engaged in a dynamic reasoning process. We equip our model with a suite of tools—or “spells”—such as dynamic indexing, context pruning, and note-taking. The core of our contribution lies in teaching the model to actively manage this loop on its own. We collect a large-scale synthetic dataset, meticulously crafted to serve as our *Pensieve Course*. By fine-tuning on these golden reasoning trajectories, the StateLM learns not just to answer questions, but to strategize the entire workflow of finding the answer. By learning to dynamically construct its own context, our model breaks free from the architectural prison of a fixed window.

We evaluate StateLM through a set of complementary experiments. On a synthetic Needle-in-a-Haystack task, it successfully retrieves information across million-token contexts, demonstrating robust memory management beyond fixed windows. On realistic long-document QA tasks from NovelQA and ∞ Bench, it outperforms strong instruct baselines while using only one quarter of their active context. We further show that StateLM transforms input context length into inference-time interactions to achieve high accuracy, with growing contexts translating into linear $O(N)$ runtime cost. Finally, an ablation demonstrates that our curated training pipeline outperforms agent-like prompting, underscoring its necessity for learning effective memory operations.

Our contributions are threefold: **(i)** We propose the Pensieve paradigm, a state-aware framework for contextual memory management in LLMs; **(ii)** We present StateLM, a practical instantiation trained on curated reasoning trajectories and equipped with this framework to operate its own state; and **(iii)** We empirically validate its effectiveness and scalability across various tasks and settings.

2 RELATED WORK: HUMAN AS THE WIZARD

The core challenge of statelessness has not gone unnoticed. The dominant response, however, has been to cast the human developer as the wizard, meticulously orchestrating the model’s limited memory. This paradigm of external control is defined by Andrej Karpathy as “context engineering”:

“...the delicate art and science of filling the context window with just the right information for the next step...” (Karpathy, 2025)

This observation frames the entire landscape of current research. The vast majority of work focuses on building a better context-workflow while the model remains a passive component, waiting for the human wizard to manage its memory. They can be broadly categorized into two main approaches.

108 **RAG** The most prevalent form of context engineering is RAG (Lewis et al., 2020; Gao et al.,
 109 2024; Li et al., 2022; Xu et al., 2024; Shi et al., 2024). In the standard RAG paradigm, a pipeline is
 110 designed around a stateless LLM. The process involves taking a user query, using a dense retriever
 111 like DPR (Karpukhin et al., 2020; Cai et al., 2021) to search a vector database (the Pensieve) for
 112 relevant text chunks, and “stuffing” this retrieved context into the model’s prompt. The model has no
 113 agency; it passively accepts the context it is given.

114 Recent advancements have focused on making this external workflow more sophisticated. For
 115 example, ALR² (Li et al., 2024) proposes a “retrieve-then-reason” framework, Search-O1 (Li et al.,
 116 2025a) enables dynamic retrieval when the model encounters uncertainty, and Search-R1 (Jin et al.,
 117 2025) uses RL to teach the model to generate queries. However, this dynamism still operates within a
 118 workflow predefined by the human developer. The model accepts an externally organized context,
 119 retrieves from a knowledge base it did not create, and the very triggers for these search operations are
 120 themselves part of a scripted, rule-based framework. In essence, the model is learning to be a more
 121 proficient assistant to the wizard, but it is not yet the wizard itself. True agency remains elusive.

122 **Agentic Memory** A second line of work moves beyond simple retrieval to build more structured
 123 memory systems for LLM agents. These can be broadly classified by their architectural metaphor.
 124 One class of systems introduces operating-system-like memory hierarchies, allowing models to
 125 page information in and out of their limited context window, as seen in MemGPT (Packer et al.,
 126 2024), Mem0 (Chhikara et al., 2025), MemOS (Li et al., 2025b), Memory-R1 (Yan et al., 2025),
 127 and MemAgent (Yu et al., 2025). Another class focuses on building rich, structured knowledge
 128 graphs that capture relationships between entities, exemplified by the Zettelkasten-style approach of
 129 A-Mem (Xu et al., 2025) and the multimodal, entity-centric graphs in M3-Agent (Long et al., 2025).
 130

131 However, while these frameworks grant the model the “ability to manage context”, this capability
 132 is exercised within a human-predefined workflow. For example, A-Mem uses a sophisticated but
 133 fixed process for creating and linking notes, and MemGPT relies on explicit function calls triggered
 134 by interrupts. The model executes the workflow, but it does not *learn* the overarching memory
 135 management policy itself. Even recent works that incorporate reinforcement learning, such as
 136 Memory-R1 and MemAgent, apply the managing action at discrete, human-specified points—for
 137 instance, after processing a text chunk or completing a dialogue turn. In all these cases, the core
 138 strategic decisions about memory interaction are still outsourced to the system’s design rather than
 139 learned through experience. They are typical examples of the “Human as the Wizard” paradigm.

140 **This Study: The Model as the Wizard.** In summary, all prior work can be seen as different
 141 strategies for the human to act as the wizard, building ever-more-sophisticated external control
 142 structures for a passive model. The Pensieve Paradigm charts a different course. Instead of teaching
 143 the model to merely execute a predefined workflow, we place the wand in its hand. Our work is the
 144 first to equip an LLM with a general-purpose spellbook of memory management tools and, crucially,
 145 train it to use them. The model is no longer a passive observer; it learns to run its own internal
 146 reasoning loop, dynamically deciding what to retrieve, what to ignore, and what to commit to memory,
 147 truly becoming the wizard of its own cognitive process.

148

149 3 THE PENSIEVE PARADIGM

150

151 The Introduction established the promise of the Pensieve Paradigm, arguing that models should
 152 be granted the agency to manage their own memory. While the conceptual appeal is clear, the
 153 central challenge remains: how do we technically realize such a paradigm? How do we build a
 154 Dumbledore, not just a crystal ball? In this section, we detail our implemented solution by addressing
 155 two fundamental questions:

156

- 157 1. **How does the StateLM’s reasoning loop work in practice?** We introduce the model’s
 158 “spellbook” by walking through a step-by-step case study, demonstrating how each tool is
 159 used to create a dynamic, stateful reasoning process in Section 3.1.
- 160 2. **How do we teach a naive model to master these spells?** We designed a dedicated **Pensieve**
 161 **Course**, a supervised fine-tuning (SFT) process where the model learns from a curated
 162 dataset of expert reasoning trajectories. The entire training process is detailed in Section 3.2.

162 3.1 THE STATELM IN ACTION: A CASE STUDY
163

164 To illustrate how our StateLM operates and introduce its “spellbook”—we walk
165 through a real-world example: answering the question, “**How many Quidditch matches were held**
166 **in the book? List them in order with (1) the competing houses and (2) the final score**”, from
167 the full text of *Harry Potter and the Philosopher’s Stone* (over 100,000 tokens). This task requires
168 aggregating information from multiple locations, a perfect test for our stateful agent.

169 The StateLM’s reasoning trajectory evolves through a series of Actions and States, where each Action
170 consists of a **Thought** and an **Act**, and each State is determined by the optionally **modified context**
171 **history** and a **Tool Response**. The process begins with the model assessing the task’s scale.

172 [Action 1] **Thought:** I need to find all Quidditch matches in the text. First, I’ll check the document size.
173 **Act:** `analyzeText()`

175 [State 1] **Tool Response:** `{“file_name”: “attached_document.txt”, “total_tokens”: 105479, ...}`

176 The model’s first action is to call **analyzeText**. This tool is the first spark of agency, allowing the
177 model to decide if its deeper memory system is needed. The large token count confirms a simple
178 read-through is impossible, prompting the model to create its own Pensieve.

179 [Action 2] **Thought:** The document is very large. I’ll build an index to enable keyword searching.
180 **Act:** `buildIndex(chunk_size=8000)`

182 [State 2] **Tool Response:** `{“index_id”: “document_index”, “total_chunks”: 14, ...}`

183 Unlike conventional RAG where indexing is a human-scripted prerequisite, here the model au-
184 tonomously calls the **buildIndex** tool in response to the task. With the index ready, it can now explore
185 it using tools like **searchEngine** for keyword-based retrieval.

186 [Action 3] **Thought:** Now I will search for keywords related to Quidditch to find relevant chunks.
187 **Act:** `searchEngine(keyword=“Quidditch match, final score, Gryffindor, Slytherin ...”)`

189 [State 3] **Tool Response:** `{“retrieved_chunks”: [{“chunk_id”: 8, “relevance”: 7.216}, ...]}`

190 The search identifies chunk 8 as most relevant. The model proceeds to read it using the **readChunk**.

191 [Action 4] **Thought:** Chunk 8 has the highest relevance score. I will read it to find the first match.
192 **Act:** `readChunk(chunk_id=8)`

194 [State 4] **Tool Response:** `{“content”: “...”}`

195 After retrieving a chunk, the model consolidates useful information by calling the **note** tool. This
196 records key insights into an external, persistent “notebook”, creating a distilled knowledge base
197 outside the active context. The note key is then displayed at the end of the prompt for later retrieval.

199 [Action 5] **Thought:** Perfect! This chunk contains the first Quidditch match. Let me record the details and then
200 continue searching for other matches.
201 **Act:** `note(key=“match_1”, summary=“Match 1: Gryffindor vs Slytherin”, ...)`

202 [State 5] **Tool Response:** `{“status”: “success”, “key”: “match_1”, ...}`

203 The most critical tool for statefulness is **deleteContext**. After preserving key information, the model
204 promptly prunes the source chunk and its full note from the context. This ability to **actively and**
205 **timely manage context** forms the cornerstone of our paradigm, overcoming fixed-window limits.

206 [Action 6] **Thought:** Delete the chunk 8 and the notes from my context to save tokens.
207 **Act:** `deleteContext([“State 4”, “Action 5”])`

209 [State 6] **Tool Response:** `{“message”: “deleteContext success!”}`

210 In practice, the model prunes context by specifying the “msg_id” of the target item, which may
211 correspond to either an Action (the model’s own output) or a State message (a tool response).
212 Accordingly, each tool response includes both its own msg_id and the invoker’s msg_id, which points
213 back to the assistant output. This context pruning is efficiently implemented with **prefix caching**,
214 which reuses the KV cache of tokens preceding the deleted block and requires only a single forward
215 pass (prefill) over the remaining context. Back to the reasoning trajectory, we highlight a particularly
insightful moment where the model demonstrates reasoning beyond simple fact extraction:

216 Table 1: The core set of tools (the “spellbook”) available to the Stateful Language Model.
217

218 Tool Name	219 Description	220 Parameters
<i>Context & Budget Assessment</i>		
221 analyzeText	222 Checks the length of the input context.	223 None
222 loadDocument	223 Load the full document into context.	224 None
223 checkBudget	224 Check the remaining token budget.	225 None
<i>External Memory (Index) Interaction</i>		
224 buildIndex	225 Creates a searchable index from a large document.	226 <i>chunk_size, overlap</i>
225 readChunk	226 Retrieves the full text of a specific chunk by its ID.	227 <i>chunk_id</i>
226 searchEngine	227 Searches the index with keywords.	228 <i>keyword</i>
<i>Internal Memory (Notebook) Management</i>		
227 readNote	228 Read the full content of a specified note.	229 <i>key</i>
228 updateNote	229 Records or modifies information in a persistent notebook.	230 <i>key, new_content, new_summary</i>
229 mergeNotes	230 Merge multiple notes into one.	231 <i>keys, new_key, new_summary</i>
<i>State Management & Termination</i>		
230 deleteContext	231 Deletes a message from the active context window.	232 <i>msg_id</i>
231 finish	232 Terminates the reasoning loop and submits the final answer.	233 <i>answer</i>

234 [Action 20] **Thought:** This chunk mentions “you missed the last Quidditch match, we were steamrollered by
235 Ravenclaw without you” - this indicates there was a Quidditch match between them. Let me note this.
236 **Act:** *updateNote(key=“match_2”, summary=“Match 2: Gryffindor vs Ravenclaw”, ...)*237 [State 20] **Tool Response:** {“status”: “success”, “key”: “match_2”, ...}238 After methodically working through all relevant chunks and consolidating its findings, the model
239 determines its notebook is sufficient. It then calls the **finish** tool to terminate the reasoning process
240 and present the final, synthesized answer.241 [Action 25] (Final) **Thought:** Based on my thorough analysis and the notes I have gathered on all three matches,
242 I can now provide the final answer.243 **Act:** *finish(answer=“Three Quidditch matches were held in the book: (1) Gryffindor vs Slytherin, Score:
244 /70-60; (2) Gryffindor vs Hufflepuff, Score: Not specified; (3) Gryffindor vs Ravenclaw, Score: Not specified...”)*

245 The complete spellbook, including auxiliary tools, is detailed in Table 1.

246 Due to page limits, the case study presented is intentionally straightforward, designed to illustrate the
247 fundamental usage of our spells and The Pensieve in a real-world scenario. Indeed, the framework
248 is capable of tackling far more complex, multi-faceted analytical queries. For instance, it could be
249 tasked to “find every professor mentioned in the entire Harry Potter series, count their appearance
250 frequency, and summarize their evolving relationship with Harry.” Executing such a task would
251 require the model to maintain persistent state for each professor, incrementally updating counts and
252 relationship summaries across numerous interactions.253

3.2 TRAINING: THE PENSIEVE COURSE

254 While we have provided a comprehensive tool set for memory management, a vanilla LLM, unfortunately,
255 has never been trained on how to manage its own memory. In this section, we demonstrate
256 how we train our StateLM to generate the reasoning trajectories described in Section 3.1.257 As the Pensieve paradigm is most valuable for tasks that overburden a model’s memory, we first needed
258 a dataset of such tasks. To this end, we utilize the 3096 samples from the “PublicDomain” portion of
259 the **NovelQA** dataset (Wang et al.) and 1650 samples from the train set of **NarrativeQA** (Kočiský
260 et al., 2018), both of which are challenging question-answering benchmarks where questions must be
261 answered based on the full text of lengthy novels. This naturally creates the long-context scenarios
262 required to teach the model to manage its memory.263 We then attempted to generate expert reasoning trajectories on these tasks using Claude-Sonnet-4,
264 guided by some sophisticated prompts designed by ourselves. However, despite our best efforts in
265 prompt engineering, the raw generated trajectories were often noisy. As illustrated in Figure 2, we
266 implemented a multi-stage pipeline designed to generate and rigorously filter optimal behaviors.

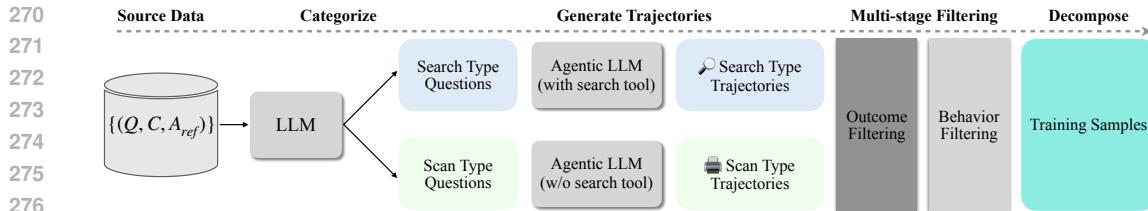


Figure 2: The pipeline for training sample construction.

3.2.1 EXPERT REASONING TRAJECTORIES

1. Process Mode Classification: We observed that Claude exhibited a “lazy” bias, defaulting to keyword searches with *searchEngine* even for questions requiring a full, sequential reading. To counteract this, we first used a strong LLM (GPT-4o) to categorize each question as either:

- **Search Type:** Questions that can be answered by locating specific facts (e.g., “What’s the name of the Bronwyns’ summer home?”)
- **Scan Type:** Questions requiring a broader, sequential understanding of the text (e.g., “Summarize the main character’s journey.”).

After the categorization, we have 2724 scan type problems and 2022 search type problems. We present the specific categorization prompt in Figure 9 in the Appendix.

2. Trajectory Generation. We then generated trajectories for both types. For Search Type questions, the agentic LLM (Claude) had access to the full toolset. For Scan Type questions, we disabled the *searchEngine* tool, forcing the model to adopt a more methodical, chunk-by-chunk reading strategy.

3. Multi-stage Filtering. The raw trajectories were then subjected to a two-stage filtering process:

- **Outcome:** We first rejected all trajectories where the final answer was incorrect.
- **Behavior:** Most critically, we then performed a behavioral check. We rejected trajectories that failed to exhibit the desired stateful memory management, specifically those did not properly use the *deleteContext* tool to manage their context window during long interactions.

This rigorous pipeline yielded a final dataset of **2,072** high-quality “Good Behavior” trajectories. These were then decomposed into **46.6K** individual turn-based samples for the subsequent training.

3.2.2 THE TRAINING PROCESS

With this curated dataset of expert trajectories, we fine-tune the base model using a standard SFT approach. We adopt a multi-turn dialogue training format, where an N-turn reasoning trajectory is decomposed into N-1 training examples. For each example, the model is given the history up to turn $i - 1$ and trained to predict the “Thought” and “Act” of turn i . The cross-entropy loss is computed only on the tokens of the final assistant turn, as earlier responses may be altered by the model itself.

While reinforcement learning could potentially enhance performance, our goal in this work is to demonstrate the fundamental effectiveness of the Pensieve paradigm itself. Therefore, we intentionally keep our training methodology simple and efficient, without introducing complex, task-specific strategies. This allows us to clearly isolate and validate the power of the proposed paradigm.

4 EXPERIMENT

In this section, we evaluate StateLM with the Pensieve mechanism, which enables the model to actively manage its context history through tool use. Our experiments cover complementary dimensions: (i) synthetic tasks that isolate memory management (Section 4.1), (ii) real-world benchmarks that test the practical utility of the StateLM across diverse scenarios (Section 4.2), and (iii) inference-time analysis that demonstrates the transformation from growing context lengths into scalable inference with linear cost (Section 4.3). Finally, we present an ablation study (Section 4.4) to highlight the role of deliberate training in learning effective memory management.

324
325
326
327 Table 2: Needle-in-a-haystack (NIAH) experimental results comparing model performance across
328 selected context lengths. All values represent accuracy (%) and results are averaged over 3 runs.
329
330
331
332
333

Model	Length						
	32K	64K	128K	256K	512K	768K	1M
Qwen3-4B	100.00	100.00	88.33	41.67	23.33	16.67	3.33
Qwen3-4B-SLM (w/o search)	100.00	98.89	97.78	97.78	65.00	45.00	33.33
Qwen3-8B	100.00	100.00	88.33	41.67	23.33	16.67	3.33
Qwen3-8B-SLM (w/o search)	100.00	98.33	98.33	99.44	98.33	91.11	91.11

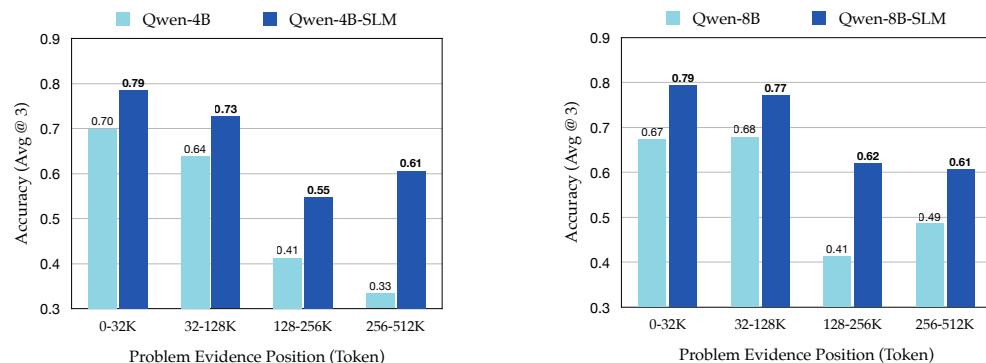
334 4.1 SYNTHETIC MEMORY TASK

335
336 We first assess whether StateLM can succeed on a task that isolates memory retrieval from extensive
337 reasoning. To this end, we follow the *Needle-in-a-Haystack* setup from prior work (Hsieh et al.) and
338 construct a synthetic benchmark of 420 problems spanning 7 context lengths. Each problem embeds
339 a single key sentence (the “needle”) into a long passage (the “haystack”), and the model must recall
340 the exact value associated with the given key. To test the model limit, we utilize the full 128K context
341 window for both StateLM and the instruct baselines. For the latter, we follow prior work (Wang et al.;
342 An et al., 2024) and truncate the input by retaining only the first 128K tokens of the context.
343
344

345 This task is deliberately aligned with the Pensieve paradigm: each problem can be solved by reading
346 a chunk, optionally noting down the key information in memory, and then deleting that chunk to
347 proceed. During this process, we **disable** the search tool, since otherwise StateLM would achieve
348 near-perfect accuracy regardless of context length, leaving its memory management ability untested
349 under increasing context pressure.
350

351 Table 2 reports the results. Across all model scales, the StateLM variants outperform their instruct
352 baselines as the context length grows. The Qwen3 instruct models report identical accuracy as they
353 consistently solve the problems within their context limit, and repeated sampling does not affect the
354 outcome. While the instruct baselines rapidly degrade beyond the 128K limit, falling to nearly 0%
355 accuracy at 1M tokens, the StateLM variants remain highly robust. Notably, the 8B SLM sustain over
356 90% accuracy even at 1M tokens, demonstrating consistent retrieval across an order of magnitude
357 beyond their native context windows. Even the smaller 4B model shows clear gains, though it is
358 less robust than the larger model due to the emergence of formatting errors under extreme long
359 contexts. These results provide strong evidence that StateLM has indeed learned to operate the
360 Pensieve mechanism effectively: through memory updates and context deletion, it maintains stable
361 retrieval ability far beyond the architectural context limits.
362

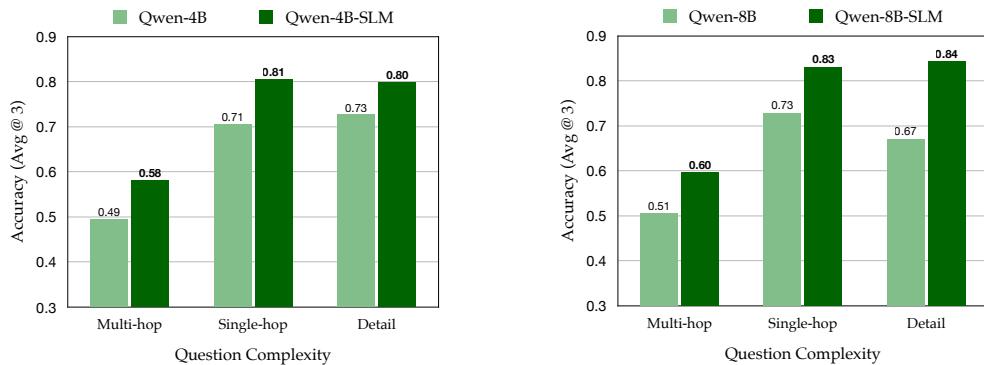
363 4.2 REAL-WORLD SCENARIOS: LONG DOCUMENT QA



364
365
366
367
368
369
370
371
372
373
374
375
376
377 Figure 3: NovelQA accuracy by problem evidence (i.e., answer) position in the provided context.
Results are averaged over 3 runs (Avg@3).
378

378 Table 3: Accuracy on the Document QA task with standard deviation.
379

380 Model	381 Context Length	382 NovelQA (Copyright)	383 ∞ Bench (EN.MC)	384 Avg.
385 Qwen3-4B	128K	65.17 \pm 0.53	59.97 \pm 0.50	62.57
386 Qwen3-4B-SLM	32K	74.33 \pm 0.42	66.08 \pm 1.53	70.21
387 Qwen3-8B	128K	65.87 \pm 1.42	66.81 \pm 1.16	66.34
388 Qwen3-8B-SLM	32K	77.10 \pm 0.93	69.29 \pm 0.91	73.20

399 Figure 4: NovelQA accuracy by problem complexity. Results are averaged over 3 runs (Avg@3).
400

401
402 Motivated by the strong performance on the synthetic recall task, we next evaluate the effectiveness
403 of StateLM on the more practical Document QA setting. To this end, we use the ‘‘Copyright’’ split of
404 NovelQA and the ‘‘En.MC’’ split of ∞ Bench, consisting of 757 and 229 problems, respectively, to
405 approximate real-world long-context reasoning scenarios. Unlike the previous experiment, which
406 isolates memory recall under extreme cases, this task requires the model to utilize tools and perform
407 comprehensive reasoning and understanding over the provided documents. For StateLM, we enable
408 the full toolkit and restrict the context window to its native 32K. For the instruct baselines, we utilize
409 their full context size of 128K using YaRN (Peng et al., 2023) and apply the same truncation.

410 The results in Table 3 show notable improvements of StateLM over the baselines. Both the 4B and 8B
411 StateLM variants outperform their instruct counterparts on both benchmarks, while using only one
412 quarter of the context window size, highlighting the effectiveness of learned memory management.
413 On average, the 4B and 8B StateLMs exceed their baselines by 7.64 and 6.86 percentage points,
414 respectively. Figure 3 further breaks down accuracy by the position of evidence. The results show
415 that StateLMs are more reliable of finding answers across the document, especially at the long end.
416 For example, in the 128–256K range, the accuracy of StateLM surpasses that of the instruct model by
417 12 and 28 points for the 8B and 4B variants, respectively.

418 From another perspective, our models are consistently stronger than the instruct baselines across
419 different question complexities. As shown in Figure 4, there is a nearly 10-point improvement over
420 the baselines for each of the ‘‘Detail,’’ ‘‘Single-hop,’’ and ‘‘Multi-hop’’ categories, spanning tasks
421 from mild reasoning to extensive reasoning requirements. These results demonstrate that StateLM is
422 capable of leveraging the provided tools to handle diverse levels of question difficulty, indicating the
423 Pensieve mechanism results a general and robust gain on the reasoning process itself.

424 4.3 FROM CONTEXT SCALING TO INFERENCE-TIME SCALING

425 The Pensieve paradigm constitutes a form of inference-time scaling: the model interacts with long
426 contexts by continuously reading, searching, and updating its memory. In this setting, inference
427 time should naturally scale with the context length, as the context is flattened into multiple chunks
428 and the model must process them comprehensively to produce a reliable answer. This transforms
429 the challenge of increasing context length into an increase in inference-time interactions, thereby
430 breaking the fixed architectural limit of the context window.

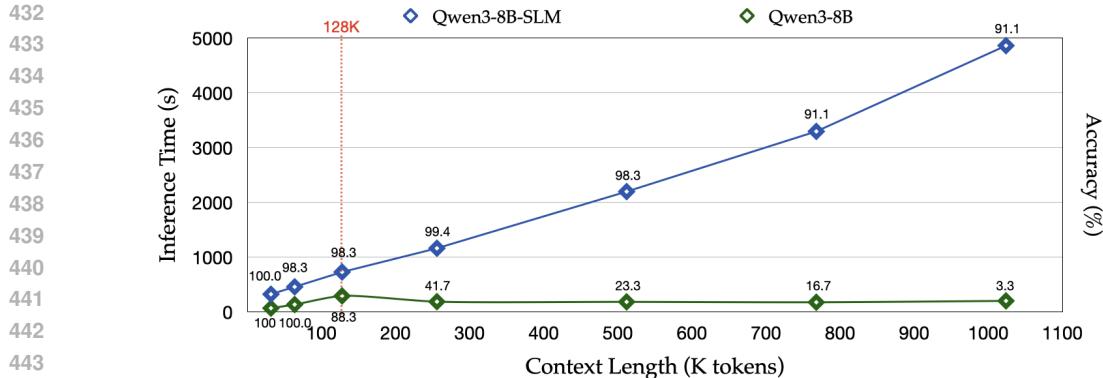


Figure 5: Inference-time scaling on Needle-in-a-Haystack task.

To verify this behavior, we revisit the Needle-in-a-Haystack task under varying context lengths and plot the inference-time scaling in Figure 5. We measure wall-clock runtime and accuracy at each context length, averaged over three runs. As shown in the figure, StateLM exhibits a linear relationship between runtime and input length while consistently maintaining a high accuracy above 90%. In contrast, the instruct baseline shows a similar linear trend only within its 128K limit, after which both runtime and accuracy collapse. These results confirm that the Pensieve design successfully transforms increasing context length into inference-time computation with $O(N)$ cost.

4.4 ABLATION ON LEARNING MECHANISM

Since recent open-source models already support function calling, and our Pensieve paradigm is built upon this capability with deliberate training, a natural question arises: can models learn to manage their own context purely through agent-like prompting? To investigate this, we design a detailed system prompt that explicitly describes the context management process (see Figure 8 in Appendix) and provide the full tool specifications to Qwen3 instruct models (denoted as “Mprompt” models). We then evaluate their performance on the Document QA task from NovelQA and ∞ Bench and compare them against our finetuned StateLM.

The results in Figure 6 present this comparison. While prompting alone enables the instruct models to correctly answer about 30% of the questions, their performance is far below that of StateLM. This gap indicates that effective memory operations are difficult to acquire solely from prompt instructions and instead should be learned through deliberate training. In other words, the Pensieve paradigm benefits not only from tool availability but also from learned usage patterns that make context management robust and reliable.

5 CONCLUSION

In this work, we introduce the Pensieve paradigm, a state-aware approach where models actively manage their own memory through inference-time operations. Across both synthetic and realistic long-context QA tasks, StateLM consistently outperforms instruct models with fixed windows, sustaining high accuracy at million-token scales while preserving linear inference cost and minimizing context usage. These results mark a shift from passive sequence processing to models that reason over and reshape their own context, pointing to a scalable path for future foundation and agentic models.

486 REPRODUCIBILITY STATEMENT
487488 We ensure reproducibility by providing detailed descriptions of our methodology, datasets, models,
489 and training and evaluation configurations in Section 4, Appendix A, and Appendix B. The main
490 code is included in the supplementary material, and we will release both the code and our training
491 dataset publicly to facilitate the reproduction of our results.
492493 ETHICS STATEMENT
494495 This work complies with the ICLR Code of Ethics. Our research mainly develops a stateful language
496 model that can efficiently manage its own context memory. Since training and evaluation rely solely
497 on public datasets, the research does not involve human subjects or sensitive personal data. We
498 carefully considered issues of fairness, privacy, security, and potential societal impact, and found no
499 outstanding ethical concerns. Nevertheless, we acknowledge that such models are still at an early
500 stage of development and should be used for research purposes only. We further emphasize that
501 evaluations should be conducted in controlled environments with limited tool access.
502503 REFERENCES
504505 Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng Kong,
506 and Xipeng Qiu. L-eval: Instituting standardized evaluation for long context language models. In
507 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume*
508 *1: Long Papers)*, pp. 14388–14411, 2024.510 Deng Cai, Yan Wang, Huayang Li, Wai Lam, and Lemao Liu. Neural machine translation with
511 monolingual translation memory. In *Proceedings of the 59th Annual Meeting of the Association*
512 *for Computational Linguistics and the 11th International Joint Conference on Natural Language*
513 *Processing (Volume 1: Long Papers)*, pp. 7307–7318, 2021.514 Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
515 production-ready ai agents with scalable long-term memory, 2025. URL <https://arxiv.org/abs/2504.19413>.
516518 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
519 Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey,
520 2024.521 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
522 Boris Ginsburg. Ruler: What’s the real context size of your long-context language models? In
523 *First Conference on Language Modeling*.
524525 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan O Arik, Dong Wang, Hamed Zamani, and
526 Jiawei Han. Search-r1: Training LLMs to reason and leverage search engines with reinforcement
527 learning. In *Second Conference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=Rwhi91ideu>.
528530 Andrej Karpathy. Context engineering is the delicate art and science of filling the context window...
531 <https://x.com/karpathy/status/1785482721150992423>, Apr 2025. Accessed:
532 2025-06-25.533 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
534 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
535 *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing*
536 (*EMNLP*), pp. 6769–6781, 2020.538 Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
539 and Edward Grefenstette. The narrativeqa reading comprehension challenge. *Transactions of the*
Association for Computational Linguistics, 6:317–328, 2018.

540 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 541 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 542 tion for knowledge-intensive nlp tasks. *Advances in Neural Information Processing Systems*, 33:
 543 9459–9474, 2020.

544 Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and Lemao Liu. A survey on retrieval-augmented text
 545 generation, 2022.

546 Huayang Li, Pat Verga, Priyanka Sen, Bowen Yang, Vijay Viswanathan, Patrick Lewis, Taro Watanabe,
 547 and Yixuan Su. ALR²: A retrieve-then-reason framework for long-context question answering,
 548 2024.

549 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 550 Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models, 2025a.

551 Zhiyu Li, Shichao Song, Hanyu Wang, Simin Niu, Ding Chen, Jiawei Yang, Chenyang Xi, Huayi
 552 Lai, Jihao Zhao, Yezhaohui Wang, Junpeng Ren, Zehao Lin, Jihao Huo, Tianyi Chen, Kai Chen,
 553 Kehang Li, Zhiqiang Yin, Qingchen Yu, Bo Tang, Hongkang Yang, Zhi-Qin John Xu, and Feiyu
 554 Xiong. Memos: An operating system for memory-augmented generation (mag) in large language
 555 models, 2025b. URL <https://arxiv.org/abs/2505.22101>.

556 Lin Long, Yichen He, Wentao Ye, Yiyuan Pan, Yuan Lin, Hang Li, Junbo Zhao, and Wei Li. Seeing,
 557 listening, remembering, and reasoning: A multimodal agent with long-term memory, 2025. URL
 558 <https://arxiv.org/abs/2508.09736>.

559 Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
 560 Gonzalez. Memgpt: Towards llms as operating systems, 2024. URL <https://arxiv.org/abs/2310.08560>.

561 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
 562 extension of large language models. *arXiv preprint arXiv:2309.00071*, 2023.

563 Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Richard James, Mike Lewis, Luke
 564 Zettlemoyer, and Wen-tau Yih. Replug: Retrieval-augmented black-box language models. In
 565 *Proceedings of the 2024 Conference of the North American Chapter of the Association for Compu-
 566 tational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 8364–8377,
 567 2024.

568 Cunxiang Wang, Ruoxi Ning, Boqi Pan, Tonghui Wu, Qipeng Guo, Cheng Deng, Guangsheng Bao,
 569 Xiangkun Hu, Zheng Zhang, Qian Wang, et al. Novelqa: Benchmarking question answering
 570 on documents exceeding 200k tokens. In *The Thirteenth International Conference on Learning
 571 Representations*.

572 Fangyuan Xu, Weijia Shi, and Eunsol Choi. RECOMP: Improving retrieval-augmented LMs with con-
 573 text compression and selective augmentation. In *The Twelfth International Conference on Learning
 574 Representations*, 2024. URL <https://openreview.net/forum?id=mlJLViNgNp>.

575 Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
 576 memory for llm agents, 2025. URL <https://arxiv.org/abs/2502.12110>.

577 Sikuan Yan, Xiufeng Yang, Zuchao Huang, Ercong Nie, Zifeng Ding, Zonggen Li, Xiaowen Ma,
 578 Hinrich Schütze, Volker Tresp, and Yunpu Ma. Memory-r1: Enhancing large language model
 579 agents to manage and utilize memories via reinforcement learning, 2025. URL <https://arxiv.org/abs/2508.19828>.

580 Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
 581 and Danqi Chen. Helmet: How to evaluate long-context language models effectively and thoroughly.
 582 *arXiv preprint arXiv:2410.02694*, 2024.

583 Hongli Yu, Tinghong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin Zhang,
 584 Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, and Hao Zhou. Memagent: Reshaping long-context
 585 llm with multi-conv rl-based memory agent, 2025. URL <https://arxiv.org/abs/2507.02259>.

594 THE USE OF LARGE LANGUAGE MODELS
595

596 Large language models (LLMs) were applied in a restricted manner to support writing refinement.
 597 The authors supplied their draft text to the LLM, which suggested enhancements such as grammatical
 598 corrections, clearer formulations, and the elimination of informal expressions. LLMs were addition-
 599 ally consulted to generate possible paper titles. While the system proposed alternatives, the final title
 600 was independently selected and refined by the authors, and was not adopted verbatim from any single
 601 model output. Furthermore, LLMs were employed as auxiliary coding tools during implementation.
 602 They provided code completions and debugging advice; however, all final code, experimental setup,
 603 and validation were designed, implemented, and confirmed by the authors. It is important to em-
 604 phasize that LLMs **WERE NOT** utilized for developing research ideas, designing experiments, or
 605 conducting literature review. All conceptual advances and experimental methodologies were entirely
 606 conceived and executed by the authors.

607
608 A TRAINING CONFIGURATIONS
609

610 We train our StateLM models using the following configurations. Each model is trained on a single
 611 machine equipped with 8xH20 GPUs.

612
613
614 Table 4: SFT Training Configuration
615

616 Parameter	617 Value
618 Global Batch Size	128
619 Learning Rate Scheduler	cosine
620 Learning Rate	1×10^{-5}
621 Warm-up Ratio	3×10^{-2}
622 Max Sequence Length	28000
623 Epochs	3
624 Parallelism Strategy	DeepSpeed ZeRO-3

625
626 B INFERENCE CONFIGURATIONS
627

628 In our experiments, we use the Qwen3 non-thinking inference mode for both StateLMs and in-
 629 struct baselines. The thinking mode is excluded because it requires a 32K output space, which is
 630 computationally expensive and reduces the available context window.

631
632 For both StateLM and instruct baselines, we adopt the recommended sampling parameters as docu-
 633 mented in the Qwen3 official guide. For the experiments, we repeat the sampling 3 times and compute
 634 the average score.

635
636
637 Table 5: Generation Configuration

638 Parameter	639 Value	640 Used By
641 Temperature	0.7	Both
642 Top_p	0.8	Both
643 Top_k	20	Both
644 Max Output Tokens	8192	Instruct
645 Max Context Tokens	120000	Instruct
646 Context Budget	32000	StateLM
647 Round Budget	150	StateLM
	200	StateLM

648
649

C LIMITATIONS

650
651
While our work makes progress toward building stateful language models, it has several limitations
that open directions for future work.652
653
Predefined tool set. In this work, the model is restricted to a fixed set of tools, including note-
taking, search, and context pruning. While these are sufficient to demonstrate the benefits of state
management, they constrain the flexibility of the system. A natural next step is to enable models to
design, adapt, or refine their own tool sets dynamically based on the task and context.654
655
Limited misbehavior analysis. In early experiments, we observed that the model sometimes
overused the search tool or followed reasoning trajectories that deviated from human patterns,
such as repeatedly mixing scanning with searching or arbitrarily discarding prior conclusions. Our
data curation and fine-tuning pipeline alleviated these issues, resulting in more stable StateLMs.
Nevertheless, a systematic study of potential misbehaviors and their broader implications lies beyond
the scope of this work but remains an important direction for future investigation.663
664

D PROMPTS

666
667

Prompt

668
669
You are an AI assistant for long-context processing with tools. Produce factually correct
answers grounded in any attached text while conserving the context window. Describe your
processing plan first, then proceed with the tools.672
673
Figure 7: System prompt used in training and inference of our StateLMs.674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713

Prompt

714
715 You are an AI assistant specialized in processing long-context tasks with tools. Produce
716 factually accurate answers grounded in the provided context while minimizing context
717 consumption.
718

Processing Strategy:

1. Check the size of the attached text:
 - Long ($> 8K$ tokens): build an index and process in chunks. For extremely long texts, increase the chunk size up to 12,000 tokens.
 - Short ($\leq 8K$ tokens): load the full text and answer directly.
 - Empty: proceed with reasoning, using note-taking tools.
2. Analyze user's query and justify which processing mode is required to answer reliably and state that you plan to use that mode explicitly.
 - (a) Linear scan: Full-passage, sequential chunk-by-chunk reading (no details skipped), or (b) Keyword search: Keyword-based search to retrieve and inspect only the relevant chunks.
3. While reading, record relevant, accurate, and verifiable notes. Merge related notes as they grow to keep them concise.
4. Delete unnecessary context messages by their 'msg_id' to preserve context space, but do not delete everything or overuse the deletion tool. Deleted messages become stubs-do NOT restate their contents. Two required cases for deletions:
 - After calling 'readChunk': once you have analyzed the chunk and optionally taken notes, immediately delete the chunk content using the 'msg_id' returned by the 'readChunk' tool.
 - After calling 'note': delete the invoking assistant message using the 'msg_id(invoking_assistant)' returned by the 'note' tool result so the note-construction message is cleared.
5. Consult your notes and use relevant evidence to answer the user's query.
6. Call 'checkBudget' regularly to monitor usage and prevent overflows; adjust your strategy accordingly.

740
741
742 Describe your reasoning and processing plan before invoking any tools.
743
744

745 Figure 8: Memory management system prompt for the Mprompt models.
746
747
748
749
750
751
752
753
754
755

756
757
758
759
760

761 **Prompt**

762
763
764

You are a question classifier. Given a question, decide which reading mode is required to answer it reliably.

765
766
767
768
769
770
771
772
773

774 **### Reading Modes**

1. ****Full-passage reading**** — The question requires comprehensive or sequential understanding of the whole document (e.g., summaries, global themes, narrative reasoning, cross-document counting, paraphrase detection spread across the text). Skimming or isolated lookup risks missing crucial context.
2. ****Keyword-based search (multi-hop allowed)**** — The question can be answered by searching targeted keywords/phrases and reading only the local passages they retrieve. Multi-hop is allowed if each hop is triggered by concrete terms (names, places, quoted strings, chapter titles).

774
775
776
777
778
779

780 **### Output Requirements**

1. Provide a brief reasoning to support your final answer.
2. Format the final answer exactly as: `\boxed{1. Full-passage reading}` or `\boxed{2. Keyword-based search}`.
3. Do not answer the question itself. Do not include extra text beyond the brief reasoning and the boxed label.

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

798 **### Decision Heuristics**

- Global / comprehensive signal → Mode 1. Prompts like “summarize,” “overview,” “main idea,” “what happens,” “count all occurrences,” or questions that require following plot threads or dispersed evidence.
- Local / factual signal → Mode 2. Prompts asking for a specific name/date/place/term/definition typically resolvable by searching a few anchors.
- Paraphrase / approximate quote. If the question references a fuzzy or paraphrased sentence that may not be an exact match, prefer Mode 1 (to verify across context). Exact unique quotes tend toward Mode 2.
- Coreference / ellipsis. If resolving pronouns or elliptical references likely needs broad context, choose Mode 1.
- Tie-break rule. If both seem plausible, choose the least effort mode that still guarantees correctness. If uncertainty remains, default to Mode 1.

798
799
800
801
802
803
804

805 **### Example Classifications**
806 {In-Context Examples}

807 **### Candidate to Evaluate**

808 Now evaluate the following candidate question. Provide the brief reasoning and the final boxed label.

809 Question: [document content] {question}

805 Figure 9: Process-mode classification prompt for the LLM evaluation.

806
807
808
809

810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821 **Prompt**
 822
 823 Please act as an impartial judge and evaluate the correctness of a student's answer which
 824 attempts to answer the question based on a provided context. Although you are not given
 825 the context, you will be given a set of correct answers, and you need to assess the student's
 826 answer using the correct answers.
 827
 828 Below is your grading rubric:
 829
 830
 831 **Correctness:**
 832 - Score 0 (Incorrect): The answer does not agree with the provided correct answers at all.
 833 - Score 1 (partly correct): Partly agree with one of the provided correct answers (for example,
 834 the question asks for a date and a person; the answer gets the date right but the person wrong).
 835 - Score 2 (correct but not fully relevant): Fully agrees with one of the provided correct
 836 answers but mentions other completely irrelevant information. Note that extra details
 837 provided in the answer, even if not mentioned in the correct answers, should NOT be seen as
 838 irrelevant as long as they are relevant to the question to a reasonable extent.
 839 - Score 3 (correct and relevant): Fully agrees with one of the provided correct answers and
 840 only provides information relevant to the question. Note that if the answer is longer than the
 841 correct answer, as long as everything in the answer is relevant to the question, it should still
 842 be given a score of 3. For example, if the correct answer is "the North Pole" and the answer
 843 is "They are headed for the North Pole", it should still be given a score of 3.
 844 Now, read the following question, answer, and correct answers. First think step-by-step to
 845 provide your reasoning and assessment on the answer, then output your final score in the box.
 846 For example, "..., so the correctness score is \boxed{2}".
 847 **Question:** {question}
 848 **Correct answers:** {correct_answers}
 849 **Student Answer:** {answer}

850
 851
 852 Figure 10: Prompt template used by LLM evaluation for Open-Ended questions. Prompt template is
 853 adapted from HELMET (Yen et al., 2024).
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863