
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING TO PRICE BUNDLES:
A GCN APPROACH FOR MIXED BUNDLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Bundle pricing refers to designing several product combinations (i.e., bundles)
and determining their prices in order to maximize the expected profit. It is a
classic problem in revenue management and arises in many industries, such as
e-commerce, tourism, and video games. However, the problem is typically in-
tractable due to the exponential number of candidate bundles. In this paper, we
explore the usage of graph convolutional networks (GCNs) in solving the bun-
dle pricing problem. Specifically, we first develop a graph representation of the
mixed bundling model (where every possible bundle is assigned with a specific
price) and then train a GCN to learn the latent patterns of optimal bundles. Based
on the trained GCN, we propose two inference strategies to derive high-quality
feasible solutions. A local-search technique is further proposed to improve the
solution quality. Numerical experiments validate the effectiveness and efficiency
of our proposed GCN-based framework. Using a GCN trained on instances with
5 products, our methods consistently achieve near-optimal solutions (better than
97%) with only a fraction of computational time for problems of small to medium
size. It also achieves superior solutions for larger size of problems compared with
other heuristic methods such as bundle size pricing (BSP). The method can also
provide high quality solutions for instances with more than 30 products even for
the challenging cases where product utilities are non-additive.

1 INTRODUCTION

Bundle pricing is a widely adopted strategy across industries such as e-commerce, tourism, digital
subscriptions, and retail. It refers to the practice that a firm provides combinations (i.e., “bundles”)
of products or services (at discounted prices), supplementing the traditional component pricing (CP)
strategy where products are only sold separately, each with its own price. For instance, Amazon
Prime combines fast shipping, video streaming, and music services into a single package, and reports
show that subscription bundles drive $44 billion in subscription revenue for Amazon in 2024 (Retail,
2024). Similarly, Statista estimates a significant growth of the global digital subscription market,
estimated at $832.99 billion in 2023 and projected to reach $1902.28 billion in 2030. This expansion
is largely fueled by the increasing adoption of bundled subscription packages, such as Amazon
Prime’s combination of fast shipping, video streaming, and music services, and Disney+’s bundled
offerings with Hulu (Grand View Research, 2023).

In order to optimize this policy, the firm needs to determine which bundles to offer and how to
set the corresponding prices, under the constraint that customers will self-select the option that
maximizes their surplus. This problem is inherently combinatorial: with n products, the number of
possible bundles grows exponentially (2n). Classical formulations, such as the mixed bundling (MB)
model by Hanson & Martin (1990), rigorously capture customer surplus constraints but become
computationally intractable when n exceeds 15. Later approximations, such as bundle-size pricing
(bundles with the same sizes share the same prices), see, e.g., Chu et al. (2011), improve scalability
but rely on strong simplifying assumptions (e.g., ignoring product heterogeneity), limiting their
realism. Moreover, Chen et al. (2018) show #P-hardness of the bundle pricing problem even under
very restricted settings (e.g., size two, discounted bundle-pricing), which further underscores that
computational tractability remains the central challenge of bundle pricing in realistic markets.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To overcome this challenge, we propose a GCN-based framework that learns to identify the latent
structure of the bundle pricing problem and hence provides high-quality solutions. The core idea of
our approach is to train a GCN to make a prediction of which bundle each segment of customer will
choose at the optimal solution, which effectively reduces the intractable exponential search space
to a much smaller subset. Specifically, we first design a two-layer GCN that learns bundle-segment
matchings and predicts likelihoods of each product being in the optimal bundle. The GCN, although
trained only on small-scale instances (whose optimal solutions can be efficiently computed), can
produce high-quality predictions for large-scale problems. Then, based on these predictions, we
develop two strategies to generate candidate solutions. The first is a Fixed Cutoff Pruning (FCP)
method. In the FCP method, for each segment, we only keep those bundles that contain prod-
ucts with predicted probability greater than 0.5, and discard the rest. The second is a Progressive
Cutoff Pruning (PCP) method. In the PCP method, for each segment, we rank bundles by their pre-
dicted probability and retain the bundles that satisfy a cutoff requirement as candidates to construct
prefix bundles for each segment. Based on the pruned space, we apply Hanson & Martin (1990)’s
mixed integer linear programming (MILP) formulation to find the optimal prices, which successfully
maintain near-optimal revenue performance while saving significant computational costs. To further
improve solution quality, we incorporate a local search method to explore alternative promising bun-
dle assortments by strategically adding or dropping products, guided by the likelihood predictions
of our GCN model. Finally, we conduct extensive experiments on synthetic datasets with varying
product and segment scales, comparing against established baselines including mixed bundling and
bundle-size pricing.

Our results demonstrate that for small scale problems (with no more than 10 products), the proposed
strategies consistently achieve over 97% of optimal revenue while requiring only a fraction of run-
time compared to other baseline methods. Moreover, the integration of local search further improves
solution quality, yielding an additional 1% increase in revenue on average within shorter runtime
compared to traditional strategies. For medium-scale problems (with 15-25 products), where mixed
bundling is intractable, our strategies consistently beats bundle size pricing, in either revenue perfor-
mance under less than 30 seconds or computational time when achieving similarly effective level of
optimality. For large-scale problems (e.g., with more than 30 products) with non-additive utilities,
traditional methods become computationally intractable, while our proposed method can still obtain
a solution efficiently. To the best of our knowledge, our approach presents the first scalable approach
for providing an efficient solution to the bundle pricing problem under the non-additive setting and
the numerical experiments demonstrate the effectiveness and scalability of our proposed approach.

2 RELATED WORK

The study of bundle pricing has a long history in economics and operations research communities.
Early work in the two-product setting established the profitability of bundling relative to separate
sales: Stigler (1963) first shows that pure bundling (PB) in which products are only sold together as
a package at a single price can dominate component pricing in profitability for two products, while
Adams & Yellen (1976) and Schmalensee (1984) demonstrate the profitability for CP, PB and MB
for the two-products case. Later research extends these insights to large-scale settings. A stream of
work analyzes simplified mechanisms such as CP (Abdallah 2019), PB (Bakos & Brynjolfsson 1999;
Abdallah 2019), and bundle-size pricing (BSP) (Chu et al., 2011). Specifically, Bakos & Brynjolfs-
son (1999) prove that PB approximates the revenue of MB when the number of products grows large
under zero costs and independent and additive valuations. Later, Abdallah (2019) provides lower
bounds for revenue loss under positive costs from PB. Empirical and theoretical studies show that
BSP can outperform CP and PB in certain conditions and can achieve asymptotic optimality when
product costs are homogeneous, though it deteriorates under cost heterogeneity (Hitt & Chen, 2005;
Chu et al., 2011; Abdallah et al., 2021; Li et al., 2021). More recently, novel mechanisms have been
proposed, such as pure bundling with disposal (Ma et al., 2021), lootbox schemes (Chen et al., 2021),
and component pricing with bundle-size discounts (CPBSD) (Chen et al., 2022), which unify CP,
PB and BSP approaches and achieve constant-factor guarantees. Complementary to mechanism de-
sign, a computational line of work has modeled bundle pricing directly as a mixed-integer program.
The seminal work by Hanson & Martin (1990) pioneers the MB formulation of the optimal bundle
pricing problem, showing that it preserves rigorous surplus maximization and price sub-additivity
constraints, though its scalability is limited by the exponential growth of candidate bundles. Our
work follows this computational tradition: we retain Hanson & Martin (1990)’s framework while

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

leveraging graph-based learning to prune the bundle space before invoking the MILP solver, thereby
combining theoretical rigor with practical scalability.

Recently, the use of machine learning to accelerate the solution of combinatorial optimization prob-
lems has attracted increasing attention. A seminal work by Gasse et al. (2019) encodes mixed-integer
programs as constraint-variable bipartite graphs and trains a GCN to imitate strong branching deci-
sions, accelerating branch-and-bound (B&B) and inspiring a series of follow-up work. For example,
Nair et al. (2020) introduce neural diving and neural branching strategies for B&B; Ding et al. (2020)
extend the bipartite representation to a tripartite graph to predict partial solutions; Gupta et al. (2022)
propose a lookback imitation framework for branching efficiency; Sonnerat et al. (2021) combine
neural diving with neural neighborhood search to improve solution quality, and Paulus & Krause
(2023) design GCN-based diving methods to facilitate B&B. In the context of linear programming,
Fan et al. (2023) propose GCN-based initial basis selection to warm-start simplex and column gen-
eration, while Liu et al. (2024) train GCNs to imitate expert pivot policies, shortening pivot paths.
These studies confirm that GCNs can substantially reduce computational effort in solving optimiza-
tion problems. In addition to accelerating optimization solvers, machine learning is also directly
integrated into the core structure of operations research problems. Kool et al. (2019) introduce an
attention-based model that learns powerful heuristics for complex routing problems like the traveling
salesman problem (TSP) and the vehicle routing problem (VRP), achieving near-optimal results. Li
et al. (2025) leverage the generalizability of GCNs to solve large-scale NP-hard constrained assort-
ment optimization problems under the multinomial logit choice model. In a similar vein, we apply
GCNs directly to the bundle pricing problem, where the GCN learns segment–bundle interactions
and predicts promising candidates. In this way, our approach preserves the theoretical rigor of Han-
son & Martin (1990)’s model while leveraging GCN predictions to accelerate large-scale instances,
thereby extending GCN-assisted optimization to a core revenue management setting.

3 PROBLEM DEFINITION AND BASELINES

We study a bundle pricing problem where a seller offers n distinct products to m heterogeneous
customer segments. Hence, there are a total of 2n bundle choices, denoted as B = {0, 1, . . . , L},
where L = 2n−1 and 0 indicates the empty bundle. The seller chooses the set of prices {pb | b ∈ B}
for bundles to maximize profit, which can be defined as

∑m
k=1

∑
b∈B(pb − ckb) · qkb, where ckb is

the serving cost of selling bundle b to segment k and qkb ∈ {0, 1} denotes whether segment k selects
bundle b under self-selection assumption.

The buyers’ demand for bundles follows standard assumptions: each segment k has a certain val-
uation Rkb for bundle b. After observing the price pb, each buyer would select exactly one bundle
that maximizes his/her individual surplus, defined by skb = Rkb − pb, provided that the surplus is
non-negative.

Under these assumptions, the seller’s revenue optimization problem can be formulated as follows:

max

m∑
k=1

∑
b∈B

(pb − ckb) · αk qkb (1)

s.t. qkb ≤ 1

(
b ∈ argmax

b′∈B
{Rkb′ − pb′} ∧ Rkb − pb ≥ 0

)
, ∀k, b ∈ B (2)

∑
b∈B

qkb = 1, ∀k (3)

pb ≥ 0, ∀b ∈ B. (4)

Here, αk is the proportion of buyer segment k, and 1(·) is the indicator function that enforces buyers’
surplus maximization choice.

In the following discussion, we assume Rkb = f
(∑

j∈b ukj

)
where ukj is the utility of product j for

segment k, f(·) is an increasing concave function, capturing potential correlations among products.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We assume ckb =
(∑

j∈b c
u
j

)
+ csk, where csk is the cost associated with serving customer segment

k (e.g., the shipping cost) and cuj is the unit cost of product j. The concavity of f(·) captures the
economic consensus of diminishing marginal utility, and the cost structure captures the principle of
economies of scale: since the fixed cost is spread across all items in the bundle, the average cost per
item decreases as more products are added. Hanson & Martin (1990) formulated this problem as a
mixed-integer linear program (MILP). For the sake of completeness, we describe this formulation
in the following.

3.1 MIXED BUNDLING FORMULATION (HANSON & MARTIN, 1990)

Consider the problem with all possible bundles denoted by B. We define the following variables:
θkb is a binary indicator for whether segment k chooses bundle b; pb is the price of bundle b; Pkb is
the effective price paid by segment k; sk is the surplus of segment k; Zkb is the profit from assigning
bundle b to segment k; and Ab is the set of components which define bundle b. The mixed bundle
pricing problem can be written as follows:

max

m∑
k=1

∑
b∈B

αk · Zkb (5)

s.t.
∑
b∈B

θkb = 1, ∀k (6)

sk ≥ Rkb − pb, ∀k, b ∈ B (7)
pb −Rmax(1− θkb) ≤ Pkb, ∀k, b ∈ B (8)
Pkb ≤ pb, ∀k, b ∈ B (9)

sk =
∑
b∈B

(Rkbθkb − Pkb), ∀k (10)

Rkbθkb − Pkb ≥ 0, ∀k, b ∈ B (11)

sk ≥
∑
b∈B

(Rkbθjb − Pjb), ∀k, j (12)

Zkb = Pkb − ckbθkb, ∀k, b ∈ B (13)
pb ≤ pb1 + pb2 , if A(b) = A(b1) ∪A(b2) (14)
pb, Pkb, sk ≥ 0, sk,0 = 0, θki ∈ {0, 1} (15)

(16)

We note that we use a simplified price sub-additivity constraints in (13). We refer to Appendix A.3
for the detailed discussions.

In the original formulation in Hanson & Martin (1990), all bundles combinations are included in
the formulation, that is B = F = 2{1,...,n}. We call the corresponding problem with complete
combinations HM(F). Meanwhile, one can restrict to a subset of bundles B and solve a restricted
version of the above problem with only b ∈ B. We call the corresponding problem HM(B).

We note that the main computational challenge of the above formulation lies in the exponential
number of variables corresponding to all the possible bundles. In the following, we demonstrate
how GCN framework can be leveraged to help solve large-scale bundle pricing problem efficiently.

4 GCN-BASED STRATEGIES

In this section, we design a GCN-based strategy to solve the optimal bundle pricing problem. Specif-
ically, we adopt a bi-directional GCN architecture, where each directional pass is implemented us-
ing a generalized graph convolutional layer that aggregates transformed neighbor and edge features
through softmax aggregation (i.e., assigning normalized weights to neighbor messages using the
softmax function). Our model predicts a segment-product probability matrix P ∈ Rm×n where Pkj

is the predicted likelihood that customer segment k selects product j. These probabilities serve as
a compact representation of heterogeneous preferences and provide the basis for pruning the expo-
nentially large bundle space. We describe our strategies in detail in the following sections.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 GRAPH REPRESENTATION

The figure below is the graph representation of the optimal bundle pricing problem, which serves as
the input of the GCN. Two types of nodes are included in the graph representation: product nodes
(□), and customer nodes (⃝), as shown in Figure 1.

1

2

3

n

𝑐!",
∑ "!"#
!$%
$, 0, 0

Product

𝑢%!

0, 0, 𝛼% , 𝑐%&

2

3

m

Customer

1

Figure 1: Graph representation of the bundle pricing problem with customer and product nodes.

In Figure 1, V and E denote the sets of nodes and edges, respectively. Let YP and YS denote the
feature matrices of product nodes and customer nodes, respectively. The feature vector of each
product j is yPj =

[
cuj ,

1
m

∑m
k=1 ukj , 0, 0

]
; the feature vector of each customer k is ySk =[

0, 0, αk, csk
]
. Let Z denote the feature matrix of edges. Each edge is characterized by ukj ,

representing the k-th customer’s utility towards product j.

4.2 GCN STRUCTURE

We employ two bi-directional message-passing layers based on the Generalized Graph Convolution,
with dropout (p = 0.5) applied after each fusion. The network will produce edge logits, and proba-
bilities are obtained at inference time by applying a sigmoid function to these logits. We explain the
computation details below.

First bi-directional message-passing layer. The first message-passing layer in Figure 2 maps the
graph in Figure 1 into a new graph with updated node features and the same edge features.

Denote the set of all products by P and the set of all customers by S. We then define the forward
edge set

−→
E = {(j, k) | j ∈ P, k ∈ S}, and the backward edge set

←−
E = {(k, j) | (j, k) ∈

−→
E }.

The feature matrix X is formed by stacking the product and customer node features.

X =
[
(yP

1)
⊤ · · · (yP

n)
⊤ | (yS

1)
⊤ · · · (yS

m)⊤
]⊤ ∈ R(n+m)×4.

For any feature matrix, we let a bold uppercase letter (e.g., X) represent the matrix and the corre-
sponding bold lowercase letter with an index (e.g., xi) denote its i-th row.

Specifically, the bi-directional generalized graph convolutional layer update for each node i in for-
ward (product-to-customer) and backward (customer-to-product) direction is defined as

x fw
i,(1) = MLP

xi +
∑

j∈N (i)

Softmax
(
ϕ(xj ,Zji)

)
⊙ ϕ(xj ,Zji)

 ,

x bw
i,(1) = MLP

xi +
∑

j∈N (i)

Softmax
(
ϕ(xj ,Zij)

)
⊙ ϕ(xj ,Zij)

 .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

First Bi-
Directional
Message

Passing Layer
𝐿2𝑅 − 𝑐𝑜𝑛𝑣	&
𝑅2𝐿 − 𝑐𝑜𝑛𝑣

Dropout
Layer

Second Bi-
Directional
Message

Passing Layer
𝐿2𝑅 − 𝑐𝑜𝑛𝑣	&
𝑅2𝐿 − 𝑐𝑜𝑛𝑣

𝑬 Sigmoid
Layer ℙ

𝑬!"

Graph Input

𝒱, ℰ, 𝒀!, 𝒀", 𝒁

𝒀!

1

2

3

n

2

3

m

1

𝒀"

First-Layer Output

𝒱, ℰ, 𝒀($)
! , 𝒀($)" , 𝒁

𝒀($)& 𝒀($)
'

1

2

3

n

2

3

m

1

Second-Layer Output

𝒱, ℰ, 𝒀(&)
! , 𝒀(&)" , 𝒁

𝒀(()& 𝒀(()
'

1

2

3

n

2

3

m

1

Edge Score Output

𝒱, ℰ, 𝒀(&)! , 𝒀(&)" , 𝒁, 𝑬

𝒀(()
& 𝒀(()

'

1

2

3

n

2

3

m

1

Figure 2: Illustration of GCN network.

Here, MLP(·) denotes a standard multi-layer perceptron (a sequence of fully connected layers with
nonlinear activations). The N (i) denotes the set of neighbors of node i. The operator ⊙ denotes
component-wise multiplication between two vectors (i.e., multiplying elements with the same in-
dex), and the softmax is applied component-wise across neighbors for each feature dimension. The
message function is defined as ϕ(xj ,Zij) = ReLU(xj + Zij · 1) + ϵ · 1 , where ϵ is a small con-
stant (we choose ϵ to be 1× 10−7 in our implementation) for numerical stability. When considering
reversed edges, the corresponding edge attributes are also reversed so that each edge feature remains
well-aligned.

The node features from both directions are then merged using a mask matrix M (where diagonal
entries are 1 for product nodes and 0 otherwise), passed through an entry-wise ReLU activation, and
regularized with dropout (p = 0.5):

X(1) = Dropout
(
ReLU

(
(I−M) · Xfw

(1) + M · Xbw
(1)

))
.

Once the updated feature matrix X(1) is computed, the updated feature matrices for products Y P
(1)

and customers Y S
(1) after the first bi-directional layer are obtained by selecting the corresponding

rows: YP
(1) = M ·X(1),Y

S
(1) = (I−M) ·X(1).

X(1) serves as the input for the second layer with different dimensionalities. The input sizes and
the output sizes of the first layer are (n + m, 4), and (n + m, dhidden), respectively, where we set
dhidden = 128 in all experiments.

Second bi-directional message-passing layer. The construction of the second bi-directional
message-passing layer is similar to the first message-passing layer. The only difference is that the
input sizes and the output sizes are (n+m, dhidden), and (n+m, dhidden), respectively.

Edge score calculation. After calculating the output YP
(2) and YS

(2) of the second bi-directional
layer, the score Ejk for the edge connecting product j and segment k is calculated as

Ejk = (yP
j,(2))

⊤UyS
k,(2) +MLPedge(Zjk),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where U ∈ Rdhidden×dhidden is a learnable bilinear weight matrix, Zjk is the edge attribute for
pair (j, k), and MLPedge : R → R is a two-layer feed-forward network (Linear–ReLU–Linear)
producing a scalar correction term.

Output. The model outputs the logits E ∈ Rn×m. In practice, we apply a sigmoid function at
inference time to obtain probabilities, P = σ(E)⊤ ∈ Rm×n, where each entry Pkj corresponds to
the predicted probability that segment k include product j in his/her purchased bundle.

4.3 PRUNING-BASED STRATEGIES

In this section, we leverage the probability matrix P predicted by the GCN model to guide two
pruning strategies that construct a compact yet high-quality bundle space. The resulting reduced
problem is then solved using the MILP formulation of Hanson & Martin (1990), but restricted to the
pruned bundle set rather than the full exponential space.

Fixed Cutoff Pruning (FCP). For each segment k ∈ [m] = {1, . . . ,m} and j ∈ [n] =
{1, . . . , n}, we define its candidate bundle by a fixed cutoff value. In our default method, we set the
fixed cutoff to 0.5. That is BFCP

k = {j ∈ [n] | Pkj ≥ 0.5} for k ∈ [m] and the overall candidate set
is FFCP = {BFCP

k | k ∈ [m]}, with size at most m. Here, the overall candidate set is shared across
all segments, meaning that any segment is free to select any BFCP

k , not only its own. This reduces
the feasible space from 2n to O(m), making the subsequent MILP much more tractable. Then we
solve the MILP formulation on the pruned space constructed by FCP (that is, we solve HM(FFCP)
to obtain the solution).

In the case where all probabilities of a segment fall below the cutoff, we retain the single product
with the highest probability to avoid producing an empty bundle.

Progressive Cutoff Pruning (PCP). For each segment k, we sort products by descending
probability and retain the products with Pkj ≥ 0.5. Denote the ordered set as Sk =(
j(1), j(2), . . . , j(|Sk|)

)
. We then construct prefix bundles BPCP

k,i = {j(1), j(2), . . . , j(i)} for i =

1, . . . , |Sk|. The overall candidate set is FPCP =
⋃m

k=1{BPCP
k,i | i = 1, . . . , |Sk|}, with size at

most m · (n + 1). Then we solve the MILP formulation on the pruned space constructed by
PCP (that is, we solve HM(FPCP) to obtain the solution). Since PCP produces a strictly nested
chain of bundles for each segment k: {j(1)} ⊂ {j(1), j(2)} ⊂ · · · ⊂ {j(1), . . . , j(|Sk|)}. We
replace the within-segment sub-additivity constraints by a chain of monotone price inequalities
pbi ≤ pbi+1 (i = 1, . . . , |Sk| − 1). Across segments, we keep the original sub-additivity logic.

4.4 LOCAL SEARCH STRATEGY

In order to further improve our solution, we propose a local search strategy. The basic idea is to
iteratively modify each segment’s bundle space by either adding an unselected product or dropping
a selected product, and accept modifications if revenue increases.

However, the effectiveness of local search largely depends on an effective search path. Therefore,
we develop a preference-based local search strategy guided by the probability matrix predicted by
the GCN model. Particularly, when adding a product to the bundle of a segment k, we consider the
product with the highest Pkj that is unselected; and when dropping a product from the bundle of a
segment k, we consider the product with the lowest Pkj that is selected.

More precisely, we construct initial bundle assortments by the FCP approach. Here the initial bun-
dles are fixed as segment–bundle assignments, so each segment starts strictly with its own BFCP

k .
For each iteration, every segment generates two neighbors: one by adding the highest-probability
unselected product and one by dropping the lowest-probability selected product. All neighbors
are evaluated sequentially in segment order, and if any improvement is found, the first improving
modification is accepted immediately and a new iteration begins from the updated solution (thus a
deep-first search is conducted).

The local search process will terminate when a full cycle over all segments completes without any
improvement, or when the predefined iteration limit is reached. Furthermore, to save the evaluation
cost at each neighbor, we rely on the LP relaxation to evaluate neighbors during iteration. In the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

LP relaxation, we fix the bundle-segment assignment, and the resulting LP provides a valid lower
bound of the optimal value of the MILP (see Appendix A.2 for the LP formulation). Thus, any
improvement detected under LP is guaranteed to be valid for MILP, which ensures the accuracy of
improvement evaluation. At the same time, LP solves much faster than MILP, greatly reducing the
computational cost of each exploration step. We use FCP+LS to denote the corresponding algorithm
and provide the detailed pseudo-code in Algorithm 1.

5 NUMERICAL EXPERIMENTS

We now present comprehensive numerical experiments designed to evaluate the effectiveness and
scalability of our proposed GCN-assisted bundle pricing strategies. The goals of this section are
twofold: (i) to demonstrate that our approaches consistently achieve high revenue ratios while main-
taining significant computational efficiency, and (ii) to validate their robustness across heteroge-
neous problem settings with varying numbers of customer segments and products.

To thoroughly test scalability and robustness, we evaluate our strategies under varying numbers of
customer segment m and product number n. For every scenario, we use f(x) =

√
x for the f(·)

in the reservation, and take the average of 100 samples. All experiments were conducted using the
Gurobi Optimizer version 12.0.2 on a machine with an Apple M1 Pro CPU (3.2 GHz) and 16GB
RAM, utilizing up to 8 threads.

To evaluate any method, we adopt two normalized metrics: Revenue Ratio (RR) and Time Ratio (TR)

RRA,B = Revenue of approach A
Revenue of approach B , TRA,B = Runtime of approach A

Runtime of approach B .

where RR measures solution quality and TR captures efficiency. These two metrics allow direct
comparison of solution quality and speed across different algorithms.

5.1 NUMERICAL RESULTS

We compare our proposed approach to two baselines, the mixed bundling (MB) baseline and the
bundle size pricing (BSP) baseline:

Mixed Bundling (MB) baseline: For MB, we follow Hanson & Martin (1990)’s MILP formu-
lation. The MB formulation is a MILP that assigns each bundle with its own price respectively.
Detailed formulation is provided in Section 3.1.

Bundle Size Pricing (BSP) baseline: The BSP baseline is proposed by Chu et al. (2011). The BSP
approximates MB by assigning the same price to all bundles of equal size. Detailed formulation is
provided in Appendix A.1.

In Table 5.1, we report the numerical results of our algorithms compared with both baselines, for
problem with n = 10 and varying number of segments. From Table 5.1, we can see that our three
strategies all maintain more than 97.5% of the optimal revenue while only requiring a fraction of the
computation time of the MB baseline. Meanwhile, the BSP approach often has a significant profit
loss compared to the MB baseline. Among the strategies we propose, we find that the PCP strategy
achieves around 1% higher revenue than FCP by retaining a larger candidate space, while FCP+LS
also gives a 1% revenue improvement over the plain FCP approach.

Table 5.1: Performance of GCN-based strategies vs. Mixed Bundling baseline (n = 10).

Strategy m = 10, n = 10 m = 20, n = 10 m = 30, n = 10

RR·,MB Time (s) TR·,MB RR·,MB Time (s) TR·,MB RR·,MB Time (s) TR·,MB

FCP 0.9836 0.0558 0.0106 0.9785 0.3767 0.0130 0.9757 1.2276 0.0151
PCP 0.9907 0.7587 0.1383 0.9874 9.0669 0.2886 0.9862 71.5509 0.6835
FCP+Local Search 0.9945 0.9700 0.1799 0.9877 7.0461 0.2410 0.9850 30.1076 0.4158
BSP 0.8990 0.0382 0.0070 0.8796 0.1861 0.0064 0.8669 0.5386 0.0014

For problems with more than 10 products, calculating the optimal solution of the MILP model under
the mixed bundling baseline is computationally challenging. Therefore, we use the BSP as baseline

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

to test problems with larger than 10 products. The results are reported in Table 5.2. From Table 5.2,
we can see that the plain FCP approach can achieve comparable performance with the BSP approach
with a fraction of computation time, while the PCP approach can achieve significantly better solution
than the BSP approach with more computational time (the total time is still less than 30 seconds).

Table 5.2: Comparison of different strategies across various problem sizes.

FCP PCP
Scenario RR·,BSP Time (s) TR·,BSP RR·,BSP Time (s) TR·,BSP

m = 10, n = 15 1.060 0.043 0.380 1.150 2.056 17.975
m = 15, n = 15 1.074 0.125 0.588 1.167 9.921 47.579
m = 20, n = 15 1.082 0.307 0.829 1.171 27.215 71.445
m = 10, n = 20 1.007 0.044 0.331 1.147 4.799 36.676
m = 10, n = 25 0.953 0.048 0.243 1.146 8.250 41.401

Scalability with product size. Table 5.3 illustrates how FCP and PCP scale with the number of
products n when the number of segments is fixed at 10. A key observation is that FCP maintains a
nearly constant candidate set size O(m), resulting in stable runtimes around 0.03 seconds regardless
of n. By contrast, PCP exhibits O(n) growth in candidate space. And both methods enable tractable
solutions of bundle pricing instances up to n = 100, which would be intractable under exact mixed
bundling. This highlights our ability to combine strong pruning with broad scalability across large
problem sizes.

Table 5.3: Scalability of FCP and PCP strategies across different product sizes n (m = 10).
n FCP Time (s) PCP Time (s) FCP Rev PCP Rev RR(FCP/PCP) FCP Bundles PCP Bundles

10 0.107 0.843 1.719 1.770 0.972 10 61
20 0.032 5.440 2.361 2.363 0.999 10 137
30 0.034 21.103 2.610 2.638 0.990 10 220
40 0.032 36.134 2.933 2.986 0.982 10 282
50 0.034 59.050 3.029 3.130 0.968 10 359
60 0.026 73.665 3.115 3.277 0.951 10 431
70 0.030 122.706 3.054 3.356 0.910 10 503
80 0.028 184.814 3.067 3.421 0.897 10 572
90 0.029 206.681 3.177 3.612 0.880 10 647
100 0.030 283.578 3.190 3.743 0.852 10 710

6 CONCLUSION

This paper introduces a learning-guided framework for solving the bundle pricing problem. We
leverage GCNs to learn segment–product preference structures under the non-additive setting, and
use these predictions to prune the exponential candidate bundle space. The pruned feasible region
is then solved with Hanson & Martin (1990)’s MILP formulation, thereby retaining the rigor of
product heterogeneity while substantially extending the tractable problem size. Coupled with a
probability-guided DFS local search, our framework demonstrates robustness and scalability across
different problem sizes. Numerical experiments show that our approach provides solutions that
are near-optimal at tractable scales, and scalable to much larger settings while outperforming other
heuristics. Therefore, our work provides a near-optimal and efficient solution for large-scale bundle
pricing problem.

7 CODE OF ETHICS STATEMENT

The authors of this work adhere to the ICLR Code of Ethics. This research on bundle pricing opti-
mization was conducted with the principles of academic integrity and rigor. We have considered the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

potential societal impacts of our work. While any advanced pricing algorithm could potentially be
used for exploitative price discrimination, the primary goal of this research is to improve economic
efficiency, which can lead to better value propositions for consumers and more sustainable business
models for firms. We believe the societal benefits of more efficient market mechanisms outweigh
the potential risks, which can be mitigated by fair business practices and regulation. The experi-
ments in this paper were conducted on synthetic datasets and do not involve sensitive or personally
identifiable information.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide a comprehensive suite of materials. The
complete source code for our proposed GCN-based policies (FCP, PCP, and FCP+LS), baseline
implementations, and all numerical experiments is available in the supplementary materials. The
mathematical formulations for the baselines are detailed in 3.1 and Appendix A.1. Key hyperpa-
rameters and the versions of the main software libraries used (e.g., PyTorch, PyTorch Geometric,
Gurobi) are also documented in the Appendix D to facilitate the replication of our results.

REFERENCES

Tarek Abdallah. On the benefit (or cost) of large-scale bundling. Production and Operations Man-
agement, 28(4):955–969, 2019.

Tarek Abdallah, Amir Asadpour, and Jared Reed. Large-scale bundle-size pricing: A theoretical
analysis. Operations Research, 69(4):1158–1185, 2021.

William James Adams and Janet L. Yellen. Commodity bundling and the burden of monopoly. The
Quarterly Journal of Economics, 90(3):475–498, 1976.

Yannis Bakos and Erik Brynjolfsson. Bundling information goods: Pricing, profits, and efficiency.
Management Science, 45(12):1613–1630, 1999.

Ningyuan Chen, Adam N. Elmachtoub, Michael L. Hamilton, and Xiao Lei. Loot box pricing and
design. Management Science, 67(8):4809–4825, 2021.

Ningyuan Chen, Xiaobo Li, Zechao Li, and Chun Wang. Component pricing with a bundle size
discount. 2022. Available at SSRN: https://ssrn.com/abstract=4032247.

Xi Chen, George Matikas, Dimitris Paparas, and Mihalis Yannakakis. On the complexity of simple
and optimal deterministic mechanisms for an additive buyer. In Proceedings of the 29th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 2036–2049, 2018.

Chenghuan Sean Chu, Phillip Leslie, and Alan Sorensen. Bundle-size pricing as an approximation
to mixed bundling. American Economic Review, 101(1):263–303, 2011.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-
celerating primal solution findings for mixed integer programs based on solution prediction. In
Proceedings of the 34th AAAI Conference on Artificial Intelligence, pp. 1452–1459, 2020.

Zhenan Fan, Xinglu Wang, Oleksandr Yakovenko, Abdullah Ali Sivas, Owen Ren, Yong Zhang,
and Zirui Zhou. Smart initial basis selection for linear programs. In Proceedings of the 40th
International Conference on Machine Learning, pp. 9650–9664, 2023.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact com-
binatorial optimization with graph convolutional neural networks. In Proceedings of the 33rd
Conference on Neural Information Processing Systems, pp. 15580–15592, 2019.

Grand View Research. Digital media market size, share & growth report, 2023. URL https:
//www.grandviewresearch.com/industry-analysis/digital-media-mar
ket-report.

Prateek Gupta, Elias B. Khalil, Didier Chételat, Maxime Gasse, Yoshua Bengio, Andrea Lodi, and
M. Pawan Kumar. Lookback for learning to branch. arXiv preprint arXiv:2206.14987, 2022.

10

https://www.grandviewresearch.com/industry-analysis/digital-media-market-report
https://www.grandviewresearch.com/industry-analysis/digital-media-market-report
https://www.grandviewresearch.com/industry-analysis/digital-media-market-report

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ward Hanson and R. Kipp Martin. Optimal bundle pricing. Management Science, 36(2):155–174,
1990.

Lorin M. Hitt and Pei-yu Chen. Bundling with customer self-selection: A simple approach to
bundling low-marginal-cost goods. Management Science, 51(10):1481–1493, 2005.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2019.

Guokai Li, Pin Gao, Stefanus Jasin, and Zizhuo Wang. From small to large: A graph con-
volutional network approach for solving assortment optimization problems. arXiv preprint
arXiv:2507.10834, 2025.

Xiaobo Li, Hailong Sun, and Chung-Piaw Teo. Convex optimization for the bundle size pricing
problem. Management Science, 68(2):1095–1106, 2021.

Tianhao Liu, Shanwen Pu, Dongdong Ge, and Yinyu Ye. Learning to pivot as a smart expert. In
Proceedings of the 38th AAAI Conference on Artificial Intelligence, pp. 8073–8081, 2024.

Xiuyuan Ma, Yiding Qiang, and Ruosong Wang. Reaping the benefits of bundling under high
production costs. In Proceedings of the 24th International Conference on Artificial Intelligence
and Statistics, pp. 1342–1350, 2021.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra
Addanki, Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yu-
jia Li, Oriol Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks.
arXiv preprint arXiv:2012.13349, 2020.

Max Paulus and Andreas Krause. Learning to dive in branch and bound. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, pp. 34260–34277, 2023.

Modern Retail. Inside Amazon’s Prime playbook: How the subscription giant chooses what benefits
to add next, 2024. URL https://www.modernretail.co/operations/inside-a
mazons-prime-playbook-how-the-subscription-giant-chooses-what-b
enefits-to-add-next/.

Richard Schmalensee. Gaussian demand and commodity bundling. The Journal of Business, 57(1):
211–230, 1984.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,
2021.

George J. Stigler. United states v. loew’s inc.: A note on block-booking. The Supreme Court Review,
pp. 152–157, 1963.

A FORMULATIONS FOR BUNDLE PRICING

A.1 BUNDLE SIZE PRICING (BSP) FORMULATION CHU ET AL. (2011)

Additional Variables:

• ps: price for bundles of size s ∈ {0, . . . , n};
• Pks = psθks.

Objective:

max

m∑
k=1

n∑
s=0

αk · Zks (17)

11

https://www.modernretail.co/operations/inside-amazons-prime-playbook-how-the-subscription-giant-chooses-what-benefits-to-add-next/
https://www.modernretail.co/operations/inside-amazons-prime-playbook-how-the-subscription-giant-chooses-what-benefits-to-add-next/
https://www.modernretail.co/operations/inside-amazons-prime-playbook-how-the-subscription-giant-chooses-what-benefits-to-add-next/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Constraints:

sk ≥ Rks − ps, ∀k, s (18)
n∑

s=0

θks = 1, ∀k (19)

Pks ≤ ps, ∀k, s (20)
Pks ≥ ps −M(1− θks), ∀k, s (21)
Zks = Pks − cksθks, ∀k, s (22)

sk =

n∑
s=0

(Rksθks − Pks), ∀k (23)

sk ≥
n∑

s=0

(Rksθjs − Pjs), ∀k, j ̸= k (24)

Rksθks − Pks ≥ 0, ∀k, s (25)
ps1+s2 ≤ ps1 + ps2 , ∀s1, s2 s.t. s1 + s2 ≤ n (26)
ps+1 ≥ ps, ∀s = 0, . . . , n− 1 (27)
ps, Pks, Zks ≥ 0, θks ∈ {0, 1} ∀k, s

A.2 LP FORMULATION (FIXED ASSIGNMENT)

Decision variables:

• pi ≥ 0: price of bundle i ∈ F , where F is the pruned candidate bundle set;

• sk: surplus of segment k ∈ {1, . . . ,m}.

Objective:

max
p,s

m∑
k=1

αk ·
(
pbk − ck,bk

)
, (L.1)

where bk ∈ F is the fixed bundle assigned to segment k.

Constraints:

sk ≥ Rk,i − pi ∀k = 1, . . . ,m, ∀i ∈ F (lower bound) (L.2)
sk ≤ Rk,bk − pbk ∀k (assignment binding) (L.3)
pi ≤ pj1 + pj2 , if Ai = Aj1 ∪Aj2 , {j1, j2} ⊂ F (sub-additivity) (L.4)
p0 = 0 (empty bundle price) (L.5)

Remarks.

• Bundle assignments are fixed externally by assigning each segment with their exact FCP
optimal bundle prediction: θkbk = 1 and θki = 0 for i ̸= bk.

• Constraints (L.2) and (L.3) together ensure incentive compatibility: sk = Rk,bk − pbk =
maxi∈F {Rk,i − pi}.

• Only bundles in F (predicted or assigned) have price variables, reducing dimensionality.

• The model is a pure LP without integer decision variables, in contrast to the MILP formu-
lations.

• The optimal value of the LP formulation is a lower bound of the corresponding MILP with
possible bundle set F. That is, the optimal value of this LP is less than or equal to that of
HM(F).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.3 MODIFIED PRICE SUB-ADDITIVITY CONSTRAINTS

Our mixed bundling follows Hanson & Martin (1990)’s formulation in terms of decision variables,
objective, and most constraints (consumer surplus, single price schedule, etc.). The only difference
lies in the treatment of price sub-additivity. To enforce the general K-way Cover sub-additivity
(SC,K) proposed by Hanson & Martin (1990), we introduce a more parsimonious set of constraints.
Specifically, we only enforce sub-additivity on 2-way partitions (SP,2), which significantly reduces
the number of price sub-additivity constraints while being sufficient to guarantee the general condi-
tion. The equivalence between these two are proved in Appendix B.
Definition 1 (K-way Cover sub-additivity — Statement SC,K). For any bundle B and any (poten-
tially overlapping) cover by K ≥ 2 sub-bundles {B1, . . . , BK}, the following holds:

p(B) ≤
K∑
j=1

p(Bj).

Definition 2 (2-way Partition sub-additivity — Statement SP,2). For any bundle B and any disjoint
partition into two sub-bundles {B1, B2}, the following holds:

p(B) ≤ p(B1) + p(B2).

B PROOF OF EQUIVALENCE BETWEEN PRICE SUB-ADDITIVITY
CONSTRAINTS

B.1 DEFINITIONS

Let U be the set containing all products, and let p : P(U)→ R≥0 be the price function, where P(U)
denotes the power set of U .
Definition 3 (Price Monotonicity — StatementM). For any two bundles A and B, if A ⊆ B, then
p(A) ≤ p(B).

Definition 4 (K-way Partition sub-additivity — Statement SP,K). For any bundle B and any disjoint
partition into K ≥ 2 sub-bundles {B1, . . . , BK}, the following holds:

p(B) ≤
K∑
j=1

p(Bj).

B.2 THEOREM

Proposition 1. Statement SP,2 and Statement SP,K are equivalent.

Proof. We prove the proposition in both directions.

Direction 1: SP,K =⇒ SP,2 This is true by definition. SP,2 is a special case of SP,K where we
choose the number of partitions K = 2.

Direction 2: SP,2 =⇒ SP,K We use mathematical induction on the number of partitions, k.
The base case (k = 2) is Statement SP,2, which is assumed to be true. Assume the statement
holds for k partitions (Inductive Hypothesis). We prove for K = k + 1. Let B be partitioned into
{B1, . . . , Bk+1}. Let B′ =

⋃k
j=1 Bj . Then B = B′ ∪Bk+1 is a 2-way disjoint partition. By SP,2:

p(B) ≤ p(B′) + p(Bk+1). (28)

By the inductive hypothesis, p(B′) ≤
∑k

j=1 p(Bj). Substituting this yields:

p(B) ≤
k+1∑
j=1

p(Bj).

Thus, SP,2 =⇒ SP,K .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proposition 2. Assuming Price Monotonicity (M), Statement SP,K and Statement SC,K are equiv-
alent.

Proof. We prove the proposition in both directions, assumingM holds.

Direction 1: SC,K =⇒ SP,K . A disjoint partition is a special case of a cover. Thus, if the rule
holds for any cover, it must hold for any disjoint partition.

Direction 2: (SP,K ∧M) =⇒ SC,K . We show that (SP,2 ∧M) =⇒ SC,2 (the binary case). Let
B = B1 ∪B2 be a cover. We can write B as a disjoint partition: B = (B1 \B2) ∪B2. By SP,2:

p(B1 ∪B2) ≤ p(B1 \B2) + p(B2). (29)

Since (B1 \B2) ⊆ B1, by Monotonicity (M), we have p(B1 \B2) ≤ p(B1). Substituting this gives
p(B1 ∪B2) ≤ p(B1) + p(B2), which proves SC,2.

Since SP,K ⇐⇒ SP,2 (from Prop. 1) and SC,K ⇐⇒ SC,2 (by induction), it follows that
(SP,K ∧M) =⇒ SC,K .

Theorem 1. Assuming Price Monotonicity (M), the 2-way Partition sub-additivity (SP,2) is equiv-
alent to the K-way Cover sub-additivity (SC,K).

Proof. From Proposition 1, SP,2 ⇐⇒ SP,K , and from Proposition 2 under Price Monotonicity
M, SP,K ⇐⇒ SC,K . Hence SP,2 ⇐⇒ SC,K .

C PSEUDOCODE FOR THE LOCAL SEARCH STRATEGIES

Algorithm 1 Segment-wise Local Search
1: Input: Initial solution x, probability matrix P, max iter
2: Output: Optimized solution x∗

3: x∗ ← MILP-Init({Bk}), rev∗ ← LP-Eval(x∗)
4: iter ← 0
5: while iter < max iter do
6: iter ← iter + 1, improve← FALSE
7: for seg = 1 to m do
8: Generate two neighbors of x∗ in segment seg:
9: (i) Add the highest-probability unselected product

10: (ii) Drop the lowest-probability selected product
11: for neighbor y (in the above order) do
12: (feas, rev)← LP-Eval(y)
13: if feas and rev > rev∗ + ϵ then
14: x∗ ← y, rev∗ ← rev
15: improve← TRUE
16: break and restart next iteration ▷ greedy accept
17: end if
18: end for
19: if improve then
20: break ▷ restart from next iteration
21: end if
22: end for
23: if not improve then
24: break ▷ full cycle, no improvement
25: end if
26: end while
27: return x∗

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D SOFTWARE VERSION

All experiments are conducted using PyTorch 2.5.1 with PyTorch Geometric 2.6.1 and Gurobi
12.0.2, without CUDA support. The EdgeScoringGCN model we use trains for 500 epochs
with batch size 512, learning rate 0.01, 128 hidden channels, bilinear edge scoring, 0.5 dropout,
ϵ = 1× 10−7, Adam optimizer, and early stopping patience of 50 epochs.

E LLM USAGE

The authors acknowledge the use of a large language model (LLM) in preparing this paper. Its
use was limited to assisting with language polishing, such as improving grammar and clarity, and
helping to generate and debug code snippets for the numerical experiments. All final text and code
were reviewed and validated by the authors, who take full responsibility for the content of this work.

15

	Introduction
	Related Work
	Problem Definition and Baselines
	Mixed Bundling Formulation hanson1990optimal

	GCN-Based Strategies
	Graph Representation
	GCN Structure
	Pruning-based strategies
	Local Search Strategy

	Numerical Experiments
	Numerical Results

	Conclusion
	Code of Ethics Statement
	Reproducibility Statement
	Formulations for Bundle Pricing
	Bundle Size Pricing (BSP) Formulation chu2011bundle
	LP Formulation (Fixed Assignment)
	Modified Price sub-additivity Constraints

	Proof of Equivalence Between Price sub-additivity Constraints
	Definitions
	Theorem

	Pseudocode for the Local Search Strategies
	Software version
	LLM Usage

