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ABSTRACT

Bundle pricing refers to designing several product combinations (i.e., bundles)
and determining their prices in order to maximize the expected profit. It is a
classic problem in revenue management and arises in many industries, such as
e-commerce, tourism, and video games. However, the problem is typically in-
tractable due to the exponential number of candidate bundles. In this paper, we
explore the usage of graph convolutional networks (GCNs) in solving the bun-
dle pricing problem. Specifically, we first develop a graph representation of the
mixed bundling model (where every possible bundle is assigned with a specific
price) and then train a GCN to learn the latent patterns of optimal bundles. Based
on the trained GCN, we propose two inference strategies to derive high-quality
feasible solutions. A local-search technique is further proposed to improve the
solution quality. Numerical experiments validate the effectiveness and efficiency
of our proposed GCN-based framework. Using a GCN trained on instances with
5 products, our methods consistently achieve near-optimal solutions (better than
97%) with only a fraction of computational time for problems of small to medium
size. It also achieves superior solutions for larger size of problems compared with
other heuristic methods such as bundle size pricing (BSP). The method can also
provide high quality solutions for instances with more than 30 products even for
the challenging cases where product utilities are non-additive.

1 INTRODUCTION

Bundle pricing is a widely adopted strategy across industries such as e-commerce, tourism, digital
subscriptions, and retail. It refers to the practice that a firm provides combinations (i.e., “bundles”)
of products or services (at discounted prices), supplementing the traditional component pricing (CP)
strategy where products are only sold separately, each with its own price. For instance, Amazon
Prime combines fast shipping, video streaming, and music services into a single package, and reports
show that subscription bundles drive $44 billion in subscription revenue for Amazon in 2024 (Retail,
2024). Similarly, Statista estimates a significant growth of the global digital subscription market,
estimated at $832.99 billion in 2023 and projected to reach $1902.28 billion in 2030. This expansion
is largely fueled by the increasing adoption of bundled subscription packages, such as Amazon
Prime’s combination of fast shipping, video streaming, and music services, and Disney+’s bundled
offerings with Hulu (Grand View Research, 2023).

In order to optimize this policy, the firm needs to determine which bundles to offer and how to
set the corresponding prices, under the constraint that customers will self-select the option that
maximizes their surplus. This problem is inherently combinatorial: with n products, the number of
possible bundles grows exponentially (2n). Classical formulations, such as the mixed bundling (MB)
model by Hanson & Martin (1990), rigorously capture customer surplus constraints but become
computationally intractable when n exceeds 15. Later approximations, such as bundle-size pricing
(bundles with the same sizes share the same prices), see, e.g., Chu et al. (2011), improve scalability
but rely on strong simplifying assumptions (e.g., ignoring product heterogeneity), limiting their
realism. Moreover, Chen et al. (2018) show #P-hardness of the bundle pricing problem even under
very restricted settings (e.g., size two, discounted bundle-pricing), which further underscores that
computational tractability remains the central challenge of bundle pricing in realistic markets.
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To overcome this challenge, we propose a GCN-based framework that learns to identify the latent
structure of the bundle pricing problem and hence provides high-quality solutions. The core idea of
our approach is to train a GCN to make a prediction of which bundle each segment of customer will
choose at the optimal solution, which effectively reduces the intractable exponential search space
to a much smaller subset. Specifically, we first design a two-layer GCN that learns bundle-segment
matchings and predicts likelihoods of each product being in the optimal bundle. The GCN, although
trained only on small-scale instances (whose optimal solutions can be efficiently computed), can
produce high-quality predictions for large-scale problems. Then, based on these predictions, we
develop two strategies to generate candidate solutions. The first is a Fixed Cutoff Pruning (FCP)
method. In the FCP method, for each segment, we only keep those bundles that contain prod-
ucts with predicted probability greater than 0.5, and discard the rest. The second is a Progressive
Cutoff Pruning (PCP) method. In the PCP method, for each segment, we rank bundles by their pre-
dicted probability and retain the bundles that satisfy a cutoff requirement as candidates to construct
prefix bundles for each segment. Based on the pruned space, we apply Hanson & Martin (1990)’s
mixed integer linear programming (MILP) formulation to find the optimal prices, which successfully
maintain near-optimal revenue performance while saving significant computational costs. To further
improve solution quality, we incorporate a local search method to explore alternative promising bun-
dle assortments by strategically adding or dropping products, guided by the likelihood predictions
of our GCN model. Finally, we conduct extensive experiments on synthetic datasets with varying
product and segment scales, comparing against established baselines including mixed bundling and
bundle-size pricing.

Our results demonstrate that for small scale problems (with no more than 10 products), the proposed
strategies consistently achieve over 97% of optimal revenue while requiring only a fraction of run-
time compared to other baseline methods. Moreover, the integration of local search further improves
solution quality, yielding an additional 1% increase in revenue on average within shorter runtime
compared to traditional strategies. For medium-scale problems (with 15-25 products), where mixed
bundling is intractable, our strategies consistently beats bundle size pricing, in either revenue perfor-
mance under less than 30 seconds or computational time when achieving similarly effective level of
optimality. For large-scale problems (e.g., with more than 30 products) with non-additive utilities,
traditional methods become computationally intractable, while our proposed method can still obtain
a solution efficiently. To the best of our knowledge, our approach presents the first scalable approach
for providing an efficient solution to the bundle pricing problem under the non-additive setting and
the numerical experiments demonstrate the effectiveness and scalability of our proposed approach.

2 RELATED WORK

The study of bundle pricing has a long history in economics and operations research communities.
Early work in the two-product setting established the profitability of bundling relative to separate
sales: Stigler (1963) first shows that pure bundling (PB) in which products are only sold together as
a package at a single price can dominate component pricing in profitability for two products, while
Adams & Yellen (1976) and Schmalensee (1984) demonstrate the profitability for CP, PB and MB
for the two-products case. Later research extends these insights to large-scale settings. A stream of
work analyzes simplified mechanisms such as CP (Abdallah 2019), PB (Bakos & Brynjolfsson 1999;
Abdallah 2019), and bundle-size pricing (BSP) (Chu et al., 2011). Specifically, Bakos & Brynjolfs-
son (1999) prove that PB approximates the revenue of MB when the number of products grows large
under zero costs and independent and additive valuations. Later, Abdallah (2019) provides lower
bounds for revenue loss under positive costs from PB. Empirical and theoretical studies show that
BSP can outperform CP and PB in certain conditions and can achieve asymptotic optimality when
product costs are homogeneous, though it deteriorates under cost heterogeneity (Hitt & Chen, 2005;
Chu et al., 2011; Abdallah et al., 2021; Li et al., 2021). More recently, novel mechanisms have been
proposed, such as pure bundling with disposal (Ma et al., 2021), lootbox schemes (Chen et al., 2021),
and component pricing with bundle-size discounts (CPBSD) (Chen et al., 2022), which unify CP,
PB and BSP approaches and achieve constant-factor guarantees. Complementary to mechanism de-
sign, a computational line of work has modeled bundle pricing directly as a mixed-integer program.
The seminal work by Hanson & Martin (1990) pioneers the MB formulation of the optimal bundle
pricing problem, showing that it preserves rigorous surplus maximization and price sub-additivity
constraints, though its scalability is limited by the exponential growth of candidate bundles. Our
work follows this computational tradition: we retain Hanson & Martin (1990)’s framework while
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leveraging graph-based learning to prune the bundle space before invoking the MILP solver, thereby
combining theoretical rigor with practical scalability.

Recently, the use of machine learning to accelerate the solution of combinatorial optimization prob-
lems has attracted increasing attention. A seminal work by Gasse et al. (2019) encodes mixed-integer
programs as constraint-variable bipartite graphs and trains a GCN to imitate strong branching deci-
sions, accelerating branch-and-bound (B&B) and inspiring a series of follow-up work. For example,
Nair et al. (2020) introduce neural diving and neural branching strategies for B&B; Ding et al. (2020)
extend the bipartite representation to a tripartite graph to predict partial solutions; Gupta et al. (2022)
propose a lookback imitation framework for branching efficiency; Sonnerat et al. (2021) combine
neural diving with neural neighborhood search to improve solution quality, and Paulus & Krause
(2023) design GCN-based diving methods to facilitate B&B. In the context of linear programming,
Fan et al. (2023) propose GCN-based initial basis selection to warm-start simplex and column gen-
eration, while Liu et al. (2024) train GCNs to imitate expert pivot policies, shortening pivot paths.
These studies confirm that GCNs can substantially reduce computational effort in solving optimiza-
tion problems. In addition to accelerating optimization solvers, machine learning is also directly
integrated into the core structure of operations research problems. Kool et al. (2019) introduce an
attention-based model that learns powerful heuristics for complex routing problems like the traveling
salesman problem (TSP) and the vehicle routing problem (VRP), achieving near-optimal results. Li
et al. (2025) leverage the generalizability of GCNs to solve large-scale NP-hard constrained assort-
ment optimization problems under the multinomial logit choice model. In a similar vein, we apply
GCNs directly to the bundle pricing problem, where the GCN learns segment–bundle interactions
and predicts promising candidates. In this way, our approach preserves the theoretical rigor of Han-
son & Martin (1990)’s model while leveraging GCN predictions to accelerate large-scale instances,
thereby extending GCN-assisted optimization to a core revenue management setting.

3 PROBLEM DEFINITION AND BASELINES

We study a bundle pricing problem where a seller offers n distinct products to m heterogeneous
customer segments. Hence, there are a total of 2n bundle choices, denoted as B = {0, 1, . . . , L},
where L = 2n−1 and 0 indicates the empty bundle. The seller chooses the set of prices {pb | b ∈ B}
for bundles to maximize profit, which can be defined as

∑m
k=1

∑
b∈B(pb − ckb) · qkb, where ckb is

the serving cost of selling bundle b to segment k and qkb ∈ {0, 1} denotes whether segment k selects
bundle b under self-selection assumption.

The buyers’ demand for bundles follows standard assumptions: each segment k has a certain val-
uation Rkb for bundle b. After observing the price pb, each buyer would select exactly one bundle
that maximizes his/her individual surplus, defined by skb = Rkb − pb, provided that the surplus is
non-negative.

Under these assumptions, the seller’s revenue optimization problem can be formulated as follows:

max

m∑
k=1

∑
b∈B

(pb − ckb) · αk qkb (1)

s.t. qkb ≤ 1

(
b ∈ argmax

b′∈B
{Rkb′ − pb′} ∧ Rkb − pb ≥ 0

)
, ∀k, b ∈ B (2)

∑
b∈B

qkb = 1, ∀k (3)

pb ≥ 0, ∀b ∈ B. (4)

Here, αk is the proportion of buyer segment k, and 1(·) is the indicator function that enforces buyers’
surplus maximization choice.

In the following discussion, we assume Rkb = f
(∑

j∈b ukj

)
where ukj is the utility of product j for

segment k, f(·) is an increasing concave function, capturing potential correlations among products.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We assume ckb =
(∑

j∈b c
u
j

)
+ csk, where csk is the cost associated with serving customer segment

k (e.g., the shipping cost) and cuj is the unit cost of product j. The concavity of f(·) captures the
economic consensus of diminishing marginal utility, and the cost structure captures the principle of
economies of scale: since the fixed cost is spread across all items in the bundle, the average cost per
item decreases as more products are added. Hanson & Martin (1990) formulated this problem as a
mixed-integer linear program (MILP). For the sake of completeness, we describe this formulation
in the following.

3.1 MIXED BUNDLING FORMULATION (HANSON & MARTIN, 1990)

Consider the problem with all possible bundles denoted by B. We define the following variables:
θkb is a binary indicator for whether segment k chooses bundle b; pb is the price of bundle b; Pkb is
the effective price paid by segment k; sk is the surplus of segment k; Zkb is the profit from assigning
bundle b to segment k; and Ab is the set of components which define bundle b. The mixed bundle
pricing problem can be written as follows:

max

m∑
k=1

∑
b∈B

αk · Zkb (5)

s.t.
∑
b∈B

θkb = 1, ∀k (6)

sk ≥ Rkb − pb, ∀k, b ∈ B (7)
pb −Rmax(1− θkb) ≤ Pkb, ∀k, b ∈ B (8)
Pkb ≤ pb, ∀k, b ∈ B (9)

sk =
∑
b∈B

(Rkbθkb − Pkb), ∀k (10)

Rkbθkb − Pkb ≥ 0, ∀k, b ∈ B (11)

sk ≥
∑
b∈B

(Rkbθjb − Pjb), ∀k, j (12)

Zkb = Pkb − ckbθkb, ∀k, b ∈ B (13)
pb ≤ pb1 + pb2 , if A(b) = A(b1) ∪A(b2) (14)
pb, Pkb, sk ≥ 0, sk,0 = 0, θki ∈ {0, 1} (15)

(16)

We note that we use a simplified price sub-additivity constraints in (13). We refer to Appendix A.3
for the detailed discussions.

In the original formulation in Hanson & Martin (1990), all bundles combinations are included in
the formulation, that is B = F = 2{1,...,n}. We call the corresponding problem with complete
combinations HM(F). Meanwhile, one can restrict to a subset of bundles B and solve a restricted
version of the above problem with only b ∈ B. We call the corresponding problem HM(B).

We note that the main computational challenge of the above formulation lies in the exponential
number of variables corresponding to all the possible bundles. In the following, we demonstrate
how GCN framework can be leveraged to help solve large-scale bundle pricing problem efficiently.

4 GCN-BASED STRATEGIES

In this section, we design a GCN-based strategy to solve the optimal bundle pricing problem. Specif-
ically, we adopt a bi-directional GCN architecture, where each directional pass is implemented us-
ing a generalized graph convolutional layer that aggregates transformed neighbor and edge features
through softmax aggregation (i.e., assigning normalized weights to neighbor messages using the
softmax function). Our model predicts a segment-product probability matrix P ∈ Rm×n where Pkj

is the predicted likelihood that customer segment k selects product j. These probabilities serve as
a compact representation of heterogeneous preferences and provide the basis for pruning the expo-
nentially large bundle space. We describe our strategies in detail in the following sections.

4
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4.1 GRAPH REPRESENTATION

The figure below is the graph representation of the optimal bundle pricing problem, which serves as
the input of the GCN. Two types of nodes are included in the graph representation: product nodes
(□), and customer nodes (⃝), as shown in Figure 1.
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Customer

1

Figure 1: Graph representation of the bundle pricing problem with customer and product nodes.

In Figure 1, V and E denote the sets of nodes and edges, respectively. Let YP and YS denote the
feature matrices of product nodes and customer nodes, respectively. The feature vector of each
product j is yPj =

[
cuj ,

1
m

∑m
k=1 ukj , 0, 0

]
; the feature vector of each customer k is ySk =[

0, 0, αk, csk
]
. Let Z denote the feature matrix of edges. Each edge is characterized by ukj ,

representing the k-th customer’s utility towards product j.

4.2 GCN STRUCTURE

We employ two bi-directional message-passing layers based on the Generalized Graph Convolution,
with dropout (p = 0.5) applied after each fusion. The network will produce edge logits, and proba-
bilities are obtained at inference time by applying a sigmoid function to these logits. We explain the
computation details below.

First bi-directional message-passing layer. The first message-passing layer in Figure 2 maps the
graph in Figure 1 into a new graph with updated node features and the same edge features.

Denote the set of all products by P and the set of all customers by S. We then define the forward
edge set

−→
E = {(j, k) | j ∈ P, k ∈ S}, and the backward edge set

←−
E = {(k, j) | (j, k) ∈

−→
E }.

The feature matrix X is formed by stacking the product and customer node features.

X =
[
(yP

1 )
⊤ · · · (yP

n )
⊤ | (yS

1 )
⊤ · · · (yS

m)⊤
]⊤ ∈ R(n+m)×4.

For any feature matrix, we let a bold uppercase letter (e.g., X) represent the matrix and the corre-
sponding bold lowercase letter with an index (e.g., xi) denote its i-th row.

Specifically, the bi-directional generalized graph convolutional layer update for each node i in for-
ward (product-to-customer) and backward (customer-to-product) direction is defined as

x fw
i,(1) = MLP

xi +
∑

j∈N (i)

Softmax
(
ϕ(xj ,Zji)

)
⊙ ϕ(xj ,Zji)

 ,

x bw
i,(1) = MLP

xi +
∑

j∈N (i)

Softmax
(
ϕ(xj ,Zij)

)
⊙ ϕ(xj ,Zij)

 .
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Figure 2: Illustration of GCN network.

Here, MLP(·) denotes a standard multi-layer perceptron (a sequence of fully connected layers with
nonlinear activations). The N (i) denotes the set of neighbors of node i. The operator ⊙ denotes
component-wise multiplication between two vectors (i.e., multiplying elements with the same in-
dex), and the softmax is applied component-wise across neighbors for each feature dimension. The
message function is defined as ϕ(xj ,Zij) = ReLU(xj + Zij · 1 ) + ϵ · 1 , where ϵ is a small con-
stant (we choose ϵ to be 1× 10−7 in our implementation) for numerical stability. When considering
reversed edges, the corresponding edge attributes are also reversed so that each edge feature remains
well-aligned.

The node features from both directions are then merged using a mask matrix M (where diagonal
entries are 1 for product nodes and 0 otherwise), passed through an entry-wise ReLU activation, and
regularized with dropout (p = 0.5):

X(1) = Dropout
(
ReLU

(
(I−M) · Xfw

(1) + M · Xbw
(1)

))
.

Once the updated feature matrix X(1) is computed, the updated feature matrices for products Y P
(1)

and customers Y S
(1) after the first bi-directional layer are obtained by selecting the corresponding

rows: YP
(1) = M ·X(1),Y

S
(1) = (I−M) ·X(1).

X(1) serves as the input for the second layer with different dimensionalities. The input sizes and
the output sizes of the first layer are (n + m, 4), and (n + m, dhidden), respectively, where we set
dhidden = 128 in all experiments.

Second bi-directional message-passing layer. The construction of the second bi-directional
message-passing layer is similar to the first message-passing layer. The only difference is that the
input sizes and the output sizes are (n+m, dhidden), and (n+m, dhidden), respectively.

Edge score calculation. After calculating the output YP
(2) and YS

(2) of the second bi-directional
layer, the score Ejk for the edge connecting product j and segment k is calculated as

Ejk = (yP
j,(2))

⊤UyS
k,(2) +MLPedge(Zjk),

6
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where U ∈ Rdhidden×dhidden is a learnable bilinear weight matrix, Zjk is the edge attribute for
pair (j, k), and MLPedge : R → R is a two-layer feed-forward network (Linear–ReLU–Linear)
producing a scalar correction term.

Output. The model outputs the logits E ∈ Rn×m. In practice, we apply a sigmoid function at
inference time to obtain probabilities, P = σ(E)⊤ ∈ Rm×n, where each entry Pkj corresponds to
the predicted probability that segment k include product j in his/her purchased bundle.

4.3 PRUNING-BASED STRATEGIES

In this section, we leverage the probability matrix P predicted by the GCN model to guide two
pruning strategies that construct a compact yet high-quality bundle space. The resulting reduced
problem is then solved using the MILP formulation of Hanson & Martin (1990), but restricted to the
pruned bundle set rather than the full exponential space.

Fixed Cutoff Pruning (FCP). For each segment k ∈ [m] = {1, . . . ,m} and j ∈ [n] =
{1, . . . , n}, we define its candidate bundle by a fixed cutoff value. In our default method, we set the
fixed cutoff to 0.5. That is BFCP

k = {j ∈ [n] | Pkj ≥ 0.5} for k ∈ [m] and the overall candidate set
is FFCP = {BFCP

k | k ∈ [m]}, with size at most m. Here, the overall candidate set is shared across
all segments, meaning that any segment is free to select any BFCP

k , not only its own. This reduces
the feasible space from 2n to O(m), making the subsequent MILP much more tractable. Then we
solve the MILP formulation on the pruned space constructed by FCP (that is, we solve HM(FFCP)
to obtain the solution).

In the case where all probabilities of a segment fall below the cutoff, we retain the single product
with the highest probability to avoid producing an empty bundle.

Progressive Cutoff Pruning (PCP). For each segment k, we sort products by descending
probability and retain the products with Pkj ≥ 0.5. Denote the ordered set as Sk =(
j(1), j(2), . . . , j(|Sk|)

)
. We then construct prefix bundles BPCP

k,i = {j(1), j(2), . . . , j(i)} for i =

1, . . . , |Sk|. The overall candidate set is FPCP =
⋃m

k=1{BPCP
k,i | i = 1, . . . , |Sk|}, with size at

most m · (n + 1). Then we solve the MILP formulation on the pruned space constructed by
PCP (that is, we solve HM(FPCP) to obtain the solution). Since PCP produces a strictly nested
chain of bundles for each segment k: {j(1)} ⊂ {j(1), j(2)} ⊂ · · · ⊂ {j(1), . . . , j(|Sk|)}. We
replace the within-segment sub-additivity constraints by a chain of monotone price inequalities
pbi ≤ pbi+1 (i = 1, . . . , |Sk| − 1). Across segments, we keep the original sub-additivity logic.

4.4 LOCAL SEARCH STRATEGY

In order to further improve our solution, we propose a local search strategy. The basic idea is to
iteratively modify each segment’s bundle space by either adding an unselected product or dropping
a selected product, and accept modifications if revenue increases.

However, the effectiveness of local search largely depends on an effective search path. Therefore,
we develop a preference-based local search strategy guided by the probability matrix predicted by
the GCN model. Particularly, when adding a product to the bundle of a segment k, we consider the
product with the highest Pkj that is unselected; and when dropping a product from the bundle of a
segment k, we consider the product with the lowest Pkj that is selected.

More precisely, we construct initial bundle assortments by the FCP approach. Here the initial bun-
dles are fixed as segment–bundle assignments, so each segment starts strictly with its own BFCP

k .
For each iteration, every segment generates two neighbors: one by adding the highest-probability
unselected product and one by dropping the lowest-probability selected product. All neighbors
are evaluated sequentially in segment order, and if any improvement is found, the first improving
modification is accepted immediately and a new iteration begins from the updated solution (thus a
deep-first search is conducted).

The local search process will terminate when a full cycle over all segments completes without any
improvement, or when the predefined iteration limit is reached. Furthermore, to save the evaluation
cost at each neighbor, we rely on the LP relaxation to evaluate neighbors during iteration. In the

7
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LP relaxation, we fix the bundle-segment assignment, and the resulting LP provides a valid lower
bound of the optimal value of the MILP (see Appendix A.2 for the LP formulation). Thus, any
improvement detected under LP is guaranteed to be valid for MILP, which ensures the accuracy of
improvement evaluation. At the same time, LP solves much faster than MILP, greatly reducing the
computational cost of each exploration step. We use FCP+LS to denote the corresponding algorithm
and provide the detailed pseudo-code in Algorithm 1.

5 NUMERICAL EXPERIMENTS

We now present comprehensive numerical experiments designed to evaluate the effectiveness and
scalability of our proposed GCN-assisted bundle pricing strategies. The goals of this section are
twofold: (i) to demonstrate that our approaches consistently achieve high revenue ratios while main-
taining significant computational efficiency, and (ii) to validate their robustness across heteroge-
neous problem settings with varying numbers of customer segments and products.

To thoroughly test scalability and robustness, we evaluate our strategies under varying numbers of
customer segment m and product number n. For every scenario, we use f(x) =

√
x for the f(·)

in the reservation, and take the average of 100 samples. All experiments were conducted using the
Gurobi Optimizer version 12.0.2 on a machine with an Apple M1 Pro CPU (3.2 GHz) and 16GB
RAM, utilizing up to 8 threads.

To evaluate any method, we adopt two normalized metrics: Revenue Ratio (RR) and Time Ratio (TR)

RRA,B = Revenue of approach A
Revenue of approach B , TRA,B = Runtime of approach A

Runtime of approach B .

where RR measures solution quality and TR captures efficiency. These two metrics allow direct
comparison of solution quality and speed across different algorithms.

5.1 NUMERICAL RESULTS

We compare our proposed approach to two baselines, the mixed bundling (MB) baseline and the
bundle size pricing (BSP) baseline:

Mixed Bundling (MB) baseline: For MB, we follow Hanson & Martin (1990)’s MILP formu-
lation. The MB formulation is a MILP that assigns each bundle with its own price respectively.
Detailed formulation is provided in Section 3.1.

Bundle Size Pricing (BSP) baseline: The BSP baseline is proposed by Chu et al. (2011). The BSP
approximates MB by assigning the same price to all bundles of equal size. Detailed formulation is
provided in Appendix A.1.

In Table 5.1, we report the numerical results of our algorithms compared with both baselines, for
problem with n = 10 and varying number of segments. From Table 5.1, we can see that our three
strategies all maintain more than 97.5% of the optimal revenue while only requiring a fraction of the
computation time of the MB baseline. Meanwhile, the BSP approach often has a significant profit
loss compared to the MB baseline. Among the strategies we propose, we find that the PCP strategy
achieves around 1% higher revenue than FCP by retaining a larger candidate space, while FCP+LS
also gives a 1% revenue improvement over the plain FCP approach.

Table 5.1: Performance of GCN-based strategies vs. Mixed Bundling baseline (n = 10).

Strategy m = 10, n = 10 m = 20, n = 10 m = 30, n = 10

RR·,MB Time (s) TR·,MB RR·,MB Time (s) TR·,MB RR·,MB Time (s) TR·,MB

FCP 0.9836 0.0558 0.0106 0.9785 0.3767 0.0130 0.9757 1.2276 0.0151
PCP 0.9907 0.7587 0.1383 0.9874 9.0669 0.2886 0.9862 71.5509 0.6835
FCP+Local Search 0.9945 0.9700 0.1799 0.9877 7.0461 0.2410 0.9850 30.1076 0.4158
BSP 0.8990 0.0382 0.0070 0.8796 0.1861 0.0064 0.8669 0.5386 0.0014

For problems with more than 10 products, calculating the optimal solution of the MILP model under
the mixed bundling baseline is computationally challenging. Therefore, we use the BSP as baseline

8
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to test problems with larger than 10 products. The results are reported in Table 5.2. From Table 5.2,
we can see that the plain FCP approach can achieve comparable performance with the BSP approach
with a fraction of computation time, while the PCP approach can achieve significantly better solution
than the BSP approach with more computational time (the total time is still less than 30 seconds).

Table 5.2: Comparison of different strategies across various problem sizes.

FCP PCP
Scenario RR·,BSP Time (s) TR·,BSP RR·,BSP Time (s) TR·,BSP

m = 10, n = 15 1.060 0.043 0.380 1.150 2.056 17.975
m = 15, n = 15 1.074 0.125 0.588 1.167 9.921 47.579
m = 20, n = 15 1.082 0.307 0.829 1.171 27.215 71.445
m = 10, n = 20 1.007 0.044 0.331 1.147 4.799 36.676
m = 10, n = 25 0.953 0.048 0.243 1.146 8.250 41.401

Scalability with product size. Table 5.3 illustrates how FCP and PCP scale with the number of
products n when the number of segments is fixed at 10. A key observation is that FCP maintains a
nearly constant candidate set size O(m), resulting in stable runtimes around 0.03 seconds regardless
of n. By contrast, PCP exhibits O(n) growth in candidate space. And both methods enable tractable
solutions of bundle pricing instances up to n = 100, which would be intractable under exact mixed
bundling. This highlights our ability to combine strong pruning with broad scalability across large
problem sizes.

Table 5.3: Scalability of FCP and PCP strategies across different product sizes n (m = 10).
n FCP Time (s) PCP Time (s) FCP Rev PCP Rev RR(FCP/PCP) FCP Bundles PCP Bundles

10 0.107 0.843 1.719 1.770 0.972 10 61
20 0.032 5.440 2.361 2.363 0.999 10 137
30 0.034 21.103 2.610 2.638 0.990 10 220
40 0.032 36.134 2.933 2.986 0.982 10 282
50 0.034 59.050 3.029 3.130 0.968 10 359
60 0.026 73.665 3.115 3.277 0.951 10 431
70 0.030 122.706 3.054 3.356 0.910 10 503
80 0.028 184.814 3.067 3.421 0.897 10 572
90 0.029 206.681 3.177 3.612 0.880 10 647
100 0.030 283.578 3.190 3.743 0.852 10 710

6 CONCLUSION

This paper introduces a learning-guided framework for solving the bundle pricing problem. We
leverage GCNs to learn segment–product preference structures under the non-additive setting, and
use these predictions to prune the exponential candidate bundle space. The pruned feasible region
is then solved with Hanson & Martin (1990)’s MILP formulation, thereby retaining the rigor of
product heterogeneity while substantially extending the tractable problem size. Coupled with a
probability-guided DFS local search, our framework demonstrates robustness and scalability across
different problem sizes. Numerical experiments show that our approach provides solutions that
are near-optimal at tractable scales, and scalable to much larger settings while outperforming other
heuristics. Therefore, our work provides a near-optimal and efficient solution for large-scale bundle
pricing problem.

7 CODE OF ETHICS STATEMENT

The authors of this work adhere to the ICLR Code of Ethics. This research on bundle pricing opti-
mization was conducted with the principles of academic integrity and rigor. We have considered the
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potential societal impacts of our work. While any advanced pricing algorithm could potentially be
used for exploitative price discrimination, the primary goal of this research is to improve economic
efficiency, which can lead to better value propositions for consumers and more sustainable business
models for firms. We believe the societal benefits of more efficient market mechanisms outweigh
the potential risks, which can be mitigated by fair business practices and regulation. The experi-
ments in this paper were conducted on synthetic datasets and do not involve sensitive or personally
identifiable information.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide a comprehensive suite of materials. The
complete source code for our proposed GCN-based policies (FCP, PCP, and FCP+LS), baseline
implementations, and all numerical experiments is available in the supplementary materials. The
mathematical formulations for the baselines are detailed in 3.1 and Appendix A.1. Key hyperpa-
rameters and the versions of the main software libraries used (e.g., PyTorch, PyTorch Geometric,
Gurobi) are also documented in the Appendix D to facilitate the replication of our results.
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A FORMULATIONS FOR BUNDLE PRICING

A.1 BUNDLE SIZE PRICING (BSP) FORMULATION CHU ET AL. (2011)

Additional Variables:

• ps: price for bundles of size s ∈ {0, . . . , n};
• Pks = psθks.

Objective:

max

m∑
k=1

n∑
s=0

αk · Zks (17)
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Constraints:

sk ≥ Rks − ps, ∀k, s (18)
n∑

s=0

θks = 1, ∀k (19)

Pks ≤ ps, ∀k, s (20)
Pks ≥ ps −M(1− θks), ∀k, s (21)
Zks = Pks − cksθks, ∀k, s (22)

sk =

n∑
s=0

(Rksθks − Pks), ∀k (23)

sk ≥
n∑

s=0

(Rksθjs − Pjs), ∀k, j ̸= k (24)

Rksθks − Pks ≥ 0, ∀k, s (25)
ps1+s2 ≤ ps1 + ps2 , ∀s1, s2 s.t. s1 + s2 ≤ n (26)
ps+1 ≥ ps, ∀s = 0, . . . , n− 1 (27)
ps, Pks, Zks ≥ 0, θks ∈ {0, 1} ∀k, s

A.2 LP FORMULATION (FIXED ASSIGNMENT)

Decision variables:

• pi ≥ 0: price of bundle i ∈ F , where F is the pruned candidate bundle set;

• sk: surplus of segment k ∈ {1, . . . ,m}.

Objective:

max
p,s

m∑
k=1

αk ·
(
pbk − ck,bk

)
, (L.1)

where bk ∈ F is the fixed bundle assigned to segment k.

Constraints:

sk ≥ Rk,i − pi ∀k = 1, . . . ,m, ∀i ∈ F (lower bound) (L.2)
sk ≤ Rk,bk − pbk ∀k (assignment binding) (L.3)
pi ≤ pj1 + pj2 , if Ai = Aj1 ∪Aj2 , {j1, j2} ⊂ F (sub-additivity) (L.4)
p0 = 0 (empty bundle price) (L.5)

Remarks.

• Bundle assignments are fixed externally by assigning each segment with their exact FCP
optimal bundle prediction: θkbk = 1 and θki = 0 for i ̸= bk.

• Constraints (L.2) and (L.3) together ensure incentive compatibility: sk = Rk,bk − pbk =
maxi∈F {Rk,i − pi}.

• Only bundles in F (predicted or assigned) have price variables, reducing dimensionality.

• The model is a pure LP without integer decision variables, in contrast to the MILP formu-
lations.

• The optimal value of the LP formulation is a lower bound of the corresponding MILP with
possible bundle set F. That is, the optimal value of this LP is less than or equal to that of
HM(F).

12
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A.3 MODIFIED PRICE SUB-ADDITIVITY CONSTRAINTS

Our mixed bundling follows Hanson & Martin (1990)’s formulation in terms of decision variables,
objective, and most constraints (consumer surplus, single price schedule, etc.). The only difference
lies in the treatment of price sub-additivity. To enforce the general K-way Cover sub-additivity
(SC,K) proposed by Hanson & Martin (1990), we introduce a more parsimonious set of constraints.
Specifically, we only enforce sub-additivity on 2-way partitions (SP,2), which significantly reduces
the number of price sub-additivity constraints while being sufficient to guarantee the general condi-
tion. The equivalence between these two are proved in Appendix B.
Definition 1 (K-way Cover sub-additivity — Statement SC,K). For any bundle B and any (poten-
tially overlapping) cover by K ≥ 2 sub-bundles {B1, . . . , BK}, the following holds:

p(B) ≤
K∑
j=1

p(Bj).

Definition 2 (2-way Partition sub-additivity — Statement SP,2). For any bundle B and any disjoint
partition into two sub-bundles {B1, B2}, the following holds:

p(B) ≤ p(B1) + p(B2).

B PROOF OF EQUIVALENCE BETWEEN PRICE SUB-ADDITIVITY
CONSTRAINTS

B.1 DEFINITIONS

Let U be the set containing all products, and let p : P(U)→ R≥0 be the price function, where P(U)
denotes the power set of U .
Definition 3 (Price Monotonicity — StatementM). For any two bundles A and B, if A ⊆ B, then
p(A) ≤ p(B).

Definition 4 (K-way Partition sub-additivity — Statement SP,K). For any bundle B and any disjoint
partition into K ≥ 2 sub-bundles {B1, . . . , BK}, the following holds:

p(B) ≤
K∑
j=1

p(Bj).

B.2 THEOREM

Proposition 1. Statement SP,2 and Statement SP,K are equivalent.

Proof. We prove the proposition in both directions.

Direction 1: SP,K =⇒ SP,2 This is true by definition. SP,2 is a special case of SP,K where we
choose the number of partitions K = 2.

Direction 2: SP,2 =⇒ SP,K We use mathematical induction on the number of partitions, k.
The base case (k = 2) is Statement SP,2, which is assumed to be true. Assume the statement
holds for k partitions (Inductive Hypothesis). We prove for K = k + 1. Let B be partitioned into
{B1, . . . , Bk+1}. Let B′ =

⋃k
j=1 Bj . Then B = B′ ∪Bk+1 is a 2-way disjoint partition. By SP,2:

p(B) ≤ p(B′) + p(Bk+1). (28)

By the inductive hypothesis, p(B′) ≤
∑k

j=1 p(Bj). Substituting this yields:

p(B) ≤
k+1∑
j=1

p(Bj).

Thus, SP,2 =⇒ SP,K .

13
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Proposition 2. Assuming Price Monotonicity (M), Statement SP,K and Statement SC,K are equiv-
alent.

Proof. We prove the proposition in both directions, assumingM holds.

Direction 1: SC,K =⇒ SP,K . A disjoint partition is a special case of a cover. Thus, if the rule
holds for any cover, it must hold for any disjoint partition.

Direction 2: (SP,K ∧M) =⇒ SC,K . We show that (SP,2 ∧M) =⇒ SC,2 (the binary case). Let
B = B1 ∪B2 be a cover. We can write B as a disjoint partition: B = (B1 \B2) ∪B2. By SP,2:

p(B1 ∪B2) ≤ p(B1 \B2) + p(B2). (29)

Since (B1 \B2) ⊆ B1, by Monotonicity (M), we have p(B1 \B2) ≤ p(B1). Substituting this gives
p(B1 ∪B2) ≤ p(B1) + p(B2), which proves SC,2.

Since SP,K ⇐⇒ SP,2 (from Prop. 1) and SC,K ⇐⇒ SC,2 (by induction), it follows that
(SP,K ∧M) =⇒ SC,K .

Theorem 1. Assuming Price Monotonicity (M), the 2-way Partition sub-additivity (SP,2) is equiv-
alent to the K-way Cover sub-additivity (SC,K).

Proof. From Proposition 1, SP,2 ⇐⇒ SP,K , and from Proposition 2 under Price Monotonicity
M, SP,K ⇐⇒ SC,K . Hence SP,2 ⇐⇒ SC,K .

C PSEUDOCODE FOR THE LOCAL SEARCH STRATEGIES

Algorithm 1 Segment-wise Local Search
1: Input: Initial solution x, probability matrix P, max iter
2: Output: Optimized solution x∗

3: x∗ ← MILP-Init({Bk}), rev∗ ← LP-Eval(x∗)
4: iter ← 0
5: while iter < max iter do
6: iter ← iter + 1, improve← FALSE
7: for seg = 1 to m do
8: Generate two neighbors of x∗ in segment seg:
9: (i) Add the highest-probability unselected product

10: (ii) Drop the lowest-probability selected product
11: for neighbor y (in the above order) do
12: (feas, rev)← LP-Eval(y)
13: if feas and rev > rev∗ + ϵ then
14: x∗ ← y, rev∗ ← rev
15: improve← TRUE
16: break and restart next iteration ▷ greedy accept
17: end if
18: end for
19: if improve then
20: break ▷ restart from next iteration
21: end if
22: end for
23: if not improve then
24: break ▷ full cycle, no improvement
25: end if
26: end while
27: return x∗

14
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D SOFTWARE VERSION

All experiments are conducted using PyTorch 2.5.1 with PyTorch Geometric 2.6.1 and Gurobi
12.0.2, without CUDA support. The EdgeScoringGCN model we use trains for 500 epochs
with batch size 512, learning rate 0.01, 128 hidden channels, bilinear edge scoring, 0.5 dropout,
ϵ = 1× 10−7, Adam optimizer, and early stopping patience of 50 epochs.

E LLM USAGE

The authors acknowledge the use of a large language model (LLM) in preparing this paper. Its
use was limited to assisting with language polishing, such as improving grammar and clarity, and
helping to generate and debug code snippets for the numerical experiments. All final text and code
were reviewed and validated by the authors, who take full responsibility for the content of this work.
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