

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING TO PRICE BUNDLES: A GCN APPROACH FOR MIXED BUNDLING

Anonymous authors

Paper under double-blind review

ABSTRACT

Bundle pricing refers to designing several product combinations (i.e., bundles) and determining their prices in order to maximize the expected profit. It is a classic problem in revenue management and arises in many industries, such as e-commerce, tourism, and video games. However, the problem is typically intractable due to the exponential number of candidate bundles. In this paper, we explore the usage of graph convolutional networks (GCNs) in solving the bundle pricing problem. Specifically, we first develop a graph representation of the mixed bundling model (where every possible bundle is assigned with a specific price) and then train a GCN to learn the latent patterns of optimal bundles. Based on the trained GCN, we propose two inference strategies to derive high-quality feasible solutions. A local-search technique is further proposed to improve the solution quality. Numerical experiments validate the effectiveness and efficiency of our proposed GCN-based framework. Using a GCN trained on instances with 10 products, our methods consistently achieve near-optimal solutions (better than 97%) with only a fraction of computational time for problems of small to medium size. It also achieves superior solutions for larger size of problems compared with other heuristic methods such as bundle size pricing (BSP). The method can also provide high quality solutions for instances with more than 30 products even for the challenging cases where product utilities are non-additive.

1 INTRODUCTION

Bundle pricing is a widely adopted strategy across industries such as e-commerce, tourism, digital subscriptions, and retail. It refers to the practice that a firm provides combinations (i.e., “*bundles*”) of products or services (at discounted prices), supplementing the traditional component pricing (CP) strategy where products are only sold separately, each with its own price. For instance, Amazon Prime combines fast shipping, video streaming, and music services into a single package, and reports show that subscription bundles drive \$44 billion in subscription revenue for Amazon in 2024 (Modern Retail, 2024). Similarly, Statista estimates a significant growth of the global digital subscription market, estimated at \$832.99 billion in 2023 and projected to reach \$1902.28 billion in 2030. This expansion is largely fueled by the increasing adoption of bundled subscription packages, such as Amazon Prime’s combination of fast shipping, video streaming, and music services, and Disney+’s bundled offerings with Hulu (Grand View Research, 2023).

In order to optimize this policy, the firm needs to determine which bundles to offer and how to set the corresponding prices, under the constraint that customers will self-select the option that maximizes their surplus. This problem is inherently combinatorial: with n products, the number of possible bundles grows exponentially (2^n). Classical formulations, such as the mixed bundling (MB) model by Hanson & Martin (1990), rigorously capture customer surplus constraints but become computationally intractable when n exceeds 15. Later approximations, such as bundle-size pricing (bundles with the same sizes share the same prices), see, e.g., Chu et al. (2011), improve scalability but rely on strong simplifying assumptions (e.g., ignoring product heterogeneity), limiting their realism. Moreover, Chen et al. (2018) show #P-hardness of the bundle pricing problem even under very restricted settings (e.g., size two, discounted bundle-pricing), which further underscores that computational tractability remains the central challenge of bundle pricing in realistic markets.

054 To overcome this challenge, we propose a GCN-based framework that learns to identify the latent
 055 structure of the bundle pricing problem and hence provides high-quality solutions. The core idea of
 056 our approach is to train a GCN to make a prediction of which bundle each segment of customer will
 057 choose at the optimal solution, which effectively reduces the intractable exponential search space
 058 to a much smaller subset. Specifically, we first design a two-layer GCN that learns bundle-segment
 059 matchings and predicts likelihoods of each product being in the optimal bundle. The GCN, although
 060 trained only on small-scale instances (whose optimal solutions can be efficiently computed), can
 061 produce high-quality predictions for large-scale problems. Then, based on these predictions, we
 062 develop two strategies to generate candidate solutions. The first is a *Fixed Cutoff Pruning* (FCP)
 063 method. In the FCP method, for each segment, we only keep those bundles that contain products
 064 with predicted probability greater than 0.5, and discard the rest. The second is a *Progressive*
 065 *Cutoff Pruning* (PCP) method. In the PCP method, for each segment, we rank bundles by their pre-
 066 dicted probability and retain the bundles that satisfy a cutoff requirement as candidates to construct
 067 prefix bundles for each segment. Based on the pruned space, we apply Hanson & Martin (1990)'s
 068 mixed integer linear programming (MILP) formulation to find the optimal prices, which successfully
 069 maintain near-optimal revenue performance while saving significant computational costs. To further
 070 improve solution quality, we incorporate a local search method to explore alternative promising bun-
 071 dle assortments by strategically adding or dropping products, guided by the likelihood predictions
 072 of our GCN model. Finally, we conduct extensive experiments on synthetic datasets with varying
 073 product and segment scales, comparing against established baselines including mixed bundling and
 074 bundle-size pricing.

075 Our results demonstrate that for small scale problems (with no more than 10 products), the proposed
 076 strategies consistently achieve over 97% of optimal revenue while requiring only a fraction of run-
 077 time compared to other baseline methods. Moreover, the integration of local search further improves
 078 solution quality, yielding an additional 1% increase in revenue on average within shorter runtime
 079 compared to traditional strategies. For medium-scale problems (with 15-25 products), where mixed
 080 bundling is intractable, our strategies consistently beats bundle size pricing, in either revenue perfor-
 081 mance under less than 30 seconds or computational time when achieving similarly effective level of
 082 optimality. For large-scale problems (e.g., with more than 30 products) with non-additive utilities,
 083 traditional methods become computationally intractable, while our proposed method can still obtain
 084 a solution efficiently. To the best of our knowledge, our approach presents the first scalable approach
 085 for providing an efficient solution to the bundle pricing problem under the non-additive setting and
 086 the numerical experiments demonstrate the effectiveness and scalability of our proposed approach.
 087

2 RELATED WORK

088 The study of bundle pricing has a long history in economics and operations research communities.
 089 Early work in the two-product setting established the profitability of bundling relative to separate
 090 sales: Stigler (1963) first shows that pure bundling (PB) in which products are only sold together as
 091 a package at a single price can dominate component pricing in profitability for two products, while
 092 Adams & Yellen (1976) and Schmalensee (1984) demonstrate the profitability for CP, PB and MB
 093 for the two-products case. Later research extends these insights to large-scale settings. A stream of
 094 work analyzes simplified mechanisms such as CP (Abdallah 2019), PB (Bakos & Brynjolfsson 1999;
 095 Abdallah 2019), and bundle-size pricing (BSP) (Chu et al., 2011). Specifically, Bakos & Brynjolfs-
 096 son (1999) prove that PB approximates the revenue of MB when the number of products grows large
 097 under zero costs and independent and additive valuations. Later, Abdallah (2019) provides lower
 098 bounds for revenue loss under positive costs from PB. Empirical and theoretical studies show that
 099 BSP can outperform CP and PB in certain conditions and can achieve asymptotic optimality when
 100 product costs are homogeneous, though it deteriorates under cost heterogeneity (Hitt & Chen, 2005;
 101 Chu et al., 2011; Abdallah et al., 2021; Li et al., 2021). More recently, novel mechanisms have been
 102 proposed, such as pure bundling with disposal for costs (Ma & Simchi-Levi, 2021), lootbox schemes
 103 (Chen et al., 2021), and component pricing with bundle-size discounts (CPBSD) (Chen et al., 2022),
 104 which unify CP, PB and BSP approaches and achieve constant-factor guarantees. Complementary
 105 to mechanism design, a computational line of work has modeled bundle pricing directly as a mixed-
 106 integer program. The seminal work by Hanson & Martin (1990) pioneers the MB formulation of
 107 the optimal bundle pricing problem, showing that it preserves rigorous surplus maximization and
 108 price sub-additivity constraints, though its scalability is limited by the exponential growth of candi-
 109 date bundles. Our work follows this computational tradition: we retain Hanson & Martin (1990)'s

108 framework while leveraging graph-based learning to prune the bundle space before invoking the
 109 MILP solver, thereby combining theoretical rigor with practical scalability.
 110

111 Recently, the use of machine learning to accelerate the solution of combinatorial optimization
 112 problems has attracted increasing attention. A seminal work by Gasse et al. (2019) encodes mixed-integer
 113 programs as constraint-variable bipartite graphs and trains a GCN to imitate strong branching decisions,
 114 accelerating branch-and-bound (B&B) and inspiring a series of follow-up work. For example,
 115 Nair et al. (2020) introduce neural diving and neural branching strategies for B&B; Ding et al. (2020)
 116 extend the bipartite representation to a tripartite graph to predict partial solutions; Gupta et al. (2022)
 117 propose a lookback imitation framework for branching efficiency; Sonnerat et al. (2021) combine
 118 neural diving with neural neighborhood search to improve solution quality, and Paulus & Krause
 119 (2023) design GCN-based diving methods to facilitate B&B. In the context of linear programming,
 120 Fan et al. (2023) propose GCN-based initial basis selection to warm-start simplex and column gen-
 121 eration, while Liu et al. (2024) train GCNs to imitate expert pivot policies, shortening pivot paths.
 122 These studies confirm that GCNs can substantially reduce computational effort in solving optimiza-
 123 tion problems. In addition to accelerating optimization solvers, machine learning is also directly
 124 integrated into the core structure of operations research problems. Kool et al. (2019) introduce an
 125 attention-based model that learns powerful heuristics for complex routing problems like the traveling
 126 salesman problem (TSP) and the vehicle routing problem (VRP), achieving near-optimal results. Li
 127 et al. (2025) leverage the generalizability of GCNs to solve large-scale NP-hard constrained assort-
 128 ment optimization problems under the multinomial logit choice model. In a similar vein, we apply
 129 GCNs directly to the bundle pricing problem, where the GCN learns segment–bundle interactions
 130 and predicts promising candidates. In this way, our approach preserves the theoretical rigor of Han-
 131 son & Martin (1990)’s model while leveraging GCN predictions to accelerate large-scale instances,
 132 thereby extending GCN-assisted optimization to a core revenue management setting.
 133

3 PROBLEM DEFINITION AND BASELINES

134 We study a bundle pricing problem where a seller offers n distinct products to m heterogeneous
 135 customer segments. Hence, there are a total of 2^n bundle choices, denoted as $\mathcal{B} = \{0, 1, \dots, L\}$,
 136 where $L = 2^n - 1$ and 0 indicates the empty bundle. The seller chooses the set of prices $\{p_b \mid b \in \mathcal{B}\}$
 137 for bundles to maximize profit, which can be defined as $\sum_{k=1}^m \sum_{b \in \mathcal{B}} (p_b - c_{kb}) \cdot q_{kb}$, where c_{kb} is
 138 the serving cost of selling bundle b to segment k and $q_{kb} \in \{0, 1\}$ denotes whether segment k selects
 139 bundle b under self-selection assumption.

140 The buyers’ demand for bundles follows standard assumptions: each segment k has a certain val-
 141 uation R_{kb} for bundle b . After observing the price p_b , each buyer would select exactly one bundle
 142 that maximizes his/her individual surplus, defined by $s_{kb} = R_{kb} - p_b$, provided that the surplus is
 143 non-negative.

144 Under these assumptions, the seller’s revenue optimization problem can be formulated as follows:
 145

$$147 \quad \max \quad \sum_{k=1}^m \sum_{b \in \mathcal{B}} (p_b - c_{kb}) \cdot \alpha_k q_{kb} \quad (1)$$

$$150 \quad \text{s.t.} \quad q_{kb} \leq \mathbb{1} \left(b \in \arg \max_{b' \in \mathcal{B}} \{R_{kb'} - p_{b'}\} \wedge R_{kb} - p_b \geq 0 \right), \quad \forall k, b \in \mathcal{B} \quad (2)$$

$$153 \quad \sum_{b \in \mathcal{B}} q_{kb} = 1, \quad \forall k \quad (3)$$

$$156 \quad p_b \geq 0, \quad \forall b \in \mathcal{B}. \quad (4)$$

158 Here, α_k is the proportion of buyer segment k , and $\mathbb{1}(\cdot)$ is the indicator function that enforces buyers’
 159 surplus maximization choice.

160 In the following discussion, we assume $R_{kb} = f \left(\sum_{j \in b} u_{kj} \right)$ where u_{kj} is the utility of product j for
 161 segment k , $f(\cdot)$ is an increasing concave function, capturing potential correlations among products.

We assume $c_{kb} = \left(\sum_{j \in b} c_j^u\right) + c_k^s$, where c_k^s is the cost associated with serving customer segment k (e.g., the shipping cost) and c_j^u is the unit cost of product j . The concavity of $f(\cdot)$ captures the economic consensus of diminishing marginal utility, and the cost structure captures the principle of economies of scale: since the fixed cost is spread across all items in the bundle, the average cost per item decreases as more products are added. Hanson & Martin (1990) formulated this problem as a mixed-integer linear program (MILP). For the sake of completeness, we describe this formulation in the following.

3.1 MIXED BUNDLING FORMULATION (HANSON & MARTIN, 1990)

Consider the problem with all possible bundles denoted by \mathfrak{B} . We define the following variables: θ_{kb} is a binary indicator for whether segment k chooses bundle b ; p_b is the price of bundle b ; P_{kb} is the effective price paid by segment k ; s_k is the surplus of segment k ; Z_{kb} is the profit from assigning bundle b to segment k ; and A_b is the set of components which define bundle b . The mixed bundle pricing problem can be written as follows:

$$\max \sum_{k=1}^m \sum_{b \in \mathfrak{B}} \alpha_k \cdot Z_{kb} \quad (5)$$

$$\text{s.t. } \sum_{b \in \mathfrak{B}} \theta_{kb} = 1, \quad \forall k \quad (6)$$

$$s_k \geq R_{kb} - p_b, \quad \forall k, b \in \mathfrak{B} \quad (7)$$

$$p_b - R_{\max}(1 - \theta_{kb}) \leq P_{kb}, \quad \forall k, b \in \mathfrak{B} \quad (8)$$

$$P_{kb} \leq p_b, \quad \forall k, b \in \mathfrak{B} \quad (9)$$

$$s_k = \sum_{b \in \mathfrak{B}} (R_{kb} \theta_{kb} - P_{kb}), \quad \forall k \quad (10)$$

$$R_{kb} \theta_{kb} - P_{kb} \geq 0, \quad \forall k, b \in \mathfrak{B} \quad (11)$$

$$s_k \geq \sum_{b \in \mathfrak{B}} (R_{kb} \theta_{jb} - P_{jb}), \quad \forall k, j \quad (12)$$

$$Z_{kb} = P_{kb} - c_{kb} \theta_{kb}, \quad \forall k, b \in \mathfrak{B} \quad (13)$$

$$p_b \leq p_{b_1} + p_{b_2}, \quad \text{if } A(b) = A(b_1) \cup A(b_2) \quad (14)$$

$$p_b, P_{kb}, s_k \geq 0, s_{k,0} = 0, \theta_{ki} \in \{0, 1\} \quad (15)$$

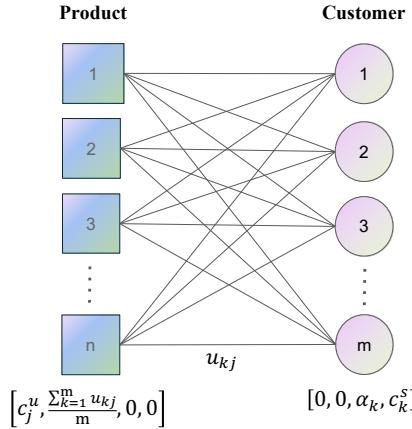
We note that we use a simplified price sub-additivity constraints in (13). We refer to Appendix A.3 for the detailed discussions.

In the original formulation in Hanson & Martin (1990), all bundles combinations are included in the formulation, that is $\mathfrak{B} = \mathfrak{F} = 2^{\{1, \dots, n\}}$. We call the corresponding problem with complete combinations $HM(\mathfrak{F})$. Meanwhile, one can restrict to a subset of bundles \mathfrak{B} and solve a restricted version of the above problem with only $b \in \mathfrak{B}$. We call the corresponding problem $HM(\mathfrak{B})$.

We note that the main computational challenge of the above formulation lies in the exponential number of variables corresponding to all the possible bundles. In the following, we demonstrate how GCN framework can be leveraged to help solve large-scale bundle pricing problem efficiently.

4 GCN-BASED STRATEGIES

In this section, we design a GCN-based strategy to solve the optimal bundle pricing problem. Specifically, we adopt a bi-directional GCN architecture, where each directional pass is implemented using a generalized graph convolutional layer that aggregates transformed neighbor and edge features through softmax aggregation (i.e., assigning normalized weights to neighbor messages using the softmax function). Our model predicts a segment-product probability matrix $\mathbb{P} \in \mathbb{R}^{m \times n}$ where \mathbb{P}_{kj} is the predicted likelihood that customer segment k selects product j . These probabilities serve as a compact representation of heterogeneous preferences and provide the basis for pruning the exponentially large bundle space. We describe our strategies in detail in the following sections.

216 4.1 GRAPH REPRESENTATION
217218 The figure below is the graph representation of the optimal bundle pricing problem, which serves as
219 the input of the GCN. Two types of nodes are included in the graph representation: product nodes
220 (\square), and customer nodes (\circ), as shown in Figure 1.
221238 Figure 1: Graph representation of the bundle pricing problem with customer and product nodes.
239
240
241242 In Figure 1, \mathcal{V} and \mathcal{E} denote the sets of nodes and edges, respectively. Let \mathbf{Y}^P and \mathbf{Y}^S denote the
243 feature matrices of product nodes and customer nodes, respectively. The feature vector of each
244 product j is $\mathbf{y}_j^P = [c_j^u, \frac{1}{m} \sum_{k=1}^m u_{kj}, 0, 0]$; the feature vector of each customer k is $\mathbf{y}_k^S =$
245 $[0, 0, \alpha_k, c_k^s]$. Let \mathbf{Z} denote the feature matrix of edges. Each edge is characterized by u_{kj} ,
246 representing the k -th customer's utility towards product j .
247248 4.2 GCN STRUCTURE
249
250251 We employ two bi-directional message-passing layers based on the Generalized Graph Convolution,
252 with dropout ($p = 0.5$) applied after each fusion. The network will produce edge logits, and proba-
253 bilities are obtained at inference time by applying a sigmoid function to these logits. We explain the
254 computation details below.
255256 **First bi-directional message-passing layer.** The first message-passing layer in Figure 2 maps the
257 graph in Figure 1 into a new graph with updated node features and the same edge features.258 Denote the set of all products by P and the set of all customers by S . We then define the forward
259 edge set $\vec{\mathcal{E}} = \{(j, k) \mid j \in P, k \in S\}$, and the backward edge set $\vec{\mathcal{E}} = \{(k, j) \mid (j, k) \in \vec{\mathcal{E}}\}$.
260261 The feature matrix \mathbf{X} is formed by stacking the product and customer node features.
262

263
$$\mathbf{X} = [(\mathbf{y}_1^P)^\top \ \dots \ (\mathbf{y}_n^P)^\top \mid (\mathbf{y}_1^S)^\top \ \dots \ (\mathbf{y}_m^S)^\top]^\top \in \mathbb{R}^{(n+m) \times 4}.$$

264
265

266 For any feature matrix, we let a bold uppercase letter (e.g., \mathbf{X}) represent the matrix and the corre-
267 sponding bold lowercase letter with an index (e.g., \mathbf{x}_i) denote its i -th row.
268269 Specifically, the bi-directional generalized graph convolutional layer update for each node i in for-
270 ward (product-to-customer) and backward (customer-to-product) direction is defined as

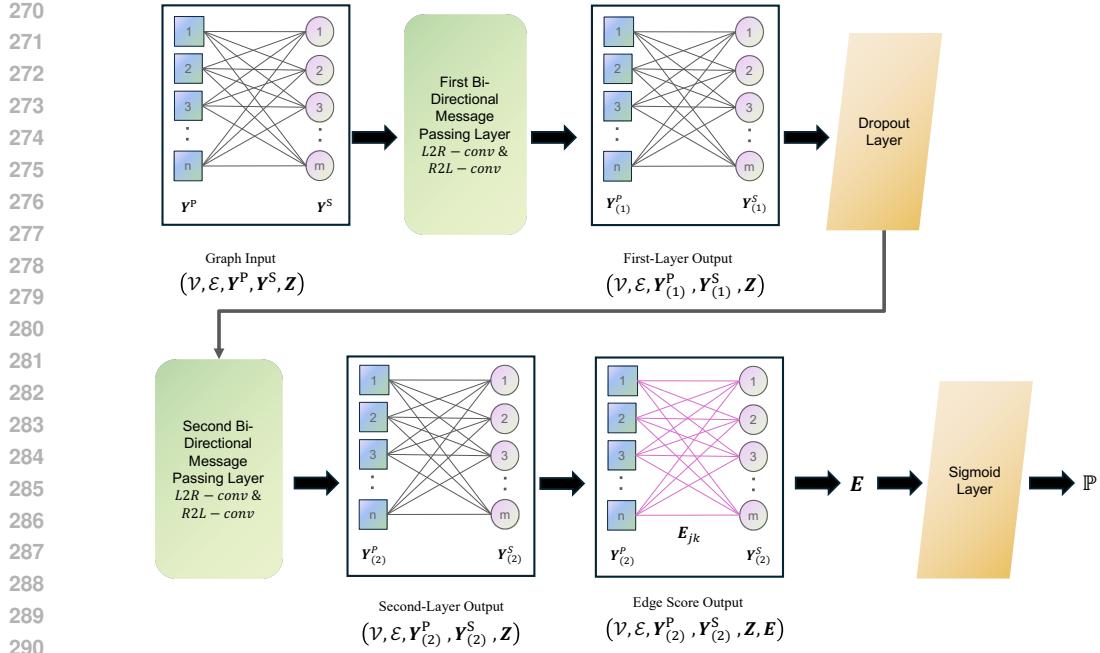


Figure 2: Illustration of GCN network.

$$\mathbf{x}_{i,(1)}^{\text{fw}} = \text{MLP} \left(\mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \text{Softmax}(\phi(\mathbf{x}_j, \mathbf{Z}_{ji})) \odot \phi(\mathbf{x}_j, \mathbf{Z}_{ji}) \right),$$

$$\mathbf{x}_{i,(1)}^{\text{bw}} = \text{MLP} \left(\mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \text{Softmax}(\phi(\mathbf{x}_j, \mathbf{Z}_{ij})) \odot \phi(\mathbf{x}_j, \mathbf{Z}_{ij}) \right).$$

Here, $\text{MLP}(\cdot)$ denotes a standard multi-layer perceptron (a sequence of fully connected layers with nonlinear activations). The $\mathcal{N}(i)$ denotes the set of neighbors of node i . The operator \odot denotes component-wise multiplication between two vectors (i.e., multiplying elements with the same index), and the softmax is applied component-wise across neighbors for each feature dimension. The message function is defined as $\phi(\mathbf{x}_j, \mathbf{Z}_{ij}) = \text{ReLU}(\mathbf{x}_j + \mathbf{Z}_{ij} \cdot \mathbf{1}) + \epsilon \cdot \mathbf{1}$, where ϵ is a small constant (we choose ϵ to be 1×10^{-7} in our implementation) for numerical stability. When considering reversed edges, the corresponding edge attributes are also reversed so that each edge feature remains well-aligned.

The node features from both directions are then merged using a mask matrix \mathbf{M} (where diagonal entries are 1 for product nodes and 0 otherwise), passed through an entry-wise ReLU activation, and regularized with dropout ($p = 0.5$):

$$\mathbf{X}^{(1)} = \text{Dropout}(\text{ReLU}((\mathbf{I} - \mathbf{M}) \cdot \mathbf{X}_{(1)}^{\text{fw}} + \mathbf{M} \cdot \mathbf{X}_{(1)}^{\text{bw}})).$$

Once the updated feature matrix $X^{(1)}$ is computed, the updated feature matrices for products $Y_{(1)}^P$ and customers $Y_{(1)}^S$ after the first bi-directional layer are obtained by selecting the corresponding rows: $\mathbf{Y}_{(1)}^P = \mathbf{M} \cdot \mathbf{X}_{(1)}$, $\mathbf{Y}_{(1)}^S = (\mathbf{I} - \mathbf{M}) \cdot \mathbf{X}_{(1)}$.

$\mathbf{X}^{(1)}$ serves as the input for the second layer with different dimensionalities. The input sizes and the output sizes of the first layer are $(n + m, 4)$, and $(n + m, d_{\text{hidden}})$, respectively, where we set $d_{\text{hidden}} = 128$ in all experiments.

324 **Second bi-directional message-passing layer.** The construction of the second bi-directional
 325 message-passing layer is similar to the first message-passing layer. The only difference is that the
 326 input sizes and the output sizes are $(n + m, d_{\text{hidden}})$, and $(n + m, d_{\text{hidden}})$, respectively.
 327

328 **Edge score calculation.** After calculating the output $\mathbf{Y}_{(2)}^P$ and $\mathbf{Y}_{(2)}^S$ of the second bi-directional
 329 layer, the score \mathbf{E}_{jk} for the edge connecting product j and segment k is calculated as

$$330 \quad \mathbf{E}_{jk} = (\mathbf{y}_{j,(2)}^P)^\top \mathbf{U} \mathbf{y}_{k,(2)}^S + \text{MLP}_{\text{edge}}(\mathbf{Z}_{jk}),$$

332 where $\mathbf{U} \in \mathbb{R}^{d_{\text{hidden}} \times d_{\text{hidden}}}$ is a learnable bilinear weight matrix, \mathbf{Z}_{jk} is the edge attribute for
 333 pair (j, k) , and $\text{MLP}_{\text{edge}} : \mathbb{R} \rightarrow \mathbb{R}$ is a two-layer feed-forward network (Linear–ReLU–Linear)
 334 producing a scalar correction term.

335 **Output.** The model outputs the logits $\mathbf{E} \in \mathbb{R}^{n \times m}$. In practice, we apply a sigmoid function at
 336 inference time to obtain probabilities, $\mathbb{P} = \sigma(\mathbf{E})^\top \in \mathbb{R}^{m \times n}$, where each entry \mathbb{P}_{kj} corresponds to
 337 the predicted probability that segment k include product j in his/her purchased bundle.

338 **Training.** We provide the model training details in Appendix B.

340 **4.3 PRUNING-BASED STRATEGIES**

342 In this section, we leverage the probability matrix \mathbb{P} predicted by the GCN model to guide two
 343 pruning strategies that construct a compact yet high-quality bundle space. The resulting reduced
 344 problem is then solved using the MILP formulation of Hanson & Martin (1990), but restricted to the
 345 pruned bundle set rather than the full exponential space.

347 **Fixed Cutoff Pruning (FCP).** For each segment $k \in [m] = \{1, \dots, m\}$ and $j \in [n] =$
 348 $\{1, \dots, n\}$, we define its candidate bundle by a fixed cutoff value. In our default method, we set the
 349 fixed cutoff to 0.5. That is $B_k^{\text{FCP}} = \{j \in [n] \mid \mathbb{P}_{kj} \geq 0.5\}$ for $k \in [m]$ and the overall candidate set
 350 is $\mathcal{F}^{\text{FCP}} = \{B_k^{\text{FCP}} \mid k \in [m]\}$, with size at most m . Here, the overall candidate set is shared across
 351 all segments, meaning that any segment is free to select any B_k^{FCP} , not only its own. This reduces
 352 the feasible space from 2^n to $O(m)$, making the subsequent MILP much more tractable. Then we
 353 solve the MILP formulation on the pruned space constructed by FCP (that is, we solve $HM(\mathfrak{F}^{\text{FCP}})$
 354 to obtain the solution).

355 In the case where all probabilities of a segment fall below the cutoff, we retain the single product
 356 with the highest probability to avoid producing an empty bundle.

358 **Progressive Cutoff Pruning (PCP).** For each segment k , we sort products by descending pre-
 359 dicted probability and retain those with $\mathbb{P}_{kj} \geq 0.5$. Let $S_k = (j_{(1)}, j_{(2)}, \dots, j_{(|S_k|)})$ denote this or-
 360 dered set of products. We then construct a sequence of prefix bundles $B_{k,i}^{\text{PCP}} = \{j_{(1)}, j_{(2)}, \dots, j_{(i)}\}$
 361 for $i = 1, \dots, |S_k|$. The overall candidate set is defined as the union across all segments:
 362 $\mathfrak{F}^{\text{PCP}} = \bigcup_{k=1}^m \{B_{k,i}^{\text{PCP}} \mid i = 1, \dots, |S_k|\}$, resulting in a size of at most $m \cdot (n + 1)$.

363 We then solve the MILP formulation on this pruned space (i.e., $HM(\mathfrak{F}^{\text{PCP}})$). Note that for any
 364 specific segment k , PCP produces a strictly nested chain of bundles:

$$366 \quad B_{k,1}^{\text{PCP}} \subset B_{k,2}^{\text{PCP}} \subset \dots \subset B_{k,|S_k|}^{\text{PCP}}.$$

368 Due to this nested structure, we replace the computationally expensive combinatorial sub-additivity
 369 constraints within each segment with a simple chain of monotone price inequalities:

$$370 \quad p(B_{k,i}^{\text{PCP}}) \leq p(B_{k,i+1}^{\text{PCP}}) \quad \text{for } i = 1, \dots, |S_k| - 1.$$

372 Standard sub-additivity constraints are maintained for bundles across different segments.

374 **4.4 LOCAL SEARCH STRATEGY**

376 In order to further improve our solution, we propose a local search strategy. The basic idea is to
 377 iteratively modify each segment’s bundle space by either adding an unselected product or dropping
 a selected product, and accept modifications if revenue increases.

378 However, the effectiveness of local search largely depends on an effective search path. Therefore,
 379 we develop a preference-based local search strategy guided by the probability matrix predicted by
 380 the GCN model. Particularly, when adding a product to the bundle of a segment k , we consider the
 381 product with the highest \mathbb{P}_{kj} that is unselected; and when dropping a product from the bundle of a
 382 segment k , we consider the product with the lowest \mathbb{P}_{kj} that is selected.

383 More precisely, we construct initial bundle assortments by the FCP approach. Here the initial bun-
 384 dles are fixed as segment–bundle assignments, so each segment starts strictly with its own B_k^{FCP} .
 385 For each iteration, every segment generates two neighbors: one by adding the highest-probability
 386 unselected product and one by dropping the lowest-probability selected product. All neighbors
 387 are evaluated sequentially in segment order, and if any improvement is found, the first improving
 388 modification is accepted immediately and a new iteration begins from the updated solution (thus a
 389 deep-first search is conducted).

390 The local search process will terminate when a full cycle over all segments completes without any
 391 improvement, or when the predefined iteration limit is reached. Furthermore, to save the evaluation
 392 cost at each neighbor, we rely on the LP relaxation to evaluate neighbors during iteration. In the
 393 LP relaxation, we fix the bundle–segment assignment, and the resulting LP provides a valid lower
 394 bound of the optimal value of the MILP (see Appendix A.2 for the LP formulation). Thus, any
 395 improvement detected under LP is guaranteed to be valid for MILP, which ensures the accuracy of
 396 improvement evaluation. At the same time, LP solves much faster than MILP, greatly reducing the
 397 computational cost of each exploration step. We use FCP+LS to denote the corresponding algorithm
 398 and provide the detailed pseudo-code in Algorithm 1.

400 5 NUMERICAL EXPERIMENTS

402 We now present comprehensive numerical experiments designed to evaluate the effectiveness and
 403 scalability of our proposed GCN-assisted bundle pricing strategies. The goals of this section are
 404 twofold: (i) to demonstrate that our approaches consistently achieve high revenue ratios while main-
 405 taining significant computational efficiency, and (ii) to validate their robustness across heteroge-
 406 neous problem settings with varying numbers of customer segments and products.

407 To thoroughly test scalability and robustness, we evaluate our strategies under varying numbers of
 408 customer segment m and product number n . For each scenario, we generate samples using param-
 409 eters identical to those of the training data, and take the average of 100 samples. All experiments
 410 were conducted using the Gurobi Optimizer version 12.0.2 on a machine with an Apple M1 Pro
 411 CPU (3.2 GHz) and 16GB RAM, utilizing up to 8 threads.

412 To evaluate any method, we adopt two normalized metrics: *Revenue Ratio (RR)* and *Time Ratio (TR)*

$$414 RR_{A,B} = \frac{\text{Revenue of approach A}}{\text{Revenue of approach B}}, \quad TR_{A,B} = \frac{\text{Runtime of approach A}}{\text{Runtime of approach B}}.$$

415 where RR measures solution quality and TR captures efficiency. These two metrics allow direct
 416 comparison of solution quality and speed across different algorithms.

418 5.1 NUMERICAL RESULTS

420 We compare our proposed approach to two baselines, the mixed bundling (MB) baseline and the
 421 bundle size pricing (BSP) baseline:

423 **Mixed Bundling (MB) baseline:** For MB, we follow Hanson & Martin (1990)’s MILP formu-
 424 lation. The MB formulation is a MILP that assigns each bundle with its own price respectively.
 425 Detailed formulation is provided in Section 3.1.

426 **Bundle Size Pricing (BSP) baseline:** The BSP baseline is proposed by Chu et al. (2011). The BSP
 427 approximates MB by assigning the same price to all bundles of equal size. Detailed formulation is
 428 provided in Appendix A.1.

430 In Table 5.1, we report the numerical results of our algorithms compared with both baselines, for
 431 problem with $n = 10$ and varying number of segments. From Table 5.1, we can see that our three
 432 strategies all maintain more than 97.5% of the optimal revenue while only requiring a fraction of the

432 computation time of the MB baseline. Meanwhile, the BSP approach often has a significant profit
 433 loss compared to the MB baseline. Among the strategies we propose, we find that the PCP strategy
 434 achieves around 1% higher revenue than FCP by retaining a larger candidate space, while FCP+LS
 435 also gives a 1% revenue improvement over the plain FCP approach.

437 Table 5.1: Performance of GCN-based strategies vs. Mixed Bundling baseline ($n = 10$).

439 Strategy	440 $m = 10, n = 10$			441 $m = 20, n = 10$			442 $m = 30, n = 10$		
	443 $RR_{\cdot, MB}$	444 Time (s)	445 $TR_{\cdot, MB}$	446 $RR_{\cdot, MB}$	447 Time (s)	448 $TR_{\cdot, MB}$	449 $RR_{\cdot, MB}$	450 Time (s)	451 $TR_{\cdot, MB}$
446 FCP	447 0.9836	448 0.0558	449 0.0106	450 0.9785	451 0.3767	452 0.0130	453 0.9757	454 1.2276	455 0.0151
446 PCP	447 0.9907	448 0.7587	449 0.1383	450 0.9874	451 9.0669	452 0.2886	453 0.9862	454 71.5509	455 0.6835
446 FCP+Local Search	447 0.9945	448 0.9700	449 0.1799	450 0.9877	451 7.0461	452 0.2410	453 0.9850	454 30.1076	455 0.4158
446 BSP	447 0.8990	448 0.0382	449 0.0070	450 0.8796	451 0.1861	452 0.0064	453 0.8669	454 0.5386	455 0.0014

456 For problems with more than 10 products, calculating the optimal solution of the MILP model under
 457 the mixed bundling baseline is computationally challenging. Therefore, we use the BSP as baseline
 458 to test problems with larger than 10 products. The results are reported in Table 5.2. From Table 5.2,
 459 we can see that the plain FCP approach can achieve comparable performance with the BSP approach
 460 with a fraction of computation time, while the PCP approach can achieve significantly better solution
 461 than the BSP approach with more computational time (the total time is still less than 30 seconds).

462 Table 5.2: Comparison of different strategies across various problem sizes.

463 Scenario	464 FCP			465 PCP			466 FCP+Local Search		
	467 $RR_{\cdot, BSP}$	468 Time (s)	469 $TR_{\cdot, BSP}$	470 $RR_{\cdot, BSP}$	471 Time (s)	472 $TR_{\cdot, BSP}$	473 $RR_{\cdot, BSP}$	474 Time (s)	475 $TR_{\cdot, BSP}$
476 $m = 10, n = 15$	477 1.060	478 0.043	479 0.380	480 1.150	481 2.056	482 17.975	483 1.136	484 0.891	485 8.012
476 $m = 15, n = 15$	477 1.074	478 0.125	479 0.588	480 1.167	481 9.921	482 47.579	483 1.150	484 3.987	485 19.278
476 $m = 20, n = 15$	477 1.082	478 0.307	479 0.829	480 1.171	481 27.215	482 71.445	483 1.156	484 13.884	485 37.170
476 $m = 10, n = 20$	477 1.007	478 0.044	479 0.331	480 1.147	481 4.799	482 36.676	483 1.116	484 1.150	485 8.665
476 $m = 10, n = 25$	477 0.953	478 0.048	479 0.243	480 1.146	481 8.250	482 41.401	483 1.092	484 1.360	485 6.945

466 **Scalability with product size.** Table 5.3 illustrates how FCP and PCP scale with the number of
 467 products n when the number of segments is fixed at 10. A key observation is that FCP maintains a
 468 nearly constant candidate set size $O(m)$, resulting in stable runtimes around 0.03 seconds regardless
 469 of n . By contrast, PCP exhibits $O(n)$ growth in candidate space. And both methods enable tractable
 470 solutions of bundle pricing instances up to $n = 100$, which would be intractable under exact mixed
 471 bundling. This highlights our ability to combine strong pruning with broad scalability across large
 472 problem sizes.

473 Table 5.3: Scalability of FCP and PCP strategies across different product sizes n ($m = 10$).

474 n	475 FCP Time (s)	476 PCP Time (s)	477 $RR_{FCP, PCP}$	478 FCP Bundles	479 PCP Bundles
480 10	481 0.107	482 0.843	483 0.972	484 10	485 61
480 20	481 0.032	482 5.440	483 0.999	484 10	485 137
480 30	481 0.034	482 21.103	483 0.990	484 10	485 220
480 40	481 0.032	482 36.134	483 0.982	484 10	485 282
480 50	481 0.034	482 59.050	483 0.968	484 10	485 359
480 60	481 0.026	482 73.665	483 0.951	484 10	485 431
480 70	481 0.030	482 122.706	483 0.910	484 10	485 503
480 80	481 0.028	482 184.814	483 0.897	484 10	485 572
480 90	481 0.029	482 206.681	483 0.880	484 10	485 647
480 100	481 0.030	482 283.578	483 0.852	484 10	485 710

483 **Scalability with customer size.** Table 5.4 evaluates the scalability of our proposed methods as M
 484 increases from 10 to 90. While PCP theoretically explores a more comprehensive bundle space, the
 485 empirical results indicate that its marginal revenue advantage diminishes at larger customer sizes.

486 In contrast, FCP captures the same revenue as PCP in just 2.3 seconds. This demonstrates that for
 487 large M , the heavy computation of PCP is unnecessary: it runs hundreds of times slower than FCP
 488 without providing any additional profit.
 489

490
 491 **Table 5.4: Scalability of FCP and PCP strategies across different parameter M ($N = 25$).**

M	FCP Time (s)	PCP Time (s)	$RR_{FCP,PCP}$	FCP Bundles	PCP Bundles
10	0.033	2.189	0.998	10	135
30	0.202	73.234	0.997	30	384
50	0.548	485.553	0.997	50	648
70	1.115	849.410	1.000	70	886
90	2.256	1204.020	1.000	90	1125

501 6 CONCLUSION

502
 503 This paper introduces a learning-guided framework for solving the bundle pricing problem. We
 504 leverage GCNs to learn segment–product preference structures under the non-additive setting, and
 505 use these predictions to prune the exponential candidate bundle space. The pruned feasible region
 506 is then solved with Hanson & Martin (1990)’s MILP formulation, thereby retaining the rigor of
 507 product heterogeneity while substantially extending the tractable problem size. Coupled with a
 508 probability-guided DFS local search, our framework demonstrates robustness and scalability across
 509 different problem sizes. Numerical experiments show that our approach provides solutions that
 510 are near-optimal at tractable scales, and scalable to much larger settings while outperforming other
 511 heuristics. Therefore, our work provides a near-optimal and efficient solution for large-scale bundle
 512 pricing problem.
 513

514 7 CODE OF ETHICS STATEMENT

515
 516 The authors of this work adhere to the ICLR Code of Ethics. This research on bundle pricing optimi-
 517 zation was conducted with the principles of academic integrity and rigor. We have considered the
 518 potential societal impacts of our work. While any advanced pricing algorithm could potentially be
 519 used for exploitative price discrimination, the primary goal of this research is to improve economic
 520 efficiency, which can lead to better value propositions for consumers and more sustainable business
 521 models for firms. We believe the societal benefits of more efficient market mechanisms outweigh
 522 the potential risks, which can be mitigated by fair business practices and regulation. The experi-
 523 ments in this paper were conducted on synthetic datasets and do not involve sensitive or personally
 524 identifiable information.
 525

526 8 REPRODUCIBILITY STATEMENT

527
 528 To ensure the reproducibility of our research, we provide a comprehensive suite of materials. The
 529 complete source code for our proposed GCN-based policies (FCP, PCP, and FCP+LS), baseline
 530 implementations, and all numerical experiments is available in the supplementary materials. The
 531 mathematical formulations for the baselines are detailed in 3.1 and Appendix A.1. Key hyper-
 532 parameters and the versions of the main software libraries used (e.g., PyTorch, PyTorch Geometric,
 533 Gurobi) are also documented in the Appendix E to facilitate the replication of our results.
 534

535 REFERENCES

536 Tarek Abdallah. On the benefit (or cost) of large-scale bundling. *Production and Operations Man-
 537 agement*, 28(4):955–969, 2019.
 538
 539 Tarek Abdallah, Amir Asadpour, and Jared Reed. Large-scale bundle-size pricing: A theoretical
 540 analysis. *Operations Research*, 69(4):1158–1185, 2021.

540 William James Adams and Janet L. Yellen. Commodity bundling and the burden of monopoly. *The*
 541 *Quarterly Journal of Economics*, 90(3):475–498, 1976.
 542

543 Yannis Bakos and Erik Brynjolfsson. Bundling information goods: Pricing, profits, and efficiency.
 544 *Management Science*, 45(12):1613–1630, 1999.
 545

546 Ningyuan Chen, Adam N. Elmachtoub, Michael L. Hamilton, and Xiao Lei. Loot box pricing and
 547 design. *Management Science*, 67(8):4809–4825, 2021.
 548

549 Ningyuan Chen, Xiaobo Li, Zechao Li, and Chun Wang. Component pricing with a bundle size
 550 discount. 2022. Available at SSRN: <https://ssrn.com/abstract=4032247>.
 551

552 Xi Chen, George Matikas, Dimitris Paparas, and Mihalis Yannakakis. On the complexity of simple
 553 and optimal deterministic mechanisms for an additive buyer. In *Proceedings of the 29th Annual*
 554 *ACM-SIAM Symposium on Discrete Algorithms*, pp. 2036–2049, 2018.
 555

556 Chenghuan Sean Chu, Phillip Leslie, and Alan Sorensen. Bundle-size pricing as an approximation
 557 to mixed bundling. *American Economic Review*, 101(1):263–303, 2011.
 558

559 Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Accelerating
 560 primal solution findings for mixed integer programs based on solution prediction. In *Proceedings of the 34th AAAI Conference on Artificial Intelligence*, pp. 1452–1459, 2020.
 561

562 Zhenan Fan, Xinglu Wang, Oleksandr Yakovenko, Abdullah Ali Sivas, Owen Ren, Yong Zhang,
 563 and Zirui Zhou. Smart initial basis selection for linear programs. In *Proceedings of the 40th*
 564 *International Conference on Machine Learning*, pp. 9650–9664, 2023.
 565

566 Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact com-
 567 binatorial optimization with graph convolutional neural networks. In *Proceedings of the 33rd*
 568 *Conference on Neural Information Processing Systems*, pp. 15580–15592, 2019.
 569

570 Grand View Research. Digital media market size, share & growth report, 2023. URL <https://www.grandviewresearch.com/industry-analysis/digital-media-market-report>.
 571

572 Prateek Gupta, Elias B. Khalil, Didier Chételat, Maxime Gasse, Yoshua Bengio, Andrea Lodi, and
 573 M. Pawan Kumar. Lookback for learning to branch. *arXiv preprint arXiv:2206.14987*, 2022.
 574

575 Ward Hanson and R. Kipp Martin. Optimal bundle pricing. *Management Science*, 36(2):155–174,
 576 1990.
 577

578 Lorin M. Hitt and Pei-yu Chen. Bundling with customer self-selection: A simple approach to
 579 bundling low-marginal-cost goods. *Management Science*, 51(10):1481–1493, 2005.
 580

581 Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! *arXiv*
 582 *preprint arXiv:1803.08475*, 2019.
 583

584 Guokai Li, Pin Gao, Stefanus Jasin, and Zizhuo Wang. From small to large: A graph con-
 585 volutional network approach for solving assortment optimization problems. *arXiv preprint*
 586 *arXiv:2507.10834*, 2025.
 587

588 Xiaobo Li, Hailong Sun, and Chung-Piaw Teo. Convex optimization for the bundle size pricing
 589 problem. *Management Science*, 68(2):1095–1106, 2021.
 590

591 Tianhao Liu, Shanwen Pu, Dongdong Ge, and Yinyu Ye. Learning to pivot as a smart expert. In
 592 *Proceedings of the 38th AAAI Conference on Artificial Intelligence*, pp. 8073–8081, 2024.
 593

594 Will Ma and David Simchi-Levi. Reaping the benefits of bundling under high production costs. In
 595 *International Conference on Artificial Intelligence and Statistics*, pp. 1342–1350. PMLR, 2021.
 596

597 Modern Retail. Inside Amazon’s Prime playbook: How the subscription giant chooses what benefits
 598 to add next, 2024. URL <https://www.modernretail.co/operations/inside-a-mazons-prime-playbook-how-the-subscription-giant-chooses-what-benefits-to-add-next/>.
 599

594 Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Paweł Lichocki, Ivan Lobov, Bren-
 595 dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra
 596 Addanki, Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yu-
 597 jia Li, Oriol Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks.
 598 *arXiv preprint arXiv:2012.13349*, 2020.

599 Max Paulus and Andreas Krause. Learning to dive in branch and bound. In *Proceedings of the 37th*
 600 *International Conference on Neural Information Processing Systems*, pp. 34260–34277, 2023.
 601

602 Richard Schmalensee. Gaussian demand and commodity bundling. *The Journal of Business*, 57(1):
 603 211–230, 1984.

604 Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
 605 neighborhood search algorithm for mixed integer programs. *arXiv preprint arXiv:2107.10201*,
 606 2021.

607 George J. Stigler. United states v. loew’s inc.: A note on block-booking. *The Supreme Court Review*,
 608 pp. 152–157, 1963.

611 A FORMULATIONS FOR BUNDLE PRICING

613 A.1 BUNDLE SIZE PRICING (BSP) FORMULATION CHU ET AL. (2011)

615 Additional Variables:

- 617 • p_s : price for bundles of size $s \in \{0, \dots, n\}$;
- 618 • $P_{ks} = p_s \theta_{ks}$.

620 Objective:

$$621 \max \quad \sum_{k=1}^m \sum_{s=0}^n \alpha_k \cdot Z_{ks} \quad (16)$$

624 Constraints:

$$625 \quad s_k \geq R_{ks} - p_s, \quad \forall k, s \quad (17)$$

$$627 \quad \sum_{s=0}^n \theta_{ks} = 1, \quad \forall k \quad (18)$$

$$630 \quad P_{ks} \leq p_s, \quad \forall k, s \quad (19)$$

$$631 \quad P_{ks} \geq p_s - M(1 - \theta_{ks}), \quad \forall k, s \quad (20)$$

$$632 \quad Z_{ks} = P_{ks} - c_{ks} \theta_{ks}, \quad \forall k, s \quad (21)$$

$$634 \quad s_k = \sum_{s=0}^n (R_{ks} \theta_{ks} - P_{ks}), \quad \forall k \quad (22)$$

$$637 \quad s_k \geq \sum_{s=0}^n (R_{ks} \theta_{js} - P_{js}), \quad \forall k, j \neq k \quad (23)$$

$$639 \quad R_{ks} \theta_{ks} - P_{ks} \geq 0, \quad \forall k, s \quad (24)$$

$$640 \quad p_{s_1+s_2} \leq p_{s_1} + p_{s_2}, \quad \forall s_1, s_2 \text{ s.t. } s_1 + s_2 \leq n \quad (25)$$

$$641 \quad p_{s+1} \geq p_s, \quad \forall s = 0, \dots, n-1 \quad (26)$$

$$642 \quad p_s, P_{ks}, Z_{ks} \geq 0, \quad \theta_{ks} \in \{0, 1\} \quad \forall k, s$$

644 A.2 LP FORMULATION (FIXED ASSIGNMENT)

646 Decision variables:

- 647 • $p_i \geq 0$: price of bundle $i \in F$, where F is the pruned candidate bundle set;

648 • s_k : surplus of segment $k \in \{1, \dots, m\}$.
 649

650 **Objective:**

651
$$\max_{p,s} \sum_{k=1}^m \alpha_k \cdot (p_{b_k} - c_{k,b_k}), \quad (L.1)$$

 652
 653

654 where $b_k \in F$ is the fixed bundle assigned to segment k .
 655

656 **Constraints:**

657 $s_k \geq R_{k,i} - p_i \quad \forall k = 1, \dots, m, \forall i \in F \quad (\text{lower bound}) \quad (L.2)$
 658

659 $s_k \leq R_{k,b_k} - p_{b_k} \quad \forall k \quad (\text{assignment binding}) \quad (L.3)$
 660

661 $p_i \leq p_{j_1} + p_{j_2}, \quad \text{if } A_i = A_{j_1} \cup A_{j_2}, \{j_1, j_2\} \subset F \quad (\text{sub-additivity}) \quad (L.4)$
 662

663 $p_0 = 0 \quad (\text{empty bundle price}) \quad (L.5)$
 664

663 *Remarks.*
 664

665 • Bundle assignments are fixed externally by assigning each segment with their exact FCP
 666 optimal bundle prediction: $\theta_{kb_k} = 1$ and $\theta_{ki} = 0$ for $i \neq b_k$.
 667
 668 • Constraints (L.2) and (L.3) together ensure incentive compatibility: $s_k = R_{k,b_k} - p_{b_k} =$
 669 $\max_{i \in F} \{R_{k,i} - p_i\}$.
 670
 671 • Only bundles in F (predicted or assigned) have price variables, reducing dimensionality.
 672
 673 • The model is a pure LP without integer decision variables, in contrast to the MILP formu-
 674 lations.
 675
 676 • The optimal value of the LP formulation is a lower bound of the corresponding MILP with
 677 possible bundle set \mathfrak{F} . That is, the optimal value of this LP is less than or equal to that of
 678 $HM(\mathfrak{F})$.
 679

678 A.3 MODIFIED PRICE SUB-ADDITIONITY CONSTRAINTS

679 Our mixed bundling follows Hanson & Martin (1990)’s formulation in terms of decision variables,
 680 objective, and most constraints (consumer surplus, single price schedule, etc.). The only difference
 681 lies in the treatment of price sub-additivity. To enforce the general K-way Cover sub-additivity
 682 ($S_{C,K}$) proposed by Hanson & Martin (1990), we introduce a more parsimonious set of constraints.
 683 Specifically, we only enforce sub-additivity on 2-way partitions ($S_{P,2}$), which significantly reduces
 684 the number of price sub-additivity constraints while being sufficient to guarantee the general condi-
 685 tion. The equivalence between these two are proved in Appendix C.

686 **Definition 1** (K-way Cover sub-additivity — Statement $S_{C,K}$). *For any bundle B and any (poten-
 687 tially overlapping) **cover** by $K \geq 2$ sub-bundles $\{B_1, \dots, B_K\}$, the following holds:*
 688

689
$$p(B) \leq \sum_{j=1}^K p(B_j).$$

 690
 691

692 **Definition 2** (2-way Partition sub-additivity — Statement $S_{P,2}$). *For any bundle B and any **disjoint**
 693 partition into two sub-bundles $\{B_1, B_2\}$, the following holds:*
 694

695
$$p(B) \leq p(B_1) + p(B_2).$$

 696

697 B MODEL TRAINING AND DATA GENERATION
 698

699 In this section, we provide a detailed description of the data generation process, the generation of
 700 ground-truth labels using an exact solver, and the specific hyperparameters used to train our Graph
 701 Convolutional Network (GCN).

702 B.1 SYNTHETIC DATA GENERATION
703

704 To train our model, we generated a dataset of 5,000 synthetic instances. Each instance represents a
705 mixed bundling problem with $n = 10$ products and $m = 10$ customer segments. The data generation
706 process follows the economic assumptions outlined in Section 3, specifically utilizing a concave
707 utility function $f(\cdot) = \sqrt{\cdot}$ to model diminishing marginal returns. The generation procedure is
708 detailed below:

- 710 • **Costs** (c_j^u, c_k^s): The unit cost for each product c_j^u is sampled from a uniform distribution
711 $U(0, 1)$. The shipping/serving cost for each segment c_k^s is also sampled from $U(0, 1)$. To
712 ensure profitability is non-trivial, the total cost is scaled by a factor of 0.2.
- 713 • **Base Utilities** (u_{kj}): The base utility of product j for customer segment k , denoted as u_{kj} ,
714 is sampled from $U(0, 1)$.
- 715 • **Reservation Prices** (R_{kb}): We assume a non-additive valuation structure. The reservation
716 price of segment k for a bundle b is calculated using a square-root function:

$$717 \quad 718 \quad 719 \quad R_{kb} = \sqrt{\sum_{j \in b} u_{kj}} \quad (27)$$

- 720 • **Segment Sizes** (α_k): We generate raw size weights $x_k \sim U(0, 1)$ and normalize them such
721 that the segment proportions sum to 1, i.e., $\alpha_k = x_k / \sum_i x_i$.

723 B.2 LABEL GENERATION VIA MIXED BUNDLING
724

725 For each of the 5,000 synthetic instances, we obtained ground-truth optimal bundle assignments by
726 solving the Mixed Bundling formulation (Hanson & Martin, 1990).

727 We set a time limit of 600 seconds and a MIP gap tolerance of 1% for the solver. The solver outputs
728 the optimal binary assignment variables θ_{kb}^* . These are converted into edge labels for the GCN
729 training:

$$730 \quad 731 \quad 732 \quad y_{kj} = \begin{cases} 1 & \text{if product } j \text{ is included in the optimal bundle for segment } k \\ 0 & \text{otherwise} \end{cases} \quad (28)$$

733 This results in a supervision signal for every edge in the bipartite graph. Instances where the solver
734 could not find a feasible solution within the time limit were excluded from the dataset.

735 B.3 TRAINING PROTOCOL
736

737 The 5000 instances were split into a training set (80%) and a validation set (20%). The model we
738 use trains for 500 epochs with batch size 512, learning rate 0.01, 128 hidden channels, bilinear edge
739 scoring, 0.5 dropout, $\epsilon = 1 \times 10^{-7}$, Adam optimizer, and early stopping patience of 50 epochs.

741 **Loss Function:** To train the model, we formulate the edge prediction task as a binary classification
742 problem. We utilize Binary Cross Entropy with Logits Loss. The loss \mathcal{L} is calculated based on two
743 primary components:

- 745 1. **Predicted Logits** (\mathbf{E}_{kj}): The raw edge scores output by the GCN bilinear head for the edge
746 connecting customer segment k and product j .
- 747 2. **Ground Truth Labels** (y_{kj}): A binary label derived from the exact solver, where $y_{kj} = 1$
748 if product j belongs to the optimal bundle for segment k , and $y_{kj} = 0$ otherwise.

750 To address the inherent class imbalance (as optimal bundles typically contain only a small subset of
751 available products), we introduce a positive weight parameter w_{pos} . The loss function for a single
752 edge is defined as:

$$753 \quad 754 \quad \mathcal{L}(\mathbf{E}_{kj}, y_{kj}) = -[w_{pos} \cdot y_{kj} \cdot \log(\sigma(\mathbf{E}_{kj})) + (1 - y_{kj}) \cdot \log(1 - \sigma(\mathbf{E}_{kj}))] \quad (29)$$

755 where $\sigma(\cdot)$ is the sigmoid function. The weight w_{pos} is calculated dynamically from the training
data as $w_{pos} = (1 - p)/p$, where p is the proportion of positive edges across the entire training set.

756 **C PROOF OF EQUIVALENCE BETWEEN PRICE SUB-ADDITIONALITY**
 757 **CONSTRAINTS**
 758

759 **C.1 DEFINITIONS**
 760

761 Let \mathcal{U} be the set containing all products, and let $p : \mathcal{P}(\mathcal{U}) \rightarrow \mathbb{R}_{\geq 0}$ be the price function, where $\mathcal{P}(\mathcal{U})$
 762 denotes the power set of \mathcal{U} .

763 **Definition 3** (Price Monotonicity — Statement \mathcal{M}). *For any two bundles A and B , if $A \subseteq B$, then*
 764 $p(A) \leq p(B)$.

765 **Definition 4** (K-way Partition sub-additivity — Statement $S_{P,K}$). *For any bundle B and any **disjoint***
 766 *partition into $K \geq 2$ sub-bundles $\{B_1, \dots, B_K\}$, the following holds:*

767
$$p(B) \leq \sum_{j=1}^K p(B_j).$$

 768
 769
 770

771 **C.2 THEOREM**
 772

773 **Proposition 1.** *Statement $S_{P,2}$ and Statement $S_{P,K}$ are equivalent.*

774 *Proof.* We prove the proposition in both directions.

775 *Direction 1:* $S_{P,K} \implies S_{P,2}$ This is true by definition. $S_{P,2}$ is a special case of $S_{P,K}$ where we
 776 choose the number of partitions $K = 2$.

777 *Direction 2:* $S_{P,2} \implies S_{P,K}$ We use mathematical induction on the number of partitions, k .
 778 The base case ($k = 2$) is Statement $S_{P,2}$, which is assumed to be true. Assume the statement
 779 holds for k partitions (Inductive Hypothesis). We prove for $K = k + 1$. Let B be partitioned into
 780 $\{B_1, \dots, B_{k+1}\}$. Let $B' = \bigcup_{j=1}^k B_j$. Then $B = B' \cup B_{k+1}$ is a 2-way disjoint partition. By $S_{P,2}$:

781
$$p(B) \leq p(B') + p(B_{k+1}). \quad (30)$$

 782
 783

784 By the inductive hypothesis, $p(B') \leq \sum_{j=1}^k p(B_j)$. Substituting this yields:

785
$$p(B) \leq \sum_{j=1}^{k+1} p(B_j).$$

 786
 787
 788

789 Thus, $S_{P,2} \implies S_{P,K}$. □
 790

791 **Proposition 2.** *Assuming Price Monotonicity (\mathcal{M}), Statement $S_{P,K}$ and Statement $S_{C,K}$ are equiv-*
 792 *alent.*

793 *Proof.* We prove the proposition in both directions, assuming \mathcal{M} holds.

794 *Direction 1:* $S_{C,K} \implies S_{P,K}$. A disjoint partition is a special case of a cover. Thus, if the rule
 795 holds for any cover, it must hold for any disjoint partition.

796 *Direction 2:* $(S_{P,K} \wedge \mathcal{M}) \implies S_{C,K}$. We show that $(S_{P,2} \wedge \mathcal{M}) \implies S_{C,2}$ (the binary case). Let
 797 $B = B_1 \cup B_2$ be a cover. We can write B as a disjoint partition: $B = (B_1 \setminus B_2) \cup B_2$. By $S_{P,2}$:

798
$$p(B_1 \cup B_2) \leq p(B_1 \setminus B_2) + p(B_2). \quad (31)$$

 799

800 Since $(B_1 \setminus B_2) \subseteq B_1$, by Monotonicity (\mathcal{M}), we have $p(B_1 \setminus B_2) \leq p(B_1)$. Substituting this gives
 801 $p(B_1 \cup B_2) \leq p(B_1) + p(B_2)$, which proves $S_{C,2}$.

802 Since $S_{P,K} \iff S_{P,2}$ (from Prop. 1) and $S_{C,K} \iff S_{C,2}$ (by induction), it follows that
 803 $(S_{P,K} \wedge \mathcal{M}) \implies S_{C,K}$. □
 804

805 **Theorem 1.** *Assuming Price Monotonicity (\mathcal{M}), the 2-way Partition sub-additivity ($S_{P,2}$) is equiv-*
 806 *alent to the K-way Cover sub-additivity ($S_{C,K}$).*

807 *Proof.* From Proposition 1, $S_{P,2} \iff S_{P,K}$, and from Proposition 2 under Price Monotonicity
 808 \mathcal{M} , $S_{P,K} \iff S_{C,K}$. Hence $S_{P,2} \iff S_{C,K}$. □
 809

810 D PSEUDOCODE FOR THE LOCAL SEARCH STRATEGIES
811812 **Algorithm 1** Segment-wise Local Search

```

813 1: Input: Initial solution  $x$ , probability matrix  $\mathbb{P}$ , max_iter
814 2: Output: Optimized solution  $x^*$ 
815 3:  $x^* \leftarrow \text{MILP-Init}(\{\mathcal{B}_k\})$ ,  $\text{rev}^* \leftarrow \text{LP-Eval}(x^*)$ 
816 4:  $\text{iter} \leftarrow 0$ 
817 5: while  $\text{iter} < \text{max\_iter}$  do
818 6:    $\text{iter} \leftarrow \text{iter} + 1$ ,  $\text{improve} \leftarrow \text{FALSE}$ 
819 7:   for  $\text{seg} = 1$  to  $m$  do
820 8:     Generate two neighbors of  $x^*$  in segment  $\text{seg}$ :
821 9:     (i) Add the highest-probability unselected product
822 10:    (ii) Drop the lowest-probability selected product
823 11:    for neighbor  $y$  (in the above order) do
824 12:       $(\text{feas}, \text{rev}) \leftarrow \text{LP-Eval}(y)$ 
825 13:      if  $\text{feas}$  and  $\text{rev} > \text{rev}^* + \epsilon$  then
826 14:         $x^* \leftarrow y$ ,  $\text{rev}^* \leftarrow \text{rev}$ 
827 15:         $\text{improve} \leftarrow \text{TRUE}$ 
828 16:        break and restart next iteration ▷ greedy accept
829 17:      end if
830 18:    end for
831 19:    if  $\text{improve}$  then
832 20:      break ▷ restart from next iteration
833 21:    end if
834 22:  end for
835 23:  if not  $\text{improve}$  then
836 24:    break ▷ full cycle, no improvement
837 25:  end if
838 26: end while
27: return  $x^*$ 

```

839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864
865

E SOFTWARE VERSION

866
867
868
869
870

All experiments are conducted using PyTorch 2.5.1 with PyTorch Geometric 2.6.1 and Gurobi 12.0.2, without CUDA support. The model we use trains for 500 epochs with batch size 512, learning rate 0.01, 128 hidden channels, bilinear edge scoring, 0.5 dropout, $\epsilon = 1 \times 10^{-7}$, Adam optimizer, and early stopping patience of 50 epochs.

871
872

F LLM USAGE

873
874
875
876
877

The authors acknowledge the use of a large language model (LLM) in preparing this paper. Its use was limited to assisting with language polishing, such as improving grammar and clarity, and helping to generate and debug code snippets for the numerical experiments. All final text and code were reviewed and validated by the authors, who take full responsibility for the content of this work.

878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917