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ABSTRACT

In the world of Harry Potter, when Dumbledore’s mind is overburdened, he extracts
memories into a Pensieve to be revisited later. In the world of AI, while we possess
the Pensieve—mature databases and retrieval systems, our models inexplicably
lack the “wand” to operate it. They remain like a Dumbledore without agency,
passively accepting a manually engineered context as their entire memory.
This work finally places the wand in the model’s hand. We introduce StateLM,
a new class of foundation models endowed with an internal reasoning loop to
manipulate their own state. We equip our model with a suite of tools, such as
dynamic indexing, context pruning, and note-taking, and train it to actively manage
this loop. By learning to dynamically construct its own context, our model breaks
free from the architectural prison of a fixed window.
The results are prominent: our state-management approach decouples performance
from context window size, delivering strong accuracy and sustainability under
extremely long contexts with linear inference cost. We demonstrate this by showing
StateLM reliably retrieves a “needle” from a 1-million-token haystack, a task far
beyond the reach of conventional models. On practical document QA tasks from
NovelQA and ∞Bench, StateLM outperforms strong instruct baselines while
using only 1/4 of their active context. An ablation further shows that our curated
training pipeline is more effective for learning memory management than agent-
like prompting. Together, these results mark a shift from passive predictors to
state-aware systems where reasoning becomes a stateful and manageable process.

1 INTRODUCTION

A fundamental limitation of current LLMs is their stateless, autoregressive nature. At their core,
they are passive predictors, architecturally designed to perform sequence completion within an
externally-provided context. This forces them to operate like a mind with no long-term memory of its
own, unable to actively manage or alter their own reasoning process. This core limitation has pushed
the area towards brittle, external workflows of “Context Engineering”, where complex reasoning is
offloaded to human-written scripts that orchestrate a series of isolated LLM calls. Whether through
brute-force context window expansion or scripted workflows, the model itself remains a passive
component without the capability to strategize or manage its own memory.

This dilemma evokes a powerful analogy from the world of Harry Potter. With a touch of his wand,
Dumbledore extracts, stores, and organizes his memories in a Pensieve. He possesses complete
agency: he decides what to offload, what to revisit, and even how to share his thoughts with others
like Harry. This vision of active memory management stands in stark contrast to our current reality in
AI. A profound paradox exists: while we have built the Pensieve—our vast databases and retrieval
systems—we have never given the model the wand. Instead, we humans, act as the wizards. We
use our own “spells” (e.g., context engineering) to pull out what we think is relevant information,
and then force-feed it into the model’s context. The model is not the wizard; it is merely a passive
observer of the magic we perform on its behalf.

The central question of our work is therefore simple: What happens when we finally place the wand
in the model’s hand? We answer this by introducing Stateful Language Models (referred to as

1
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Figure 1: The internal reasoning loop of the StateLM. Faced with a large document (300k tokens),
it 1) first recognizes the input is “too large” and build an index. (2) After an initial searchEngine
call yields ”No useful result,” the model prunes the useless information from its working memory
using deleteContext, and retries the search with new keywords. (3) Upon finding a relevant result, it
uses updateNote to record the key insight and again uses deleteContext to keep its context clean and
focused. (4) Finish: the loop continues until the model determines “I already got enough info.”

StateLMs, or SLMs), a new class of foundation models endowed with an internal reasoning loop
to manipulate their own state. As illustrated in Figure 1, our StateLM operates not as a single-shot
predictor, but as an autonomous agent engaged in a dynamic reasoning process. We equip our model
with a suite of tools—or “spells”—such as dynamic indexing, context pruning, and note-taking. The
core of our contribution lies in teaching the model to actively manage this loop on its own. We
collect a large-scale synthetic dataset, meticulously crafted to serve as our Pensieve Course. By
fine-tuning on these golden reasoning trajectories, the StateLM learns not just to answer questions,
but to strategize the entire workflow of finding the answer. By learning to dynamically construct its
own context, our model breaks free from the architectural prison of a fixed window.

We evaluate StateLM through a set of complementary experiments. On a synthetic Needle-in-a-
Haystack task, it successfully retrieves information across million-token contexts, demonstrating
robust memory management beyond fixed windows. On realistic long-document QA tasks from
NovelQA and ∞Bench, it outperforms strong instruct baselines while using only one quarter of their
active context. We further show that StateLM transforms input context length into inference-time
interactions to achieve high accuracy, with growing contexts translating into linear O(N) runtime
cost. Finally, an ablation demonstrates that our curated training pipeline outperforms agent-like
prompting, underscoring its necessity for learning effective memory operations.

Our contributions are threefold: (i) We propose the Pensieve paradigm, a state-aware framework for
contextual memory management in LLMs; (ii) We present StateLM, a practical instantiation trained
on curated reasoning trajectories and equipped with this framework to operate its own state; and (iii)
We empirically validate its effectiveness and scalability across various tasks and settings.

2 RELATED WORK: HUMAN AS THE WIZARD

The core challenge of statelessness has not gone unnoticed. The dominant response, however, has
been to cast the human developer as the wizard, meticulously orchestrating the model’s limited
memory. This paradigm of external control is defined by Andrej Karpathy as “context engineering”:

“...the delicate art and science of filling the context window with just the right
information for the next step...” (Karpathy, 2025)

This observation frames the entire landscape of current research. The vast majority of work focuses
on building a better context-workflow while the model remains a passive component, waiting for the
human wizard to manage its memory. They can be broadly categorized into two main approaches.
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RAG The most prevalent form of context engineering is RAG (Lewis et al., 2020; Gao et al.,
2024; Li et al., 2022; Xu et al., 2024; Shi et al., 2024). In the standard RAG paradigm, a pipeline is
designed around a stateless LLM. The process involves taking a user query, using a dense retriever
like DPR (Karpukhin et al., 2020; Cai et al., 2021) to search a vector database (the Pensieve) for
relevant text chunks, and “stuffing” this retrieved context into the model’s prompt. The model has no
agency; it passively accepts the context it is given.

Recent advancements have focused on making this external workflow more sophisticated. For
example, ALR2 (Li et al., 2024) proposes a “retrieve-then-reason” framework, Search-O1 (Li et al.,
2025a) enables dynamic retrieval when the model encounters uncertainty, and Search-R1 (Jin et al.,
2025) uses RL to teach the model to generate queries. However, this dynamism still operates within a
workflow predefined by the human developer. The model accepts an externally organized context,
retrieves from a knowledge base it did not create, and the very triggers for these search operations are
themselves part of a scripted, rule-based framework. In essence, the model is learning to be a more
proficient assistant to the wizard, but it is not yet the wizard itself. True agency remains elusive.

Agentic Memory A second line of work moves beyond simple retrieval to build more structured
memory systems for LLM agents. These can be broadly classified by their architectural metaphor.
One class of systems introduces operating-system-like memory hierarchies, allowing models to
page information in and out of their limited context window, as seen in MemGPT (Packer et al.,
2024), Mem0 (Chhikara et al., 2025), MemOS (Li et al., 2025b), Memory-R1 (Yan et al., 2025),
and MemAgent (Yu et al., 2025). Another class focuses on building rich, structured knowledge
graphs that capture relationships between entities, exemplified by the Zettelkasten-style approach of
A-Mem (Xu et al., 2025) and the multimodal, entity-centric graphs in M3-Agent (Long et al., 2025).

However, while these frameworks grant the model the “ability to manage context”, this capability
is exercised within a human-predefined workflow. For example, A-Mem uses a sophisticated but
fixed process for creating and linking notes, and MemGPT relies on explicit function calls triggered
by interrupts. The model executes the workflow, but it does not learn the overarching memory
management policy itself. Even recent works that incorporate reinforcement learning, such as
Memory-R1 and MemAgent, apply the managing action at discrete, human-specified points—for
instance, after processing a text chunk or completing a dialogue turn. In all these cases, the core
strategic decisions about memory interaction are still outsourced to the system’s design rather than
learned through experience. They are typical examples of the “Human as the Wizard” paradigm.

This Study: The Model as the Wizard. In summary, all prior work can be seen as different
strategies for the human to act as the wizard, building ever-more-sophisticated external control
structures for a passive model. The Pensieve Paradigm charts a different course. Instead of teaching
the model to merely execute a predefined workflow, we place the wand in its hand. Our work is the
first to equip an LLM with a general-purpose spellbook of memory management tools and, crucially,
train it to use them. The model is no longer a passive observer; it learns to run its own internal
reasoning loop, dynamically deciding what to retrieve, what to ignore, and what to commit to memory,
truly becoming the wizard of its own cognitive process.

3 THE PENSIEVE PARADIGM

The Introduction established the promise of the Pensieve Paradigm, arguing that models should
be granted the agency to manage their own memory. While the conceptual appeal is clear, the
central challenge remains: how do we technically realize such a paradigm? How do we build a
Dumbledore, not just a crystal ball? In this section, we detail our implemented solution by addressing
two fundamental questions:

1. How does the StateLM’s reasoning loop work in practice? We introduce the model’s
“spellbook” by walking through a step-by-step case study, demonstrating how each tool is
used to create a dynamic, stateful reasoning process in Section 3.1.

2. How do we teach a naive model to master these spells? We designed a dedicated Pensieve
Course, a supervised fine-tuning (SFT) process where the model learns from a curated
dataset of expert reasoning trajectories. The entire training process is detailed in Section 3.2.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 THE STATELM IN ACTION: A CASE STUDY

To illustrate how our StateLM operates and introduce its core tools—its “spellbook”—we walk
through a real-world example: answering the question, “How many Quidditch matches were held
in the book? List them in order with (1) the competing houses and (2) the final score”, from
the full text of Harry Potter and the Philosopher’s Stone (over 100,000 tokens). This task requires
aggregating information from multiple locations, a perfect test for our stateful agent.

The StateLM’s reasoning trajectory evolves through a series of Actions and States, where each Action
consists of a Thought and an Act, and each State is determined by the optionally modified context
history and a Tool Response. The process begins with the model assessing the task’s scale.

[Action 1] Thought: I need to find all Quidditch matches in the text. First, I’ll check the document size.
Act: analyzeText()

[State 1] Tool Response: {“file name”: “attached document.txt”, “total tokens”: 105479, ...}

The model’s first action is to call analyzeText. This tool is the first spark of agency, allowing the
model to decide if its deeper memory system is needed. The large token count confirms a simple
read-through is impossible, prompting the model to create its own Pensieve.

[Action 2] Thought: The document is very large. I’ll build an index to enable keyword searching.
Act: buildIndex(chunk size=8000)

[State 2] Tool Response: {“index id”: “document index”, “total chunks”: 14, ...}

Unlike conventional RAG where indexing is a human-scripted prerequisite, here the model au-
tonomously calls the buildIndex tool in response to the task. With the index ready, it can now explore
it using tools like searchEngine for keyword-based retrieval.

[Action 3] Thought: Now I will search for keywords related to Quidditch to find relevant chunks.
Act: searchEngine(keyword=“Quidditch match, final score, Gryffindor, Slytherin ...”)

[State 3] Tool Response: {“retrieved chunks”: [{“chunk id”: 8, “relevance”: 7.216}, ...]}

The search identifies chunk 8 as most relevant. The model proceeds to read it using the readChunk.

[Action 4] Thought: Chunk 8 has the highest relevance score. I will read it to find the first match.
Act: readChunk(chunk id=8)

[State 4] Tool Response: {“content”: “...”}

After retrieving a chunk, the model consolidates useful information by calling the note tool. This
records key insights into an external, persistent “notebook”, creating a distilled knowledge base
outside the active context. The note key is then displayed at the end of the prompt for later retrieval.

[Action 5] Thought: Perfect! This chunk contains the first Quidditch match. Let me record the details and then
continue searching for other matches.
Act: note(key=“match 1”, summary=“Match 1: Gryffindor vs Slytherin”, ...)

[State 5] Tool Response: {“status”: “success”, “key”: “match 1”, ...}

The most critical tool for statefulness is deleteContext. After preserving key information, the model
promptly prunes the source chunk and its full note from the context. This ability to actively and
timely manage context forms the cornerstone of our paradigm, overcoming fixed-window limits.

[Action 6] Thought: Delete the chunk 8 and the notes from my context to save tokens.
Act: deleteContext([“State 4”, “Action 5”]])

[State 6] Tool Response: {“message”: “deleteContext success!”}

In practice, the model prunes context by specifying the “msg id” of the target item, which may
correspond to either an Action (the model’s own output) or a State message (a tool response).
Accordingly, each tool response includes both its own msg id and the invoker’s msg id, which points
back to the assistant output. This context pruning is efficiently implemented with prefix caching,
which reuses the KV cache of tokens preceding the deleted block and requires only a single forward
pass (prefill) over the remaining context. Back to the reasoning trajectory, we highlight a particularly
insightful moment where the model demonstrates reasoning beyond simple fact extraction:

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: The core set of tools (the “spellbook”) available to the Stateful Language Model.

Tool Name Description Parameters
Context & Budget Assessment
analyzeText Checks the length of the input context. None
loadDocument Load the full document into context. None
checkBudget Check the remaining token budget. None

External Memory (Index) Interaction
buildIndex Creates a searchable index from a large document. chunk size, overlap
readChunk Retrieves the full text of a specific chunk by its ID. chunk id
searchEngine Searches the index with keywords. keyword

Internal Memory (Notebook) Management
readNote Read the full content of a specified note. key
updateNote Records or modifies information in a persistent notebook. key, new content, new summary
mergeNotes Merge multiple notes into one. keys, new key, new summary

State Management & Termination
deleteContext Deletes a message from the active context window. msg id
finish Terminates the reasoning loop and submits the final answer. answer

[Action 20] Thought: This chunk mentions “you missed the last Quidditch match, we were steamrollered by
Ravenclaw without you” - this indicates there was a Quidditch match between them. Let me note this.
Act: updateNote(key=“match 2”, summary=“Match 2: Gryffindor vs Ravenclaw”, ...)

[State 20] Tool Response: {“status”: “success”, “key”: “match 2”, ...}

After methodically working through all relevant chunks and consolidating its findings, the model
determines its notebook is sufficient. It then calls the finish tool to terminate the reasoning process
and present the final, synthesized answer.

[Action 25] (Final) Thought: Based on my thorough analysis and the notes I have gathered on all three matches,
I can now provide the final answer.
Act: finish(answer=“Three Quidditch matches were held in the book: (1) Gryffindor vs Slytherin, Score:
170-60; (2) Gryffindor vs Hufflepuff, Score: Not specified; (3) Gryffindor vs Ravenclaw, Score: Not specified...”)

The complete spellbook, including auxiliary tools, is detailed in Table 1.

Due to page limits, the case study presented is intentionally straightforward, designed to illustrate the
fundamental usage of our spells and The Pensieve in a real-world scenario. Indeed, the framework
is capable of tackling far more complex, multi-faceted analytical queries. For instance, it could be
tasked to “find every professor mentioned in the entire Harry Potter series, count their appearance
frequency, and summarize their evolving relationship with Harry.” Executing such a task would
require the model to maintain persistent state for each professor, incrementally updating counts and
relationship summaries across numerous interactions.

3.2 TRAINING: THE PENSIEVE COURSE

While we have provided a comprehensive tool set for memory management, a vanilla LLM, unfortu-
nately, has never been trained on how to manage its own memory. In this section, we demonstrate
how we train our StateLM to generate the reasoning trajectories described in Section 3.1.

As the Pensieve paradigm is most valuable for tasks that overburden a model’s memory, we first needed
a dataset of such tasks. To this end, we utilize the 3096 samples from the “PublicDomain” portion of
the NovelQA dataset (Wang et al.) and 1650 samples from the train set of NarrativeQA (Kočiskỳ
et al., 2018), both of which are challenging question-answering benchmarks where questions must be
answered based on the full text of lengthy novels. This naturally creates the long-context scenarios
required to teach the model to manage its memory.

We then attempted to generate expert reasoning trajectories on these tasks using Claude-Sonnet-4,
guided by some sophisticated prompts designed by ourselves. However, despite our best efforts in
prompt engineering, the raw generated trajectories were often noisy. As illustrated in Figure 2, we
implemented a multi-stage pipeline designed to generate and rigorously filter optimal behaviors.
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Figure 2: The pipeline for training sample construction.

3.2.1 EXPERT REASONING TRAJECTORIES

1. Process Mode Classification: We observed that Claude exhibited a “lazy” bias, defaulting to
keyword searches with searchEngine even for questions requiring a full, sequential reading. To
counteract this, we first used a strong LLM (GPT-4o) to categorize each question as either:

• Search Type: Questions that can be answered by locating specific facts (e.g., “What’s the
name of the Bronwyns’ summer home?”)

• Scan Type: Questions requiring a broader, sequential understanding of the text (e.g.,
“Summarize the main character’s journey.”).

After the categorization, we have 2724 scan type problems and 2022 search type problems. We
present the specific categorization prompt in Figure 9 in the Appendix.

2. Trajectory Generation. We then generated trajectories for both types. For Search Type questions,
the agentic LLM (Claude) had access to the full toolset. For Scan Type questions, we disabled the
searchEngine tool, forcing the model to adopt a more methodical, chunk-by-chunk reading strategy.

3. Multi-stage Filtering. The raw trajectories were then subjected to a two-stage filtering process:

• Outcome: We first rejected all trajectories where the final answer was incorrect.
• Behavior: Most critically, we then performed a behavioral check. We rejected trajectories

that failed to exhibit the desired stateful memory management, specifically those did not
properly use the deleteContext tool to manage their context window during long interactions.

This rigorous pipeline yielded a final dataset of 2,072 high-quality “Good Behavior” trajectories.
These were then decomposed into 46.6K individual turn-based samples for the subsequent training.

3.2.2 THE TRAINING PROCESS

With this curated dataset of expert trajectories, we fine-tune the base model using a standard SFT
approach. We adopt a multi-turn dialogue training format, where an N-turn reasoning trajectory is
decomposed into N-1 training examples. For each example, the model is given the history up to turn
i− 1 and trained to predict the “Thought” and “Act” of turn i. The cross-entropy loss is computed
only on the tokens of the final assistant turn, as earlier responses may be altered by the model itself.

While reinforcement learning could potentially enhance performance, our goal in this work is to
demonstrate the fundamental effectiveness of the Pensieve paradigm itself. Therefore, we intentionally
keep our training methodology simple and efficient, without introducing complex, task-specific
strategies. This allows us to clearly isolate and validate the power of the proposed paradigm.

4 EXPERIMENT

In this section, we evaluate StateLM with the Pensieve mechanism, which enables the model
to actively manage its context history through tool use. Our experiments cover complementary
dimensions: (i) synthetic tasks that isolate memory management (Section 4.1), (ii) real-world
benchmarks that test the practical utility of the StateLM across diverse scenarios (Section 4.2), and
(iii) inference-time analysis that demonstrates the transformation from growing context lengths into
scalable inference with linear cost (Section 4.3). Finally, we present an ablation study (Section 4.4)
to highlight the role of deliberate training in learning effective memory management.
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Table 2: Needle-in-a-haystack (NIAH) experimental results comparing model performance across
selected context lengths. All values represent accuracy (%) and results are averaged over 3 runs.

Model Length

32K 64K 128K 256K 512K 768K 1M

Qwen3-4B 100.00 100.00 88.33 41.67 23.33 16.67 3.33
Qwen3-4B-SLM (w/o search) 100.00 98.89 97.78 97.78 65.00 45.00 33.33
Qwen3-8B 100.00 100.00 88.33 41.67 23.33 16.67 3.33
Qwen3-8B-SLM (w/o search) 100.00 98.33 98.33 99.44 98.33 91.11 91.11

4.1 SYNTHETIC MEMORY TASK

We first assess whether StateLM can succeed on a task that isolates memory retrieval from extensive
reasoning. To this end, we follow the Needle-in-a-Haystack setup from prior work (Hsieh et al.) and
construct a synthetic benchmark of 420 problems spanning 7 context lengths. Each problem embeds
a single key sentence (the “needle”) into a long passage (the “haystack”), and the model must recall
the exact value associated with the given key. To test the model limit, we utilize the full 128K context
window for both StateLM and the instruct baselines. For the latter, we follow prior work (Wang et al.;
An et al., 2024) and truncate the input by retaining only the first 128K tokens of the context.

This task is deliberately aligned with the Pensieve paradigm: each problem can be solved by reading
a chunk, optionally noting down the key information in memory, and then deleting that chunk to
proceed. During this process, we disable the search tool, since otherwise StateLM would achieve
near-perfect accuracy regardless of context length, leaving its memory management ability untested
under increasing context pressure.

Table 2 reports the results. Across all model scales, the StateLM variants outperform their instruct
baselines as the context length grows. The Qwen3 instruct models report identical accuracy as they
consistently solve the problems within their context limit, and repeated sampling does not affect the
outcome. While the instruct baselines rapidly degrade beyond the 128K limit, falling to nearly 0%
accuracy at 1M tokens, the StateLM variants remain highly robust. Notably, the 8B SLM sustain over
90% accuracy even at 1M tokens, demonstrating consistent retrieval across an order of magnitude
beyond their native context windows. Even the smaller 4B model shows clear gains, though it is
less robust than the larger model due to the emergence of formatting errors under extreme long
contexts. These results provide strong evidence that StateLM has indeed learned to operate the
Pensieve mechanism effectively: through memory updates and context deletion, it maintains stable
retrieval ability far beyond the architectural context limits.

4.2 REAL-WORLD SCENARIOS: LONG DOCUMENT QA
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Figure 3: NovelQA accuracy by problem evidence (i.e., answer) position in the provided context.
Results are averaged over 3 runs (Avg@3).
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Table 3: Accuracy on the Document QA task with standard deviation.

Model Context Length NovelQA (Copyright) ∞Bench (EN.MC) Avg.

Qwen3-4B 128K 65.17 ± 0.53 59.97 ± 0.50 62.57
Qwen3-4B-SLM 32K 74.33 ± 0.42 66.08 ± 1.53 70.21
Qwen3-8B 128K 65.87 ± 1.42 66.81 ± 1.16 66.34
Qwen3-8B-SLM 32K 77.10 ± 0.93 69.29 ± 0.91 73.20
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Figure 4: NovelQA accuracy by problem complexity. Results are averaged over 3 runs (Avg@3).

Motivated by the strong performance on the synthetic recall task, we next evaluate the effectiveness
of StateLM on the more practical Document QA setting. To this end, we use the “Copyright” split of
NovelQA and the “En.MC” split of ∞Bench, consisting of 757 and 229 problems, respectively, to
approximate real-world long-context reasoning scenarios. Unlike the previous experiment, which
isolates memory recall under extreme cases, this task requires the model to utilize tools and perform
comprehensive reasoning and understanding over the provided documents. For StateLM, we enable
the full toolkit and restrict the context window to its native 32K. For the instruct baselines, we utilize
their full context size of 128K using YaRN (Peng et al., 2023) and apply the same truncation.

The results in Table 3 show notable improvements of StateLM over the baselines. Both the 4B and 8B
StateLM variants outperform their instruct counterparts on both benchmarks, while using only one
quarter of the context window size, highlighting the effectiveness of learned memory management.
On average, the 4B and 8B StateLMs exceed their baselines by 7.64 and 6.86 percentage points,
respectively. Figure 3 further breaks down accuracy by the position of evidence. The results show
that StateLMs are more reliable of finding answers across the document, especially at the long end.
For example, in the 128–256K range, the accuracy of StateLM surpasses that of the instruct model by
12 and 28 points for the 8B and 4B variants, respectively.

From another perspective, our models are consistently stronger than the instruct baselines across
different question complexities. As shown in Figure 4, there is a nearly 10-point improvement over
the baselines for each of the “Detail,” “Single-hop,” and “Multi-hop” categories, spanning tasks
from mild reasoning to extensive reasoning requirements. These results demonstrate that StateLM is
capable of leveraging the provided tools to handle diverse levels of question difficulty, indicating the
Pensieve mechanism results a general and robust gain on the reasoning process itself.

4.3 FROM CONTEXT SCALING TO INFERENCE-TIME SCALING

The Pensieve paradigm constitutes a form of inference-time scaling: the model interacts with long
contexts by continuously reading, searching, and updating its memory. In this setting, inference
time should naturally scale with the context length, as the context is flattened into multiple chunks
and the model must process them comprehensively to produce a reliable answer. This transforms
the challenge of increasing context length into an increase in inference-time interactions, thereby
breaking the fixed architectural limit of the context window.

8
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Figure 5: Inference-time scaling on Needle-in-a-Haystack task.

To verify this behavior, we revisit the Needle-in-a-Haystack task under varying context lengths
and plot the inference-time scaling in Figure 5. We measure wall-clock runtime and accuracy at
each context length, averaged over three runs. As shown in the figure, StateLM exhibits a linear
relationship between runtime and input length while consistently maintaining a high accuracy above
90%. In contrast, the instruct baseline shows a similar linear trend only within its 128K limit, after
which both runtime and accuracy collapse. These results confirm that the Pensieve design successfully
transforms increasing context length into inference-time computation with O(N) cost.

4.4 ABLATION ON LEARNING MECHANISM
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Figure 6: StateLM and Memory-prompt model
performance.

Since recent open-source models already sup-
port function calling, and our Pensieve paradigm
is built upon this capability with deliberate train-
ing, a natural question arises: can models learn
to manage their own context purely through
agent-like prompting? To investigate this, we
design a detailed system prompt that explicitly
describes the context management process (see
Figure 8 in Appendix) and provide the full tool
specifications to Qwen3 instruct models (de-
noted as “Mprompt” models). We then evaluate
their performance on the Document QA task
from NovelQA and ∞Bench and compare them
against our finetuned StateLM.

The results in Figure 6 present this compari-
son. While prompting alone enables the instruct
models to correctly answer about 30% of the
questions, their performance is far below that of
StateLM. This gap indicates that effective mem-
ory operations are difficult to acquire solely from prompt instructions and instead should be learned
through deliberate training. In other words, the Pensieve paradigm benefits not only from tool
availability but also from learned usage patterns that make context management robust and reliable.

5 CONCLUSION

In this work, we introduce the Pensieve paradigm, a state-aware approach where models actively
manage their own memory through inference-time operations. Across both synthetic and realistic long-
context QA tasks, StateLM consistently outperforms instruct models with fixed windows, sustaining
high accuracy at million-token scales while preserving linear inference cost and minimizing context
usage. These results mark a shift from passive sequence processing to models that reason over and
reshape their own context, pointing to a scalable path for future foundation and agentic models.

9
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REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing detailed descriptions of our methodology, datasets, models,
and training and evaluation configurations in Section 4, Appendix A, and Appendix B. The main
code is included in the supplementary material, and we will release both the code and our training
dataset publicly to facilitate the reproduction of our results.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. Our research mainly develops a stateful language
model that can efficiently manage its own context memory. Since training and evaluation rely solely
on public datasets, the research does not involve human subjects or sensitive personal data. We
carefully considered issues of fairness, privacy, security, and potential societal impact, and found no
outstanding ethical concerns. Nevertheless, we acknowledge that such models are still at an early
stage of development and should be used for research purposes only. We further emphasize that
evaluations should be conducted in controlled environments with limited tool access.
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THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were applied in a restricted manner to support writing refinement.
The authors supplied their draft text to the LLM, which suggested enhancements such as grammatical
corrections, clearer formulations, and the elimination of informal expressions. LLMs were addition-
ally consulted to generate possible paper titles. While the system proposed alternatives, the final title
was independently selected and refined by the authors, and was not adopted verbatim from any single
model output. Furthermore, LLMs were employed as auxiliary coding tools during implementation.
They provided code completions and debugging advice; however, all final code, experimental setup,
and validation were designed, implemented, and confirmed by the authors. It is important to em-
phasize that LLMs WERE NOT utilized for developing research ideas, designing experiments, or
conducting literature review. All conceptual advances and experimental methodologies were entirely
conceived and executed by the authors.

A TRAINING CONFIGURATIONS

We train our StateLM models using the following configurations. Each model is trained on a single
machine equipped with 8×H20 GPUs.

Table 4: SFT Training Configuration

Parameter Value
Global Batch Size 128
Learning Rate Scheduler cosine
Learning Rate 1× 10−5

Warm-up Ratio 3× 10−2

Max Sequence Length 28000
Epochs 3
Parallelism Strategy DeepSpeed ZeRO-3

B INFERENCE CONFIGURATIONS

In our experiments, we use the Qwen3 non-thinking inference mode for both StateLMs and in-
struct baselines. The thinking mode is excluded because it requires a 32K output space, which is
computationally expensive and reduces the available context window.

For both StateLM and instruct baselines, we adopt the recommended sampling parameters as docu-
mented in the Qwen3 official guide. For the experiments, we repeat the sampling 3 times and compute
the average score.

Table 5: Generation Configuration

Parameter Value Used By
Temperature 0.7 Both
Top p 0.8 Both
Top k 20 Both
Max Output Tokens 8192 Instruct
Max Context Tokens 120000 Instruct
Context Budget 32000 StateLM
Round Budget 150 StateLM
Max Rounds 200 StateLM
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C LIMITATIONS

While our work makes progress toward building stateful language models, it has several limitations
that open directions for future work.

Predefined tool set. In this work, the model is restricted to a fixed set of tools, including note-
taking, search, and context pruning. While these are sufficient to demonstrate the benefits of state
management, they constrain the flexibility of the system. A natural next step is to enable models to
design, adapt, or refine their own tool sets dynamically based on the task and context.

Limited misbehavior analysis. In early experiments, we observed that the model sometimes
overused the search tool or followed reasoning trajectories that deviated from human patterns,
such as repeatedly mixing scanning with searching or arbitrarily discarding prior conclusions. Our
data curation and fine-tuning pipeline alleviated these issues, resulting in more stable StateLMs.
Nevertheless, a systematic study of potential misbehaviors and their broader implications lies beyond
the scope of this work but remains an important direction for future investigation.

D PROMPTS

Prompt

You are an AI assistant for long-context processing with tools. Produce factually correct
answers grounded in any attached text while conserving the context window. Describe your
processing plan first, then proceed with the tools.

Figure 7: System prompt used in training and inference of our StateLMs.
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Prompt

You are an AI assistant specialized in processing long-context tasks with tools. Produce
factually accurate answers grounded in the provided context while minimizing context
consumption.

Processing Strategy:
1. Check the size of the attached text:
- Long (> 8K tokens): build an index and process in chunks. For extremely long texts,
increase the chunk size up to 12,000 tokens.
- Short (≤ 8K tokens): load the full text and answer directly.
- Empty: proceed with reasoning, using note-taking tools.
2. Analyze user’s query and justify which processing mode is required to answer reliably and
state that you plan to use that mode explicitly.
(a) Linear scan: Full-passage, sequential chunk-by-chunk reading (no details skipped), or (b)
Keyword search: Keyword-based search to retrieve and inspect only the relevant chunks.
3. While reading, record relevant, accurate, and verifiable notes. Merge related notes as they
grow to keep them concise.
4. Delete unnecessary context messages by their ‘msg id’ to preserve context space, but do
not delete everything or overuse the deletion tool. Deleted messages become stubs-do NOT
restate their contents. Two required cases for deletions:
- After calling ‘readChunk’: once you have analyzed the chunk and optionally taken notes,
immediately delete the chunk content using the ‘msg id’ returned by the ‘readChunk’ tool.
- After calling ‘note’: delete the invoking assistant message using the
‘msg id(invoking assistant)’ returned by the ‘note’ tool result so the note-construction
message is cleared.
5. Consult your notes and use relevant evidence to answer the user’s query.
6. Call ‘checkBudget’ regularly to monitor usage and prevent overflows; adjust your strategy
accordingly.

Describe your reasoning and processing plan before invoking any tools.

Figure 8: Memory management system prompt for the Mprompt models.
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Prompt

You are a question classifier. Given a question, decide which reading mode is required to
answer it reliably.

### Reading Modes
1. **Full-passage reading** — The question requires comprehensive or sequential un-
derstanding of the whole document (e.g., summaries, global themes, narrative reasoning,
cross-document counting, paraphrase detection spread across the text). Skimming or isolated
lookup risks missing crucial context.
2. **Keyword-based search (multi-hop allowed)** — The question can be answered by
searching targeted keywords/phrases and reading only the local passages they retrieve. Multi-
hop is allowed if each hop is triggered by concrete terms (names, places, quoted strings,
chapter titles).

### Output Requirements
1. Provide a brief reasoning to support your final answer. 2. Format the final answer exactly
as: \\boxed{1. Full-passage reading} or \\boxed{2. Keyword-based search}. 3. Do not
answer the question itself. Do not include extra text beyond the brief reasoning and the boxed
label.

### Decision Heuristics
- Global / comprehensive signal → Mode 1. Prompts like “summarize,” “overview,” “main
idea,” “what happens,” “count all occurrences,” or questions that require following plot
threads or dispersed evidence.
- Local / factual signal → Mode 2. Prompts asking for a specific
name/date/place/term/definition typically resolvable by searching a few anchors.
- Paraphrase / approximate quote. If the question references a fuzzy or paraphrased sentence
that may not be an exact match, prefer Mode 1 (to verify across context). Exact unique
quotes tend toward Mode 2.
- Coreference / ellipsis. If resolving pronouns or elliptical references likely needs broad
context, choose Mode 1.
- Tie-break rule. If both seem plausible, choose the least effort mode that still guarantees
correctness. If uncertainty remains, default to Mode 1.

### Example Classifications
{In-Context Examples}

—

### Candidate to Evaluate
Now evaluate the following candidate question. Provide the brief reasoning and the final
boxed label.

Question: [document content] {question}

Figure 9: Process-mode classification prompt for the LLM evaluation.
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Prompt

Please act as an impartial judge and evaluate the correctness of a student’s answer which
attempts to answer the question based on a provided context. Although you are not given
the context, you will be given a set of correct answers, and you need to assess the student’s
answer using the correct answers.

Below is your grading rubric:

Correctness:
- Score 0 (Incorrect): The answer does not agree with the provided correct answers at all.
- Score 1 (partly correct): Partly agree with one of the provided correct answers (for example,
the question asks for a date and a person; the answer gets the date right but the person wrong).
- Score 2 (correct but not fully relevant): Fully agrees with one of the provided correct
answers but mentions other completely irrelevant information. Note that extra details
provided in the answer, even if not mentioned in the correct answers, should NOT be seen as
irrelevant as long as they are relevant to the question to a reasonable extent.
- Score 3 (correct and relevant): Fully agrees with one of the provided correct answers and
only provides information relevant to the question. Note that if the answer is longer than the
correct answer, as long as everything in the answer is relevant to the question, it should still
be given a score of 3. For example, if the correct answer is “the North Pole” and the answer
is “They are headed for the North Pole”, it should still be given a score of 3.

Now, read the following question, answer, and correct answers. First think step-by-step to
provide your reasoning and assessment on the answer, then output your final score in the box.
For example, ” ..., so the correctness score is \\boxed{2}”.

Question: {question}
Correct answers: {correct answers}
Student Answer: {answer}

Figure 10: Prompt template used by LLM evaluation for Open-Ended questions. Prompt template is
adapted from HELMET (Yen et al., 2024).
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