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Abstract

Although data that can be naturally represented as graphs is widespread in real-
world applications across diverse industries, popular graph ML benchmarks for
node property prediction only cover a surprisingly narrow set of data domains, and
graph neural networks (GNNs) are often evaluated on just a few academic citation
networks. This issue is particularly pressing in light of the recent growing interest
in designing graph foundation models. These models are supposed to be able to
transfer to diverse graph datasets from different domains, and yet the proposed
graph foundation models are often evaluated on a very limited set of datasets from
narrow applications. To alleviate this issue, we introduce GraphLand: a benchmark
of 14 diverse graph datasets for node property prediction from a range of different
industrial applications. GraphLand allows evaluating graph ML models on a wide
range of graphs with diverse sizes, structural characteristics, and feature sets, all
in a unified setting. Further, GraphLand allows investigating such previously
underexplored research questions as how realistic temporal distributional shifts
under transductive and inductive settings influence graph ML model performance.
To mimic realistic industrial settings, we use GraphLand to compare GNNs with
gradient-boosted decision trees (GBDT) models that are popular in industrial
applications and show that GBDTs provided with additional graph-based input
features can sometimes be very strong baselines. Further, we evaluate currently
available general-purpose graph foundation models and find that they fail to produce
competitive results on our proposed datasets. Our source code and datasets are
available at https://github.com/yandex-research/graphland.

1 Introduction

Recently, there has been a significant push for data-centric approaches in machine learning. In
particular, high-quality, realistic, reliable, and diverse benchmarks are paramount for proper evaluation
of the performance of machine learning methods. In the field of graph machine learning (GML),
there has recently been a lot of criticism of existing popular benchmark datasets concerning such
aspects as lacking practical relevance (Bechler-Speicher et al., 2025), low structural diversity that
leaves most of the possible graph structure space not represented (Palowitch et al., 2022; Maekawa
et al., 2022), low application domain diversity (Bechler-Speicher et al., 2025), graph structure not
being beneficial for the considered tasks (Errica et al., 2020; Li et al., 2024b; Coupette et al., 2025;
Bechler-Speicher et al., 2025), potential bugs in the data collection processes leading to incorrect
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labels (Li et al., 2023) and duplicated graph nodes (Platonov et al., 2023b). While there have recently
been efforts to create more realistic graph benchmarks, they focus on more specific domains (e.g.,
3D molecular data) that require specialized models. At the same time, benchmarks for the standard
and most widespread GML setting of node property prediction in a single large graph have received
considerably less attention, and evaluation of the performance of classic graph neural networks and
recent graph foundation models is still often limited to a few academic citation networks despite this
setting and models developed for it having vast real-world applications in diverse industries.

We believe the historical focus of GNN evaluation on academic citation networks, which represent
only a single (and a rather narrow) application domain, is primarily a consequence of the availability
of open data of this type, rather than its relevance to real-world applications. At the same time,
some of the most classical and simultaneously practically important examples of real-world graphs —
social networks, web graphs, and road networks — are surprisingly rarely used for GNN evaluation,
perhaps due to the lack of easily accessible high-quality datasets.

Recently, there has been a lot of interest in developing graph foundation models (GFMs) — models
that after large-scale pretraining can be applied to diverse graph datasets without or with minimal
fine-tuning (Wang et al., 2025; Mao et al., 2024). Proper evaluation of such models thus requires the
use of a diverse set of realistic graph datasets. However, currently the proposed GFMs are frequently
evaluated only on text-attributed graphs (and mostly citation networks), thus overlooking the problem
of transferring to graphs with different node feature sets, which is required for truly general GFMs as
graphs in real-world applications from different domains often come with completely different node
feature sets.

It has been argued that due to the unavailability of diverse realistic industrial datasets for researchers
it is worth shifting the evaluation of GML models to synthetic datasets (Palowitch et al., 2022; Yoon
et al., 2023). However, we believe that it is important to evaluate models on real-world data as much
as possible, both to obtain unbiased estimates of model performance in realistic scenarios and to
showcase the potential of GML in industrial applications. Thus, it is desirable to have open and easily
accessible diverse and realistic graph datasets.

In our work, we aim to alleviate the issue of a lack of realistic GNN benchmarks for node property
prediction by introducing GraphLand: a collection of graphs and associated machine learning tasks
collected from a variety of industrial applications that represent real-world GML usage. GraphLand
significantly extends the set of available datasets for GML model evaluation, providing in a unified
format 14 graph datasets, many of which represent applications or structural properties that have not
been covered by standard GML benchmarks before. The datasets in GraphLand have been collected
both from open data that has been underutilized or not utilized at all in the field of GML, and from
newly released data from services of a large technological company for which the use of GML has
internally proven its usefulness. A key feature of GraphLand is its diversity, with graphs spanning a
wide range of domains, sizes, and structural properties, and having rich node features with different
types, meanings, and distributions.

For datasets in GraphLand, we provide several data splits, including a realistic temporal one, which
allows for investigating practically important questions previously underexplored in GML literature:
how temporal distributional shifts affect the performance of GML models in both transductive and
inductive settings.

We run extensive experiments on GraphLand datasets with a range of GNNs and several openly
available GFMs, as well as with classic gradient-boosted decision trees (GBDT) models (Friedman,
2001) which are popular in industrial applications and which we adapt to graph-structured data by
providing them with additional graph-based input features. We find that GNNs can achieve great
results in industrial applications with attention-based GNNs often performing better than more classic
ones. However, their performance can be strongly affected by temporal distributional shifts and
dynamically evolving graph structure, which highlights the importance of developing models more
resilient to such changes. Further, we find that currently available GFMs perform poorly on our
datasets and fail to achieve results competitive with more classic methods.

We hope that GraphLand will allow more diverse and realistic evaluation of GML models, as well as
encourage research into currently underexplored directions such as designing GML models that are
more resilient to temporal distributional shifts and dynamically evolving graphs, and designing GFMs
that are truly generalizable to graph data from different domains with different node feature sets.
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2 Limitations of popular graph machine learning benchmarks

By far the most popular datasets used in modern GML literature are the three academic citation
networks cora, citeseer, and pubmed (Giles et al., 1998; McCallum et al., 2000; Sen et al., 2008;
Namata et al., 2012; Yang et al., 2016). These datasets became so widespread perhaps because they
were used by the foundational work on modern GNNs by Kipf & Welling (2017). However, these
datasets only cover a single and rather narrow application of paper subject prediction in citation
networks. Another popular set of datasets for GML was introduced by Shchur et al. (2018) and
includes academic coauthorship networks coauthor-cs and coauthor-physics, and e-commerce
co-purchasing networks amazon-computers and amazon-photo. However, all the aforementioned
datasets together only cover three applications, while GML methods can be used in a much wider
variety of settings. Later, larger-scale graph datasets were introduced in the Open Graph Benchmark
(OGB) (Hu et al., 2020). However, out of the five node property prediction datasets, three are
academic citation networks (ogbn-arxiv, ogbn-mag, ogbn-papers100M) and one more is an e-
commerce co-purchasing network (ogbn-products). Thus, OGB does not significantly expand the
range of real-world applications available for evaluating GML models. Further, all the aforementioned
datasets only provide textual descriptions as node features. However, co-purchasing networks, which
represent a very practically important application of GML, in realistic settings come with rich product
metadata that can be represented as numerical and categorical features. Popular GML benchmarks
currently lack datasets with such metadata. Further, all the aforementioned datasets are homophilous,
i.e., edges in them typically connect nodes of the same class. It has been shown by Huang et al.
(2021) that even very simple models can provide strong results in homophilous networks. Thus, it
is important for standard GML benchmarks to also include a wide selection of non-homophilous
graphs, i.e., graphs in which edges do not have the tendency to connect nodes of the same class.
For a long time, the only popular source of non-homophilous graph datasets was the benchmark
from Pei et al. (2020). However, it was recently shown by Platonov et al. (2023b) that these datasets
have numerous problems including duplicated nodes, small size (leading to noisy evaluation metric
estimates), and insufficient class representation (such as the texas dataset having a class that consists
of only a single node). While Platonov et al. (2023b) introduced several new non-homophilous
graph datasets, they were meant to be used to reliably reevaluate the performance of different models
in the absence of homophily, rather than represent realistic GML applications. Thus, some of
these datasets are synthetic (minesweeper), semi-synthetic (roman-empire), or have limited node
features despite the original data source potentially providing more information about the nodes
(tolokers, questions).

Overall, the currently popular graph datasets for node property prediction do not allow evaluating
GNNs and other GML models on a wide range of practically impactful industrial applications.

Text-attributed graphs and generalization of graph foundation models Most of the datasets
frequently used for node property prediction only have textual descriptions as node attributes. How-
ever, graphs representing real-world networks often have rich and diverse node attributes that go
beyond texts and encompass a variety of numerical and categorical features with different meanings
and distributions. There has recently been a lot of interest in developing general-purpose GFMs that
are expected to generalize to graphs from different domains (Wang et al., 2025; Mao et al., 2024).
A key challenge for such GFMs is being able to adapt to graphs with different node feature sets,
which is required for a model truly generalizable to different domains. Yet, the GFMs that have been
proposed in the current literature typically overlook this challenge and are often only evaluated on
text-attributed graphs (Liu et al., 2024; Li et al., 2024a; He et al., 2025). Textual attributes can be
easily projected to a common latent feature space by applying pretrained text encoders based on
Large Language Models, thus allowing a single GFM to work with different text-attributed graphs.
The prevalence of such text-attributed graphs in GML benchmarks has led to most of current GFM
research overlooking the problem of generalization to different node feature sets, since it is not
required to solve tasks from standard benchmarks. However, this problem is very important for
real-world industrial applications of GML in which graphs often come attributed with a mixture of
numerical and categorical node features. GFMs must therefore be able to work with such features
to effectively solve practical tasks. The problem of devising a single foundation model that can
work with arbitrary numerical and categorical features has received significant attention from the
ML for tabular data community, where such features are standard, and first successful attempts to
develop such a model have recently emerged (Hollmann et al., 2023, 2025; Ye et al., 2023, 2025;
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Mueller et al., 2025; Ma et al., 2024; Qu et al., 2025). However, these ideas have not yet spread to the
GML community (likely because current standard GML benchmarks do not require working with
non-textual node features) despite the significant benefits of designing a successful GFM that can
handle arbitrary node feature sets for practical applications.

3 GraphLand: a collection of diverse industrial graph datasets

GraphLand is a collection of 14 graph datasets with node property prediction tasks (either classifi-
cation or regression). Some of these datasets are newly released for this benchmark, while others
are collected from open data sources that are underutilized or not utilized at all in current GML
benchmarking. In selecting datasets for GraphLand, we aim to fulfill the following desiderata:

• Datasets should come from a range of impactful industrial applications, including such archetypal
examples of real-world networks as social networks, web graphs, and road networks;

• Datasets should have graph structure that is beneficial for the considered task;

• Graphs from different datasets should have diverse structural properties;

• Datasets should have rich node attributes consisting of a range of numerical and/or categorical
features;

• If a graph is dynamically evolving over time, it should ideally have the necessary temporal
information to construct a realistic time-based data split and a meaningful inductive setting;

• Datasets should cover a range of graph sizes to allow for evaluation with different available
computational resources, but should contain at least 10,000 nodes to avoid particularly noisy
evaluation metric estimates.

In this section, we briefly describe our datasets and the corresponding prediction tasks. More detailed
descriptions are provided in Appendix A.1, while the discussion of structural properties and other
characteristics of our datasets can be found in Appendix A.2.

First, we describe datasets based on the data newly released specifically for our benchmark.

web-fraud, web-topics, and web-traffic These three datasets represent a part of the
Internet (web graph). The nodes are websites, and a directed edge connects two nodes if at least one
user followed a link from one website to the other in a selected period of time. We prepared three
datasets with the same graph but different tasks: in web-fraud, the task is to predict which websites
are fraudulent (strongly imbalanced binary classification); in web-topics, the task is to predict the
topic that a website belongs to (multiclass classification); and in web-traffic, the task is to predict
how many users visited a website in a specific period of time (regression). With almost 3 million
nodes, this is one of the largest publicly available attributed graphs that is not a citation network.

artnet-views and artnet-exp These two datasets represent a social network of art creators.
The nodes are users, and an edge connects two nodes if the users are friends. We prepared two
datasets with the same graph but different tasks: in artnet-views, the task is to predict how many
views a user receives in a specific period of time (regression); and in artnet-exp, the task is to
predict which users tend to create explicit art content (binary classification).

city-roads-M and city-roads-L These datasets represent road networks of two major cities,
with the second one being several times larger than the first. The nodes are segments of roads, and a
directed edge connects two nodes if the segments are incident to each other and moving from one
segment to the other is permitted by traffic rules. The task is to predict the average traveling speed on
the road segment at a specific timestamp (regression).

city-reviews This dataset represents a review service of places and organizations in two major
cities. The nodes are users who leave ratings and post comments about various places, and an edge
connects two nodes if the users often leave reviews for the same organizations. The task is fraud
detection — to predict which users leave fraudulent reviews (binary classification).

Further, we find that beyond academic citation networks, there are quite a few sources of open
network data available that are, however, rarely or even never used for GML model evaluation.
Below, we describe the datasets we obtained from these open sources. For these datasets, we defined
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Table 1: Characteristics of the proposed GraphLand datasets.
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# nodes 46.5K 1.6M 2.9M 11.8K 148.8K 50.4K 2.9M 46.5K 76.3K 57.1K 142.3K 168.1K 50.4K 2.9M
# edges 10.7M 22.3M 12.4M 519.0K 1.2M 280.3K 12.4M 10.7M 11.0M 107.1K 231.6K 6.8M 280.3K 12.4M
avg degree 460.92 27.32 8.56 88.28 15.66 11.12 8.56 460.92 288.04 3.75 3.26 80.87 11.12 8.56
median degree 45 13 2 30 4 2 2 45 71 4 3 32 2 2
avg distance 2.45 4.68 3.08 2.79 4.91 4.42 3.08 2.45 3.55 126.75 194.05 2.88 4.42 3.08
diameter 13 14 36 11 19 13 36 13 14 383 553 8 13 36
global clustering 0.27 0.05 0.00 0.23 0.26 0.03 0.00 0.27 0.24 0.00 0.00 0.02 0.03 0.00
avg local clustering 0.70 0.11 0.33 0.53 0.41 0.08 0.33 0.70 0.85 0.00 0.00 0.16 0.08 0.33
degree assortativity −0.35 0.00 −0.14 −0.08 0.01 0.03 −0.14 −0.35 −0.30 0.70 0.74 −0.09 0.03 −0.14

# classes 21 183 28 2 2 2 2 N/A N/A N/A N/A N/A N/A N/A
unbiased homophily 0.38 0.98 0.55 0.10 0.69 0.28 0.32 N/A N/A N/A N/A N/A N/A N/A
target assortativity N/A N/A N/A N/A N/A N/A N/A 0.12 0.18 0.74 0.72 −0.41 0.19 −0.21

# node features 35 56 263 16 37 75 266 41 260 26 26 4 50 267

or extended node features and labels, as well as constructed the graph structure where it was not
explicitly available.

avazu-ctr This dataset is based on the data about user interactions with ads provided by the
Avazu company (Wang & Cukierski, 2014). The nodes are devices used to access the Internet, and
an edge connects two nodes if the devices often visit the same websites. The task is to predict
advertisement click-through rate for devices (regression).

hm-categories and hm-prices These two datasets are based on the product co-purchasing
network from the H&M company (García Ling et al., 2022). The nodes are products, and an edge
connects two nodes if the products are often bought by the same customers. We prepared two datasets
with the same graph but different tasks: in hm-categories, the task is to predict the product category
(multiclass classification); and in hm-prices, the task is to predict the product price (regression).

pokec-regions This dataset is based on the data from Takac & Zabovsky (2012). It represents
the online social network Pokec. The nodes are users, and a directed edge connects two nodes if one
user has marked the other as a friend. The task is to predict which region a user is from (extreme
multiclass classification with 183 classes).

twitch-views This dataset is based on the data from Rozemberczki & Sarkar (2021). It repre-
sents the live-streaming network Twitch. The nodes are users, and an edge connects two nodes if both
users follow each other. The task is to predict how many views a user receives in a specific period of
time (regression).

tolokers-2 This is a new version of the dataset tolokers from Platonov et al. (2023b); Likhob-
aba et al. (2023) with a significantly extended set of node features. This dataset represents a network
of tolokers (workers) from the Toloka crowdsourcing platform. The nodes are tolokers and an edge
connects two nodes if the tolokers have worked on the same task. The task is fraud detection — to
predict which tolokers have been banned in one of the projects (binary classification).

Overall, our datasets cover a diverse range of industrial applications. In Table 1, we provide some
characteristics of the datasets: as can be seen, our datasets also exhibit very diverse graph structural
properties. A more detailed discussion of these characteristics is provided in Appendix A.2.

4 Data splits and experimental settings

In GML literature, there are two most popular settings for node property prediction regarding the
relative sizes of train, validation, and test sets: one with a high label rate and one with a low label
rate. In the high label rate setting, the train set encompasses 50% of all graph nodes or more. This
setting is common in heterophilous benchmarks, e.g., it is used by the datasets from Pei et al. (2020)
and Platonov et al. (2023b), as well as by most datasets from OGB (Hu et al., 2020). In the low label
rate setting, much smaller train set sizes are used (typically, no more than 10% of all graph nodes).
This setting is commonly used with the classic cora, citeseer, pubmed citation networks, and it is
also used by the ogbn-products dataset from OGB. Both of these settings can appear in real-world
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GML usage scenarios, depending on the resources available for data labeling. It is important to
provide predetermined splits to ensure experiments in different works are run in the same setting
and their results are comparable, but it is also important to accommodate different needs of different
research projects. Thus, for datasets in our benchmark we provide fixed splits for both settings. We
refer to these splits as the RL (random low) and RH (random high) splits. Specifically, the RL split
randomly divides nodes into train/validation/test sets with 10%/10%/80% proportions, while the RH
split randomly divides nodes into train/validation/test sets with 50%/25%/25% proportions.

The RL and RH data splits are random, as is common in current GML benchmarks. However, in
real-world applications, data splits are often temporal, i.e., the labeled objects are the ones that
appeared in the network earlier, while those that appeared later are not labeled and belong to the test
set. Despite their prevalence in applications, temporal splits are very rarely used in current GML
node property prediction benchmarks. To the best of our knowledge, the only such datasets with
temporal splits available are citation networks from OGB, which represent only a single application.
At the same time, temporal data splits may significantly affect the prediction problem and the model
performance, as they often result in distributional shifts between train, validation, and test data. While
some types of distributional shifts have been previously explored in the GML literature, e.g., shifts
in node features (Gui et al., 2022) and shifts in graph structure (Bazhenov et al., 2023), realistic
temporal distributional shifts often combine shifts in several aspects of data simultaneously (e.g.,
shifts in the distributions of node features, labels, and graph structural characteristics), and the effect
of such realistic shifts on GML model performance is currently under-explored. To close this gap,
we provide a temporal split for most datasets in our benchmark. We refer to this split as the TH
(temporal high) split; it divides nodes into train/validation/test sets with 50%/25%/25% proportions,
i.e., exactly the same proportions as in the RH split, which allows comparing model results between
the RH and TH splits to see how the complexity of the task changes when temporal distributional shifts
are introduced.

Further, many real-world networks are not static, but evolve over time. Thus, in many applications,
not only are there no labels available for nodes that appear in the network later, but the nodes
themselves (with their attributes and incident edges) are not available at training time. This setting is
known in GML as the inductive setting. In contrast to the transductive setting in which the whole
graph is available at training time (including the nodes for which predictions should be made), in
the inductive setting validation and test nodes are not available at training time. Despite temporally
evolving graphs being common in practical applications, most standard node property prediction
datasets only provide the transductive setting. While it is well-known that GNNs, in contrast to some
other GML methods like shallow node embeddings, can work not only in the transductive but also in
the inductive setting (Hamilton et al., 2017), it is not well-explored how the lack of complete graph
information at training time in the inductive setting affects GNN performance. Moreover, when the
inductive setting is used for GNN evaluation in the current literature, the validation and test nodes are
typically chosen randomly, which is not realistic, since in real-world applications the inductive setting
is almost always induced by the temporal evolution of the graph. To fill this gap, for all datasets in
our benchmark for which temporal information is available, we additionally provide the inductive
experimental setting. We refer to this setting as THI (temporal high / inductive); it has the exact same
data split as the transductive TH setting, but provides three snapshots of the graph: one for training,
one for validation, and one for testing. This allows investigating how model performance changes
between the transductive and the inductive setting. To the best of our knowledge, our work is the first
to compare GNN performance between random and temporal data splits in the transductive setting
under the same split ratios, and between transductive and inductive settings under the same temporal
data split. This comparison allows us to investigate how much these differences can affect GNN
performance.

5 Experiments

5.1 Models

In our experiments, we use a range of models which we describe in this subsection. For all models, we
conduct extensive hyperparameter tuning. The details of it, as well as the description of other aspects
of our experimental setting and more detailed model descriptions, are provided in Appendix B.
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Graph-agnostic baselines The tasks that we consider in our benchmark, such as fraud detection
and CTR prediction, are frequently tackled in industrial settings without considering the graph
structure. Thus, as baselines, we use several models that do not have access to the graph structure.
We call such models graph-agnostic. Comparing results between graph-agnostic and graph-aware
models might reveal how much benefit using the graph structure brings for the considered task. First,
as a simple baseline, we use ResMLP — an MLP augmented with skip-connections (He et al., 2016)
and layer normalization (Ba et al., 2016). This model treats all nodes as independent data samples and
does not use the graph structure. It has been shown that models of this type can serve as very strong
baselines for industrial data with mixed numerical and categorical features (Gorishniy et al., 2021).
Further, we consider GBDT models (Friedman, 2001). These models are very popular in industrial
applications and are often considered to be better than neural networks at dealing with numerical
features (Gorishniy et al., 2021, 2022) and regression tasks (Zhang et al., 2023), which makes them
very relevant baselines for our benchmark. We use the three most popular GBDT implementations:
XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al.,
2018).

Further, we attempt to make originally graph-agnostic models stronger on our benchmark by providing
them with some graph information through feature augmentation. Specifically, for each node in
the graph, we aggregate features from all its one-hop neighbors in the graph, compute the mean,
maximum, and minimum values of each feature, and append these statistics to the node’s original
features. This mimics one step of GNN spatial graph convolution and allows graph-agnostic models
to use some of the graph information that GNNs use. We call this feature augmentation strategy
neighborhood feature aggregation (NFA) and denote models that use it with the -NFA suffix. A more
detailed description of NFA is provided in Appendix B.2.

Graph neural networks As our main models, we use four representative GNN architectures: two
classic GNNs — GCN (Kipf & Welling, 2017) and GraphSAGE (Hamilton et al., 2017), and two
attention-augmented GNNs — GAT (Veličković et al., 2018) and neighborhood-attention Graph
Transformer (GT) (Shi et al., 2021). Note that GT is a local graph transformer with attention only
over node neighborhoods, which is different from global graph transformers with all-to-all attention.
For all GNNs, we use the modifications from Platonov et al. (2023b) that add skip connections, layer
normalization, and MLP blocks to the models. We found that these modifications often significantly
improve performance on our datasets.

It has been argued recently that in some GML datasets the graph structure does not actually help solve
the considered tasks (Errica et al., 2020; Li et al., 2024b; Coupette et al., 2025; Bechler-Speicher et al.,
2025). Thus, when new graph datasets are introduced, it is important to experimentally verify that
their graph structure is actually helpful. For this, the performance of graph-agnostic and graph-aware
models can be compared. To avoid other factors influencing the comparison, the two models being
compared should be otherwise identical except that one has access to the graph structure and the
other does not. Our set of models provides two such comparisons. First, graph-agnostic models can
be compared with their NFA-augmented versions, which have access to graph neighborhood feature
information. Second, ResMLP can be compared to GNNs: our GNNs have the exact same backbone
that our ResMLP baseline has, except GNNs have spatial graph convolution modules added, which
makes the comparison fair.

Graph foundation models Recently, there has been a lot of interest in developing graph foundation
models — models that can be applied to diverse graph datasets without or with minimal fine-tuning.
However, we found that the current GFMs predominantly focus on text-attributed graphs and overlook
the challenge of transferring a single model to datasets with different node feature sets. This prevents
such models from being truly general, as graphs in real-world applications often have many different
numerical and/or categorical node attributes that are important for solving the relevant tasks. We
have found only a few GFMs that support node property prediction in graphs with arbitrary node
attributes: SAMGPT (Yu et al., 2025), GCOPE (Zhao et al., 2024), OpenGraph (Xia et al., 2024),
GraphFM (Lachi et al., 2024), AnyGraph (Xia & Huang, 2024), and TS-GNN (Finkelshtein et al.,
2025). Of these models, only OpenGraph and AnyGraph have publicly available weights. Thus, we
evaluate these two models. We commend the researchers who make their GFMs openly available
and encourage others to do the same. For both models, we use the in-context learning (ICL) setting
recommended by the authors for node classification, in which the task is cast as predicting links to
virtual class nodes. Further, we were able to reproduce the pretraining of TS-GNN and GCOPE, and
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Table 2: Experimental results under the RL (random low) data split in the transductive setting. The
best result and those statistically indistinguishable from it are highlighted in orange. TLE stands for
time limit exceeded (24 hours); MLE stands for memory limit exceeded (80 GB VRAM); RTE stands
for runtime error in the official code of GFMs.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 city-reviews artnet-exp web-fraud

best const. pred. 19.46± 0.00 3.77± 0.00 28.36± 0.00 21.82± 0.00 12.09± 0.00 10.00± 0.00 0.66± 0.00

ResMLP 37.72± 0.18 4.88± 0.01 42.41± 0.02 41.16± 1.13 71.32± 0.11 35.07± 2.34 8.77± 0.18
XGBoost 40.04± 0.09 4.93± 0.01 TLE 45.76± 1.00 74.70± 0.13 41.92± 0.82 11.54± 0.04
LightGBM 39.73± 0.08 4.89± 0.00 TLE 44.60± 0.12 74.51± 0.04 41.21± 0.12 TLE
CatBoost 40.72± 0.40 TLE TLE 46.10± 0.35 74.77± 0.10 42.50± 0.12 TLE

ResMLP-NFA 48.72± 0.38 8.05± 0.03 MLE 48.14± 1.40 76.02± 0.14 38.25± 0.56 MLE
LightGBM-NFA 56.55± 0.15 9.53± 0.01 TLE 56.16± 0.28 78.33± 0.04 45.40± 0.13 TLE

GCN 61.70± 0.35 34.96± 0.38 46.45± 0.10 51.32± 0.96 77.15± 0.28 43.09± 0.38 10.02± 0.18
GraphSAGE 56.75± 0.53 37.88± 0.41 47.41± 0.13 53.73± 0.53 77.82± 0.13 42.65± 0.59 12.11± 0.23
GAT 67.96± 0.33 46.17± 0.32 48.25± 0.05 53.78± 1.34 77.67± 0.13 46.62± 0.32 13.32± 0.29
GT 69.23± 0.50 46.47± 0.16 48.00± 0.05 54.50± 1.20 76.97± 0.21 45.16± 0.46 12.74± 0.42

OpenGraph (ICL) 9.49± 0.93 1.73± 0.31 RTE 40.49± 0.31 58.44± 1.08 15.65± 1.23 RTE
AnyGraph (ICL) 15.47± 2.36 24.65± 1.51 6.67± 3.88 31.33± 2.89 64.37± 1.29 13.14± 1.15 0.68± 0.03
TS-GNN (ICL) 20.09± 1.29 MLE MLE 38.54± 0.94 43.46± 5.17 20.44± 1.05 MLE
GCOPE (FT) 19.51± 0.07 TLE TLE 28.67± 1.42 67.38± 1.23 16.10± 2.79 TLE

(b) Results for regression datasets. R2 is reported for all datasets.

hm-prices avazu-ctr city-roads-M city-roads-L twitch-views artnet-views web-traffic

best const. pred. 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

ResMLP 62.66± 0.37 24.54± 0.36 54.77± 0.15 46.47± 0.29 13.35± 0.02 29.71± 0.60 72.42± 0.05
XGBoost 65.68± 0.16 26.72± 0.02 59.14± 0.11 53.75± 0.07 13.39± 0.00 32.74± 0.04 TLE
LightGBM 65.44± 0.09 25.83± 0.04 57.76± 0.10 52.65± 0.08 13.38± 0.01 32.47± 0.04 TLE
CatBoost 66.85± 0.28 26.10± 0.04 57.53± 0.18 51.43± 0.17 13.20± 0.03 32.89± 0.05 TLE

ResMLP-NFA 67.19± 0.30 31.11± 0.30 57.82± 0.14 50.85± 0.18 51.43± 0.60 51.03± 0.41 MLE
LightGBM-NFA 70.46± 0.09 31.72± 0.06 61.00± 0.05 55.26± 0.04 60.20± 0.01 56.55± 0.04 TLE

GCN 69.76± 0.38 30.47± 0.27 59.05± 0.16 53.26± 0.14 75.55± 0.05 55.99± 0.26 82.07± 0.14
GraphSAGE 70.54± 0.21 31.84± 0.24 57.51± 0.53 52.43± 0.25 66.87± 0.11 49.79± 0.51 83.50± 0.11
GAT 73.17± 0.50 33.20± 0.20 59.11± 0.20 53.43± 0.20 72.93± 0.17 53.36± 0.78 84.68± 0.06
GT 71.87± 0.65 30.87± 0.47 58.05± 0.58 53.38± 0.12 72.19± 0.14 54.23± 0.22 84.49± 0.07

we also evaluate these two models (specifically, for TS-GNN we use the TS-Mean variant). We use
the ICL setting for TS-GNN and the fine-tuning (FT) setting for GCOPE, as recommended by the
authors (note that TS-GNN solves several least squares problems to fit its weights before making
predictions, which can be considered a form of training, but, following the authors of this model,
we still count it as ICL). However, neither of the considered models supports node regression; thus,
we are only able to evaluate these models on our node classification datasets (while TS-GNN and
GCOPE can support node regression in theory, their official implementations do not provide such
support). Further, our experiments show that the considered GFMs cannot scale to large datasets.

5.2 Low label rate, random data split, transductive setting

The results for experiments under the random low label rate data split (RL) are provided in Table 2.

First, we can see that the graph structure in our datasets is very beneficial for the considered tasks as
all GNNs always significantly outperform ResMLP and NFA-augmented models always significantly
outperform their counterparts without NFA. Providing graph-agnostic models with graph information
through NFA significantly improves their performance and even allows LightGBM-NFA to achieve
the best results on four datasets including three regression ones. At the same time, GNNs outperform
ResMLP-NFA on these datasets, which suggests that the success of LightGBM-NFA is due to GBDTs
being better at handling numerical features and regression targets (Gorishniy et al., 2021, 2022;
Zhang et al., 2023). This highlights that GBDTs with augmented features are strong baselines in
realistic industrial settings. Still, GNNs manage to outperform them on most datasets, showing their
effectiveness for industrial applications.
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Table 3: Experimental results under the RH (random high), TH (temporal high), and THI (temporal high
/ inductive) settings. The best result and those statistically indistinguishable from it are highlighted in
red for RH, violet for TH, and blue for THI.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 artnet-exp web-fraud

RH 19.46± 0.00 3.77± 0.00 28.36± 0.00 21.82± 0.00 10.00± 0.00 0.66± 0.00
best const. pred. TH 19.57± 0.00 2.98± 0.00 23.28± 0.00 8.61± 0.00 7.84± 0.00 0.15± 0.00

THI 19.57± 0.00 2.98± 0.00 23.28± 0.00 8.61± 0.00 7.84± 0.00 0.15± 0.00

RH 47.28± 0.14 5.10± 0.01 TLE 49.92± 0.19 44.98± 0.80 TLE
LightGBM TH 32.08± 0.25 4.13± 0.01 TLE 15.85± 3.89 37.34± 0.18 TLE

THI 32.08± 0.25 4.13± 0.01 TLE 15.85± 3.89 37.34± 0.18 TLE
RH 67.09± 0.15 12.15± 0.02 TLE 62.19± 0.35 49.26± 0.18 TLE

LightGBM-NFA TH 52.45± 0.18 5.54± 0.01 TLE 31.81± 7.51 39.89± 0.37 TLE
THI 47.46± 0.28 4.58± 0.02 TLE 45.45± 0.82 39.91± 0.25 TLE

RH 73.38± 0.42 35.08± 0.62 48.88± 0.09 60.49± 0.86 49.80± 0.35 15.58± 0.20
GCN TH 56.91± 0.55 11.88± 0.31 38.20± 0.19 46.72± 1.19 40.64± 0.40 4.85± 1.42

THI 47.05± 1.69 6.88± 0.51 37.76± 0.06 32.43± 8.03 41.28± 0.28 3.44± 0.33

RH 73.34± 0.68 40.76± 0.21 50.05± 0.03 58.42± 0.92 48.49± 0.37 20.47± 0.17
GraphSAGE TH 59.62± 0.51 16.60± 0.28 39.00± 0.09 17.05± 7.65 40.50± 0.84 16.01± 2.22

THI 48.11± 2.08 8.04± 0.26 38.04± 0.18 30.86± 9.48 40.53± 0.40 13.88± 1.32

RH 79.19± 0.21 46.72± 0.69 50.54± 0.04 63.76± 1.30 50.62± 0.35 20.43± 0.21
GAT TH 61.28± 0.97 20.43± 0.55 39.24± 0.23 38.59± 6.19 41.85± 0.63 16.50± 1.14

THI 59.34± 1.09 13.38± 0.35 38.77± 0.35 24.53± 9.55 41.64± 0.32 11.98± 1.54

RH 79.28± 0.31 50.06± 0.53 50.58± 0.04 60.32± 1.21 49.32± 1.00 19.73± 0.34
GT TH 63.31± 0.45 25.09± 0.58 39.19± 0.15 34.15± 4.81 40.10± 0.60 11.97± 1.13

THI 59.54± 1.59 17.22± 0.42 38.78± 0.08 22.89± 10.40 40.26± 0.82 7.84± 2.35

RH 11.69± 0.84 2.56± 0.42 RTE 44.62± 1.35 23.72± 1.86 RTE
OpenGraph (ICL) TH 5.76± 1.03 0.80± 0.45 RTE 9.12± 1.74 16.19± 1.36 RTE

THI 5.76± 1.03 0.80± 0.45 RTE 9.12± 1.74 16.19± 1.36 RTE
RH 15.65± 2.82 27.67± 2.48 6.30± 2.82 30.21± 3.32 15.80± 1.90 0.67± 0.02

AnyGraph (ICL) TH 9.47± 1.13 9.20± 0.67 11.14± 5.16 13.52± 4.74 11.80± 1.01 0.16± 0.01
THI 9.47± 1.13 9.20± 0.67 11.14± 5.16 13.52± 4.74 11.80± 1.01 0.16± 0.01

RH 15.48± 1.93 MLE MLE 31.83± 2.55 13.38± 2.59 MLE
TS-GNN (ICL) TH 18.91± 0.32 MLE MLE 12.59± 1.97 9.46± 1.25 MLE

THI 18.91± 0.32 MLE MLE 12.59± 1.97 9.46± 1.25 MLE
RH 19.99± 0.12 TLE TLE 31.79± 1.95 23.86± 2.33 TLE

GCOPE (FT) TH 19.14± 0.58 TLE TLE 8.46± 1.15 20.83± 1.18 TLE
THI 15.69± 3.44 TLE TLE 10.73± 1.48 19.10± 0.96 TLE

(b) Results for regression datasets. R2 is reported for all datasets.

hm-prices avazu-ctr twitch-views artnet-views

RH 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
best const. pred. TH −2.85± 0.00 0.00± 0.00 −22.31± 0.00 −9.32± 0.00

THI −2.85± 0.00 0.00± 0.00 −22.31± 0.00 −9.32± 0.00

RH 73.99± 0.11 29.60± 0.02 13.37± 0.00 36.38± 0.08
LightGBM TH 63.56± 0.39 26.23± 0.04 −9.60± 0.03 42.87± 0.08

THI 63.56± 0.39 26.23± 0.04 −9.60± 0.03 42.87± 0.08

RH 79.78± 0.09 35.35± 0.04 62.14± 0.01 60.30± 0.07
LightGBM-NFA TH 71.36± 0.41 38.69± 0.03 43.60± 0.03 52.42± 0.06

THI 68.88± 0.11 33.04± 0.17 24.81± 0.11 51.95± 0.05

RH 79.76± 0.76 34.96± 0.11 77.12± 0.11 61.02± 0.13
GCN TH 65.20± 0.84 37.49± 0.26 68.17± 0.24 54.44± 0.43

THI 64.31± 0.82 34.78± 0.48 63.58± 0.54 53.73± 0.47

RH 79.89± 0.46 35.20± 0.20 72.02± 0.16 56.65± 0.50
GraphSAGE TH 67.93± 1.24 38.38± 0.39 61.46± 0.68 51.87± 0.48

THI 65.80± 0.56 36.79± 0.55 56.60± 0.71 53.37± 0.30

RH 81.68± 0.41 35.74± 0.19 76.06± 0.30 59.01± 0.52
GAT TH 70.83± 0.99 39.21± 0.17 66.32± 0.59 52.30± 0.34

THI 69.74± 1.50 37.18± 1.02 61.41± 1.30 52.44± 0.59

RH 80.90± 0.42 34.38± 0.31 75.57± 0.15 58.97± 0.25
GT TH 69.70± 0.84 38.27± 0.27 65.83± 0.24 51.67± 0.54

THI 67.33± 2.05 36.49± 0.83 60.67± 1.02 52.26± 0.48

Further, we can see that while there is no single best model among GNNs, attention-based GNNs
(GAT and GT) outperform classic GNNs (GCN and GraphSAGE) on most datasets, showing the
importance of being able to assign weights to messages from graph neighbors depending on their
content in realistic industrial datasets.
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As for GFMs, we find that all the considered models produce very weak results on all our datasets.
This shows that currently available GFMs are still far from being able to compete with classic GNNs
on realistic datasets with rich node attributes.

5.3 High label rate, random and temporal data splits, transductive and inductive settings

A summary of the results for high label rate random (RH) and temporal (TH) data splits, as well as for
the inductive setting (THI) is provided in Table 3. Full results are provided in Appendix C.

First, the observations from the previous subsection about the usefulness of graph structure, benefits
of attention-based GNNs, and weak performance of GFMs also apply to high label rate settings. Next,
we observe that temporal data splits are significantly more challenging for all models than random
ones (with the exception of the avazu-ctr dataset). This is important as in real-world applications
temporal distributional shifts are common, and not considering them can provide overly optimistic
performance estimates. Further, the considered models perform significantly worse in the inductive
setting than in the transductive one. These observations highlight the importance of developing GML
methods that are more resilient to temporal distributional shifts and dynamic changes in the graph
structure for industrial applications. In the absence of such methods, frequent retraining of GNNs on
new data is recommended to achieve the best results. Note that GFMs that only utilize in-context
learning to adapt to new graphs do not suffer from the transductive/inductive mismatch and thus
represent a promising direction, but their performance is currently very weak compared with GNNs
on all datasets.

Overall, our main findings are as follows:

• GNNs can provide substantial benefits in industrial applications where graph information is
available, with attention-based GNNs showing particularly strong results. However, GBDT
models popular in industrial applications can serve as strong baselines when provided with
graph information as additional input features, especially in regression tasks.

• GML methods can be very strongly affected by temporal distributional shifts and dynamically
evolving graphs, so the design of GML methods capable of better handling such settings is an
important research direction.

• The currently available general-purpose graph foundation models achieve very weak results on
our datasets. Thus, the problem of creating truly general GFMs is far from being solved yet. We
hope our benchmark can serve as a reliable testbed for future research in this direction, and first
such successful use cases have already appeared (Eremeev et al., 2025a,b).

6 Conclusion

We introduce GraphLand — a set of diverse graph datasets representing realistic industrial applications
of GML. Besides serving as an extended testbed for GNNs and GFMs, GraphLand allows investigating
such previously underexplored research questions in the GML literature as how temporal distributional
shifts and the inductive prediction setting influence the performance of GML methods. We hope
GraphLand will encourage the evaluation of GML methods under more realistic and diverse settings,
the development of GML methods that are more resilient to temporal distributional shifts and
dynamically changing graph structure, and the development of better performing GFMs that can
handle different node feature sets that go beyond textual descriptions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 3 describes the proposed graph datasets, and Section 5 provides the
discussion of experimental results on these datasets.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in Appendix D.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our work does not include theoretical results.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The necessary instructions for reproducing the experimental results are pro-
vided in our GitHub repository.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The proposed datasets are released on Zenodo and Kaggle, and our source
code used for conducting experiments is shared via our GitHub repository.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Appendix B, we provide the experimental setup, including data splits and
hyperparameter tuning strategy.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In the main text and Appendix C, we provide the tables with experimental
results and report mean and standard deviation of metric values obtained in our experiments.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: In Appendix B, we describe the amount and type of computational resources
used to conduct experiments in our work.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To comply with NeurIPS Code of Ethics, we make our repository and bench-
mark accessible, go through the legalization procedures for our released datasets, include
license for our source code and avoid sharing any materials violating copyright or privacy.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Appendix D, we discuss potential societal impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not pose such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Our repository provides a license for the released source code and proposed
graph benchmark, and we do not share any materials that have been released under another
license in order to avoid any copyright violation.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our source code together with the instructions for reproducing experimental
results is released via our GitHub repository and our proposed graph datasets are available
on Zenodo and Kaggle.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core contribution in our work does not involve LLMs as any important,
original, or non-standard components.
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A GraphLand benchmark details

A.1 Dataset description

In this section, we provide a more detailed description of the GraphLand datasets. Note that none
of the proposed datasets contain any personal information. For the datasets based on data newly
collected for our benchmark, the public release of the data was approved by a legal team. GraphLand
datasets are available at Zenodo and Kaggle. Our source code and instructions on how to reproduce
our experimental results are available in our GitHub repository.

web-fraud, web-topics, and web-traffic These three datasets are web-graphs — they
represent a segment of the Internet. The nodes are websites, and a directed edge connects two nodes
if at least one user followed a link from one website to the other in a selected period of time. We
prepared three datasets with the same graph but different tasks: in web-fraud, the task is to predict
which websites are fraudulent (strongly imbalanced binary classification); in web-topics, the task is
to predict the topic that a website belongs to (multiclass classification); and in web-traffic, the task
is to predict how many users visited a website in a specific period of time (regression). With almost
3 million nodes, this is one of the largest publicly available attributed graphs that is not a citation
network. Nodes in this graph have more than two hundred features, examples of which include the
number of videos on the website (numerical feature), the website’s zone, and whether the website is
on a free hosting (categorical features). Data for these datasets was obtained from the Yandex search
engine.

artnet-views and artnet-exp These two datasets represent a social network of art creators.
The nodes are users, and an undirected edge connects two nodes if the users are friends. We prepared
two datasets with the same graph but different tasks: in artnet-views, the task is to predict how
many views a user receives in a specific period of time (regression); and in artnet-exp, the task is
to predict which users create explicit art content (binary classification). Examples of node features
include user interests (categorical features). Data for these datasets was obtained from the generative
AI art creation platform Shedevrum.

city-roads-M and city-roads-L These datasets are obtained from the logs of a navigation
service and represent the road networks of two major cities, with the second one being several times
larger than the first. The nodes are segments of roads, and a directed edge connects two nodes if
the segments are incident to each other and moving from one segment to the other is permitted
by traffic rules. The task is to predict the average travel speed on a road segment at a specific
timestamp (regression). The features include various information about the road segment such as
binary indicators of whether there is a bike dismount sign, whether the road segment ends with a
crosswalk or a toll post, whether the road segment is in poor condition, whether it is restricted for
trucks, and whether it has a mass transit lane (categorical features). Numerical features include the
length of the road segment and the geographic coordinates of the road endpoints. Data for these
datasets was obtained from the Yandex Maps service.

city-reviews This dataset is obtained from the logs of a review service in which users can leave
reviews and ratings for places and organizations in two major cities. The nodes are users, and an
undirected edge connects two nodes if the users often leave reviews for the same organizations. The
task is fraud detection — to predict which users leave fraudulent reviews (binary classification). The
node features are based on user interactions with the service and their examples include the share of
negative reviews among all reviews left by a user (numerical feature) and the browser that is used
to access the service by the user (categorical feature). Data for this dataset was obtained from the
Yandex Maps service.

avazu-ctr This dataset is based on open data that has been introduced at the Kaggle competition
organized by Avazu (Wang & Cukierski, 2014). The data contains information about interactions
between devices used to access the Internet, websites, and advertisements. In our graph, the nodes
are devices, and an edge connects two nodes if the devices often visit the same websites. The graph
is undirected. A smaller version of a similar dataset has been used by Ivanov & Prokhorenkova
(2021); however, it contained only a small subset of devices, while for our dataset we collected data
for all the available devices, making our graph more than 50 times larger. The task is to predict the
advertisement click-through rate (CTR) observed on devices (regression). Nodes in this graph have
more than two hundred numerical features; however, most of them were anonymized in the original
data source.
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hm-categories and hm-prices These datasets are based on open data that has been introduced
at the Kaggle competition organized by H&M (García Ling et al., 2022). The graph represents a
co-purchasing network. The nodes are products, and an edge connects two nodes if the products
are often bought by the same customers. The graph is undirected. We prepared two datasets with
the same graph but different tasks: in hm-categories, the task is to predict the product category
(multiclass classification), and in hm-prices, the task is to predict the product price (regression).
The node features in this dataset include product metadata such as product color (categorical feature),
as well as information obtained from product purchasing statistics such as what proportion of product
purchases occurs on different weekdays (numerical features).

pokec-regions This dataset is based on the data from Takac & Zabovsky (2012). It represents
the online social network Pokec. The nodes are users, and a directed edge connects two nodes if
one user has marked the other one as a friend. While this graph is quite popular in network analysis
as an example of a classic social network, it is relatively rarely used for machine learning, with the
exception of Lim et al. (2021) who use the same graph as we do but with different task, node features,
and data split. In our dataset, the task is to predict which region a user is from (extreme multiclass
classification with 183 classes). The node features in our dataset are based on user profile information,
examples of them include the profile completion proportion (numerical feature) and binary indicators
of whether different profile fields are filled (categorical features).

twitch-views This dataset is based on the data from Rozemberczki & Sarkar (2021). It rep-
resents the live-streaming network Twitch. The nodes are users, and an undirected edge connects
two nodes if both users follow each other. The task is to predict how many views a user receives in
a specific period of time (regression). The node features are based on user profile information and
examples of them include user language and affiliate status (categorical features).

tolokers-2 This is a new version of the dataset tolokers from Platonov et al. (2023b); Likhob-
aba et al. (2023) with a significantly extended set of node features. It is based on the data from the
Toloka crowdsourcing platform and the graph represents a network of tolokers (workers). The nodes
are tolokers, and an edge connects two nodes if these tolokers have worked on the same task. The
graph is undirected. The task is fraud detection — to predict which tolokers have been banned in one
of the projects (binary classification). The new node features include various performance statistics
of workers, such as the number of approved assignments and the number of skipped assignments
(numerical features), as well as workers’ profile information, such as their education level (categorical
feature).

Some graphs in our benchmark are undirected, and some are directed (see individual dataset descrip-
tions above). All our undirected graphs consist of a single connected component, and all our directed
graphs consist of a single weakly connected component.

For all datasets, we provide random stratified RL and RH data splits. Further, we provide temporal
TH data split (with the possibility of using the inductive learning setting THI) for all datasets with
the exception of city-roads-M and city-roads-L datasets (since well-established road network
graphs typically do not evolve over time significantly), as well as city-reviews and web-traffic
datasets (since for them some of the necessary temporal information was not available).

A.2 Dataset properties

A key characteristic of our benchmark is its diversity. As described above, our graphs come from
different domains and have different prediction tasks. Their edges are also constructed in different
ways (based on user interactions, activity similarity, physical connections, etc.). However, the
proposed datasets also differ in many other ways. Some properties of our graphs are presented
in Table 1 (see below for the details on how the provided characteristics are defined). First, note
that the sizes of our datasets range from 11K to 3M nodes. The smaller graphs can be suitable
for compute-intensive models, while the larger graphs can provide a moderate scaling challenge.
The average and median degrees of our graphs also vary significantly and our benchmark has both
sparse and relatively dense graphs, including graphs with the average degree in the order of hundreds
which is larger than the average degrees of most datasets used in current GML research (such graphs
may highlight the importance of attention-based GNNs with their soft edge selection mechanisms).
The average distance between two nodes in our graphs varies from 2.45 for hm-categories and
hm-prices to 194 for city-roads-L; and graph diameter (maximum distance) varies from 8 for
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twitch-views to 553 for city-roads-L. Further, we report the values of clustering coefficients,
which show how typical closed node triplets are for the graph. In the literature, there are two
definitions of clustering coefficients (Boccaletti et al., 2014): the global clustering coefficient and
the average local clustering coefficient. We have both graphs where the clustering coefficients are
high and graphs where they are almost zero, as well as graphs where global and local clustering
coefficients significantly disagree (which is possible for graphs with imbalanced degree distributions).
The degree assortativity coefficient is defined as the Pearson correlation coefficient of degrees among
pairs of linked nodes. For most of our graphs, the degree assortativity is either negative or close
to zero, which means that nodes do not tend to connect to other nodes with similar degrees, while
city-roads-M and city-roads-L datasets are the exceptions — for them the degree assortativity
is positive and large.

Further, let us discuss the graph-label relationships in our datasets. To measure the similarity of labels
of connected nodes for regression datasets, we use target assortativity — the Pearson correlation
coefficient of target values between pairs of connected nodes. For instance, for the city-roads-M
and city-roads-L datasets, the target assortativity is positive and quite large, which shows that
nodes tend to connect to other nodes with similar target values (which is expected for the task of
speed prediction in road networks), while for the twitch-views and web-traffic datasets, the
target assortativity is negative. For classification datasets, the similarity of neighbors’ labels is usually
called homophily: in homophilous datasets, nodes tend to connect to nodes of the same class. How
to properly measure homophily has recently attracted some research. It has been noted by Lim
et al. (2021) and Platonov et al. (2023a) that homophily measures typically used in the literature —
such as the proportion of edges connecting nodes of the same class — are not appropriate for
comparing homophily levels between graphs with different numbers of classes and their size balance.
Platonov et al. (2023a) proposed a set of properties that a homophily measure appropriate for use in
such comparisons should satisfy and Mironov & Prokhorenkova (2024) constructed the first known
homophily measure that satisfies all these properties — unbiased homophily. Thus, in our work,
we use unbiased homophily to measure the homophily levels of our datasets. Unbiased homophily
(with α = 0, see Mironov & Prokhorenkova (2024) for more details) takes values in [−1, 1] with
1 indicating perfect homophily, −1 indicating perfect heterophily, and 0 indicating no preference
between homophilous and heterophilous edges (such graphs are typically referred to as heterophilous
in the literature, although a more appropriate term would be non-homophilous). Note that the values
of unbiased homophily should not be compared to values of other homophily measures used in
the literature; the unbiased homophily levels for some popular graph node classification datasets
are provided by Mironov & Prokhorenkova (2024). Unbiased homophily indicates that among our
datasets pokec-regions and city-reviews are homophilous, while the remaining datasets are
non-homophilous. Thus, our benchmark significantly expands the set of available non-homophilous
graph datasets.

Finally, our datasets have diverse sets of node features consisting of numerical and categorical features
with different meanings and distributions. All our datasets except twitch-views and tolokers-2
have at least several dozen node features, while some have several hundred node features.

Overall, our datasets are diverse in domain, scale, structural properties, graph-label relations, and
node attributes. Coming from real-world GML applications, they may serve as a valuable tool for the
research and development of GML methods for the industry.

Computing dataset characteristics Further, we describe the characteristics that are used in Table 1.
Note that, while some graphs in our benchmark are directed, we transformed all the graphs to be
undirected before computing all the considered graph characteristics, since some of the characteristics
are not defined for directed graphs.

Average degree and median degree are the average and median numbers of neighbors a node has,
respectively. Since all our graphs are connected (when treated as undirected graphs), for any two
nodes there is a path between them. Average distance is the average length of the shortest paths
between all pairs of nodes, while diameter is the maximum length of the shortest paths between
all pairs of nodes. For our largest graphs — the ones used for the pokec-regions, web-traffic,
web-fraud, and web-topics datasets — we approximate the average distance with the average
over distances for 100K randomly sampled node pairs. Global clustering coefficient is computed
as three times the number of triangles divided by the number of pairs of adjacent edges (i.e., it
is the fraction of closed triplets of nodes among all connected triplets). Average local clustering
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coefficient first computes the local clustering of each node, which is the fraction of connected pairs
of its neighbors, and then averages the obtained values among all nodes. Degree assortativity is the
Pearson correlation coefficient between the degrees of connected nodes. Further, target assortativity
for regression datasets is the Pearson correlation coefficient between target values of connected
nodes. For computing unbiased homophily, we follow Mironov & Prokhorenkova (2024) and use the
simplest version of this measure with the α parameter set to 0.

B Experimental setup

B.1 Models

Graph-agnostic models As a simple baseline, we use ResMLP — an MLP with skip-connections
(He et al., 2016) and layer normalization (Ba et al., 2016). This model does not have any information
about the graph structure and operates on nodes as independent samples — we call such models
graph-agnostic. It has been shown that such MLP-like models with skip-connections can serve as
very strong baselines for industrial data with mixed numerical and categorical features (Gorishniy
et al., 2021). Further, we consider the three most popular implementations of GBDT models that are
widely used in industrial applications: XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al.,
2017), and CatBoost (Prokhorenkova et al., 2018). GBDT models are often considered to be better
than neural networks at dealing with numerical features (Gorishniy et al., 2021, 2022) and regression
tasks (Zhang et al., 2023).

The models discussed above are graph-agnostic. To see if they can be improved by being granted
access to some of the graph information, we augment them with neighborhood feature aggregation
(NFA) — a simple feature augmentation technique that extends features of each graph node with
aggregated information about features of its neighbors (see Appendix B.2 for a detailed discussion of
NFA). Specifically, we add NFA to ResMLP and LightGBM, since they are our fastest graph-agnostic
models. We denote these model versions with the -NFA suffix. We expect that if the graph structure
is beneficial for the considered task, then NFA-augmented models will significantly outperform their
counterparts without NFA. This indeed happens in our experiments, confirming the usefulness of
the graph structure provided in our datasets. However, note that NFA provides only limited access
to graph information, specifically the aggregated features of 1-hop neighbors. Models that can use
much more graph information are graph neural networks, which we discuss in the next paragraph.

Graph neural networks We consider several representative GNN architectures. First, we use GCN
(Kipf & Welling, 2017) and GraphSAGE (Hamilton et al., 2017) as simple classical GNN models. For
GraphSAGE, we use the version with the mean aggregation function, and we do not use the neighbor
sampling technique proposed in the original paper, instead training the model on the full graph, like
all other GNNs in our experiments. Further, we use two GNNs with attention-based neighborhood
aggregation functions: GAT (Veličković et al., 2018) and Graph Transformer (GT) (Shi et al., 2021).
Note that GT is a local graph transformer, i.e., each node only attends to its neighbors in the graph (in
contrast to global graph transformers, in which each node attends to all other nodes in the graph, and
which are thus not instances of the standard message-passing neural networks (MPNNs) framework
of Gilmer et al. (2017)). Following Platonov et al. (2023b), we equip all the considered GNNs with
skip-connections and layer normalization, which we found important for their strong performance on
our datasets. We also add a two-layer MLP with the GELU activation function (Hendrycks & Gimpel,
2016) after every neighborhood aggregation block in GNNs. Our graph models are implemented
in the same codebase as our ResMLP — we simply swap each residual block of ResMLP with a
residual neighborhood aggregation block of the selected GNN architecture. Therefore, comparing the
performance of ResMLP and GNNs is one more way to see if graph information is helpful for the
task. Indeed, in our experiments, GNNs significantly outperform ResMLP on all our datasets, once
again confirming the usefulness of the provided graph structure for the considered tasks.

Graph foundation models Most currently available GFMs do not support node property prediction
tasks in graphs with arbitrary node features. Among those that do, we were able to find only two
models with open pretrained checkpoints: OpenGraph (Xia et al., 2024) and AnyGraph (Xia &
Huang, 2024). Both OpenGraph and AnyGraph use the Transformer architecture and are pretrained
with a link prediction objective on a mixture of different graph datasets. These methods differ in what
data they can operate on. Specifically, OpenGraph only uses relational information and constructs
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node representations based on SVD factors of the adjacency matrix, while AnyGraph also uses the
available node feature information and combines SVD factors for both the feature matrix and the
adjacency matrix. Both these models were designed to be adapted to new node classification datasets
without fine-tuning, using an in-context learning (ICL) setting. Specifically, they can perform link
prediction in arbitrary graphs, and they cast any node classification task as a link prediction task
where links to virtual nodes representing classes are predicted for unlabeled nodes.

Further, we reproduced the pretraining for two more GFMs — TS-GNN (Finkelshtein et al., 2025)
and GCOPE (Zhao et al., 2024) (the weights for these models are not publicly available, but the
training code is). GCOPE also applies a projection to node features (e.g., based on SVD or attention
mechanism), but exploits additional virtual nodes as graph coordinators to simultaneously process
different graph datasets at the pretraining stage. The authors use GraphCL (You et al., 2020) or
SimGRACE (Xia et al., 2022) as the pretraining objective. In contrast to the ICL approaches, GCOPE
uses fine-tuning for adaptation to new node classification datasets.

The TS-GNN model takes a very different approach. Its authors observe that a GFM is expected to
be feature-permutation-invariant, label-permutation-equivariant, and node-permutation-equivariant,
design a linear transformation that satisfies these properties, and use it as the main GFM building
block. Note that TS-GNN requires solving several least squares problems to fit its weights before
making predictions, which makes it not a true in-context learning model, but, following the authors
of this model, we still mark it as ICL due to these least squares problems being computationally light
compared to typical fine-tuning. The original paper proposes two versions of TS-GNN: TS-Mean
and TS-GAT; we use TS-Mean in all our experiments.

Note that neither of the considered GFMs supports node regression (for OpenGraph and AnyGraph
this is an inherent limitation of the model design, while for TS-GNN and GCOPE this is only a
limitation of the official model implementations, since in theory these two models can perform node
regression). Our experiments also show that these models cannot scale to large datasets. These two
issues prevent us from successfully evaluating the considered GFMs on a significant number of our
datasets.

B.2 Neighborhood feature aggregation

Below we describe our NFA technique. This technique augments node features with the information
about features of the node’s neighbors in the graph. As we show in our experiments, this technique
significantly improves the performance of originally graph-agnostic models on our datasets. We
consider the set of 1-hop neighbors of each node and compute various statistics over the node features
in this set. In particular, for numerical features, we compute their mean, maximum, and minimum
values in the neighborhood excluding any NaNs. If all neighbor values of a particular feature are NaNs,
we fill the corresponding statistics with NaNs as well. For categorical features, we first transform
them into a set of binary features using one-hot encoding. Then, for each binary feature, we compute
the mean value in the neighborhood, i.e., the ratio of 1s for the binary indicator. Then, we concatenate
all the produced additional features with the original node features. More formally, consider some
specific feature x ∈ X from the set of features X , an arbitrary node v ∈ V in the graph G(V,E), and
its 1-hop neighbors NG(v) that do not contain NaN in feature x. Then, we can collect the set S of
non-NaN values xu from its neighbors u ∈ NG(v) and apply some permutation-invariant aggregation
function f to them in order to obtain a single value h:

S =
{
xu : u ∈ NG(v) ∧ xu is not NaN

}
, f(S) = h.

Note that f(∅) = NaN. This value h is then used as an additional feature for the considered node v.
This procedure is done for each node v ∈ V and each feature x ∈ X . In particular, for numerical
features, we apply three aggregation functions separately: mean, max, min, thus producing three
new features. For categorical features, we first apply one-hot encoding to them, and then apply the
mean aggregation function to each of the resulting binary features, thus producing as many additional
features as there were possible values of the original categorical feature. We concatenate this NFA
vector to the vector of the original features of the node v.

In Figure 1, we provide a simple example of applying NFA. Here, we consider a central node with
four neighbors, which have one numerical feature (blue) and one categorical feature (green). To
construct NFA for the central node, we compute mean, max, min values for the numerical feature and
mean value for the one-hot-encoded categorical feature across all its neighboring nodes.
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Figure 1: An example of applying neighborhood feature aggregation (NFA).

B.3 Experimental setup and hyperparameter selection details

Some of the graphs in our benchmark are directed. For our experiments, we converted directed
graphs to undirected ones (by replacing each directed edge with an undirected one and then removing
duplicated edges). We leave the investigation of different ways to consider edge directions to further
research.

We train all models 10 times with different random seeds to compute the mean and standard deviation
of model performance, except for our largest datasets pokec-regions, web-traffic, web-fraud,
web-topics, for which we train all models 5 times. We train all our GNNs in a full-batch setting,
i.e., we do not use any subgraph sampling techniques and train the models on the full graph. Our
ResMLP baseline is implemented in the same codebase as our GNNs and thus is also trained in the
full-batch setting. All the experiments were run on an NVIDIA Tesla A100 80GB GPU, except for
GBDTs, which were trained on AMD EPYC CPUs.

Hyperparameter choice is extremely important for the performance of both GNNs and GBDT models.
Thus, we conducted an extensive hyperparameter search on the validation set for all models. For
the considered GBDT models, we ran 100 iterations of Bayesian optimization using Optuna (Akiba
et al., 2019). The specific hyperparameter distributions used for these models are provided in
Table 4. Since GNNs are sensitive to different hyperparameters than GBDT models, we used a
different hyperparameter search strategy for them. Specifically, we found that the learning rate
and dropout probability (Srivastava et al., 2014) are the most important hyperparameters for our
GNN implementations on our datasets. Thus, we ran grid search selecting the learning rate from
{3×10−5, 1×10−4, 3×10−4, 1×10−3, 3×10−3} and dropout probability from {0, 0.1, 0.2} (note
that the highest learning rate of 3× 10−3 often resulted in NaN issues; however, we still included it in
our hyperparameter search, as in our preliminary experiments we found it to be beneficial for some
of our dataset/model combinations). In our preliminary experiments we found that the performance
of our GNNs is quite stable for a wide variety of reasonable architecture hyperparameter values
(we found the use of skip-connections and layer normalization to be important for this stability).
Hence, for our final experiments, we kept these hyperparameters fixed. We set these values as follows:
the number of graph neighborhood aggregation blocks to 3 and the hidden dimension to 512. The
only exceptions to this hidden dimension size were made for our largest datasets: to avoid GPU
out-of-memory issues, we decreased the hidden dimension to 400 for pokec-regions and to 200 for
web-traffic, web-fraud, and web-topics. For GNNs with attention-based graph neighborhood
aggregation (GAT and GT), the number of attention heads was set to 4. We used the Adam optimizer
(Kingma & Ba, 2015) in all our GNN experiments. We trained each model for 1000 steps and then
selected the best step based on the performance on the validation set.

When applying deep learning models to data with numerical features, the preprocessing of these
features is critically important. In our experiments, we considered two possible numerical feature
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Table 4: The Optuna hyperparameter search distributions for GBDT models.
XGBoost

Parameter Distribution

colsample_bytree Uniform[0.5, 1.0]

gamma {0.0,LogUniform[0.001, 100.0]}
lambda {0.0,LogUniform[0.1, 10.0]}
learning_rate LogUniform[0.001, 1.0]

max_depth UniformInt[3, 14]

min_child_weight LogUniform[0.0001, 100.0]

subsample Uniform[0.5, 1.0]

LightGBM
Parameter Distribution

feature_fraction Uniform[0.5, 1.0]

lambda_l2 {0.0,LogUniform[0.1, 10.0]}
learning_rate LogUniform[0.001, 1.0]

num_leaves UniformInt[4, 768]

min_sum_hessian_in_leaf LogUniform[0.0001, 100.0]

bagging_fraction Uniform[0.5, 1.0]

CatBoost
Parameter Distribution

bagging_temperature Uniform[0.0, 1.0]

depth UniformInt[3, 14]

l2_leaf_reg Uniform[0.1, 10.0]

leaf_estimation_iterations Uniform[1, 10]

learning_rate LogUniform[0.001, 1.0]

transformation techniques: standard scaling and quantile transformation to standard normal distribu-
tion. We included them in the hyperparameter search for ResMLP and GNNs. In contrast, GBDT
models do not need specialized preprocessing for numerical features and are not affected by their
monotonic transformations. For categorical features, we used one-hot encoding for all models except
for LightGBM and CatBoost, which support the use of categorical features directly and have their
specialized strategies for working with them (XGBoost also offers such a feature, but it is currently
marked as experimental, and we were not able to make it work). For regression datasets, neural
models might perform better if the target variable is transformed. Therefore, in our experiments on
regression datasets with ResMLP and GNNs, we considered the options of using the original targets
or preprocessing targets with standard scaling, including these two options in the hyperparameter
search.

Our GNNs are implemented using PyTorch (Paszke et al., 2019) and DGL (Wang et al., 2019).

C Complete experimental results

In the main text, we report our complete experimental results for the RL setting, but, due to space limi-
tations, for the RH, TH, THI settings, we leave out results for some of the baselines (ResMLP, XGBoost,
CatBoost, ResMLP-NFA) and for the datasets that do not have temporal data split (city-roads-M,
city-roads-L, city-reviews, web-traffic). We provide complete experimental results for the
RH setting in Table 5, for the TH setting in Table 6, and for the THI setting in Table 7. In all tables
with results, for each dataset, we highlight with color the best result as well as those results for which
the mean differs from the best one by no more than the sum of the two results’ standard deviations.

D Limitations and broader impact

The aim of our benchmark is to introduce a diverse set of graph datasets for node property prediction
that covers a wide range of domains and graph structural properties, including those not encountered in
commonly used datasets for GML model evaluation. However, data that can be naturally represented
as graphs is so widespread across different domains that no benchmark can cover them all. Thus,
our collection of 14 datasets still only covers a small part of the wide range of situations where
modeling data as a graph can be useful. Nevertheless, we hope that it will encourage the GML
research community to use more diverse sets of datasets and focus on practically relevant applications
where graph-structured data appears.

Our benchmark includes datasets with realistic tasks such as fraud detection and user engagement
prediction. Poorly performing machine learning models used for these tasks in real-world services
can negatively affect the users of these services. For example, type I errors of fraud detection systems,
i.e., wrongly predicting that an innocent person is fraudulent, have an undesirable negative impact.
Thus, particular care should be taken to minimize the probability of such errors. We believe that
the release of high-quality and properly anonymized datasets for these tasks such as those in our
benchmark will encourage the community to develop better models, since the community will be able
to use these datasets as a realistic and reliable testbed to investigate which methods lead to reductions
in undesirable model errors.
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Table 5: Experimental results under the RH (random high) data split in the transductive setting. The
best result and those statistically indistinguishable from it are highlighted in red. TLE stands for time
limit exceeded (24 hours); MLE stands for memory limit exceeded (80 GB VRAM); RTE stands for
runtime error in the official code of GFMs.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 city-reviews artnet-exp web-fraud

best const. pred. 19.46± 0.00 3.77± 0.00 28.36± 0.00 21.82± 0.00 12.09± 0.00 10.00± 0.00 0.66± 0.00

ResMLP 43.12± 0.25 5.09± 0.01 44.55± 0.08 45.96± 0.46 75.21± 0.08 43.55± 0.23 13.52± 0.21
XGBoost 46.68± 0.13 5.11± 0.01 TLE 49.31± 1.05 77.77± 0.13 45.34± 0.40 16.06± 0.21
LightGBM 47.28± 0.14 5.10± 0.01 TLE 49.92± 0.19 77.88± 0.13 44.98± 0.80 TLE
CatBoost 46.98± 0.24 TLE TLE 50.52± 0.19 78.00± 0.05 45.50± 0.15 TLE

ResMLP-NFA 61.34± 0.34 12.24± 0.12 MLE 56.77± 1.15 79.80± 0.07 44.52± 0.44 MLE
LightGBM-NFA 67.09± 0.15 12.15± 0.02 TLE 62.19± 0.35 81.63± 0.06 49.26± 0.18 TLE

GCN 73.38± 0.42 35.08± 0.62 48.88± 0.09 60.49± 0.86 81.05± 0.10 49.80± 0.35 15.58± 0.20
GraphSAGE 73.34± 0.68 40.76± 0.21 50.05± 0.03 58.42± 0.92 80.75± 0.06 48.49± 0.37 20.47± 0.17
GAT 79.19± 0.21 46.72± 0.69 50.54± 0.04 63.76± 1.30 81.10± 0.11 50.62± 0.35 20.43± 0.21
GT 79.28± 0.31 50.06± 0.53 50.58± 0.04 60.32± 1.21 80.50± 0.14 49.32± 1.00 19.73± 0.34

OpenGraph (ICL) 11.69± 0.84 2.56± 0.42 RTE 44.62± 1.35 62.96± 0.84 23.72± 1.86 RTE
AnyGraph (ICL) 15.65± 2.82 27.67± 2.48 6.30± 2.82 30.21± 3.32 65.04± 1.41 15.80± 1.90 0.67± 0.02
TS-GNN (ICL) 15.48± 1.93 MLE MLE 31.83± 2.55 11.84± 1.98 13.38± 2.59 MLE
GCOPE (FT) 19.99± 0.12 TLE TLE 31.79± 1.95 69.74± 0.36 23.86± 2.33 TLE

(b) Results for regression datasets. R2 is reported for all datasets.

hm-prices avazu-ctr city-roads-M city-roads-L twitch-views artnet-views web-traffic

best const. pred. 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

ResMLP 70.11± 0.48 28.03± 0.22 62.43± 0.32 53.09± 0.17 13.36± 0.01 36.10± 0.17 73.88± 0.05
XGBoost 74.49± 0.14 29.70± 0.05 70.93± 0.05 64.62± 0.07 13.34± 0.02 36.83± 0.06 TLE
LightGBM 73.99± 0.11 29.60± 0.02 70.01± 0.19 63.66± 0.09 13.37± 0.00 36.38± 0.08 TLE
CatBoost 74.92± 0.14 29.68± 0.10 69.32± 0.17 61.24± 0.11 13.25± 0.03 37.47± 0.05 TLE

ResMLP-NFA 74.99± 0.50 34.93± 0.21 65.87± 0.31 57.96± 0.15 56.97± 0.28 54.95± 0.55 MLE
LightGBM-NFA 79.78± 0.09 35.35± 0.04 72.09± 0.07 66.24± 0.08 62.14± 0.01 60.30± 0.07 TLE

GCN 79.76± 0.76 34.96± 0.11 69.95± 0.11 64.65± 0.27 77.12± 0.11 61.02± 0.13 83.49± 0.14
GraphSAGE 79.89± 0.46 35.20± 0.20 70.20± 0.59 65.77± 0.43 72.02± 0.16 56.65± 0.50 85.19± 0.11
GAT 81.68± 0.41 35.74± 0.19 70.53± 0.40 66.03± 0.24 76.06± 0.30 59.01± 0.52 85.70± 0.08
GT 80.90± 0.42 34.38± 0.31 67.45± 0.82 64.02± 0.59 75.57± 0.15 58.97± 0.25 85.54± 0.23
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Table 6: Experimental results under the TH (temporal high) data split in the transductive setting. The
best result and those statistically indistinguishable from it are highlighted in violet. TLE stands for
time limit exceeded (24 hours); MLE stands for memory limit exceeded (80 GB VRAM); RTE stands
for runtime error in the official code of GFMs.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 artnet-exp web-fraud

best const. pred. 19.57± 0.00 2.98± 0.00 23.28± 0.00 8.61± 0.00 7.84± 0.00 0.15± 0.00

ResMLP 32.44± 0.54 4.18± 0.01 35.49± 0.03 21.72± 6.69 37.48± 0.51 2.83± 0.26
XGBoost 31.95± 0.15 4.13± 0.02 TLE 18.37± 6.34 37.48± 0.28 TLE
LightGBM 32.08± 0.25 4.13± 0.01 TLE 15.85± 3.89 37.34± 0.18 TLE
CatBoost 33.24± 0.16 TLE TLE 13.87± 1.55 38.56± 0.10 TLE

ResMLP-NFA 45.04± 0.26 6.07± 0.07 MLE 38.50± 2.47 36.13± 0.41 MLE
LightGBM-NFA 52.45± 0.18 5.54± 0.01 TLE 31.81± 7.51 39.89± 0.37 TLE

GCN 56.91± 0.55 11.88± 0.31 38.20± 0.19 46.72± 1.19 40.64± 0.40 4.85± 1.42
GraphSAGE 59.62± 0.51 16.60± 0.28 39.00± 0.09 17.05± 7.65 40.50± 0.84 16.01± 2.22
GAT 61.28± 0.97 20.43± 0.55 39.24± 0.23 38.59± 6.19 41.85± 0.63 16.50± 1.14
GT 63.31± 0.45 25.09± 0.58 39.19± 0.15 34.15± 4.81 40.10± 0.60 11.97± 1.13

OpenGraph (ICL) 5.76± 1.03 0.80± 0.45 RTE 9.12± 1.74 16.19± 1.36 RTE
AnyGraph (ICL) 9.47± 1.13 9.20± 0.67 11.14± 5.16 13.52± 4.74 11.80± 1.01 0.16± 0.01
TS-GNN (ICL) 18.91± 0.32 MLE MLE 12.59± 1.97 9.46± 1.25 MLE
GCOPE (FT) 19.14± 0.58 TLE TLE 8.46± 1.15 20.83± 1.18 TLE

(b) Results for regression datasets. R2 is reported for all datasets.

hm-prices avazu-ctr twitch-views artnet-views

best const. pred. −2.85± 0.00 0.00± 0.00 −22.31± 0.00 −9.32± 0.00

ResMLP 61.64± 0.79 20.35± 1.50 11.91± 8.00 42.15± 0.52
XGBoost 63.96± 0.36 25.87± 0.14 −8.84± 0.24 42.45± 0.09
LightGBM 63.56± 0.39 26.23± 0.04 −9.60± 0.03 42.87± 0.08
CatBoost 62.05± 0.68 25.49± 0.09 −8.76± 0.23 42.83± 0.06

ResMLP-NFA 63.70± 1.22 38.00± 0.28 44.38± 1.65 47.17± 0.59
LightGBM-NFA 71.36± 0.41 38.69± 0.03 43.60± 0.03 52.42± 0.06

GCN 65.20± 0.84 37.49± 0.26 68.17± 0.24 54.44± 0.43
GraphSAGE 67.93± 1.24 38.38± 0.39 61.46± 0.68 51.87± 0.48
GAT 70.83± 0.99 39.21± 0.17 66.32± 0.59 52.30± 0.34
GT 69.70± 0.84 38.27± 0.27 65.83± 0.24 51.67± 0.54
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Table 7: Experimental results under the THI (temporal high / inductive) setting. The best result and
those statistically indistinguishable from it are highlighted in blue. TLE stands for time limit exceeded
(24 hours); MLE stands for memory limit exceeded (80 GB VRAM); RTE stands for runtime error in
the official code of GFMs.

(a) Results for classification datasets. Accuracy is reported for multiclass classification datasets and Average
Precision is reported for binary classification datasets.

multiclass classification binary classification

hm-categories pokec-regions web-topics tolokers-2 artnet-exp web-fraud

best const. pred. 19.57± 0.00 2.98± 0.00 23.28± 0.00 8.61± 0.00 7.84± 0.00 0.15± 0.00

ResMLP 32.44± 0.54 4.18± 0.01 35.49± 0.03 21.72± 6.69 37.48± 0.51 2.83± 0.26
XGBoost 31.95± 0.15 4.13± 0.02 TLE 18.37± 6.34 37.48± 0.28 TLE
LightGBM 32.08± 0.25 4.13± 0.01 TLE 15.85± 3.89 37.34± 0.18 TLE
CatBoost 33.24± 0.16 TLE TLE 13.87± 1.55 38.56± 0.10 TLE

ResMLP-NFA 44.99± 0.86 4.95± 0.09 MLE 43.43± 2.04 36.36± 0.49 MLE
LightGBM-NFA 47.46± 0.28 4.58± 0.02 TLE 45.45± 0.82 39.91± 0.25 TLE

GCN 47.05± 1.69 6.88± 0.51 37.76± 0.06 32.43± 8.03 41.28± 0.28 3.44± 0.33
GraphSAGE 48.11± 2.08 8.04± 0.26 38.04± 0.18 30.86± 9.48 40.53± 0.40 13.88± 1.32
GAT 59.34± 1.09 13.38± 0.35 38.77± 0.35 24.53± 9.55 41.64± 0.32 11.98± 1.54
GT 59.54± 1.59 17.22± 0.42 38.78± 0.08 22.89± 10.40 40.26± 0.82 7.84± 2.35

OpenGraph (ICL) 5.76± 1.03 0.80± 0.45 RTE 9.12± 1.74 16.19± 1.36 RTE
AnyGraph (ICL) 9.47± 1.13 9.20± 0.67 11.14± 5.16 13.52± 4.74 11.80± 1.01 0.16± 0.01
TS-GNN (ICL) 18.91± 0.32 MLE MLE 12.59± 1.97 9.46± 1.25 MLE
GCOPE (FT) 15.69± 3.44 TLE TLE 10.73± 1.48 19.10± 0.96 TLE

(b) Results for regression datasets. R2 is reported for all datasets.

hm-prices avazu-ctr twitch-views artnet-views

best const. pred. −2.85± 0.00 0.00± 0.00 −22.31± 0.00 −9.32± 0.00

ResMLP 61.64± 0.79 20.35± 1.50 11.91± 8.00 42.15± 0.52
XGBoost 63.96± 0.36 25.87± 0.14 −8.84± 0.24 42.45± 0.09
LightGBM 63.56± 0.39 26.23± 0.04 −9.60± 0.03 42.87± 0.08
CatBoost 62.05± 0.68 25.49± 0.09 −8.76± 0.23 42.83± 0.06

ResMLP-NFA 65.66± 1.04 35.81± 0.56 36.98± 1.44 48.26± 0.82
LightGBM-NFA 68.88± 0.11 33.04± 0.17 24.81± 0.11 51.95± 0.05

GCN 64.31± 0.82 34.78± 0.48 63.58± 0.54 53.73± 0.47
GraphSAGE 65.80± 0.56 36.79± 0.55 56.60± 0.71 53.37± 0.30
GAT 69.74± 1.50 37.18± 1.02 61.41± 1.30 52.44± 0.59
GT 67.33± 2.05 36.49± 0.83 60.67± 1.02 52.26± 0.48
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