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Abstract

Mobile and wearable healthcare monitoring play a vital role in facilitating timely
interventions, managing chronic health conditions, and ultimately improving indi-
viduals’ quality of life. Previous studies on large language models (LLMs) have
highlighted their impressive generalization abilities and effectiveness in healthcare
prediction tasks. However, most LLM-based healthcare solutions are cloud-based,
which raises significant privacy concerns and results in increased memory usage
and latency. To address these challenges, there is growing interest in compact
models, Small Language Models (SLMs), which are lightweight and designed to
run locally and efficiently on mobile and wearable devices. Nevertheless, how
well these models perform in healthcare prediction remains largely unexplored.
We systematically benchmarked SLMs on health prediction tasks using zero-shot,
few-shot, and instruction fine-tuning approaches, and deployed the best performing
fine-tuned SLMs on mobile devices to evaluate their real-world efficiency and
predictive performance in practical healthcare scenarios. Our results show that
SLMs can achieve performance comparable to LLMs while offering substantial
gains in efficiency and privacy. However, challenges remain, particularly in han-
dling class imbalance and few-shot scenarios. These findings highlight SLMs,
though imperfect in their current form, as a promising solution for next-generation,
privacy-preserving healthcare monitoring.

1 Introduction

The proliferation of mobile and wearable devices, coupled with recent advances in deep learning,
has significantly advanced the landscape of continuous health monitoring [1–4]. These technologies
enable a range of real-time applications, from the detection of physiological anomalies [5] to
the delivery of personalized interventions [6]. Meanwhile, large language models (LLMs) have
demonstrated remarkable generalization in processing heterogeneous data and performing diverse
downstream tasks [7, 8]. Early studies indicate that LLM-based analysis can provide a deeper
contextual interpretation of sensor data and enable more adaptive health monitoring systems compared
to conventional approaches [9].

Despite this promise, major obstacles impede the practical deployment of LLM-driven wearable
health solutions. Current approaches usually depend on cloud-based inference, necessitating data
transmission to external servers, which raises concerns around user privacy, data security, and
communication latency [10–13]. Alternatively, on-device deployment is hindered by severe resource
constraints typical of mobile and wearable hardware, as well as the real-time requirements of health
applications, rendering full-sized LLMs infeasible for timely inference. These challenges highlight a



critical need for efficient, privacy-preserving techniques that achieve competitive performance with
LLMs, while being suitable for deployment on resource-limited mobile and wearable devices.

Small Language Models (SLMs) present a promising alternative by reducing memory consumption
and facilitating deployment on mobile and wearable devices. On-device inference with SLMs
not only lowers communication latency but also enhances the protection of sensitive personal
data, while maintaining competitive performance on natural language processing tasks [14–17].
Nevertheless, their ability to interpret sensor data from mobile and wearable devices and accurately
infer health conditions in real-world settings remains an open question. Although prior work [18] has
demonstrated the feasibility of using SLMs on mobile devices to predict simple health status (e.g.,
fatigue, sleep quality), there is still a lack of comprehensive benchmarking that thoroughly evaluates
SLMs for a wide range of health applications.

To bridge this gap, we present a comprehensive benchmark, HealthSLM-Bench, which aims to
evaluate a variety of state-of-the-art (SOTA) SLMs on a suit of health prediction tasks spanning
three publicly available datasets. Our benchmark systematically assesses model performance using
three evaluation protocols: zero-shot, few-shot, and instruction-based fine-tuning. To assess practical
feasibility, we further deploy top-performing fine-tuned models on mobile devices and rigorously
evaluate their on-device efficiency in terms of memory usage and inference latency. Experimental
results demonstrate that SLMs can achieve comparable performance compared with SOTA healthcare
LLMs across eight healthcare monitoring tasks, while substantially reducing memory and latency
overheads. Our main contributions are as follows:

• We introduce, HealthSLM-Bench, an extensive benchmark that systematically evaluates nine
SOTA SLMs on eight health prediction tasks across three real-world mobile and wearable
datasets.

• We investigate various evaluation paradigms, including zero-shot, few-shot, and instruction-
based fine-tuning, providing a comprehensive performance analysis under different adapta-
tion scenarios.

• We demonstrate the feasibility of deploying fine-tuned SLMs on resource-constrained mobile
devices and quantify their efficiency in terms of real-world memory and latency footprints.

2 Related Work

LLMs for health monitoring. With the rise of mobile and wearable devices, a variety of human-
centered sensing signals can be continuously collected, enabling ongoing monitoring of human health
in daily life. Recent studies have shown that the physical status data collected by mobile devices
is strongly associated with health status [19–21]. Their work demonstrates how passive wearable
sensor data can be effectively utilized to predict depression in adolescents using traditional ML
models. However, these approaches, typically trained on specific datasets or tailored architectures,
often struggle to generalize across heterogeneous tasks, and contexts [22]. LLMs, powered by their
generalization capabilities, have shown great success in the healthcare domain. For example, Health-
LLM [23] and MultiEEG-GPT [24] demonstrate the effectiveness of leveraging LLMs in healthcare
monitoring through textual and physiological data. Instead of just deploying these models directly
for healthcare applications, recent work has explored domain adaptation strategies such as few-shot
prompting, instruction tuning, and domain-specific fine-tuning to improve performance on medical
tasks [25]. Notably, PaLM2 [26] illustrates the benefits of combining diverse adaptation strategies
(e.g. few-shot and fine-tuned) across medical datasets. Meanwhile, evaluations of GPT-4 highlight
that SOTA LLMs may reduce the reliance on extensive adaptation, as they already demonstrate
strong capacity for medical reasoning with limited supervision [27]. More recently, applied systems
such as PhysioLLM [28] have integrated LLMs with wearable sensor data to provide personalized
health insights, highlighting their adaptability across users and contexts. However, despite these
advances, their computational overhead makes them impractical for privacy-sensitive, real-time
mobile healthcare monitoring.

Small Language Models. SLMs are defined as models that are smaller in scale relative to the widely
recognised LLMs, typically comprising no more than 7 billion parameters [29]. Recent research
has highlighted the efficiency and strong task performance of SLMs as lightweight alternatives to
LLMs, particularly for deployment in resource-constrained environments [30, 31]. For example,

2



Table 1: An Example of Prompt Construction for Zero-shot learning. ZS represents “Zero-shot”.
Context Prompt

Instruction You are a personalized healthcare agent trained to predict fatigue which ranges
from 1 to 5 based on physiological data and user information.

Main Query The recent 14-days sensor readings show: {14} days sensor readings show: Steps:
{“1476.0, 4809.0, ..., NaN”} steps, Burned Calories: {“169.0, 419.0 ..., NaN”}
calories, Resting Heart Rate: {“53.24, 52.24, ..., 51.40”} beats/min, Sleep Minutes:
{“110.0, 524.0, ..., 481.0”} minutes, [Mood]: 3 out of 5. What would be the
predicted fatigue level?

Output
Constraints The predicted fatigue level is:

Prompt ZS = InstructionZS
+ Main query + Output Constraints (1)

Phi-3-mini-4k-Instruct, developed by Microsoft [32], contains 3.8 billion parameters and is trained
on a curated blend of synthetic and high-quality public datasets, emphasizing reasoning capabilities.
TinyLlama-1.1B [33] builds on Llama 2 through parameter reduction and subsequent fine-tuning using
UltraChat, a broad synthetic dialogue dataset. Similarly, Google’s Gemma2-2B [34], based on Gemini
research, demonstrates robust results in text generation, summarization, and reasoning benchmarks.
SmolLM-1.7B from HuggingFace [35] further diversifies training by leveraging synthetic educational
materials and a breadth of domain samples, and Qwen2-1.5B [16] achieves SOTA performance in
both coding and mathematics despite its small footprint. Meta’s Llama-3.2 series [36] continues
this trend by releasing 1B and 3B parameter models designed for edge applications. While these
developments affirm the viability of SLMs for a range of natural language processing tasks, the
current literature leaves the open question of how effectively these compact models generalize to
health prediction tasks. This is especially salient for high-stakes applications in healthcare, where
accuracy and timeliness are paramount.

Deployment of On-Device SLMs. Deploying SLMs on mobile and wearable devices is an interest-
ing yet challenging task due to constraints such as limited computational power, memory, battery
life, and the need for efficient, real-time processing. MobileAIBench [31] evaluated SLMs on an
iPhone 14, offering a comprehensive framework for assessing latency, memory usage, and overall
efficiency. Their results established the practical viability of running compact language models on
mobile hardware. More recent research [18] explored SLMs for health event prediction [37] in a
zero-shot context, underscoring their promise as privacy-preserving and practical alternatives to
LLMs for healthcare monitoring on mobile and wearable devices. Despite these advances, existing
work remains limited in scope. MobileAIBench concentrated on generic NLP tasks rather than
domain-specific health applications. As a result, there is a lack of systematic analysis of real-world
efficiency of SLMs in health-related tasks after deployment on mobile devices. In comparison, our
study addresses this gap by conducting comprehensive evaluations of SLMs on mobile platforms,
using detailed efficiency metrics to assess their practical feasibility for mobile health monitoring
applications across various datasets, model structures, and tasks.

3 HealthSLM-Bench

We benchmark a variety of SLMs for mobile and wearable health applications using zero-shot and
few-shot learning which enables in-context learning with a limited number of task-specific examples.
Additionally, we instruction-tune these models on health datasets, aiming to significantly enhance
their effectiveness for healthcare monitoring tasks.

3.1 Zero-shot and Few-shot Learning

Zero-shot learning. In the zero-shot learning setting, models were evaluated without prior exposure
to any example inputs during inference. Each model was provided only with a task instruction, a

3



Table 2: An Example of Prompt Construction for Few-shot learning. ZS and FS represent “Zero-shot”
and “Few-shot”, respectively.

Context Prompt
Instruction You are a health assistant. Your mission is to read the following examples and

return your prediction based on the health query.

Examples <example 1>, <example 2>, ... <example N>

Question Finally, please answer to the below question: <Prompt ZS>

Examples = (Prompt ZS + Answer)N (2)
Prompt FS = InstructionFS

+ Examples + Prompt ZS (3)

main query describing the 14-day summary of sensor readings, and explicit output constraints (e.g.,
restricting output labels for fatigue to values within the range [1–5]), as shown in Table 1. This setup
was designed to evaluate the intrinsic ability of the models to interpret and respond to healthcare-
related queries based solely on task instructions. The zero-shot protocol thus serves as a baseline for
performance, providing a reference point for subsequent experiments involving few-shot learning and
instruction tuning.

Few-shot learning. Few-shot learning [38] was employed to enhance task comprehension by
augmenting the model inputs with a small set of labeled examples. Unlike zero-shot learning, which
relies solely on the model’s generalized knowledge, this approach leverages in-context learning to
better interpret task-specific data. As shown in Table 2, the few-shot prompt (Prompt FS), formalized
in Equation 3, consists of an explicit instruction InstructionFS

, a set of N example pairs (Prompt ZS +
Answer)N , and the target query Prompt ZS . Specifically, the InstructionFS

directs the model to review
the N examples before responding to the target query. Each example follows the same structure
as the zero-shot prompt, i.e., consisting of a task instruction and a main query, but also includes
the corresponding answer. This design enables the model to ground its predictions in observed
input–output patterns, capturing relationships that may be less apparent in a zero-shot setting. In
our experiments, we varied the number of examples N ∈ {1, 3, 5, 10} to examine its impact on
performance, aiming to identify the most effective configuration. To maximize on-device efficiency,
we did not implement chain-of-thought reasoning (CoT) [39] and self-consistency (SC) [40], as
both introduce additional token generation and computational overhead that limit practicality on
resource-constrained edge devices.

3.2 Instructional Tuning

Instructional tuning adapts language models to follow task-specific instructions by further training
them on curated instruction–response pairs [41]. Unlike zero-shot or few-shot learning, which relies
on a sole task description or in-context prompts at inference time, instructional tuning updates the
model parameters themselves, enabling more robust and persistent task alignment. Specifically, the
instruction–response pairs were formatted using the Alpaca-style template [42], which provides a
lightweight and standardized structure widely adopted in instruction-tuning benchmarks [23, 43–45].
To enable efficient fine-tuning, we employed Low-Rank Adaptation (LoRA) [46], which introduces
trainable low-rank decomposition matrices into the attention and feed-forward layers while keeping
the original weights frozen. LoRA is particularly well-suited for on-device inference, as it allows
effective model adaptation with minimal memory and computational overhead.

4 Experimental Setup

4.1 Datasets

We evaluate our methods using three health wearable sensor datasets: PMData [37], GLOBEM [47],
and AW-FB [48]. From these datasets, we extract features derived from smartwatches raw sensor data,
including steps, calories burned, resting heart rate, and sleep metrics, and use self-reported labels such
as fatigue, stress, and readiness. For health event prediction, we format the temporal sequences of
these features into 14-day windows and incorporate them into query prompts to generate predictions.
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The predictions produced by SLMs are then compared with the self-reported ground-truth labels.
Details of each dataset are provided below. The detailed task categorization and label distribution are
provided in the Appendix.

PMData is a dataset that integrates life-logging and activity-logging information, comprising person-
alized health monitoring data collected from 16 participants over a period of five months. Using the
Fitbit Versa 2 smartwatch wristband [49], objective signals such as calories burned, resting heart rate,
step count, sleep duration, and more were gathered. In addition, participants provided self-reported
measurements of their health status via the PMSys sports logging application, such as fatigue, mood,
stress, etc. In our setting, these self-reports were categorized into prediction tasks with labels for
fatigue, readiness, sleep quality, and stress [18, 23].

The dataset contains data relevant to the following research tasks:

• Stress (STRS): Quantification of individual stress levels, utilising both physiological mea-
surements and self-reported data.

• Readiness (READ): Evaluation of preparedness for physical exertion or exercise, based on
physiological and behavioural indicators.

• Fatigue (FATG): Detection and monitoring of fatigue states, as evidenced by physiological
signals and self-assessment.

• Sleep Quality (SQ): Comprehensive assessment of sleep quality, including metrics such as
total sleep duration, sleep efficiency, and the frequency and duration of nocturnal awakenings.

GLOBEM is a passive sensing dataset for health-domain analysis. Data were gathered from 497
participants between 2018 and 2021 using a custom mobile application alongside continuous fitness
tracker monitoring (24/7). This dataset captures a wide range of daily human routines, including step
counts, sleep efficiency, time spent in bed after waking, time to fall asleep, and wake periods while in
bed. These signals reveal associations between everyday behaviors and well-being outcomes. In our
experiment, we use these behavioral signals as inputs and predict mental health conditions such as
depression and anxiety [23].

The dataset contains data relevant to the following mental health assessments:

• Depression (DEP): Detection of depressive symptoms using machine learning models that
analyse user behaviour and linguistic patterns.

• Anxiety (ANX): Identification of anxiety through behavioural indicators, such as disrupted
sleep patterns, and physiological responses, including elevated heart rate.

AW_FB is a wearable dataset designed by Harvard University to study the relationship between
physical activity patterns and physiological metrics, gathered from 46 participants that wear GENE-
Activ [50], Apple Watch Series 2 [51] and a Fitbit Charge HR2 [52] in a lab-based protocol. The
recorded sensor data includes daily step count, heart rate, activity duration, burned calories, and
metabolic equivalent of task (MET) Value. This dataset was tested to predict 6 different physical
activity intensities, including lying, sitting, walking self-paced, 3 METS, 5 METS, and 7 METS.

The dataset contains data relevant to the following physiological and behavioural assessments:

• Calorie Burn (CAL): Estimation of individual energy expenditure during physical activities.
• Activity (ACT): Classification of physical activity types based on sensor-derived data.

4.2 Models

We selected nine SOTA SLMs ranging from 1B to 4B parameters, including Google’s Gemma-
2-2B-it [34], Microsoft’s Phi-3-mini-4k-instruct and Phi-3.5-mini [53], HuggingFace’s SmolLM-
1.7B [35], Alibaba’s Qwen2-1.5B and Qwen2.5-1.5B [16], TinyLlama’s TinyLlama-1.1B [54], and
Meta-Llama’s Llama-3.2-1B and Llama-3B [36]. Further details are provided in Appendix C.

4.3 Implementation details

Data processing. Following previous work [18, 23, 55], we standardize all datasets into daily
sequences spanning 14-day windows. Task-specific labels are assigned accordingly. Each dataset
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Table 3: Performance of LLMs and SLMs under zero-shot (ZS) setting across eight healthcare
monitoring tasks. STRS: Stress, READ: Readiness, FATG: Fatigue, SQ: Sleep Quality, ANX:
Anxiety, DEP: Depression, ACT: Activity, CAL: Calories. Best result is in bold, second-best result
is underlined. ‘-’ denotes model failed to produce valid prediction.

PMData GLOBEM AW-FB

Model STRS (↓) READ (↓) FATG (↑) SQ (↓) ANX (↓) DEP (↓) ACT (↑) CAL (↓)

LLMs
(ZS)

MedAlpaca 0.76 2.18 46.8 0.68 1.23 0.89 21.7 35.0
PMC-Llama 1.33 4.83 0.00 2.25 2.33 2.23 – 43.4
Asclepius 0.43 1.44 27.3 0.45 0.82 1.10 – 28.9
ClinicalCamel 0.40 2.11 58.1 0.37 0.97 0.79 16.3 43.4
Flan-T5 0.36 1.82 56.8 0.56 2.84 2.89 23.4 66.0
Palmyra-Med 0.83 5.01 43.5 0.44 2.07 1.99 29.7 75.3
Llama 2 0.57 2.86 41.2 0.89 1.19 1.23 – –
BioMedGPT 0.37 2.12 61.2 0.41 0.95 0.85 12.2 –
BioMistral 0.55 2.12 56.6 0.45 0.90 – 18.4 41.0
GPT-3.5 – 2.38 70.8 0.87 – – 13.8 36.4
GPT-4 – 2.22 72.2 0.73 – – 22.6 75.2
Gemini-Pro 0.79 1.69 34.0 0.78 1.03 0.95 17.7 31.4

Mean 0.64 2.56 41.54 0.60 1.43 1.44 19.53 47.60

SLMs
(ZS)

Gemma-2-2b-it 0.72 2.07 52.84 0.47 0.91 0.53 - 105.12
Phi-3-mini-4k 0.46 1.52 62.88 0.48 1.08 1.26 17.39 93.80
SmolLM-1.7B 1.42 2.99 11.04 1.00 2.59 2.87 21.74 277.21
Qwen2-1.5B 0.40 2.03 63.21 0.45 1.42 1.65 14.05 185.22
TinyLlama-1.1B 0.43 2.06 51.17 0.47 2.40 2.58 19.73 198.72
Llama-3.2-1B 0.40 1.87 63.79 0.69 1.51 1.85 11.71 280.32
Llama-3.2-3B 0.67 2.24 40.80 0.47 1.26 0.75 15.72 19.70
Phi-3.5-mini 0.41 2.34 61.20 0.46 0.88 0.84 15.38 56.75
Qwen2.5-1.5B 0.56 2.25 62.88 0.93 1.37 1.63 15.72 72.20

Mean 0.61 2.15 52.20 0.60 1.49 1.55 16.40 143.23

is extracted, randomly shuffled, and split into training and testing subsets in an 8:2 ratio. The tasks
are categorized as either classification (fatigue, readiness, sleep quality, stress, anxiety, depression,
activity) or regression (calories). The label distributions for each task are provided in the Appendix.

Model deployment. To assess efficiency and feasibility, we deploy the top-performing health-
domain–adapted SLMs, which is adapted for the health domain and instructional tuned using health-
related datasets, on an iPhone 15 Pro Max equipped with 8 GB of RAM. These models are converted
to the GGUF format (Generalized Graphical Unified Format) [56] to ensure compatibility with
lightweight inference engines such as Llama.cpp [57]. Due to the strict memory constraints of mobile
devices, we apply 4-bit quantization to enable efficient deployment. As shown in prior studies [31],
quantization lowers computational costs while maintaining most of the model’s performance. Both
the conversion and quantization steps are performed using Llama.cpp [58].

Evaluation metrics. To evaluate model performance under zero-shot, few-shot, and instructional-
tuning settings, we use mean absolute error (MAE) for regression tasks and accuracy for classification
tasks. For efficiency evaluation of mobile deployment, we assess the models latency using metrics
such as Time-to-First-Token (TTFT), Input Tokens Per Second (ITPS), Output Tokens Per Second
(OTPS), and Output Evaluation Time (OET) and Total Time. In addition, We also track CPU
and RAM usage to evaluate on-device resource consumption. Further details are provided in the
Appendix E.

5 Results and Discussion

We compare the performance of SLMs and SOTA LLMs under the same settings as in [23].

5.1 Overall Performance

Zero-shot learning. As shown in Table 3, SLMs achieve comparable or better performance than
LLMs across the three health datasets. For stress prediction, SLMs achieve a lower mean MAE
of 0.61, compared to 0.64 for LLMs, where lower values indicate better performance. SLMs also
outperform LLMs in readiness and fatigue prediction, with a mean MAE of 2.15 for SLMs versus
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Table 4: Performance of LLMs and SLMs under few-shot (FS) setting across across eight healthcare
monitoring tasks. STRS: Stress, READ: Readiness, FATG: Fatigue, SQ: Sleep Quality, ANX:
Anxiety, DEP: Depression, ACT: Activity, CAL: Calories. Best result is in bold, second-best result
is underlined. ‘-’ denotes model failed to produce valid prediction.

PMData GLOBEM AW-FB

Model STRS (↓) READ (↓) FATG (↑) SQ (↓) ANX (↓) DEP (↓) ACT (↑) CAL (↓)

LLMs
(FS-best)

MedAlpaca 0.78 1.94 36.2 0.69 0.97 0.56 19.3 36.7
GPT-3.5 0.94 1.62 73.9 0.77 1.98 0.68 26.3 26.5
GPT-4 0.76 1.64 61.3 0.60 1.11 0.60 15.4 24.0
Gemini-Pro 1.10 2.20 24.8 0.80 1.30 1.05 15.0 37.2

Mean 0.90 1.85 49.05 0.72 1.34 0.72 19.0 31.1

SLMs
(FS-1)

Gemma-2-2b-it 0.41 2.30 59.87 0.45 2.04 2.40 - 24.22
Phi-3-mini-4k 0.43 1.56 47.83 0.46 1.99 1.94 21.40 21.58
SmolLM-1.7B 0.41 1.31 51.51 0.46 3.12 3.47 22.10 19.94
Qwen2-1.5B 0.41 1.29 51.51 0.46 2.15 2.47 14.40 19.07
TinyLlama-1.1B 0.41 1.30 51.51 0.46 3.10 3.39 14.00 18.97
Llama-3.2-1B 0.55 1.50 51.51 0.65 2.32 3.03 20.40 18.43
Llama-3.2-3B 0.79 1.87 28.76 0.54 1.84 2.01 18.10 37.45
Phi-3.5-mini 0.41 1.36 51.51 0.46 3.06 3.42 14.40 51.33
Qwen2.5-1.5B 0.43 1.28 54.52 0.47 3.10 3.44 14.70 18.04

Mean 0.47 1.53 49.84 0.49 2.52 2.84 17.40 25.45

SLMs
(FS-3)

Gemma-2-2b-it 0.48 1.66 44.82 0.49 - - - -
Phi-3-mini-4k 0.41 1.67 44.82 0.45 0.88 0.54 19.40 54.98
SmolLM-1.7B - - - - 0.87 0.58 15.40 18.97
Qwen2-1.5B 0.41 1.68 51.51 0.46 0.88 0.54 23.10 19.85
TinyLlama-1.1B - - - - 2.93 3.04 14.40 17.90
Llama-3.2-1B 0.44 1.73 49.83 0.54 0.88 0.54 15.40 18.47
Llama-3.2-3B 0.41 1.78 51.51 0.47 1.19 1.12 24.10 19.27
Phi-3.5-mini 0.41 1.43 51.51 0.46 0.91 0.55 24.10 32.94
Qwen2.5-1.5B 0.40 1.44 37.12 0.76 1.37 0.64 18.10 17.90

Mean 0.42 1.63 47.30 0.52 1.24 0.94 19.20 25.04

SLMs
(FS-5)

Gemma-2-2b-it 0.48 1.35 61.54 0.47 - - - -
Phi-3-mini-4k 0.41 1.32 57.19 0.49 0.88 0.56 22.10 37.27
SmolLM-1.7B - - - - 0.87 0.76 17.10 18.58
Qwen2-1.5B 0.41 1.42 51.51 0.46 1.20 1.12 20.40 29.41
TinyLlama-1.1B - - - - 3.15 3.51 24.10 37.00
Llama-3.2-1B 0.44 1.42 52.51 0.46 1.18 1.38 15.10 27.18
Llama-3.2-3B 0.41 1.59 52.17 0.46 1.18 1.23 18.40 28.54
Phi-3.5-mini 0.41 1.41 51.51 0.46 1.46 1.56 24.10 23.69
Qwen2.5-1.5B 0.40 1.44 41.47 0.49 1.28 1.52 17.40 28.50

Mean 0.42 1.42 52.56 0.47 1.40 1.45 19.84 28.77

SLMs
(FS-10)

Gemma-2-2b-it 0.49 1.41 63.55 0.50 1.23 1.09 - -
Phi-3-mini-4k 1.01 1.70 32.78 0.45 0.82 0.63 17.70 18.46
SmolLM-1.7B - - - - 0.77 0.53 15.10 19.13
Qwen2-1.5B 0.41 1.55 56.19 0.47 0.87 0.54 17.70 18.00
TinyLlama-1.1B - - - - - - 21.10 17.17
Llama-3.2-1B 0.89 1.61 8.36 0.46 0.87 0.77 15.70 19.47
Llama-3.2-3B 0.49 1.83 39.80 0.48 2.04 1.23 19.10 18.06
Phi-3.5-mini 0.42 1.41 34.11 0.48 0.77 1.10 22.10 18.87
Qwen2.5-1.5B 0.66 2.47 33.44 0.50 0.87 0.54 17.40 19.09

Mean 0.63 1.71 38.32 0.48 1.03 0.801 18.2 18.53

2.56 for LLMs, and a higher mean accuracy of 52.2% for SLMs compared to 41.54% for LLMs. For
other tasks, including sleep quality, anxiety, depression, and activity, SLMs perform within a similar
range to LLMs. Among the SLMs, Gemma-2-2B-it and Phi-3-mini-4k consistently deliver strong
results for fatigue and readiness, while Qwen2.5-1.5B matches or exceeds LLM performance on
several tasks. However, SLMs do have some limitations. SmolLM-1.7B often underperforms relative
to LLMs, and most SLMs struggle with calorie estimation, where the mean MAE is 143.23 for SLMs
compared to 47.6 for LLMs, suggesting that regression tasks may be more challenging for SLMs.

In sum, under zero-shot settings, SLMs generally match or surpass LLMs on most health prediction
tasks, notably achieving better results in stress, readiness, and fatigue predictions. Leading SLMs,
such as Gemma-2-2B-it and Phi-3-mini-4k, show consistent strength compared with SOTA LLMs.

Few-shot learning. The few-shot (FS) results are shown in Table 4. For LLMs, we compare the
best few-shot performance (FS-best) to SLMs using a range of few-shot sample counts (1, 3, 5, 10) in
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Table 5: Performance of LLMs and SLMs under instruction tuning (LoRA) setting across eight
healthcare monitoring tasks. STRS: Stress, READ: Readiness, FATG: Fatigue, SQ: Sleep Quality,
ANX: Anxiety, DEP: Depression, ACT: Activity, CAL: Calories. Best result is in bold, second-best
result is underlined. ‘-’ denotes model failed to produce valid prediction.

PMData GLOBEM AW-FB

Model STRS (↓) READ (↓) FATG (↑) SQ (↓) ANX (↓) DEP (↓) ACT (↑) CAL (↓)

LLMs
(lora)

HealthAlpaca-lora-7b 0.53 1.40 50.0 0.58 0.62 0.51 27.4 43.6
HealthAlpaca-lora-13b 0.34 1.56 54.8 0.39 1.04 0.67 29.0 39.6

Mean 0.44 1.48 52.4 0.49 0.83 0.59 28.2 41.6

SLMs
(lora)

Gemma-2-2b-it - - - 0.51 1.27 1.02 34.40 2.80
Phi-3-mini-4k 0.40 2.14 62.20 0.52 0.81 0.71 22.40 9.67
SmolLM-1.7B 0.93 1.68 15.40 0.89 0.84 0.54 16.10 18.87
Qwen2-1.5B 0.43 1.52 62.20 0.47 0.92 0.97 18.70 5.21
TinyLlama-1.1B 0.40 1.30 63.20 0.47 0.83 0.67 22.10 5.51
Llama-3.2-1B 0.43 2.25 49.80 0.81 0.86 0.54 19.20 5.78
Llama-3.2-3B 0.60 1.53 40.80 0.47 0.88 0.54 22.10 3.64
Phi-3.5-mini 0.49 1.55 62.20 0.92 0.88 0.66 19.40 12.09
Qwen2.5-1.5B 0.87 1.49 13.00 0.87 1.04 0.79 21.70 4.57

Mean 0.57 1.68 46.10 0.66 0.93 0.72 21.80 7.57

SLMs. As shown in Table 4, even when provided with in-context examples in the one-shot setting
(FS-1), SLMs demonstrate competitive performance compared to their larger counterparts across
multiple healthcare monitoring tasks, and also outperforms zero-shot SLMs on average.

Comparing the performance across different few-shot settings reveals interesting patterns in SLM
behavior. In the FS-1 setting, SLMs achieve competitive performance levels compared to LLMs
across most tasks. For instance, SLMs achieve a mean of 0.47 for stress prediction compared to
LLMs’ 0.90, and 0.49 for sleep quality compared to LLMs’ 0.72. As the number of few-shot
examples increases from FS-1 to three-shot (FS-3), five-shot (FS-5), and ten-shot (FS-10), the
performance shows task-dependent variations. For stress prediction, the mean performance remains
relatively stable across all few-shot settings. Similarly, sleep quality prediction maintains consistent
performance throughout the different few-shot configurations.

However, certain tasks exhibit different response patterns to increased few-shot examples. Anxiety
and depression prediction tasks show notable improvement as the number of examples increases
from FS-1 to FS-3, with further refinement observed in subsequent settings. This suggests that
mental health prediction tasks may benefit more from additional contextual examples compared to
physiological monitoring tasks when using SLMs without fine-tuning, which has also been observed
in recent work comparing SLMs and LLMs in mental health prediction tasks [55]. As shown in
Table 4, we also observed that the collapse pattern appears at FS-1, FS-3, and FS-5, but does not
occur at FS-10. This phenomenon was observed only in PMData and LifeSnaps tasks, such as stress,
fatigue, sleep quality and sleep disorder, while readiness remained unaffected and no collapse was
noted in GLOBEM or AW-FB tasks. Upon label distribution inspection (cf. Appendix F.1), this trend
appears to stem from limited label representation under low-shot settings, where only a few examples
are provided. As the number of examples increases to FS-10, the broader label coverage yields a
more representative distribution, thereby mitigating the collapse.

Overall, SLMs perform competitively with LLMs in few-shot healthcare tasks, even with just one
example. More examples help models achieve more stable and reliable performance.

Instruction tuning. As shown in Table 5, both SLMs and SOTA LLMs [23] are instruction-tuned,
yet SLMs outperform LLMs in tasks such as fatigue and calorie estimation. Specifically, SLMs
achieve much lower mean values for fatigue (46.1 for SLMs vs. 52.4 for LLMs) and calorie estimation
error (7.57 for SLMs compared to 41.6 for LLMs), demonstrating their superior accuracy in these
important health measures. Although LLMs perform slightly better in stress, readiness, and activity
prediction—with lower mean values for stress (0.44 for LLMs vs. 0.57 for SLMs), readiness (1.48 vs.
1.68), and higher mean values for activity (28.2 vs. 21.8)—these differences are relatively modest
compared to the clear advantages of SLMs in fatigue and calorie estimation. For other tasks such as
sleep quality, anxiety, and depression, both SLMs and LLMs show similar performance, with only
minor differences in mean values. Notably, SLMs like TinyLlama-1.1B and Phi-3-mini-4k stand out
for their strong and consistent results across multiple tasks. In less-performing cases (e.g., activity,
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Table 6: Efficiency & Utilization of LLMs & SLMs on the PMData dataset.
Model TTFT(s) ITPS(t/s) OET(s) OTPS(t/s) Total Time(s) CPU(%) RAM(GB)

PMData
Phi-3-mini-4k 6.39 112.39 0.96 13.49 7.61 70.20 6.48
TinyLlama-1.1B 1.37 527.01 0.35 45.89 1.79 117.98 5.17
Llama-2-7b 29.12 24.74 27.85 3.04 57.43 379.31 7.15

anxiety and sleep quality) of SLMs, we observed that SLMs tend to predict only the majority classes
without attempting to predict other, weaker classes (i.e., class-imbalance bias; cf. Appendix F.2),
causing the model to become stuck at sub-optimal performance on those tasks. To mitigate this issue,
we applied data augmentation (e.g., oversampling) to balance the label distribution (cf. Appendix B),
which improved coverage of minority classes but did not lead to any performance gains.

In sum, these findings demonstrate that SLMs, when properly tuned, are not only competitive but
often superior to LLMs for specific healthcare tasks, particularly fatigue and calorie estimation. This
highlights the potential of SLMs for efficient, accurate, and practical healthcare applications, making
them a compelling choice where resource efficiency and task-specific performance are essential.

5.2 Deployment Efficiency

To investigate efficiency and computational cost in real-world deployment, we ran inference with
the two top-performing models, Phi-3-mini-4k and TinyLlama-1.1B, which were instructional-
tuned using LoRA, on an iPhone 15 Pro Max with 8GB memory capacity. Since the SOTA LLM
HealthAlpaca-lora-7b [23] did not release its checkpoint, we compared the on-device performance
of selected SLMs against the baseline Llama-2-7b (the backbone of HealthAlpaca-lora-7b) using
PMData to evaluate deployment efficiency. For fair comparison, we random select a total of ten
samples from PMData for both Llama-2-7b, Phi-3-mini-4k and TinyLlama-1.1 to evaluate latency
and hardware utilization.

As shown in Table 6, the efficiency results of the two instruction-tuned SLMs on PMData demonstrate
that SLMs preserve their latency and memory advantages over Llama-2-7b. Both TinyLlama-1.1B
and Phi-3-mini-4k outperform Llama-2-7b in latency and throughput. Specifically, Phi-3-mini-4k
achieves a 4.6× faster time-to-first-token (TTFT) and 29× faster output evaluation time (OET), with
gains of over +350% in both input tokens per second (ITPS) and output tokens per second (OTPS).
TinyLlama-1.1B shows even larger margins, with 21× faster TTFT, 79× faster OET, and more than
+2, 000% ITPS compared to Llama-2-7b. The memory footprint of the SLMs is also much smaller.
Specifically, Phi-3-mini-4k uses 9% less RAM, and TinyLlama-1.1B uses 28% less than Llama-2-7b.
Comparing the two SLMs, Phi-3-mini-4k offers moderate efficiency gains in some metrics but is
consistently slower than TinyLlama-1.1B.

Overall, SLMs achieve substantial reductions in both input processing latency and generation latency,
making them as ideal and practical solutions for resource-constrained mobile health applications.

6 Conclusion and Future Work

In this paper, we introduce HealthSLM-Bench, a comprehensive benchmark designed to systemati-
cally evaluate SOTA SLMs on healthcare monitoring tasks under zero-shot, few-shot, and instruction-
tuning scenarios. Furthermore, we assess the efficiency of these models following instruction-tuning
through on-device deployment experiments. Our study shows that SLMs can match or even surpass
much larger LLMs after adapted with few-shot and instructional tuning while delivering superior
efficiency gain, making them practical for real-time on-device deployment. At the same time, we also
identified their limitations in few-shot prompting and restricted effectiveness in instruction tuning,
particularly under class-imbalanced datasets. Both limitations point to several promising directions
for future work. The first is to investigate the underlying causes of the few-shot anomaly and ex-
plore robust prompt design to prevent collapse. Another direction is to explore imbalance-aware
training approaches, for example by adjusting loss weighting or augmenting minority-class samples,
to reduce class bias during SLM fine-tuning. Additionally, leveraging adaptive techniques such as
test-time adaptation [59] could further strengthen SLM generalisation in health applications. Taken
together, our benchmark establishes SLMs as a promising yet imperfect solution for efficient and
privacy-preserving healthcare applications, motivating further exploration to address these challenges.
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Appendix

A Implementation Details

We fine-tune our SLMs on a NVIDIA A100 80GB GPUs with a batch size of 128 with 3 number
of epochs for the purpose of fine-tuning, with Adam optimizer and a learning rate as 5e-5 (cosine
learning rate scheduler and dynamic warmup steps of 5% of dataset size). It took about 7 hours for 9
SLMs in 3 epochs of training with the default training setting. We adopt greedy decoding method
with sampling set to False. We utilize the same prompt of zero-shot for LoRA tuned SLMs inference.
To ensure re-productiveness, we employ the greedy decoding strategy to make the output prediction
deterministic. While most language models default to sampling-based decoding (e.g., top-k, top-p),
we explicitly disabled these strategies to maintain reproducibility across runs. To better simulate
edge-device conditions, where computational resources are constrained, we capped the maximum
number of generated tokens at 30. Generation stops once this limit is reached, even if the answer is
incomplete, which balances efficiency and response quality. The codes and fine-tuned models will be
made publicly available upon the release of the camera-ready version of this paper.

B Additional Experiments

To solve the class-imbalance issue we observed under instructional-tuning (LoRA), we employed a
data augmentation method (oversampling) to balance minority classes in the training data. Specifically,
samples from underrepresented classes were randomly duplicated until all classes reached the size
of the majority class. In the fine-tuning setup, we specifically apply label-grouping prepossessing
strategy, which groups samples by their labels instead of arranging them in a random order. This
grouping ensures that each mini-batch contains samples with a consistent label, stabilizing gradient
updates and improving class representation during fine-tuning. For better assess the effectiveness of
class-imbalance mitigation, model performance was further evaluated using the Macro F1-score, in
addition to Accuracy and MAE.

Table 7: LoRA performance of SLMs fine-tuned on augmented datasets (PMData & GLOBEM)
compared to those fine-tuned on the original dataset (with label-grouping). The best results are
shown in bold, and the second-best results are underlined. “OR” denotes fine-tuning with the original
dataset, while “OS” denotes fine-tuning on the oversampled datasets.

Model STRS (↓) READ (↓) FATG (↑) SQ (↓) ANX (↓) DEP (↓)

LLMs HealthAlpaca-lora-7b 0.53 1.40 50.0 0.58 0.62 0.51
HealthAlpaca-lora-13b 0.34 1.56 54.8 0.39 1.04 0.67

Mean 0.44 1.48 52.4 0.49 0.83 0.59

SLMs
(OR)

gemma-2-2b-it - - - - 1.064 0.576
Phi-3-mini-4k 0.395 1.997 62.5 0.468 0.806 0.545
SmolLM-1.7B 0.526 1.753 12.4 0.900 0.890 0.542
Qwen2-1.5B 0.388 1.304 63.2 0.462 0.940 0.933
TinyLlama-1.1B 0.398 1.311 63.5 0.475 0.876 0.555
Llama-3.2-1B 0.415 2.003 52.8 0.448 0.866 0.535
Llama-3.2-3B 0.501 1.525 38.1 0.495 0.882 0.535
Phi-3.5-mini 0.445 1.642 62.2 0.957 0.833 0.766
Qwen2.5-1.5B - 1.354 49.1 0.720 - -

Mean 0.438 1.611 50.5 0.616 0.895 0.623

SLMs
(OS)

gemma-2-2b-it 0.48 1.73 41.70 0.48 1.98 1.94
Phi-3-mini-4k 1.46 3.70 15.4 1.79 1.01 0.92
SmolLM-1.7B 1.03 1.85 21.4 1.21 1.68 1.95
Qwen2-1.5B 1.68 3.32 0.7 0.80 2.82 2.84
TinyLlama-1.1B 0.61 4.80 58.9 0.64 3.48 1.15
Llama-3.2-1B 1.01 7.02 31.8 0.90 0.84 0.61
Llama-3.2-3B 0.75 3.31 29.8 0.48 1.03 1.25
Phi-3.5-mini 0.55 2.45 50.8 0.73 0.92 0.84
Qwen2.5-1.5B 1.08 1.55 4.4 1.00 1.46 1.72

Mean 0.96 3.30 28.3 0.89 1.69 1.47
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Table 8: LoRA Performance of 9 SLMs fine-tuned with augmented dataset compared to finetuned with
original. All tasks are evaluated by Macro F1-score, which higher value indicates better performance.
Best results in bold, second best are underlined. “-” denotes invalid or unreasonable responses
generated by models, while “N/A” indicates the result is not available in original paper.

Model STRS (↑) READ (↑) FATG (↑) SQ (↑) ANX (↑) DEP (↑)

LLMs HealthAlpaca-lora-7b N/A N/A 19.0 N/A N/A N/A
HealthAlpaca-lora-13b N/A N/A 45.0 N/A N/A N/A

SLMs
(OR)

gemma-2-2b-it - - - - 14.8 15.1
Phi-3-mini-4k 12.9 2.4 15.4 15.4 13.2 17.8
SmolLM-1.7B 12.6 5.0 6.0 11.6 19.6 16.9
Qwen2-1.5B 14.3 4.0 15.5 18.1 12.0 14.3

TinyLlama-1.1B 13.7 3.9 17.5 14.2 16.0 17.2
Llama-3.2-1B 12.7 7.5 18.4 30.2 14.0 15.3
Llama-3.2-3B 14.3 6.9 17.1 21.8 12.3 15.3
Phi-3.5-mini 12.4 5.1 15.4 8.9 15.2 17.4

Qwen2.5-1.5B - 6.2 13.6 23.2 - -

Mean 13.3 5.1 14.9 17.9 14.6 16.2

SLMs
(OS)

gemma-2-2b-it 24.8 6.3 17.5 32.6 7.4 8.7
Phi-3-mini-4k 8.7 3.3 6.7 7.0 15.5 12.0
SmolLM-1.7B 16.7 5.0 16.1 12.0 10.8 7.5
Qwen2-1.5B 1.4 2.9 0.3 19.6 6.4 4.0

TinyLlama-1.1B 16.3 1.3 19.4 22.7 5.9 9.9
Llama-3.2-1B 6.9 3.6 12.3 18.1 21.8 19.5
Llama-3.2-3B 18.8 5.3 15.0 19.0 17.4 17.6
Phi-3.5-mini 14.8 2.1 19.6 29.9 15.6 11.6

Qwen2.5-1.5B 4.3 3.8 2.0 8.0 7.7 2.9

Mean 12.5 3.7 12.1 18.8 12.1 10.4

Performance comparison (Accuracy, MAE). As shown in Table 7, SLM performance generally
declined when fine-tuned on oversampled datasets (OS) compared with the original datasets (OR).
For instance, the mean error of STRS, READ, SQ, ANX, and DEP increased from 0.438, 1.611,
0.616, 0.805, and 0.623 to 0.961, 3.303, 28.3, 0.892, and 1.691, respectively, while the mean accuracy
of FATG decreased from 48.0 to 28.3. When comparing the best results, SLMs fine-tuned on
OS also showed a similar decline, though the degradation was less pronounced than in the mean
performance. Specifically, the lowest MAE of STRS and READ increased from 0.388 and 1.304
to 0.482 and 1.549, respectively (a similar trend was observed for SQ, ANX, and DEP), while the
highest accuracy of FATG dropped from 63.5 to 58.9. For some models, such as Qwen2-1.5B and
Qwen2.5-1.5B, exhibited the most severe degradation, with FATG accuracies of only 0.7% and 4.4%,
compared to 63.2% and 49.1% fine-tuned under the original datasets. These observations indicate that
strategies like oversampling tends to amplify existing noise in minority classes, leading to reduced
generalization under instruction-tuning.

Analysis on distribution inspection. Upon inspection, as shown in Figure 7, SLMs fine-tuned
on oversampled datasets did demonstrate improved coverage of minority classes compared to those
fine-tuned on the original datasets. Models, such as gemma-2-2b-it and phi-3.5-mini, began predicting
a broader range of labels on STRS, FATG, and SQ, bringing their frequency distributions closer to the
true distribution, where labels 2–4 are the most representative. Similarly, on the GLOBEM dataset
(Figure 8), the best-performing models (Llama-3.2-1B and Phi-3.5-mini) expanded their predictions
beyond dominant labels (0, 1) to include rare labels such as 3 and 4. This improvement indicates
that oversampling mitigates single-class dominance and enables SLMs to capture a more balanced
label distribution. However, residual mismatches still persist. In particular, Qwen2.5-1.5B tends to
over-predict label 4 on PMData tasks and label 2 on GLOBEM tasks, suggesting that oversampling
amplifies noise in underrepresented classes and thereby explains the degradation in performance
observed earlier.

Performance comparison (Macro F1-Score). As a more reliable measure of performance on
these class-imbalanced datasets, the Macro F1-scores reported in Table 8 further support our earlier
observations on the predicted distributions. In particular, SLMs fine-tuned on oversampled datasets
achieved higher F1-scores than those trained on the original datasets across most tasks, consistent
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with their predicted distributions being closer to the true label distribution. For example, on PMData
tasks such as STRS, FATG, and SQ, the top-performing models obtained F1-scores of 24.8, 19.6,
and 32.6 trained on oversampled data, compared to 14.3, 18.4, and 30.2 trained on original data.
Similarly, on GLOBEM tasks (ANX, DEP), SLMs trained with oversampled datasets achieved the
best F1-scores of 21.8 and 19.5, surpassing 19.6 and 17.8 trained with original datasets. These results
confirm that oversampling enhances class diversity and balances predictions, even though overall
accuracy and MAE slightly decline. However, as oversampling simply duplicates existing data, it
cannot introduce new variability, which may cause models to overfit to minority patterns and limit
generalization on unseen data.

In sum, oversampling improves class balance and prediction diversity for SLMs, as reflected by
higher Macro F1-scores and broader label coverage. However, these gains come at the cost of
reduced performance, likely due to overfitting on duplicated samples and weaker generalization.
These observations highlight oversampling as an effective yet imperfect strategy for mitigating
class imbalance in SLM predictions, suggesting that future work should explore more advanced
augmentation methods that maintain its stability while increasing data diversity.

C Small Language Models

We selected 9 most state-of-the-art SLMs between 1 to 4B from top-tier tech companies. The details
of each SLMs are listed below:

• Phi-3-mini-4k-Instruct [32]: Microsoft’s smallest model in the Phi-3 family. It has 3.8 billion
parameters, trained on a combination of synthetic data and selected publicly available website data,
with an emphasis on high-quality and reasoning-dense properties.

• Phi-3.5-mini-Instruct [32]: A upgrade version of phi-3-mini-4k-instruct. It is built in the same
architecture and dataset upon phi-3, but trained with a focus on reasoning dense data for better
instruction alignment and multi-step reasoning.

• TinyLlama-1.1B-Chat-v1.0 [33]: Distilled version of Llama 2. It uses the same architecture and
tokenizer as LLaMA but is compact with 1.1 billion parameters. It was fine-tuned on the UltraChat
dataset (contains field-cross synthetic dialogues generated by ChatGPT), making it compatible with
a wide range of tasks.

• Gemma2-2B-it [34]: Google’s SOTA open-source model, built on the same research and tech-
nology as the Gemini models but scaled down to 2 billion parameters. It is well-suited for text
generation tasks such as question answering, summarization, and reasoning.

• SmolLM-1.7B-Instruct [35]: HuggingFace’s flagship model, it has 1.7 billion parameters and is
trained on SmolLM-Corpus which consists of synthetic textbooks, stories, and educational Python
and web samples.

• Qwen2-1.5B-Instruct [16]: Ailibaba’s state-of-the-art SLM in Qwen2 family. It has only 1.5
billion parameters and is trained on diverse instruction-followed tasks. The included coding and
mathematics data for training makes it perform well in coding and quantitative reasoning tasks.

• Qwen2.5-1.5B-Instruct [60]: An upgraded version of Qwen2. It is built on the same dataset
and architecture, but places greater emphasis on coding and mathematics tasks, making it more
optimized for reasoning and math.

• Llama-3.2-1B-Instruct [36]: Meta-llama’s state-of-the-art SLM. It shares the identical architecture
and pre-trained datasets upon Llama3, but is compressed to 1B parameters.

• Llama-3.2-3B-Instruct [36]: 3B version of Llama-3.2-1B-Instruct.

D Task categorization and Label Distribution

D.1 PMData

• Stress (STRS): Estimation of an individual’s stress level based on physiological data and self-
reported measures. (0-5, Classification)

• Readiness (READ): Assessment of an individual’s readiness for physical activity/exercise. (0-10,
Classification)
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• Fatigue (FATG): Monitoring of signs of tiredness or exhaustion based on sports and life-log data in
the last 14 days. (1-5, Classification)

• Sleep Quality (SQ): Estimation of an individual’s sleep quality. (1-5, Classification)

All tasks is assessed with factors including total sleep time, Steps, mood and other sports data like
Burned Calories and Resting Heart Rate over a continuous 14-day period. In terms of range, most
tasks are evaluated on a scale of 1-5 or 0-5. A score of 3 represents a normal condition, and 1-2 are
scores below normal states, and 4-5 are scores above normal states. For the task of readiness, the
scale ranges from 0 to 10, where 0 reflects no readiness for physical activity, and 10 indicates high
preparation for exercise.

The label distribution for each task in this dataset is shown as below:
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Figure 1: The label distribution of the four tasks in PMData

D.2 GLOBEM

• Depression (DEP): estimation of a depression score that analyzes patterns in user’s sleeping
behavior and activity levels. (0–4, Classification)

• Anxiety (ANX): estimation of an anxiety score that relies on behavioral markers such as irregular
sleep patterns or heightened physiological responses, e.g. increased heart rate, reduced activity
levels, and increased sleep disturbances (0–4, Classification)

Both the two tasks are assessed on the average of daily steps, sleep efficiency, duration the user stayed
in bed after waking up, duration the user spent to sleep, duration the user stayed awake but still in
bed, and duration the user spent to fall asleep in the last 14 days. A value of 0 implies the disorder is
not present, while a value of 4 indicates severe disorder. Any values between 0 and 4 denote their
severity accordingly, such as a value of 1 indicates mild disorder, 2 refers to moderate, and 3 refers to
Moderately Severe.

The label distribution for each task in this dataset is shown below:
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Figure 2: The label distribution of the two tasks in GLOBEM

D.3 AW_FB

• Activity (ACT): estimation of individual’s activity intensity type based on sensor data. (0-5,
Classification)

• Calories (CAL): estimation of burned calories that are expended by an individual during physical
activities. (no constraint, Regression)

Activity is predicted by Steps, Burned Calories, and Heart Rate obtained during an activity period.
This label ranges from 0 to 5, corresponding to Self Pace Walk, Sitting, Lying, Running 7 METs,
Running 5 METs, and Running 3 METs respectively. Calories are calculated based on Steps, Heart
Rate, Duration, Activity Type, and MET Value, where a higher value indicates greater energy
expenditure.

The label distribution for each task in this dataset is shown below:
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Figure 3: The label distribution of the two tasks in AW_FB

19



E Evaluation Metrics

E.1 Performance Evaluation

For SLMs performance evaluation, Mean Absolute Error (MAE) and Accuracy are utilized to assess
model prediction performance on health event prediction.

Accuracy (%) [61] measures the proportion of correctly predicted instances out of all instances. It
provides an overview of whether a model performed well overall, with higher values indicating better
performance. However, accuracy does not capture the severity or magnitude of errors in misclassified
cases, as all errors are treated equally.

Mean Absolute Error (MAE) [62] quantifies the average magnitude of prediction errors by com-
puting the absolute difference between predicted and actual values. Lower MAE indicates better
alignment with ground truth. Unlike Accuracy, which only reflects correctness, MAE distinguishes
between small and large errors. For example, predicting “3” when the true label is “4” yields an error
of 1, while predicting “3” when the true label is “10” yields an error of 7. Thus, MAE captures not
only whether predictions are correct but also how close incorrect predictions are to the true values.

In health event prediction, we used both Accuracy and MAE to provide complementary insights.
For instance, models that achieve slightly lower accuracy but maintain consistently low MAE may
be preferable, as they deliver more reliable outputs than those with higher accuracy but large error
magnitudes.

E.2 Efficiency and Utilization Evaluation

To further evaluate the efficiency and the actual latency in real cases, all state-of-the-art (SOTA)
SLMs that show strong promise will be deployed in processing healthcare field data on a real iPhone
15 Pro Max. To better demonstrate the importance of efficiency on mobile devices, the widely used
LLM, Llama 2, is selected and serves as a comparison to the fine-tuned SLMs. The following metrics
suggested by MobileAIBench [31] are adopted to evaluate both efficiency and utilization:

• Time-to-First-Token (TTFT, sec): TTFT is defined by the time of the first token generated to
respond to the prompt. It primarily assesses latency, where a lower TTFT indicates a faster response
time, allowing users to perceive quicker feedback from the SLM.

• Input Token Per Second (ITPS, tokens/sec): ITPS is defined by the number of input tokens being
processed per second, which refers to how fast the model can read and understand the prompts.

• Output Token Per Second (OTPS, tokens/sec): OTPS is defined by the number of tokens produced
per second after starting to produce tokens, which refers to how fast the model can produce the
answer, and access the inference speed. A higher value indicates higher efficiency.

• Output Evaluation Time (OET, sec): The time model takes to complete a response - assess the
overall efficiency of generating an entire response. A lower value indicates higher efficiency.

• Total Time: The total time it takes to produce a complete response after receiving a prompt is a
comprehensive efficiency metric for how long a model takes to complete a given task from start to
finish. A lower value indicates higher efficiency.

• CPU (%): An amount of computational resources used in the inference process.

• RAM (GB): An amount of memory needed to run a model during the inference process.

During batch evaluations, latency metrics such as TTFT, ITPS, OTPS, OET, and Total Time are
calculated as the average time spent or average token processed/generated over a sample size of N
(we used 10). CPU utilization is measured by the average load per second during inference, while
RAM usage is reported as the maximum memory allocated to the device when the model is running.
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F SLMs Prediction Distribution

F.1 Few-shot Distribution

Figure 4: Distribution of predictions for the four tasks in PMData under FS setting
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F.2 Instructional tuning (LoRA) Distribution
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Figure 5: Distribution of predictions for the four tasks in PMData
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G Data Augmentation
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Figure 7: Predicted distributions of SLMs (LoRA) on PMData, comparing models fine-tuned on the
original and oversampled datasets.

23



0 1 2 3 4 Failed
anxiety

0

100

200

gemma-2-2b-it - ANXIETY

0 1 2 3 Failed
depression

0

100

200

gemma-2-2b-it - DEPRESSION

0 1 2 3 Failed
anxiety

0

100

200

Phi-3-mini-4k-instruct - ANXIETY

0 1 2 3 4 Failed
depression

0

100

200

Phi-3-mini-4k-instruct - DEPRESSION

0 1 2 3 4 Failed
anxiety

0

100

200

SmolLM-1.7B-Instruct - ANXIETY

0 1 2 3 4 Failed
depression

0

100

200

SmolLM-1.7B-Instruct - DEPRESSION

0 1 2 3 4 Failed
anxiety

0

100

200

Qwen2-1.5B-Instruct - ANXIETY

0 1 2 3 4 Failed
depression

0

100

200

Qwen2-1.5B-Instruct - DEPRESSION

0 1 2 3 Failed
anxiety

0

100

200

TinyLlama-1.1B-Chat-v1.0 - ANXIETY

0 1 2 3 4 Failed
depression

0

100

200

TinyLlama-1.1B-Chat-v1.0 - DEPRESSION

0 1 2 3 Failed
anxiety

0

100

200

Llama-3.2-1B-Instruct - ANXIETY

0 1 2 3 Failed
depression

0

200

Llama-3.2-1B-Instruct - DEPRESSION

0 1 2 3 4 Failed
anxiety

0

200

Llama-3.2-3B-Instruct - ANXIETY

0 1 2 3 4 Failed
depression

0

200

Llama-3.2-3B-Instruct - DEPRESSION

0 1 2 3 Failed
anxiety

0

100

200

Phi-3.5-mini-instruct - ANXIETY

0 1 2 4 Failed
depression

0

100

200

Phi-3.5-mini-instruct - DEPRESSION

0 1 2 3 4 Failed
anxiety

0

200

Qwen2.5-1.5B-Instruct - ANXIETY

0 1 2 3 4 Failed
depression

0

200

Qwen2.5-1.5B-Instruct - DEPRESSION

Finetuned (Original data) Finetuned (Oversampled data)

Figure 8: Predicted distributions of SLMs (LoRA) on GLOBEM, comparing models fine-tuned on
the original and oversampled datasets.
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