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ABSTRACT

Information-theoretic generalization bounds have been used to study the general-
ization of learning algorithms. These bounds are intrinsically data- and algorithm-
dependent so that one can exploit the properties of data and algorithm to derive
tighter bounds. However, we observe such algorithm dependence is still inade-
quate in existing information-theoretic bounds for SGD because they have not ad-
equately leveraged the algorithmic bias toward flat minima of SGD. Since the flat-
ness of minima given by SGD is crucial for SGD’s generalization, the bounds fail
to capture the improved generalization under better flatness and are also numer-
ically loose. This paper derives a more flatness-leveraged information-theoretic
bound for the flatness-favoring SGD. The bound indicates that the learned mod-
els generalize better if the large-variance directions of the final weight covariance
have small local curvatures in the loss landscape. Experiments on deep neural
networks show that our bound not only correctly reflects the better generaliza-
tion when flatness is improved, but is also numerically tighter by being only a
few percentages looser. This is achieved by a technique called “omniscient tra-
jectory.” When applied to Gradient Descent on convex-Lipschitz-Bounded (CLB)
problems, it yields an O(1/

√
n) minimax rate for excess risks, which has been

shown to be impossible for representative existing information-theoretic bounds.

1 INTRODUCTION

Overparameterized deep learning models trained by Stochastic Gradient Descent (SGD) are ob-
served to generalize well, contradicting classic statistical learning theories that suggest overparame-
terization leads to overfitting (Vapnik et al., 1998; Bartlett & Mendelson, 2002; Zhang, 2002). The
drawback of these theories is that they are too general and unable to leverage the properties of spe-
cific learning algorithms and data (Nagarajan & Zico Kolter, 2019). Therefore, modern learning
theories have turned to data- and algorithm-dependent bounds that leverage the properties of data
and popular algorithms (e.g., the limited hypothesis subset reached by SGD, various norms of matrix
weights, low-rankness and sparsity of parameters or hidden representations, etc.) to derive tighter
bounds specific to them (Brutzkus et al., 2018; Allen-Zhu et al., 2019; Arora et al., 2019; Cao & Gu,
2019; Neyshabur et al., 2019; Pesme et al., 2021; Muthukumar & Sulam, 2023; Alquier, 2023).

Recently, generalization bounds have been developed using information-theoretic measures. Rep-
resentative examples include the PAC-Bayesian bounds (McAllester, 1999) and the bounds using
mutual information (MI) between the training data and output hypothesis of the algorithm (Russo
& Zou, 2020; Xu & Raginsky, 2017). Since these measures are defined with the data distribution
and the conditional distributions of the output hypothesis given the training data, the bounds are
naturally data- and algorithm-dependent, gaining significant attention. Thanks to such dependences,
PAC-Bayesian approaches have led to the first non-vacuous (numerical) generalization bound for
deep (stochastic) networks (Dziugaite & Roy, 2017), later tightened (Pérez-Ortiz et al., 2021) and
scaled up (Zhou et al., 2019; Lotfi et al., 2022; 2024). MI bounds, the focus of this paper, can be
seen as PAC-Bayesian bounds with optimal priors (Alquier, 2023). Tighter variants of the MI bound
have been developed, including its chaining variants (Asadi et al., 2018), its individual-sample vari-
ants (Bu et al., 2020), the conditional MI (CMI) framework (Steinke & Zakynthinou, 2020), the
evaluated variants (Harutyunyan et al., 2021; Hellström & Durisi, 2022; Wang & Mao, 2023b), and
bounds using other measures like rate-distortion (Sefidgaran et al., 2022) and Wasserstein distances
(Wang et al., 2019). By bounding the measures for specific algorithms, they have been applied to
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Figure 1: Numerical results of Wang & Mao (2022)’s bound for ResNet-18 on CIFAR-10. “(·)R”
means the generalization error is rescaled for easier tendency comparison.

SGLD (Pensia et al., 2018; Negrea et al., 2019; Wang et al., 2021b; Futami & Fujisawa, 2023),
(discretized) SDE (Wang & Mao, 2024), and SGD (Neu et al., 2021; Wang & Mao, 2022).

Another line of research on algorithmic properties finds SGD favors flat minima (Hochreiter &
Schmidhuber, 1997; Keskar et al., 2017). Flat minima are minima at wide and flat basins of the loss
landscape, and they are robust to loss landscape changes between the training and testing set. Con-
sequently, flatness has been used to understand and improve the generalization of SGD-trained deep
models (Achille & Soatto, 2018; Jiang et al., 2019; Foret et al., 2020; Cha et al., 2021; Zhao et al.,
2022), where it is formulated with the Hessians ĤS , Hµ of empirical and population losses (Achille
& Soatto, 2018; Orvieto et al., 2022). Therefore, as algorithm-dependent bounds, information-
theoretic bounds for SGD should leverage the flatness as an important algorithmic property.

However, existing information-theoretic bounds for SGD do not adequately leverage the flatness
bias. By controlling flatness through varying learning rate and batch size (Jastrzȩbski et al., 2018;
He et al., 2019; Wu et al., 2022), we empirically observe how the generalization under varying
flatness is captured by Wang & Mao (2022)’s bound1, which is

[Generalization Error] ≤ inf
σ>0

√√√√2R2

nσ2

T∑
t=1

V [gt]︸ ︷︷ ︸
Trajectory Term

+
σ2

2
· T · trE

[
ĤS −Hµ

]
︸ ︷︷ ︸

Flatness Term

,

with gt being the update at step t. As shown in Figure 1a, as batch size decreases, the actual
generalization error decreases while Wang & Mao (2022)’s bound increases. To sum up, Wang &
Mao (2022)’s result misaligns with the true generalization error under varied batch sizes, i.e., varied
flatness. The bound consists of two terms: the trajectory term and the flatness term. Figures 1b
and 1c show the flatness term can capture the generalization to some extent while the trajectory term
cannot, causing the misalignment. Unlike the flatness term that depends on Hessians, which are the
explicit formulation of flatness, the trajectory term depends on gradient variance that is an implicit
measure of flatness and requires extra conditions (e.g., near-zero empirical or population loss) to
approximate the Hessian traces (Feng et al., 2023; Martens, 2020; Zhu et al., 2019). Therefore, we
postulate it is the trajectory term’s implicit dependence on flatness that causes its misalignment, and
we intend to make the whole bound fully explicitly depend on and leverage flatness. Proposition 8
of Neu et al. (2021) (see Proposition 2) is a good start for this goal. It is proved using a technique
of auxiliary trajectory that is constructed by randomly perturbing the original SGD trajectory using
independent Gaussian auxiliary perturbations of covariance Σ. At the end of the proof, Σ becomes
a bound parameter to be optimized, and the bound coarsely takes the form

[Generalization Error] ≤ inf
Σ

EW [f(W ; Σ)] ,

i.e., a mixture of an optimization over Σ and an expectation over output weight W . By constructing
Σ from the Hessians of empirical and population losses, the bound will fully explicitly depend on the
flatness. However, we find the bound still has two drawbacks: Firstly, it is suboptimal because the
optimization is outside the expectation and cannot depend on or leverage the specific properties of

1According to Wang & Mao (2022), their bound is numerically tighter than Neu et al. (2021)’s main result.
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W instances. Secondly, accurate estimation is crucial for evaluating and comparing generalization
bounds and helping algorithm design. Yet, the bound is not easy to estimate. It is similar to optimiz-
ing a “population risk” of “sample” W over “hypothesis” Σ. Estimating the bound, i.e., optimizing
the “population risk”, requires sampling some W and minimizing the “empirical risk” (ERM). Since
only a few “samples” W can be collected due to the computational and data cost of training deep
models, the ERM is prone to “overfitting”, i.e., the estimation is prone to negative bias.

Both issues can be addressed by moving the optimization inside the expectation (i.e., bounds like
EW [infΣ f(W ; Σ)]) so that the optimization depends on W : The optimization-inside bound can
leverage the specific properties (e.g., population Hessian instance) of W , leading to a tighter bound;
moreover, the empirical mean 1

k

∑k
i=1 infΣi f(W i; Σi) of the inside (instance-overfitting) optimiza-

tion is an unbiased estimator and overfitting is no longer a source of negative bias in estimations.
To implement this interchange, we find it is the independence of the Gaussian auxiliary pertur-
bation that makes Σ the same when conditioned on any W instance, i.e., Σ is shared among W
instances and unable to leverage their specific properties. Therefore, we extend the auxiliary trajec-
tory technique by building it from an auxiliary perturbation that is no longer independent but at least
depends on W . By making the perturbation dependent to W , we move the optimization inside (i.e.,
infΣ(w) E [f(W ; Σ(W ))] = E [infΣ f(W ; Σ)]). Pushing this insight further, we make the pertur-
bation depend on all random variables (e.g., the training data) in the SGD training process (e.g., to
leverage the empirical Hessian that depends on training data), leading to the “omniscient trajectory”.
The above anisotropic Gaussian noises with covariance Σ are only an example of auxiliary trajec-
tory and Theorem 1 generalizes the technique to more general auxiliary trajectories. Therefore, be
noted that the technique is about neither anisotropic noises (Neu et al., 2021; Wang & Mao, 2024)
nor general noises (Sefidgaran et al., 2022), but the auxiliary trajectory’s extra dependence on all
random variables in the training process and the instance-level optimization.

The technique yields a tighter generalization error bound for SGD that fully explicitly depends on
the flatness of the SGD output instance. Intuitively, it indicates that the algorithm generalizes better
when the output weights are flat and the flatness aligns with the covariance of output weights. Here,
the covariance of output weights is computed after independently training multiple models, and the
alignment means that the variance is low along sharp directions and high along flat directions, as
illustrated in Figures 2b and 2c. As discussed in Section 3.4, our alignment better leverages the
flatness compared to similar notions of alignments (Wang & Mao, 2024; Wang et al., 2021a). We
evaluate the bound on ResNet-18 trained by CIFAR-10. When varying batch size, our bound aligns
well with the actual generalization error, indicating better exploitation of flatness. Moreover, our
bound is numerically tight by being only a few percentages looser across hyperparameters.

Our omniscient trajectory technique has a simple nature, namely, interchanging the order of the
expectation and optimization. Thanks to this simplicity, our technique can also be flexibly combined
with many existing techniques and results. Furthermore, recent works (Livni, 2024; Haghifam et al.,
2023; Attias et al., 2024) have highlighted the limitations of representative information-theoretic
bounds for having an Ω(1) lower-bound for Gradient Descent (GD) on some convex-Lipschitz-
Bounded (CLB) problems. Wang & Mao (2023a) have addressed a subclass of them using sample-
conditioned hypothesis stability. However, information-theoretic alleviations for all CLB problems
are still missing. We find our technique yields an O(1/

√
n) minimax rate for GD on CLB problems.

The result demonstrates that, despite its simplicity, our technique provides asymptotic improvements
and addresses a significant limitation in existing information-theoretic generalization theory.

Our contributions are summarized as follows: 1) We derive an information-theoretic generalization
bound for SGD that better leverages its flatness bias and is numerically tighter; 2) Our bound shows
how the direction of flatness affects generalization; 3) We introduce a flexible omniscient trajectory
technique that 4) yields an O(1/

√
n) information-theoretic bound for GD on CLB problems.

2 PRELIMINARY

We first introduce basic notations. To present existing information-theoretic bounds for SGD and
discuss important insights behind them for our (re)use in Section 2.3, we introduce the algorithm of
interest in Section 2.1 and the formulation and properties of flatness in Section 2.2.
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For k ∈ N+, let [k] := {1, 2, . . . , k}. For any sequence a0, a1, . . . , ai, . . . , we define al:r := (ai)
r
i=l

and let a−i denote the remaining sequence with ai excluded. For any vector x ∈ Rk and any matrix
A ∈ Rk×k, let ∥x∥ :=

√
x⊤x, and, with an abuse, ∥x∥2A := x⊤Ax. Random variables, their

realizations, and domains are denoted by capital, lowercase, and calligraphic letters, respectively.
For example, Z is a random sample, Z is the sample space, and z is a realization. Let µ over Z be
the sample distribution. Given a random variable X , let X ′ denote an I.I.D. copy of X . Let d be the
number of model parameters and W ⊆ Rd be the space of hypotheses. If not specified otherwise, we
assume W = Rd. With n I.I.D. samples, the training set is S := (Z1, . . . , Zn) ∼ µn. A stochastic
learning algorithm is formulated as the conditional distribution PW |S .

Let ℓ : W × Z → R be a loss function. The ultimate goal of the learning algorithm is to opti-
mize the population risk Lµ(w, ℓ) := EZ∼µ [ℓ(w,Z)] over w ∈ W . Since µ is not fully accessi-
ble, one uses empirical risk minimization (ERM) by sampling a training set S ∈ Zn from µ and
optimizing the empirical risk defined by L̂s(w, ℓ) :=

∑|s|
i=1 ℓ(w, zi)/ |s| . The difference in expec-

tation over training sets and algorithmic randomness is the (expected) generalization error (gap)
gen(µn, PW |S , ℓ) := E(S,W )∼µn◦PW |S

[
Lµ(W, ℓ)− L̂S(W, ℓ)

]
,where µn ◦PW |S denotes the joint

distribution determined by the marginal distribution µn and the conditional distribution PW |S . We
may omit the loss function ℓ when it is clear from the context. Let the loss difference under the
transnational perturbation γ ∈ Rd and the Gaussian perturbation ξ with covariance Σ ∈ Rd×d be

∆Σ
γ (w, s) :=Eξ∼N (0,Σ)

[
L̂s(w + γ + ξ)− L̂s(w)

]
. (1)

If Σ = σ2I , we write σ2 instead of Σ in the superscript. We omit γ or Σ when they are zero.

2.1 ITERATIVE STOCHASTIC ALGORITHMS

To facilitate analysis, we assume an abstract form of iterative stochastic algorithms to hide unneces-
sary details and improve generality. We assume the algorithm first prepares an independent random
variable V for internal randomness, then starts from an independent initial hypothesis W0 ∈ W and
updates the hypothesis iteratively for T ∈ N+ steps by

Wt := Wt−1 − gt(Wt−1, S, V,W0:t−2) ∈ W
for t ∈ [T ], and finally outputs W := WT . Here, gt is a deterministic function. The algorithm
specifies a random process W0:T , referred to as the original trajectory. We may omit gt’s depen-
dence on (Wt−1, S, V,W0:t−2). SGD with batch size b can be obtained by first generating the
indices B1:T ∈ ([n]b)T for each mini-batch, then saving them in V and finally letting gt compute
the gradients in the mini-batch defined by Bt. Lastly, with access to past weights W0:t−2 and all
randomnesses V , gt can recover past gradients and covers momentum or Adam, etc. As a result, our
theoretical results can be directly applied to these algorithms.

2.2 FLATNESS

The flatness at w ∈ W is formulated by the Hessians ĤS(w) and Hµ(w) of the empirical and pop-
ulation losses, respectively. Empirically, the flatness of the empirical loss is highly anisotropic for
many deep models: after SGD training, most empirical Hessian eigenvectors have small eigenvalues
while the rest few have large eigenvalues (Sagun et al., 2018; Papyan, 2019). We distinguish these
eigenvectors by “flat” versus “sharp” directions (Jastrzȩbski et al., 2019; Wu et al., 2022). Perturba-
tions in the weight space along the sharp directions cause large loss changes, while those along the
flat directions cause only slight loss changes.

2.3 INFORMATION-THEORETIC BOUNDS AND APPLICATION ON SGD

A random variable X is R-sub-Gaussian if E
[
eλ(X−E[X])

]
≤ eλ

2R2/2 for any λ ∈ R. Let I(A;B)
be the mutual information (MI) between a pair of random variables (A,B) (Cover & Thomas, 2006).
The MI between the training set and the output weight can bound the generalization error:

Lemma 1 (Xu & Raginsky (2017)) Assume ℓ(w, ·) is R-sub-Gaussian on µ for any w ∈ W . The
generalization error of PW |S on µ is bounded by gen(µn, PW |S) ≤

√
2R2I(W ;S)/n.
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MI is hard to compute for SGD and one must bound it to apply the bound. However, simply bound-
ing the MI on SGD is not enough because the MI of SGD can be infinite (Hellström et al., 2024).
Neu et al. (2021) propose auxiliary trajectories to address this problem. Auxiliary trajectories are
perturbed versions of the original trajectory, aiming to decrease the MI between the training set and
the output weight. If well designed, the larger the perturbation is, the more the MI decreases. It
is often easier to bound the MI of the auxiliary trajectory, which finally becomes the “trajectory
term” in the bound. Given the auxiliary trajectory, to transform the bound of it into a bound for the
original trajectory, one must pay a penalty term of the loss difference between their output weights.
The penalty comprises of several instances of Eq. (1), which are approximated by Taylor expansion
to ∆Σ

γ (w, s) ≈ E
[
γ⊤∇L̂s(w) + (γ + ξ)⊤ × Ĥs(w)× (γ + ξ)/2

]
. In this way, the penalty is re-

lated to the flatness. It will be very large if the perturbation (γ + ξ) has large projections onto the
eigenvectors with large eigenvalues of Ĥs, i.e., the sharp directions, while it is safe to have large
projections onto the flat directions. Trading off between the trajectory and penalty terms, we have
Insight 1 for designing auxiliary perturbation and trajectories.

Insight 1 The ideal perturbation for the auxiliary trajectory should have large projections along
flat directions to reduce the MI and the trajectory term while maintaining small projections along
sharp directions to keep the penalty term small.

We now present the existing information-theoretic bounds for SGD with the help of auxiliary tra-
jectories. They are slightly modified to become simpler and have similar forms to each other. These
modifications only make the bounds tighter, and will not cause unfair comparisons. Neu et al. (2021)
propose to use isotropic Gaussian as the perturbation for the auxiliary trajectory:

Definition 1 (SGLD-Like Trajectory) The SGLD-like trajectory W̃0:T of any trajectory W̄0:T is

W̃0 := W̄0, W̃t := W̃t−1 + (W̄t − W̄t−1) +Nt,

where Nt ∼ N (0, σ2
t I) is an independent Gaussian noise with σt > 0.

After building the SGLD-like auxiliary trajectory of the original trajectory, Neu et al. (2021) exploit
the properties of Gaussian noises to bound the MI of the SGLD-like output weight. Based on
the same SGLD-like trajectory, Wang & Mao (2022) improve the technique for bounding the MI,
providing a numerically tighter result in Proposition 1.

Proposition 1 (Theorem 2 of Wang & Mao (2022)) SGD’s generalization error is bounded by

gen(µn, PW |S) ≤

√√√√R2

n

T∑
t=1

1

σ2
t

E
[
∥gt − E [gt]∥2

]
︸ ︷︷ ︸

MI bound (Trajectory Term)

+ E
[
∆

∑
t σ

2
t (WT , S)−∆

∑
t σ

2
t (WT , S

′)
]

︸ ︷︷ ︸
Penalty for the SGLD-like trajectory (Flatness Term)

,

where the expectations are over the randomness of training set sampling, initialization, and V .

Since the trajectory term and the flatness term correspond to the MI bound and the penalty of
the SGLD-like trajectory, respectively, these two terminologies will be used interchangeably. The
SGLD-like trajectory decreases the MI at the cost of the penalty term. The flatness is exploited to
ensure the penalty is not very large. However, as shown in Figure 1, Proposition 1’s trajectory term
does not adequately exploit the flatness. This drawback is partially due to the isotropic Gaussian
that adds perturbations of the same strength along all directions, violating Insight 1. To exploit the
anisotropy of flatness, one can use non-isotropic Gaussian noises as in Proposition 2.

Proposition 2 (Proposition 8 of Neu et al. (2021)) SGD’s generalization error is bounded by

gen(µn, PW |S) ≤ inf
Σ∈S+

√
R2

n
E
[
∥WT − E [WT ]∥2Σ−1

]
+ E

[
∆Σ(W,S)−∆Σ(W,S′)

]
,

where S+ ⊆ Rd×d is the set of symmetric positive definite matrices.

Here, Σ is the covariance of the Gaussian. By setting, for example, Σ = E
[
ĤS

]−1

, the noise has
large variances along the directions with small curvatures, better exploiting the flatness. Neverthe-
less, we find Proposition 2 still has room for improvement, as elaborated in Section 3.1.
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Original W0 W1 W2 · · · WT gen(WT )

Omniscient W̆0 W̆1 W̆2 · · · W̆T gen(W̆T )

SGLD-like W̃0 W̃1 W̃2 · · · W̃T gen(W̃T )

Definition 2

Definition 1

S

N1 N2
· · ·

NT

+∆Σ(W̆T , S)
−∆Σ(W̆T , S′)

Flatness
Term

+∆ΓT
(WT , S)

−∆ΓT
(WT , S′)

Penalty
Term

√
2R2

n
I(W̃T ;S)

≤

(a) The relationships between trajectories.

Loss Contour SGD Output Weight

(b) Aligned. (c) Not aligned.

Figure 2: The relationship between the original, omniscient, and SGLD-like trajectories, and illus-
trative examples of of alignment and misalignment between flatness and output weight covariance.
The two trajectories have decoupled functions: the omniscient trajectory optimizes the whole bound
while the SGLD-like trajectory bounds the MI for the omniscient trajectory.

3 PROPOSED OMNISCIENT TRAJECTORY

3.1 ANALYSIS ON EXISTING RESULTS’ DRAWBACKS

To see the inefficiencies of Proposition 2, we recall a generic principle:

Principle 1 Being specific helps optimization: minA Ex [f(X;A)] ≥ EX [minA f(X;A)] .

Through the lens of this principle, Proposition 2 is closer to LHS of Principle 1 since Σ to be opti-
mized is shared among all instances in the expectation, leading to trade-offs between these instances.
As a result, it is suboptimal compared to a fully specific and dependent one.

Moreover, Proposition 2 is prone to overfitting when estimated in numerical studies. Since the dis-
tribution of output weights is not fully accessible, one must sample some of them before optimizing
over Σ. This procedure is identical to ERM, leading to potential overfitting to the sampled weights.
Sampling output weights involves training multiple models on multiple training sets. The computa-
tional costs and data requirements of training deep models limit the number of samples. In contrast,
S+ is a Θ(d2)-dimensional manifold. Therefore, the overfitting is severe in the classic view and the
estimated bound has a severe negative bias. Possibly, the overfitting is benign as it is for deep learn-
ing models. However, a meta-generalization theory is needed to ensure it, which is too complex
and may even induce a meta-meta-overfitting problem with more parameters. To our knowledge,
Proposition 2 lacks numerical results, possibly due to the large parameter count and the overfitting.

Some examples of the two drawbacks can be found in Appendix B.1. As indicated by Principle 1,
both issues can be addressed by moving the optimization inside the expectation. Regarding the
suboptimality, Principle 1 explicitly shows better tightness. Regarding overfitting, the RHS of Prin-
ciple 1 is already the result of overfitting to instance trajectories, eliminating overfitting as a bias
source. Furthermore, depending on more random variables, such as the training set, makes it easier
to access and exploit the empirical flatness. Motivated by these benefits, we propose fully dependent
auxiliary trajectories in the form of functions of all random variables in the training process. With
knowledge of all random variables, the trajectories are termed “omniscient (auxiliary) trajectories”.

3.2 OMNISCIENT TRAJECTORY

The omniscient trajectory that depends on all random variables in the training is defined as follows:

Definition 2 (Omniscient Trajectory) The omniscient trajectory W̆0:T of (S, V, g1:T ,W0:T ) spec-
ified by omniscient perturbation ∆g1:T is given by

W̆0 :=W0, W̆t := W̆t−1 − (gt(Wt−1, S, V,W0:t−2)−∆gt(S, V, g1:T ,W0:T )),

where ∆gt is a deterministic function. Let Γt :=
∑t

τ=1 ∆gτ (S, V, g1:T ,W0:T ), then W̆t = Wt+Γt.

To bound the generalization error of the original SGD trajectory, we transform the generalization
error of the original output weight into that of the omniscient output weight at the cost of a “penalty
term” for the translational perturbation ΓT . To bound generalization error and MI of the omniscient

6
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output weight, we construct an SGLD-like auxiliary trajectory W̃0:T based on the omniscient trajec-
tory and transform the generalization of the omniscient trajectory into that of the SGLD-like trajec-
tory, at the cost of another penalty, i.e., the flatness term. We then bound the generalization error of
the SGLD-like output weight using the MI I(W̃ ;S). The relationships between the trajectories and
their generalization errors are visualized in Figure 2a. To bound the MI, we extend the key Lemma 4
of Wang & Mao (2022) that bounds the mutual information using variances in Lemma B.1 so that it
can be used for the double-layered auxiliary trajectories despite its heavy dependence to S. Putting
these problem transformations and bounds together, we obtain a generalization bound Theorem 1
using trajectory statistics similar to Proposition 1 but modified by the omniscient perturbation.

Theorem 1 Assume R-sub-Gaussianity for ℓ. For any ∆g1:T and any σ1:T ∈
(
R>0

)T
, we have

gen(µn, PW |S) ≤

√√√√√√√
R2

n

T∑
t=1

1

σ2
t

E
[
∥gt − E [gt]−∆gt∥2

]
︸ ︷︷ ︸

MI bound (Trajectory term)

+ E [∆ΓT
(WT , S)−∆ΓT

(WT , S
′)]︸ ︷︷ ︸

Penalty for the omni. trajectory (Penalty Term)

+ E
[
∆

∑
t σ

2
t (WT + ΓT , S)−∆

∑
t σ

2
t (WT + ΓT , S

′)
]

︸ ︷︷ ︸
Penalty for the SGLD-like trajectory (Flatness Term)

.

Setting ∆gt ≡ 0 recovers Proposition 1 and we further optimize it to tighten the bound.

3.3 OPTIMIZING THE OMNISCIENT TRAJECTORY AND EXPLOITING FLATNESS

To avoid optimizing over T elements ∆g1:T , we first simplify Theorem 1 with ∆gt = (gt − E [gt])−
1
T

∑T
τ=1(gτ −E [gτ ])+

1
T ∆G. As a result, for any deterministic function ∆G of (S, V, g1:T ,W0:T )

and σ > 0, we have

gen(µn, PW |S) ≤
√

R2

nσ2T
E
[
∥∆WT − E [∆WT ] + ∆G∥2

]
+ E

[
∆σ2T

∆G (WT , S)−∆σ2T
∆G (WT , S

′)
]
,

where ∆Wt := Wt −W0. The formal results can be found in Corollary B.1. Appendix B.4 verifies
that such ∆gt is optimal under the constraint of ΓT = ∆G, and the generality is not harmed by this
simplification. Setting ∆G = 0 recovers the isotropic version of Proposition 22.

We then optimize over ∆G. It can decrease the trajectory term by canceling ∆WT − E [∆WT ].
However, large ∆G would increase the penalty term, leading to a trade-off. Fortunately, near flat
minima, most directions are flat, and the penalty term is insensitive to perturbations along them.
Following Insight 1, we confine ∆G to align with the flat directions. This is done by approximating
the penalty terms to the second order, where Hessians emerge, and solving an optimization problem
formed by the output weights and the Hessians (see Appendix B.6). Theorem 2 presents the result,
where the three expectations correspond to the penalty, flatness, and trajectory terms, respectively.

Theorem 2 Assume ℓ(w, ·) is R-sub-Gaussian on µ for any w ∈ W . Assume that ℓ(·, z) and Lµ(·)
are thirdly continuously differentiable w.r.t. weight for any z ∈ Z . Further assume that there exists
a constant D > 0 such that D ∥∆w∥4 bounds the residual in the third-order Taylor expansion of
ℓ(·, z) and Lµ(·) for any z ∈ Z . Then for any λ > 0, we have

gen(µn, PW |S) ≤ E [∆∆G(WT , S)−∆∆G(WT , S
′)] +

3

2

3

√
R2

n
E [tr (∆H(WT +∆G))]

× 3

√
E
[∥∥∥(I − (I + H̃pen/2λC)−1)(∆WT − E [∆WT ])− (2λCI + H̃pen)−1J

∥∥∥2]+ r, (2)

where ∆H(w) := ĤS(w) − Hµ(w), H̃flat is chosen from ∆H(WT ) and ĤS(WT ), H̃pen is cho-
sen from ∆H(WT ) and ĤS(WT ), and J is chosen from ∇(L̂S(WT ) − Lµ(WT )) and L̂S(WT ),
C := 3

2

(
R2

n |tr(H̃flat)|
)1/3, ∆G =−(2λCI+H̃pen)

−1
(2λC(∆WT−E[∆WT ])+J), and r = O(d2σ4

∗) is the
residual in a second-order approximation. See Eq. (B.6) in Appendix B.7 for the form of σ∗.

2Using non-isotropic Gaussian noises for the SGLD-like trajectory fully recovers Proposition 2.
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Here, λ is a bound parameter that balances the efforts put on decreasing the trajectory term.

3.4 DISCUSSION AND COMPARISON

To see the dependence on the flatness more clearly, we approximate the result of Theorem 2. To
simplify the approximation, only for this subsection, we assume J := ∇L̂S(WT )−∇Lµ(WT ), and
the model is sufficiently trained so that ∇L̂S(WT ) ≈ 0. We also assume λ is large enough so that
2λC surpasses H̃pen’s top singular value to approximate I − (I + H̃pen/2λC)−1 ≈ H̃pen/2λC.
Be noted that the above assumptions are used only in this subsection, i.e., Theorem 2 and experi-
ments in Section 4 do not require them. Results without some of these assumption can be found in
Appendix B.8. Approximating the penalty term to the second order leads to the following result:

gen(µn, PW |S) ⪅ E
[
∥∆WT −∆E [WT ]∥2|∆H(WT )|−∆H(E[WT ]) + ∥∇Lµ(WT )∥2|∆H(WT )|

4λ2C2 − I
2λC

]
︸ ︷︷ ︸

Corresponding to Penalty Term

+
3

2
3

√
2R2

n
E [|tr (∆H(WT +∆G))|]︸ ︷︷ ︸

Corresponding to Flatness Term

· E
[
∥∆WT − E [∆WT ]∥2H̃pen2

4λ2C2

+ ∥∇Lµ(WT )∥2 I
4λ2C2︸ ︷︷ ︸

Corresponding to Trajectory Term

]
,

(3)
where |·| replaces the eigenvalues of a matrix with their absolute values. The details can be found
in Appendix B.8. It can be seen that all terms except the two population gradient norms depend
on Hessians. Particularly, the “norms” of deviation ∆WT − E [∆WT ] are defined by the Hessians.
As a result, the components of the deviation along flat directions contribute little to the bound. The
flatter the minima are, the more and flatter the flat directions there are, and more components of the
deviations contribute little to the bound. Moreover, if the flatness is aligned with the covariance,
most large deviations can be found near the “flat subspace”, leading to a smaller bound. As a result,
generalization is better if minima are flat and the flatness aligns with the covariance.

This focus on alignment is similar to the work by Wang & Mao (2024) and Wang et al. (2021a).
These alignments are compared in Appendix B.8.1 in detail. Briefly, the main difference is that
our alignment directly relies on flatness. Our technique is also similar to the rate-distortion bound
(Sefidgaran et al., 2022) as both involve weight-dependent perturbations. However, our omniscient
trajectory depends on more random variables, such as the training data that is crucial for leveraging
the empirical Hessian. Besides, the existing chaining (Asadi et al., 2018) and evaluated (Harutyun-
yan et al., 2021; Hellström & Durisi, 2022; Wang & Mao, 2023b) bounds, which can leverage the
similarity between adjacent hypotheses, are potentially useful because the flatness of a minimum
reflects a similarity with neighboring weights. However, chaining requires partitioning the hypoth-
esis space, which is difficult for deep neural networks; the evaluated bounds directly rely on model
losses, obscuring insights in the language of weights and flatness.

4 EXPERIMENTAL STUDY

In this section, we experimentally show how our bound captures the true generalization error/gap
measured by Cross Entropy (0-1 loss does not have Hessians and is motivationally incompatible)
compared to the existing bounds. We vary the hyperparameter and train 6 independent ResNet-18
models on CIFAR-10 at each hyperparameter. To ensure sub-Gaussianity, capped cross-entropy
(CE) is used in testing and bound estimation, while vanilla CE is used for training for efficient train-
ing. We estimate Theorem 2 with λ ∈

{
1, 103, 109

}
, H̃flat = H̃pen = ĤS(WT ) to make estimation

easier and J = ∇L̂S (WT ) − ∇Lµ(WT ) for numerical tightness as detailed in Appendix C.2. Es-
timating the bounds requires splitting datasets: The 6 models are trained by 6 random splits of the
training set. Terms involving population statistics (e.g., the population Hessians in the flatness terms
and the population gradient in the penalty term) are approximated to the second order and estimated
on validation sets. But for existing bounds, we assume Lµ(W ) ≤ Eξ∼N (0,σ2I) [Lµ(W + ξ)] (Wang
& Mao, 2022) and avoid the population Hessian. The true generalization error is estimated on a
separate test set. See Appendix C for more details and the results with population Hessians.

We first evaluate whether our bound can better capture the generalization under varying flatness. As
shown in Figure 3, the bound correctly captures the tendency of generalization error under varied
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Figure 3: Theorem 2 with λ = 109 on CIFAR-10 and ResNet-18 with varied learning rate and batch
size. “(·)R” means the generalization error is rescaled.
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Figure 4: Numerical results for ResNet-18 on CIFAR-10 under varied training data usage, label
noise level, width, depth, and weight decay. The isotropic version of Proposition 2 (Neu et al.
(2021)’s Prop. 8) is used.

batch sizes and learning rates. Specifically, the tendency of the trajectory term w.r.t. the batch size
is corrected. The penalty term for the omniscient trajectory correlates well with the generalization
error w.r.t. both learning rate and batch size, thanks to the Hessians in Eq. (3). The flatness term
also generally has the correct tendency w.r.t. both hyperparameters. Unfortunately, the tendency of
the trajectory term w.r.t. learning rate is still incorrect. As shown in Section 3.4, the trajectory term
is essentially the product between Hessians and the variance of the last-step weight. We conjecture
it is the increased variance when learning rate increases that overpowers the improved flatness and
makes the tendency uncorrected. In contrast, the variance is less sensitive to batch size. Detailed
discussion can be found in Appendix C.4.1. Nevertheless, after multiplied together, they contribute
little to the bound and the uncorrected tendency does not affect the bound very much.

Figure 4 shows how our bound captures the generalization under varied label noises, overparame-
terization, and regularizations. It can be seen that our bound with large λ (i.e., putting more weights
on reducing the trajectory term) can well capture the generalization under these variations, while the
some existing bounds fail to capture the improved generalization under stronger weight decay.

Results for MLP on MNIST can be found in Appendix C.4. According to Figures 3 and 4 and results
in the appendix, our bounds are numerically much tighter. The main improvement comes from the
trajectory term, as a result of both Proposition 2 and the optimized omniscient trajectory leveraging
flatness. See Appendix C.4.1 for detailed discussions. In Appendix C.6, we evaluate our bounds
under weight scaling, where they still well capture the generalization.

The trajectory term and the flatness almost diminish after multiplied together, and the bound mainly
comprises of the penalty term. In Theorem 2 and Eq. (3), the term heavily relies on the population
gradients. We consider this reliance to be the major limitation of our bound.

5 EXTENSIONS

Our technique is so flexible that it can be combined with existing techniques, such as the individual-
sample technique and CMI framework. It can also combine the SGLD bound of Negrea et al. (2019)
to yield an SGD bound. The combined results are listed in Appendix D. Notably, the omniscient tra-
jectories in these results depend on all new random variables introduced by the variants. As a result,
the omniscient trajectory can leverage the features of the variants and optimize more specifically.
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Our technique can also address the known limitations of representative existing information-
theoretic bounds on convex-Lipschitz-Bounded (CLB) problems in stochastic convex optimization
(SCO). An SCO problem is a triplet (W,Z, ℓ), where W is convex and ℓ is a convex function given
any z ∈ Z . The CLB subclass CL,D of SCO further requires W is closed and bounded with a diame-
ter D, while ℓ(·, z) is L-Lipschitz given any z ∈ Z . The goal is to minimize the excess (population)
risk EW [Lµ(W )]− infw∈W Lµ(w) under an unknown sample distribution, which can be bounded
by the excess optimization error and the generalization error. The minimax excess risk reflects
the worst-case generalization: infPW |S∈A supµ∈M1(Z) EW∼µn◦PW |S [Lµ(W )] − infw∈W Lµ(w),

where A is a family of algorithms and M1(Z) is the set of all distributions over Z .

An O(LD/
√
n) minimax rate has been obtained for Gradient Descent (GD) using uniform stabil-

ity. However, Haghifam et al. (2023) have shown there exist CLB instances where PAC-Bayesian
bounds, the vanilla (C)MI bounds, their Gaussian-perturbed variants (Propositions 1 and 2 fall in
this category if adapted to CLB settings), and representative variants all have an Ω(1) lower-bound,
meaning these representative bounds cannot explain the generalization of GD on CLB problems.
Attias et al. (2024) have shown any CLB learner with low excess generalization risk must have
high CMI, i.e., the CMI-accuracy trade-off. Recently, Wang & Mao (2023a) have addressed the
counterexample by Haghifam et al. (2023) and all CLB problems by augmenting CMI bounds with
stability. However, a lot of fancy CMIs are involved and due to this complexity it is hard to intu-
itively interpret their relationship with the CMI-accuracy trade-off. Therefore, we try our technique
to see whether it leads to a similar but simpler result. Combining individual-sample bounds with
omniscient trajectory, we can easily resemble the stability argument and arrive at the following:

Theorem 3 (Informal) For CLB problem (W,Z, ℓ) and distribution µ over Z , we have

gen ≤ inf
∆G1:n

1/n·
∑n

i=1

(
LD
√
2I (WT +∆Gi;Zi | Z−i) + E [∆∆Gi(WT , Zi)−∆∆Gi(WT , S

′)]
)

(for stable algorithms)

≤ 2L/n ·
∑n

i=1E [∥WT − E [WT | Z−i]∥]
(for GD)

≤
(with T steps of size η)

8L2
√
Tη + 8L2Tη/n

This bound recovers that of Bassily et al. (2020) up to a constant. The following steps can be
found in Haghifam et al. (2023), which recover the best-achievable O(LD/

√
n) excess risk bound.

Theorem 3 and its proof state an alternative to the trade-off on GD: although accurate learners have
high CMI, they are quite close (measured by loss difference) to auxiliary learners with low MI (the
omniscient trajectory). Therefore, in Theorem 4 of Appendix D.5, we explore to break through
the information-accuracy trade-off for general ϵ-learners by replacing CMI with a new information
measure induced by our technique. Theorem 4 states that this generalization-bounding information
measure vanishes together with risks. However, Theorem 4 requires the ϵ-learners to be “O(ϵ)-
optimizers” and is still partial and preliminary. Lastly, when losses are smooth and convex, we also
recover a stability-based O(1/n) rate for SGD, as detailed in Appendix D.6.

6 CONCLUSION AND LIMITATION

In this paper, we address the inadequate leverage of flatness in existing information-theoretic gener-
alization bounds for SGD. By continuing the “being more specific” insight in generalization theory,
we propose the omniscient trajectory that can be optimized depending on all random variables in the
training process to better leverage the flatness. Our bound shows that an algorithm generalizes better
if its output flatness aligns with its output covariance. When applied to deep neural networks, our
bound aligns well with the generalization under varied flatness and is numerically tighter. When ap-
plied to CLB problems for GD, the technique yields an O(1

√
n) minimax rate, addressing a recently

discovered significant limitation of information-theoretic generalization theory.

However, our bound relies on population gradients and Hessians. Although tolerable for theories
(e.g., Neu et al. (2021) and Wang & Mao (2022; 2024) also rely on population statistics), this prob-
lem prevents the bound from being a part of self-certified algorithms (Pérez-Ortiz et al., 2021).
Moreover, the most information-theoretic components vanish in both the CLB bound and the exper-
iments (see Eq. (D.5) and Figures 3c and C.4c). We conjecture these two issues may be addressed
in future works by information-theoretically bounding the generalization of higher-order statistics.
More detailed discussions on the limitations can eb found in Appendix E.
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REPRODUCIBILITY STATEMENT

All proofs and full versions of informally stated results can be found in the appendices for the
corresponding sections. Details of experiments can be found in Appendix C.3. Our codes for the
experiments can be found in the supplementary materials.
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A TECHNICAL LEMMAS

Lemma A.1 If X,Y ∈ Rd are independent random variables, then we have E [∥X − E [Y ]∥] ≤
E [∥X − Y ∥].

Proof By the convexity of the L2 norm and the independence between X and Y , we have

E [∥X − Y ∥] =EX [EY [∥X − Y ∥]] ≥ EX [∥EY [X − Y ]∥] = EX [∥X − E [Y ]∥] .

Corollary A.1 If X1, X2 ∈ Rd are I.I.D. copies of X , then we have E [∥X − E [X]∥] ≤
E [∥X1 −X2∥].

Lemma A.2 If X1, X2 ∈ Rd are I.I.D. copies of X , then we have E
[
∥X − E [X]∥2

]
≤

1
2E
[
∥X1 −X2∥2

]
.

Proof

E
[
∥X1 −X2∥2

]
=E

[
∥X1∥2

]
− 2E

[
X⊤

1 X2

]
+ E

[
∥X2∥2

]
=E

[
∥X1∥2

]
− 2E [X1]

⊤ E [X2] + E
[
∥X2∥2

]
=E

[
∥X∥2

]
− 2E [X]

⊤ E [X] + E
[
∥X∥2

]
=2E

[
∥X − E [X]∥2

]
.

Lemma A.3 Let f : W → R≥0 be a non-negative convex function. Let W ∈ W be a random
variable, then we have

E [|f(E [W ])− f(W )|] ≤ 2E [f(W )] .

Proof

E [|f(E [W ])− f(W )|] ≤E [|f(E [W ])|] + E [|f(W )|]
=E [f(E [W ])] + E [f(W )] (f ≥ 0)

≤2E [f(W )] . (convexity of f)

B PROOFS AND DETAILS FOR SEC. 3 PROPOSED OMNISCIENT TRAJECTORY

B.1 DETAILS FOR SECTION 3.1

In this section, we present illustrative examples of suboptimality and overfitting of Proposition 2
mentioned in Section 3.1.

B.1.1 SUBOPTIMALITY

Different (S,W ) has different empirical and population Hessians with different sharp directions.
For instance, assume v1 is the only sharp direction for (s1, w1) and v2 for (s2, w2). Then the non-
specific Σ would apply small noises in both directions. If v1 and v2 are nearly orthogonal, the noises
along v2 and v1 are insufficient for (s1, w1) and (s2, w2), respectively.
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B.1.2 OVERFITTING

When k output weights are sampled, they lie in a k-dimensional subspace. As a result, noises
along the remaining d − k directions will not decrease the trajectory term. The optimal Σ induces
infinitely small noises along the remaining d−k directions to decrease the penalty terms. Therefore,
the optimal Σ will have rank at most k when k samples are used. If one additional weight is sampled
and it does not reside in the k-dimensional subspace, Σ cannot reduce the variance along the (k+1)-
th direction. As a result, the bound optimized for k samples is suboptimal for the k + 1 samples,
indicating overfitting.

B.2 LEMMA B.1

Lemma B.1 extends Lemma 4 of Wang & Mao (2022) that bounds the mutual information using
gradient variances.

Lemma B.1 Let X,Y ∈ Rd1 , ∆ ∈ Rd2 and O ∈ Rd3 be arbitrary random variables. Let N ∼
N (0, I) be a d1-dimensional Gaussian noise that is independent of (X,Y,∆, O). Then for any
σ > 0, for any deterministic Rd1 function f of (X,Y,∆), we have for any function Ω solely of
(Y,O),

I(f(X,Y,∆) + σN ;X | Y,O) ≤ 1

2σ2
E
[
∥f(X,Y,∆)− Ω(Y,O)∥2

]
, (B.1)

and for any function Ω solely of Y ,

I(f(X,Y,∆) + σN ;X | Y ) ≤ 1

2σ2
E
[
∥f(X,Y,∆)− Ω(Y )∥2

]
. (B.2)

Proof We prove Eq. (B.1) first. Define X ′ :=
[
X⊤ 0⊤d2

0⊤d3

]⊤
, Y ′ :=

[
Y ⊤ 0d2

O⊤]⊤,

∆′ :=
[
0⊤d1

∆⊤ 0⊤d3

]⊤
and f ′ : Rd1+d2+d3 × Rd1 → Rd and Ω′ : Rd1+d2+d3 → Rd1 by

f ′(v, u) := f(u1:d1
, v1:d1

, vd1+1:d1+d2
), Ω′(v) := Ω(v1:d1

, vd1+d2+1:d1+d2+d3
),

where 0d ∈ Rd is the zero vector. By assumption, (X ′, Y ′,∆′) is independent of N . Consequently,
by Lemma 4 of Wang & Mao (2022), we have

I(f ′(Y ′ +∆′, X ′) + σN ;X ′ | Y ′) ≤d

2
E
[
log

(
E [∥f ′(Y ′ +∆′, X ′)− Ω′(Y ′)∥ | Y ′]

dσ2
+ 1

)]
≤ 1

2σ2
E [∥f ′(Y ′ +∆′, X ′)− Ω′(Y ′)∥] .

By construction, we have f ′(Y ′ +∆′, X ′) = f(X,Y,∆) and Ω′(Y ′) = Ω(Y,O). Combined with
the definition of Y ′, they lead to Eq. (B.2) of Lemma B.1.

To obtain Eq. (B.2), let O′′ be the constant 0d2
and Ω′′(y, o′′) := Ω(y). Then by Eq. (B.1), we have

I(f(X,Y,∆) + σN ;X | Y ) =I(f(X,Y,∆) + σN ;X | Y,O′′)

≤ 1

2σ2
E
[
∥f(X,Y,∆)− Ω′′(Y,O′′)∥2

]
=

1

2σ2
E
[
∥f(X,Y,∆)− Ω(Y )∥2

]
,

which is exactly Eq. (B.2).
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B.3 PROOF OF THEOREM 1

By the technique of a change of trajectory, we first transform the generalization error of the original
trajectory into that of the omniscient and SGLD-like trajectories at the cost of penalty terms:

gen(µn, PW |S)

:=E
[
Lµ(W )− L̂S(W )

]
=E

[
Lµ(W̆T )− L̂S(W̆T )

]
+ E

[
L̂S(W̆T )− L̂S(WT )

]
− E

[
Lµ(W̆T )− Lµ(WT )

]
=E

[
Lµ(W̃T )− L̂S(W̃T )

]
+ E

[
L̂S(W̃T )− L̂S(W̆T )

]
− E

[
Lµ(W̃T )− Lµ(W̆T )

]
+ E [∆ΓT

(WT , S)−∆ΓT
(WT , S

′)]

=E
[
Lµ(W̃T )− L̂S(W̃T )

]
+ E

[
∆

∑
t σ

2
t (WT + ΓT , S)−∆

∑
t σ

2
t (WT + ΓT , S

′)
]

+ E [∆ΓT
(WT , S)−∆ΓT

(WT , S
′)] . (B.3)

With the penalty terms matching with those in Theorem 1, the goal reduces to bounding the gener-
alization error of W̃T . To this end, we apply Lemma 1 that bounds the error by mutual information
and then decompose the mutual information using the chain rule. Since ℓ(w, ·) is R-sub-Gaussian
by assumption, we have

E
[
Lµ(W̃T )− L̂S(W̃T )

]
= gen(µn, PW̃T |S , ℓ) ≤

√
2R2

n
I(W̃T ;S),

where
I(W̃T ;S) ≤I(W̃0:T ;S) (Data-processing inequality)

=I(W̃0;S) +

T∑
t=1

I(W̃t;S | W̃0:t−1) (Chain rule of MI)

=

T∑
t=1

I(W̃t;S | W̃0:t−1) (W̃0 = W0 is independent of S)

=

T∑
t=1

I(W̃t−1 − (gt −∆gt) +Nt;S | W̃0:t−1). (Definition 1)

To bound the stepwise conditional mutual information, we apply Lemma B.1 with X = S, Y =
W̃0:t−1, ∆ = (W0:T , V ) and

f(X,Y,∆) = W̃t−1 − (gt(Wt−1, S, V,W0:t−2)−∆gt(S, V, g1:T ,W0:T )).

Since (X,Y,∆) is a function of (S, V, g1:T ,W0:T ), which is independent with the SGLD noise
Nt ∼ N (0, σ2I), by Lemma B.1, we have

I(W̃t;S | W̃0:t−1) =I(W̃t−1 − (gt −∆gt) +Nt;S | W̃0:t−1)

≤ 1

2σ2
E
[∥∥∥W̃t−1 − (gt −∆gt)− Ω(W̃0:t−1)

∥∥∥2]
for any function Ω of Y = W̃0:t−1. To make things simpler by removing W̃t−1 and minimize the
expected squared norm, we set Ω(w̃0:t−1) = w̃t−1 − E [gt] and obtain

I(W̃t;S | W̃0:t−1) ≤
1

2σ2
E
[
∥gt − E [gt]−∆gt∥2

]
. (B.4)

Plugging Eq. (B.4) back to Eq. (B.3) leads to Theorem 1.

Remark B.1 The bound can be further tightened by setting Ω(w̃0:t−1) = w̃t−1 − E [gt] + E [∆gt].
However, this eventually leads to an extra E [∆G] in the trajectory terms of Corollary B.1. This
extra term creates a “feedback” between instances that hinders optimization: when optimizing ∆G,
we must consider all instances of ∆G(S, V, g1:T ,W0:T ) even if we are optimizing against a single
instance of trajectory to form Theorem 2. For simplicity, we only set Ω(w̃0:t−1) = w̃t−1 − E [gt].
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B.4 SELECTION OF ∆gt GIVEN ΓT

In the result of Theorem 1, the penalty and flatness terms only rely on ΓT among omniscient-related
variables. Therefore, we can first fix ΓT and optimize ∆g1:T .

Assume for this subsection that ΓT is fixed as ∆G, a function of (S, V, g1:T ,W0:T ), and that ∆g1:T
is constrained to satisfy ∆G =

∑T
i=1 ∆gt. Penalty and flatness terms are now fixed since they only

rely on ΓT and we only need to optimize the trajectory term

argmin
∆g1:T :

∑
t ∆gt=∆G

√√√√R2

n

T∑
t=1

1

σ2
t

E
[
∥gt − E [gt]−∆gt∥2

]
over ∆g1:T . We then set σt = σ, throw the square root and coefficients away, and move the summa-
tion inside the expectation, arriving at

argmin
∆g1:T :

∑
t ∆gt=∆G

E

[
T∑

t=1

∥gt − E [gt]−∆gt∥2
]

Set νt := gt − E [gt]. Since the constraints are instance-wise, we can also optimize ∆gt instance-
wisely:

argmin
∆g1:T :

∑
t ∆gt=∆G

T∑
t=1

∥νt −∆gt∥2 = T · Et∼U [T ]

[
∥νt −∆gt∥2

]
≥T ·

∥∥Et∼U [T ] [νt −∆gt]
∥∥2

=T ·
∥∥∥∥Et∼U [T ] [νt]−

1

T
∆G

∥∥∥∥2 ,
where inequality is due to the convexity of the squared norm and takes equality if and only if νt−∆gt
is constant (w.r.t. t), say ∆. Then we have

∑
τ ∆gτ = (

∑
τ ντ ) − T · ∆ = ∆G, which implies

∆gt = gt − E [gt]− 1
T

∑
τ (gτ − E [gτ ]) +

1
T ∆G.

B.5 COROLLARY B.1

Corollary B.1 Assume ℓ(w, ·) is R-sub-Gaussian on µ for any w ∈ W . For any deterministic
function ∆G of (S, V, g1:T ,W0:T ) and any σ > 0, we have

gen(µn, PW |S) ≤

√√√√ R2

nσ2

E
[
∥∆WT − E [∆WT ] + ∆G∥2

]
T

+E
[
∆σ2T

∆G (WT , S)−∆σ2T
∆G (WT , S

′)
]
,

where ∆WT := WT − W0 is the change before and after the training. If we give up further
optimization, i.e., ∆G = 0, then we have

gen(µn, PW |S) ≤
√

R2

nTσ2
V [∆WT ] + E

[
∆Tσ2

(WT , S)−∆Tσ2

(WT , S
′)
]
,

where V [X] := E
[
∥X − E [X]∥2

]
denotes variance.

Proof We prove Corollary B.1 by instantiating ∆gt of Theorem 1.

Since ∆gt depend on g1:T , we can use νt := gt − E [gt] and ν̄ = 1
T

∑
t νt when constructing

∆gt. Let ∆G be a deterministic function of (S, V, g1:T ,W0:T ) and σ > 0 be a constant. Then
∆gt := (νt − ν̄) + 1

T ∆G is indeed a deterministic function of (S, V, g1:T ,W0:T ).

With ΓT :=
∑

t ∆gt =
∑

t νt − T · ν̄ + ∆G = ∆G and σt set to constant σ, by Theorem 1 we
obtain

gen(µn, PW |S) ≤

√√√√ R2

nσ2

∑
t

E

[∥∥∥∥νt − (νt − ν̄)− 1

T
∆G

∥∥∥∥2
]
+ E [∆∆G(WT , S)−∆∆G(WT , S

′)]

+ E
[
∆Tσ2

(WT +∆G,S)−∆Tσ2

(WT +∆G,S′)
]
,
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where∑
t

E

[∥∥∥∥νt − (νt − ν̄)− 1

T
∆G

∥∥∥∥2
]
=
∑
t

E

∥∥∥∥∥ 1T ∑
τ

(gτ − E [gτ ])−
1

T
∆G

∥∥∥∥∥
2


=T · 1

T 2
E

∥∥∥∥∥∑
t

gt − E

[∑
t

gt

]
−∆G

∥∥∥∥∥
2
 .

Since WT = W0 −
∑

t gt, we have
∑

t gt = −∆WT and∑
t

E

[∥∥∥∥νt − (νt − ν̄)− 1

T
∆G

∥∥∥∥2
]
=

1

T
E
[
∥∆WT − E [∆WT ] + ∆G∥2

]
.

Putting everything together leads to Corollary B.1.

B.6 DETAILS FOR SECTION 3.3

Firstly, we need a explicit form of the penalty terms to balance the tradeoff. Therefore, the penalty
terms are approximated to the second order in the surrogate optimization, where the Hessians at the
output weight show up. The approximation is the same as Appendix B.7. Secondly, we assume the
empirical and population Hessians in the penalty term for the SGLD-like trajectory does not change
too much, namely ĤS(WT + ∆G) − Hµ(WT + ∆G) ≈ ĤS(WT ) − Hµ(WT ), to simplify the
surrogate optimization. These simplifications lead to the following surrogate optimization target (be
noted that we have not replacing terms with H̃flat, H̃pen or J):

min
∆G

3

2

3

√
R2

n

∣∣∣E [tr(ĤS(WT )−Hµ(WT )
)]∣∣∣E [∥∆WT − E [∆WT ] + ∆G∥2

]
+ E

[
∆G⊤∇(L̂S(WT )− Lµ(WT )) +

1

2
∆G⊤(ĤS(WT )−Hµ(WT ))∆G

]
,

where ĤS(w) is the Hessian of the empirical loss at the trajectory terminal and Hµ(w) is that of
the population loss. If we optimize the above surrogate target, we will rely on testing/validation
sets to estimate the population gradient and Hessian. Therefore, one may want to partially
avoid this reliance as much as possible by simply ignoring them. On the other hand, optimiz-
ing against validation sets leads to better numerical tightness. To accommodate both needs, we
leave it as an option by letting H̃flat ∈

{
∆H(WT ), ĤS(WT )

}
, H̃pen ∈

{
∆H(WT ), ĤS(WT )

}
and J ∈ ∇(L̂S(WT )− Lµ(WT )),∇L̂S(WT ) and replacing the empirical-population differences
in the above surrogate losses. Another difficulty is that, one has to consider other independent runs
when optimizing ∆G for one trajectory. To further simplify optimization, we modify the surrogate
optimization target so that only one trajectory is considered:

min
∆G

3

2

3

√
R2

n

∣∣∣tr(H̃flat

)∣∣∣ ∥∆WT − E [∆WT ] + ∆G∥2 +∆G⊤J +
1

2
∆G⊤H̃pen∆G,

where ∆G is a function of the trajectory. To obtain a convex optimization problem, we partially
remove the cubic root, giving

min
∆G

λC ∥∆WT − E [∆WT ] + ∆G∥2 +∆G⊤J +
1

2
∆G⊤H̃pen∆G,

where C := 3
2

3

√
R2

n

∣∣∣tr(H̃flat

)∣∣∣. Bound parameter λ here is used to compensate the “weight”

change after twisting the target: When the terms under the cubic root become smaller, the derivative
of the cubic root increases fast; but after the cubic root is removed, the derivative of the norm
becomes smaller when the term becomes smaller. Therefore, we should use large λ to emphasize
the reduction of trajectory term. The convex optimization problem has a closed form solution

∆G = −
(
2λCI + H̃pen

)−1

(2λC(∆WT − E [∆WT ]) + J). (B.5)
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Since all variables in Eq. (B.5) is a function of weights, empirical and population gradients and
Hessians, which are functions of weights, the training set and the population distribution, Eq. (B.5)
indeed specifies a function of (S, V, g1:T ,W0:T ). This omniscient trajectory is used in Theorem 2.

B.7 PROOF OF THEOREM 2

Based on Corollary B.1, Theorem 2 considers the specific omniscient trajectory defined by ∆G =
−(2λCI + H̃pen)

−1(2λC(∆WT − E [∆WT ]) + J) as Eq. (B.5). We first optimize σ given the
specific ∆G, for which we approximate the penalty for the SGLD-like trajectory to the third order.
Specifically, for the empirical part we have

∆σ2T (WT +∆G,S)

:=Eξ∼N (0,σ2TI)

[
L̂S(WT +∆G+ ξ)− L̂S(WT +∆G)

]
=Eξ

ξ⊤∇L̂S(WT +∆G) +
1

2
ξ⊤ĤS(WT +∆G)ξ +

∑
i≤j≤k

ai,j,kξiξjξj + r0


=
σ2T

2
tr
(
ĤS(WT +∆G)

)
+ Eξ [r0] .

where r0 is the residual at the third order and the coefficients ai,j,k are independent ξ. By the

assumption of Theorem 2, we have |r0| ≤ D ∥ξ∥4 and |Eξ [r0]| ≤ DE
[
∥ξ∥4

]
= Dd(d+2)σ4. One

can obtain similar results for the population loss difference, and combining the both we have

E
[
∆σ2T (WT +∆G,S)−∆σ2T (WT +∆G,S′)

]
=
σ2T

2
tr
(
ĤS(WT +∆G)−Hµ(WT +∆G)

)
+ r,

where |r| ≤ Dd(d+ 2)σ4 = O(d2σ4).

Similarly to Theorem 2 of Wang & Mao (2022), we optimize σ > 0 to balance√√√√ R2

nσ2

E
[
∥∆WT − E [∆WT ] + ∆G∥2

]
T

=:
A

σ
.

and

σ2T

2
tr
(
ĤS(WT +∆G)−Hµ(WT +∆G)

)
=: σ2B

For A,B > 0, A/σ + σ2B takes the minimum 3(A/2)2/3B1/3 at

σ∗ =(A/2B)1/3

=


√

R2

n E
[∥∥∥(I − (I + H̃pen/2λC)−1)(WT −∆WT )− (2λCI + H̃pen)−1J

∥∥∥2]
T 3/2 tr (∆H(WT +∆G))


1/3

.

(B.6)

The proof is finished by setting σ to this value and putting everything together.

B.8 DETAILS FOR SECTION 3.4

We take J := ∇(L̂S(WT )− Lµ(WT )) and sufficiently large λ > 0 so that
∣∣∣λ1(H̃pen/2λC)

∣∣∣ ≪ 1.

We assume the training is sufficient so that ∇L̂S(WT ) ≈ 0. We also assume that the initial weight
W0 is fixed.
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By applying ∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2 and approximating the penalty for the omniscient trajec-
tory to the second order, we obtain

gen(µn, PW |S)

⪅
3

2

3

√
2R2

n
E [|tr (∆H(WT +∆G))|]E

[
∥∆WT − E [∆WT ]∥2(I−(I+H̃pen/2λC)−1)2 + ∥J∥2(2λCI+H̃pen)−2

]
+ E

[
−2λC(∇L̂S(WT )−∇Lµ(WT ))

⊤(2λCI + H̃pen)
−1(∆WT − E [∆WT ])

]
+ E

[
−(∇L̂S(WT )− Lµ(WT ))

⊤(2λCI + H̃pen)
−1J

]
+ E

[
∥∆WT − E [∆WT ]∥24λ2C2(2λCI+H̃pen)−1|∆H|(2λCI+H̃pen)−1 + ∥J∥2(2λCI+H̃pen)−1|∆H|(2λCI+H̃pen)−1

]
.

By selection of λ, we have (2λCI+H̃pen)
−1 ≈ (2λCI)−1 = I/2λC and I−(I+H̃pen/2λC)−1 =

−
∑∞

k=1(−1)k(H̃pen/2λC)k ≈ H̃pen/2λC. These approximations lead to

gen(µn, PW |S)

⪅
3

2

3

√
2R2

n
E [|tr (∆H(WT +∆G))|]E

[
∥∆WT − E [∆WT ]∥2H̃pen

2/4λ2C2 + ∥J∥2 /4λ2C2
]

+ E
[
−(∇L̂S(WT )−∇Lµ(WT ))

⊤(∆WT − E [∆WT ])
]

+ E
[
−(∇L̂S(WT )− Lµ(WT ))

⊤J/2λC
]

+ E
[
∥∆WT − E [∆WT ]∥2|∆H| + ∥J∥2|∆H|/4λ2C2

]
=
3

2

3

√
2R2

n
E [|tr (∆H(WT +∆G))|]E

[
∥∆WT − E [∆WT ]∥2H̃pen

2/4λ2C2 + ∥J∥2 /4λ2C2
]

− E
[
J⊤(∆WT − E [∆WT ])

]
− E

[
∥J∥2 /2λC

]
+ E

[
∥∆WT − E [∆WT ]∥2|∆H| + ∥J∥2|∆H|/4λ2C2

]
.

The second term E
[
∇Lµ(WT )

⊤(∆WT − E [∆WT ])
]

can also be transformed to Hessian-induced
norms by exploiting the symmetry of the terminal deviation ∆WT − E [∆WT ]. To this end, ap-
proximate the population gradient ∇Lµ(WT ) at the mean terminal weight E [WT ] by ∇Lµ(WT ) ≈
∇Lµ(E [WT ]) +Hµ(E [WT ])(WT − E [WT ]). Then we have

E
[
J⊤(∆WT − E [∆WT ])

]
≈E

[
(∇L̂S(E [WT ])−∇Lµ(E [WT ]) + ∆H(E [WT ])(WT − E [WT ]))

⊤(∆WT − E [∆WT ])
]

=E
[
∥∆WT − E [∆WT ]∥2∆H(E[WT ])

]
.

Plugging this back leads to

gen(µn, PW |S)

⪅
3

2

3

√
2R2

n
E [|tr (∆H(WT +∆G))|]E

[
∥∆WT − E [∆WT ]∥2H̃pen

2/4λ2C2 + ∥J∥2 /4λ2C2
]

− E
[
∥∆WT − E [∆WT ]∥2∆H(E[WT ])

]
− E

[
∥J∥2 /2λC

]
+ E

[
∥∆WT − E [∆WT ]∥2|∆H| + ∥J∥2|∆H|/4λ2C2

]
.

The above results apply without the assumption that ∇L̂S(WT ) ≈ 0.

Using the assumption ∇L̂S(WT ) ≈ 0 leads to Eq. (3).
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B.8.1 COMPARISONS WITH SIMILAR ALIGNMENTS WITH LOCAL GEOMETRY

In Section 3.4, Theorem 2 is shown to connect with an alignment between terminal weight devia-
tions/covariance and Hessians. This is similar to the work by Wang & Mao (2024) and Wang et al.
(2021a) on the alignment and the more fine-grained structure of local geometry.

Wang & Mao (2024) provides two types of generalization bounds for discretized SDE: the trajectory-
state bound based on the statistics along the full trajectories and terminal-state bound based on the
statistics after the last step, which are separately compared below.

The trajectory-state bound focuses on the alignment between the population gradient noise co-
variance (GNC) Σµ

t (Wt) := VZ′∼µ [∇ℓ(Wt, Z
′)] that is depends on Wt and the empirical GNC

Ct(Wt, S) :=
n−b

b(n−1)Vi∼U [n] [∇ℓ(Wt, Zi)] that depends on (Wt, S). Therefore, this alignment and
ours are both alignment between weight/gradient distribution and the local geometry. They also
have the same dependence: the weight/gradient statistics are both Wt−1-dependent and the local
geometric properties are both (Wt−1, S)-dependent. Differences mainly lie in the type of geometric
properties used and how directly they reflect flatness. Wang & Mao (2024)’s trajectory-state bound
uses the inverted GNC C−1

t to capture local geometry, which is an indirect measure of flatness. By
comparing Wang & Mao (2024)’s Figure 2 and 3, one can see that their bound does not correlate
correctly with Hessian traces even along training steps. In contrast, we directly use Hessians, allow-
ing us to better leverage the flatness as required by our motivation. Their choice of C−1

t is a result of
the discretized SDE algorithm instead of bound optimization (Σµ

t is the ingredient selected in bound
optimization). Therefore, it is determined by the algorithm and it is difficult to switch to Hessians
or other statistics. Another result of the above determining is that C−1

t can only reflect the flatness
at step t instead of the flatness of terminal weights. In contrast, our alignment only involves the
flatness at terminal weights. According to the empirical results from Wang & Mao (2024)’s Figure 3
and Jastrzȩbski et al. (2019)’s Figure 2, the eigenvalues of Hessians during the middle of training are
much larger than those at terminal. Therefore, it is better to only use terminal weights, as it is in our
alignment. Regarding Wang & Mao (2024)’s terminal-state bound, both this bound and our bound
involve terminal states. Still, their bound uses the inverted weight covariance instead of Hessians to
reflect local geometries.

Wang et al. (2021a) optimize the noise in SGLD, with a new information-theoretic generalization
bound as a surrogate for real risks. They show the square root of expected GNC is greedily optimal
under their bound and use this noise to improve the optimization and generalization of SGLD and
closes the gap with SGD. Their results indicate the importance of direction and alignment of noises.
If we put their algorithms and bounds together, then the result will be very similar with Wang &
Mao (2024)’s. Therefore, our alignment has similar differences with Wang et al. (2021a) as with
Wang & Mao (2024).

Moreover, our omniscient trajectory can be seen as a surrogate algorithm, and optimizing it is very
similar to designing new algorithms with better generalization. As a result, additional similarities
and differences can be found on the goal of introducing local geometry. In Wang et al. (2021a)’s
work, before Theorem 1, the only use of local geometry is in Constraint 1 on not rising empirical
risks. Therefore, it is used to guide how to increasing noises without sacrificing the empirical risks.
In our bound, we use local geometry to guide how to pull terminal weights together/closer without
changing the losses too much. Therefore, local geometry in alignments is used to decrease infor-
mation without sacrificing losses. Regarding differences, Wang et al. (2021a) decrease information
measures by adding noises, while we do so by mapping things together/closer.

C DETAILS FOR SEC. 4 EXPERIMENTAL STUDY

C.1 HESSIAN-RELATED DETAILS

Hessian traces required by existing bounds and our bounds are computed using the PyHessian (Yao
et al., 2020) package.

The optimized omniscient trajectory in Theorem 2 requires products between an Hessian-related
inverse matrix (I + H̃pen/2λC)−1 and vectors, say, u. Since Hessians of deep models are too
large to store and compute with, it is ubiquitous to directly compute the inverse-vector product
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(iVP). For iVP, following Dagréou et al. (2024), we use conjugate gradient method that only re-
quires the product (I + H̃pen/2λC)v of the original matrix with an arbitrary vector v, which is
supplied with PyHessian (Yao et al., 2020)’s hv product. More specifically, we approximate
v such that (I + H̃pen/2λC)v = u to obtain a v̂. We run conjugate gradients until the error∥∥∥(I + H̃pen/2λC)v̂ − u

∥∥∥2 is less than 1% of ∥u∥2, or the maximum iteration 20 is reached.

C.2 BOUND ESTIMATION DETAILS

This section presents the details in estimating Eq. (2) of Theorem 2. For the randomness in weights,
we train k > 1 models independently to obtain weights W 1:k

T . To ensure the training data for each
model is I.I.D. sampled, we assume the whole training set is sampled in an I.I.D. manner, randomly
partition the whole training set into k subsets

{
Si
}k
i=1

and use Si to train W i
0:T . For fair comparison,

we then make unbiased or positively biased estimates for expectations in Eq. (2) separately and
then compute the bound using these estimates. Being concave, the cubic root will bring negative
bias. Nevertheless, this negative bias can also be found in baseline existing bounds. Moreover,
in experiments, the expectation product under the cubic root is extremely small. Therefore, this
negative bias will not influence the overall result too much and we leave it as it is for simplicity.

When optimizing the bound to obtain ∆G, we use a validation set S′′ to estimate J .

For the penalty terms, i.e., E [∆∆G(WT , S)−∆∆G(WT , S
′)] and E [tr (∆H(WT +∆G))], we

unbiasedly estimate them with the test set. The same test set is used for all weights to fully use the
data. The loss differences are directly computed by modifying the parameters and forwarding the
testing data S′ instead of approximating them.

For the flatness-optimized trajectory term, the estimate is more complicated, since we must also
estimate E [∆WT ] within the estimate and handle the matrix inverses and the population gradients
in J .

To estimate E [∆WT ] in expectations, one should use samples of WT that are independent of W i
T .

However, another draw of k weights results in further partitioning on the training set, and the data
used for each weight is much less. To fully use the data, similarly to cross validation, we estimate
the inner expectation by ∆W̄−i

T := 1
k−1

∑i′ ̸=i
i′∈[k] ∆W i′

T , which is independent of W i
T .

To avoid the population Hessian in the inverses and make estimation easier, we select H̃pen :=

ĤS(WT ). In this way, the inverses solely depend on the training data and the terminal weight, and
their interaction with the testing set is only linear, which is much more friendly to expectations.
Define E := I − (I + H̃pen/2λC)−1 and F := (2λCI + H̃pen)

−1, which only depend on (S,WT ).
Initial experiments on CIFAR-10 indicate that it is necessary to include the population gradients for
numerical tightness, and we set J := ∇L̂S(WT ) − ∇Lµ(WT ). Under these specific settings, we
will estimate

E
[∥∥∥E(∆WT − E [∆WT ])− F (∇L̂S (WT )−∇Lµ(WT ))

∥∥∥2] (C.1)

Replacing the expectation with the empirical mean and the random variables with I.I.D. copies, we
obtain an estimator of the trajectory term

1

k

k∑
i=1

∥∥∥Ei(∆W i
T −∆W̄−i

T )− F i(∇L̂Si(W i
T )−∇LS′′(W i

T ))
∥∥∥2 ,
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which is positively biased because

E

[
1

k

k∑
i=1

∥∥∥Ei(∆W i
T −∆W̄−i

T )− F i(∇L̂Si(W i
T )−∇LS′′(W i

T ))
∥∥∥2]

=
1

k

k∑
i=1

ESi,W i
T

[
E
[∥∥∥Ei(∆W i

T −∆W̄−i
T )− F i(∇L̂Si(W i

T )−∇LS′′(W i
T ))
∥∥∥2 | Si,W i

T

]]

≥1

k

k∑
i=1

ESi,W i
T

[∥∥∥E [Ei(∆W i
T −∆W̄−i

T )− F i(∇L̂Si(W i
T )−∇LS′′(W i

T )) | Si,W i
T

]∥∥∥2]

=
1

k

k∑
i=1

ESi,W i
T

[∥∥∥Ei(∆W i
T − E

[
∆W̄−i

T | Si,W i
T

]
)− F i(∇L̂Si(W i

T )− E
[
∇LS′′(W i

T ) | Si,W i
T

]
)
∥∥∥2]

=
1

k

k∑
i=1

ESi,W i
T

[∥∥∥Ei(∆W i
T − E [∆WT ])− F i(∇L̂Si(W i

T )−∇Lµ(W
i
T ))
∥∥∥2]

=E
[∥∥∥E(∆WT − E [∆WT ])− F (∇L̂S (WT )−∇Lµ(WT ))

∥∥∥2] ,
where the second step is because E

[
X⊤X

]
≥ E [X]

⊤ E [X].

Among the above estimations, the most loose step comes from the last estimation, i.e., the estimation
on the trajectory term, because other expectations are estimated unbiasedly and this expectation is
positively biased. In principle, we can estimate it unbiasedly. To see this, set A := E∆WT −
F (∇L̂S (WT )−∇Lµ(WT )) expand Eq. (C.1) as

E
[∥∥∥E(∆WT − E [∆WT ])− F (∇L̂S (WT )−∇Lµ(WT ))

∥∥∥2]
=E

[
∥A− E × E [∆WT ]∥2

]
=E

[
∥A∥2

]
− 2E

[
E [∆WT ]

⊤
E⊤A

]
+ E

[
∥E × E [∆WT ]∥2

]
=E

[
∥A∥2

]
− 2E [∆WT ]

⊤ E
[
E⊤A

]
+ E

[
∥E × E [∆WT ]∥2

]
,

which can be unbiasedly estimated one by one. However, since E involves Hessian inversion, this
unbiased estimator requires more Hessian iVPs (iHVP): Computing A requires two iHVPs, while
E⊤A and E × E [∆WT ] require another two iHVPs. As a result, the unbiased estimator requires
4k iHVPs. In contrast, the positively biased estimate only requires 2k iHVPs. Since IVPs, es-
pecially iHVPs, are extremely time-consuming, we still use the positively biased estimator in the
experiments.

C.3 TRAINING DETAILS

For both MNIST and CIFAR-10, we train k = 6 independent models from the same randomly
chosen initial weight, which means each model receives 10, 000 training samples. We use 2-layer
MLPs for MNIST as Wang & Mao (2022) while ResNet-18 for CIFAR-10. Since a bounded loss
is naturally sub-Gaussian (Xu & Raginsky, 2017), we employ cross-entropy (CE) losses capped at
12 log c for both testing and bound estimation, where c represents the class number. However, we
still use vanilla CE losses for training. As Wang & Mao (2022), we use SGD with momentum of 0.9.
The use of momentum does to violate the assumptions in Section 2.1 because each update can access
history weights to recover gradients and compute momentum. ResNet-18 models are trained for 200
epochs while 2-layer MLP models are trained for 500 epochs as Wang & Mao (2022). We start from
a base hyperparameter, where the learning rate is 0.01, the batch size is 60, and no dropout or weight
decay is used. For the 2-layer MLP, the base hidden width is 512. To enhance the generalization
of the networks on CIFAR-10 for evaluating the bounds, we use random horizontal flip and random
resized crop. This use of data augmentations does not violate the assumptions in Section 2.1, as they
can be achieved by passing in V the random seeds for the augmentations and letting gt augment the
samples using these seeds before computing the gradients.
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For single-hyperparameter variations in Figures 4 and C.5, we vary that single hyperparameter while
keeping others the same as the base. For Figures 3 and C.4, we vary the learning rate and the batch
size in a grid-search manner while keeping others the same as the base. When the learning rate is
too small or too large, or the batch size is too large, the model even cannot fit the training data well.
Therefore, we exclude the training records whose final weight has a training accuracy less than 95%.

Models are trained on 12 NVidia RTX4090D GPUs for 2 day with auto mixed precision (BF16) and
torch.compile() to save memory and increase parallelization. To ensure consistency of model
and training details with previous results, our codes are modified based on Wang & Mao (2022) with
bound estimation modules totally re-implemented.

We must remark that the test accuracy of our models on CIFAR-10 is relatively low, because each
model is trained by a one-sixth subset of CIFAR-10.

C.4 MORE EXPERIMENTAL RESULTS

C.4.1 MORE RESULTS FOR RESNET-18 ON CIFAR-10 AND MORE DISCUSSIONS

Here, we display more results of existing bounds for ResNet-18 on CIFAR-10.

From Figure C.1, we find that the trajectory term of isotropic Proposition 2 is insensitive to batch
size, which is an improvement over the incorrect tendency of Proposition 1. However, this im-
provement is only partial compared to our trajectory term that decreases as the batch size decreases.
Thanks to the flatness term that has the correct tendency w.r.t. batch size under large learning rates,
the bound also has the correct tendency w.r.t. batch size if learning rate is large enough. Compared
to this result, our bound can even better capture the generalization under all learning rates by having
a more aligned trajectory term.

Now we focus on the tendency w.r.t. learning rate. Our bound fails to fully correct the wrong
tendency of the trajectory term w.r.t. learning rate of Proposition 1 and Proposition 2. Nevertheless,
the wrong tendency seems partially corrected because the trajectory terms of existing bounds under
different learning rates are well separated in Figures 1b and C.1b, while some of those from our
bounds twist together in Figure 3b. However, this partial correction is not enough to invert the
wrong tendency, unlike the tendency w.r.t. batch size. We conjecture it is because the trajectory term
is not solely determined by flatness, but is a “product” between the Hessians and the output weight
variance (see Eq. (3)). Increasing the learning rate increases the step size, which then increases the
variance of the output weight. This increase in variance is empirically confirmed by Figure C.1b:
we display the trajectory term with σ−1 excluded in this figure. As a result, what is displayed in
this figure is proportional to the output weight variance. It clearly shows that the variance increases
as the learning rate increases. Therefore, there is a competition between the increased variance and
the improved flatness. Unfortunately, it seems that the increased variance overpowers the improved
flatness in this process and our bound fails to invert the wrong tendency w.r.t. learning rate. On the
other hand, decreasing the batch size seems to also increase the variance and we must explain why
the tendency w.r.t. batch size is fixed. The reasons is that, the variance is, in fact, very insensitive to
batch size: From Figure C.1b, we can see that the variance is almost fixed when batch size changes.
As a result, the trajectory term is dominated by the improved flatness when the batch size decreases.

Regarding the tightness improvement (mainly due to the trajectory term), Proposition 2 has a much
smaller trajectory term than Proposition 1 (∼ 10−2 v.s. ∼ 100). It mainly happens because gradi-
ents of SGD are noisy and gradients from different steps often partially cancel. In Proposition 1, the
canceled parts are counted in the trajectory term while in Proposition 2 where gradients are summed
together before taking norms, the components canceled in the trajectory indeed cancel in the trajec-
tory term and do not contribute to the bound. This improvement is pushed further by the omniscient
trajectory and the optimization under flatness (∼ 10−2 v.s. ∼ 10−8). Since Theorem 2 can be seen
as the combination of Proposition 2 and the omniscient trajectory (see Corollary B.1 and how it
connects to Proposition 2 by setting ∆G ≡ 0), the improved tightness of our bound compared to
Proposition 1 is two-folded, done by both Proposition 2 and the omniscient trajectory.
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Figure C.1: Numerical results of the isotropic version of Proposition 2 for ResNet-18 on CIFAR-10.
“(·)R” means the generalization error is rescaled.
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Figure C.2: Numerical results of Wang & Mao (2022)’s bound for 2-layer MLP on MNIST. “(·)R”
means the generalization error is rescaled.

C.4.2 RESULTS FOR 2-LAYER MLP ON MNIST

The numerical results on MNIST (LeCun et al., 1998) with the 2-layer MLP are displayed in Fig-
ures C.2 to C.5.

C.5 EXPERIMENTS OF EXISTING BOUNDS WITH POPULATION HESSIAN

In Figures 1, 4 and C.3, we have displayed results of existing bounds without population Hessians.
That is, we are computing the bounds whose (approximated) flatness term is

σ2T

2
E
[
tr
(
ĤS(WT )

)]
instead of σ2T

2 E
[
tr
(
ĤS(WT )

)
− tr (Hµ(WT ))

]
. In contrast, our bound depends heavily on pop-

ulation statistics like the mean gradient and Hessians. One may doubt whether this comparison is
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Figure C.3: Numerical results of the isotropic version of Proposition 2 for 2-layer MLP on MNIST.
“(·)R” means the generalization error is rescaled.
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Figure C.4: Numerical results of Theorem 2 with λ = 109 on MNIST and a 2-layer MLP with
varied learning rate and batch size. “(·)R” means the generalization error is rescaled.
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Figure C.5: Numerical results for a 2-layer MLP on MNIST under varied label noise level, width,
and weight decay. The isotropic version of Neu et al. (2021)’s Proposition 8 is used.

unfair due to our extra dependence on population Hessians. This is concern is amplified by the fact
that the population Hessian potentially improves the numerical tightness of existing bounds: Before
experiments, one may presume that the inclusion of population Hessian will make the bound tighter.
If one assume as Wang & Mao (2022) that Lµ(WT ) ≤ Eξ∼N (0,σ2I) [Lµ(WT + ξ)], one is essen-
tially assuming Hµ(WT ) is positive semi-definite, whose trace is non-negative. In Propositions 1
and 2, the non-negative traces are subtracted from the bound, which is tighter than the case where it
is not subtracted.

To address this concern, we also allow the existing bounds depend on the population statistics, espe-
cially the population Hessian, and evaluate these bounds in experiments. The results are surprising:
the population Hessians indeed have positive traces but their traces are magnitudes larger than the
traces of the empirical Hessians. As a result, the flatness term becomes negative. If one optimize
the bound parameter σ, one would arrive at a −∞ bound of the generalization error, which is obvi-
ously incorrect. We conjecture this is due to the second order approximation used in the expectation,
which becomes inaccurate for population loss changes under the SGLD-like noise of variance σ2TI .
This is also a drawback of existing bounds to require the large noises to decrease the impact of the
trajectory term in the σ-optimized bound. In contrast, our bound has a magnitudes smaller trajectory
term and requires magnitudes smaller noises. This is supported by empirical results in table 1, where
the value of (average) σ2

∗ (the optimal values of σt in
∑

t σ
2
t of Proposition 1, the σ in Σ = σ2TI

of isotropic Proposition 2, and the σ in σ2T in Corollary B.1 / Theorem 2) in different experiments
are presented.

To alleviate this problem, we take absolute values of the flatness terms to make them positive as in
the main results of Wang & Mao (2022) and Neu et al. (2021). That is, we now estimate the bound
with flatness term replaced by

σ2T

2

∣∣∣E [tr(ĤS(WT )
)
− tr (Hµ(WT ))

]∣∣∣ .
The population Hessian is estimated on a new validation set. After this modification, we display the
results for Propositions 1 and 2 in Figures C.6 and C.7.

Since the modification only involves the flatness term, the trajectory term is almost the same with
those in Figures 1b and C.1b of the existing bounds without the population Hessian. Therefore, we
mainly focus on the flatness term.
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l.r. and b.s. label noise width weight decay

Prop. 1 w/o pop. Hess. 15381.627× 10−9 15372.131× 10−9 19904.060× 10−9 17674.105× 10−9

Prop. 2 w/o pop. Hess. 1434.559× 10−9 1278.293× 10−9 1660.805× 10−9 1341.889× 10−9

Prop. 1 w/ pop. Hess. 6659.479× 10−9 6572.998× 10−9 9175.748× 10−9 9149.648× 10−9

Prop. 2 w/ pop. Hess. 676.226× 10−9 545.839× 10−9 767.169× 10−9 643.772× 10−9

Thm. 2 (λ = 1) 291.674× 10−9 595.630× 10−9 303.843× 10−9 307.434× 10−9

Thm. 2 (λ = 103) 4.354× 10−9 6.269× 10−9 3.866× 10−9 3.167× 10−9

Thm. 2 (λ = 109) 0.193× 10−9 0.204× 10−9 0.244× 10−9 0.167× 10−9

Table 1: The average value of σ2
∗ across bounds and experiments varying different hyperparameters.

It can be seen that our bound requires magnitudes smaller noises for the SGLD-like trajectory’s
Gaussian noises when λ is suitably selected. As a result, the distortion due to the second-order
approximation has less impact to our bound.
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Figure C.6: Numerical results of Wang & Mao (2022)’s bound with population Hessians for ResNet-
18 on CIFAR-10. “(·)R” means the generalization error is rescaled for easier tendency comparison.
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Figure C.7: Numerical results of the isotropic version of Proposition 2 with population Hessians for
ResNet-18 on CIFAR-10. “(·)R” means the generalization error is rescaled.
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Figure C.8: Numerical results of existing bounds with population Hessians for ResNet-18 on
CIFAR-10 under varied training data usage, label noise level, width, depth, and weight decay. The
tendency w.r.t. weight scaling is also added. However, the results are taken from (unbiased) MLP on
MNIST because ResNets are more complicated models and it takes time to develop a weight scaling
scheme that does not essentially change the prediction. The isotropic version of Proposition 2 (Neu
et al. (2021)’s Prop. 8) is used. If a model has a channel scaling factor of c, it means the model has
c times the number of channels at each layer compared to a standard ResNet-18.
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Figure C.9: Cross Entropy generalization gap and bounds under weight scaling of MLPs on MNIST.
Figure C.9a displays the generalization gap on all testing samples. Figure C.9b displays the gener-
alization gap on only the correctly classified testing samples. Since Figure C.9b involves negative
values, we use log-scale above 10−4 and linear scale below 10−4.

Since the subtracted population Hessian trace is magnitudes larger than the empirical Hessian, the
flatness terms with absolute value is magnitudes larger than those in Figures 1c and C.1c. This
makes the bound even looser.

When it comes to the tendency, the tendency w.r.t. batch size also becomes wrong when batch size
is large or learning rate is small. As a result, Proposition 2’s (Neu et al., 2021) partial improvement
of trajectory term w.r.t. batch size can not compensate the wrong tendency of the flatness term, and
the whole bound scales incorrectly w.r.t. batch size.

The correct tendency of the flatness term without population Hessians and the wrong tendency of
that with population Hessian indicate population Hessians have wrong tendencies when batch size
is large or the learning rate is small. This somehow points to the notion the generalization and
overfitting of higher order statistics, as the empirical Hessian has the correct tendency as shown in
Figures 1c and C.1c yet the population Hessian has the wrong tendency. Small batch size and large
learning rate seem also helpful for this higher-order generalization.

As shown in Figure C.8, when weight decay is used, the existing bounds with population Hessian
can better capture the tendency of generalization under regularization. However, when the hyper-
parameters in Figure C.8 are varied, the existing bounds with population Hessians are times looser
than those without the population Hessians.

To sum up, the existing bounds cannot fully exploit the population statistics even if we allow them
to access the validation set. Therefore, the comparison between our bound and existing bounds is
still fair, at least for existing bounds in its current form estimated after the conventional (Wang &
Mao, 2022) second-order approximation.

C.6 EXPERIMENTS ON WEIGHT SCALING

To test whether our flatness-related generalization bound captures the generalization under weight
scaling, we train homogenous two-layer MLPs whose output layer has no bias on MNIST and scale
the weights at the end as the last step of the training. The results are displayed in Figure C.9a, where
generalization gap is computed on Cross Entropy losses. In this case, our bounds with large λ can
well capture the generalization.

One would expect the generalization improves as the weight is scaled up because if most samples are
correctly classified, the generalization risk measured by Cross Entropy will be decreased by increas-
ing the “confidence”. However, since we split the training set into k = 6 subsets, the generalization
of these MLPs are in fact harmed and about 4% of testing samples are not correctly classified. As
a result, scaling the weight also increases the generalization risk on the misclassified samples. The
increase on wrongly classified samples are arguably much faster than those on correctly classified
samples, because scaling on the misclassified samples tends to infinity while scaling on the correctly
classified samples tends to zero. As a result, the generalization gap increases in Figure C.9a.

To see how our bound captures the improved generalization on correctly classified samples, we filter
the testing sets and only keep the correctly classified samples, simulating the cases where all samples
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are correctly classified. We implement this simulation using the following loss:

I[argmax
i

logitsi = y] ·min(CrossEntropy(logits, y), 12 logC)

It is sub-Gaussian and can be rigorously used by our bounds and existing bounds. The results with
this loss can be found in Figure C.9b. In Figure C.9b, when weights are scaled down, the training
loss increases and increases faster (maybe the faster increase is related to overfitting), decreasing
the gap. However, when weights are sufficiently scaled up, the generalization gap indeed decreases
with decreases with the scaling (maybe because now the training loss is almost zero its decrease
slows down). In the latter case, the bound from Wang & Mao (2022) and Neu et al. (2021) all
have weak or wrong dependency w.r.t. weight scaling. In contrast, our bound still well captures
the improved generalization in both cases, if λ is suitably selected. Our bounds even captures the
strange negative generalization. By inspecting the raw data, we find the negative value mainly comes
from the empirical part of the penalty term, indicating that the negativeness of the bound value is
not mainly due to the dependence on the validation set.

To sum up, our bounds can well capture the generalization under weight scaling in our experiments.

D PROOFS AND DETAILS FOR SEC. 5 EXTENSIONS

In this section, we present and prove the combined results of the omniscient trajectory wth existing
results to demonstrate the flexibility of the technique. The proofs generally follow those of the
existing results. But note that the omniscient and the SGLD-like trajectories may depend on random
variables more than the training set S. Since the existing results often assume the trajectory solely
depends on S, we must re-prove some of them instead of directly applying them to handle the extra
dependence. Sometimes we must rearrange the order of the steps of the original proofs to insert the
omniscient trajectory. Setting the omniscient perturbation to zero will recover the existing results,
which we will not bother to restate.

D.1 COMBINATION WITH THE INDIVIDUAL-SAMPLE TECHNIQUE

Corollary D.1 Assume ℓ(w, ·) is R-sub-Gaussian on µ for any w ∈ W . Then for any family{
∆gi1:T

}n
i=1

of omniscient perturbations and any σ1:T ∈
(
R>0

)T
, we have

gen(µn, PW |S) ≤
R

n

n∑
i=1

√
2I(W̃ i

T ;Zi) +
1

n

n∑
i=1

E
[
∆

∑
t σ

2
t

Γi
T

(WT , Zi)−∆
∑

t σ
2
t

Γi
T

(WT , S
′)
]

≤R

n

n∑
i=1

√
2I(W̃ i

T ;Zi | Z−i) +
1

n

n∑
i=1

E
[
∆

∑
t σ

2
t

Γi
T

(WT , Zi)−∆
∑

t σ
2
t

Γi
T

(WT , S
′)
]

≤R

n

n∑
i=1

√√√√ T∑
t=1

1

σ2
t

E
[∥∥gt − E [gt | Z−i]−∆git

∥∥2]
+

1

n

n∑
i=1

E
[
∆

∑
t σ

2
t

Γi
T

(WT , Zi)−∆
∑

t σ
2
t

Γi
T

(WT , S
′)
]
, (D.1)

where ∆git is a deterministic function of (S, V, g1:T ,W0:T , Z−i), and Γi
t :=

∑t
τ=1 ∆giτ .

Remark D.1 The omniscient trajectory additionally depends on i and Z−i, the two featuring ran-
dom variables of the individual-sample bounds.

Proof The crux of the individual-sample technique is to first extract the summation in the empirical
risk and change its order with the expectation, before other things like using the MI bound or building
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the auxiliary trajectories:

gen(µn, PW |S)

:=E

[
Lµ(WT )−

1

n

n∑
i=1

ℓ(WT , Zi)

]
=

1

n

n∑
i=1

E [Lµ(WT )− ℓ(WT , Zi)]

=
1

n

n∑
i=1

E
[
Lµ(W̆

i
T )− ℓ(W̆ i

T , Zi)
]
+

1

n

n∑
i=1

E
[
∆Γi

T
(WT , Zi)−∆Γi

T
(WT , S

′)
]
,

where W̆ i
t := Wt + Γi

T is the i-th omniscient trajectory. It can be seen that the omniscient penalty
term has matched that in Eq. (D.1). Thus, we will then bound the individual-sample generalization
error of the omniscient trajectories. The process is similar to the proof of Theorem 1, i.e., adding
Gaussian noises to obtain the SGLD trajectories:

1

n

n∑
i=1

E
[
Lµ(W̆

i
T )− ℓ(W̆ i

T , Zi)
]
=

1

n

n∑
i=1

E
[
Lµ(W̃

i
T )− ℓ(W̃ i

T , Zi)
]

+
1

n

n∑
i=1

E
[
∆

∑
t σ

2
t (WT + Γi

T , Zi)−∆
∑

t σ
2
t (WT + Γi

T , S
′)
]
,

where W̃ i
t := W̆ i

t +
∑t

τ=1 N
i
t , where N i

t ∼ N (0, σ2
t I) is an independent Gaussian noise. Again

we throw away the already matched penalty terms and focus on bounding the individual-sample
generalization error of the SGLD-like trajectory. To this end, we see each term in the error as the
generalization error of an algorithm that takes one sample (but stealthily samples n − 1 samples as
algorithm’s internal randomness) and apply Lemma 1:

1

n

n∑
i=1

E
[
Lµ(W̃

i
T )− ℓ(W̃ i

T , Zi)
]
=

1

n

n∑
i=1

gen(µn, PW̃ i
T |Zi

, ℓ) ≤ 1

n

n∑
i=1

√
2R2

1
I(W̃ i

T ;Zi)

≤R

n

n∑
i=1

√
2I(W̃ i

T ;Zi | Z−i).

We proceed by a similar arguments as in Theorem 1 to bound the mutual information: for any
i ∈ [n], we have

I(W̃ ;Zi | Z−i) ≤I(W̃ i
0;Zi | Z−i) +

T∑
t=1

I(W̃ i
t ;Zi | W̃ i

0:t−1, Z−i)

=

T∑
t=1

I(W̃ i
t−1 − (gt −∆git) +N i

t ;Zi | W̃ i
0:t−1, Z−i).

By instantiating Xi = Zi, Y
i = W̃ i

0:t−1,∆
i = (W0:T , V, Z−i), O

i = Z−i and

f i(Xi, Y i,∆i) = W̃ i
t−1 −

(
gt(Wt−1, (Z1, . . . , Zi−1, Zi, Zi+1, . . . , Zn), V,W0:t−2)

−∆git(S, V, g1:T ,W0:T , Z−i)
)

and applying Eq. (B.1) in Lemma B.1, for any deterministic function Ωi of solely (W̃ i
0:t−1, Z−i),

respectively, we have

I(W̃ i
t−1 − (gt −∆git) +N i

t ;Zi | W̃ i
0:t−1, Z−i) ≤

1

2σ2
t

E
[∥∥∥W̃ i

t−1 − (gt −∆git)− Ωi(W̃ i
0:t−1, Z−i)

∥∥∥2] .
Setting Ωi(w̃i

0:t−1, z−i) = w̃i
t−1 − E [gt | Z−i = z−i] leads to

I(W̃ i
t−1 − (gt −∆git) +N i

t ;Zi | W̃ i
0:t−1, Z−i) ≤

1

2σ2
t

E
[∥∥gt − E [gt | Z−i]−∆git

∥∥2] .
After putting everything together, the corollary is proved.
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D.2 COMBINATION WITH THE CMI FRAMEWORK

Conditional MI (CMI) framework (Steinke & Zakynthinou, 2020) is developed to fundamentally
solve the potential unboundedness of MI on some algorithms. CMI framework considers the fol-
lowing random process: Firstly, a supersample S̃ = Z̃1:n,0:1 ∈ Zn×2 of 2n samples are sampled as
an effective discrete “sample space”. Then, n independent indices U1:n ∈ {0, 1}n are sampled as
the discrete “sample”. The training set is constructed S := (Z̃i,Ui

)ni=1 using the supersample and
indices. CMI then bounds the generalization by how much the output reveals the indices given the
supersample. We can combine the omniscient trajectory with CMI framework and give the following
result:

Corollary D.2 Assume ℓ(w, ·) is R-sub-Gaussian on µ for any w ∈ W . Then for any omniscient
trajectory ∆g1:T that additionally depends on (S̃, U), and any σ1:T ∈

(
R>0

)T
, we have

gen(µn, PW |S) ≤2

√
2R2

n
I(W̃T ;U | S̃) + E

[
∆

∑
t σ

2
t

ΓT
(WT , Zi)−∆

∑
t σ

2
t

ΓT
(WT , S

′)
]

≤2

√√√√R2

n

T∑
t=1

1

σ2
t

E
[∥∥∥gt − E

[
gt | S̃

]
−∆gt

∥∥∥2]
+ E

[
∆

∑
t σ

2
t

ΓT
(WT , Zi)−∆

∑
t σ

2
t

ΓT
(WT , S

′)
]
,

where ∆gt is a deterministic function of (S, V, g1:T ,W0:T , S̃, U).

Remark D.2 The omniscient perturbation additionally depends on (S̃, U), which are the featuring
random variables of CMI bounds.

Proof After paying the penalties for changes of trajectories, we can focus on bounding the general-
ization error on the SGLD-like trajectory. With the omniscient trajectory depending on (S̃, U), the
distribution of the SGLD-like trajectory is determined by PW̃0:T |S̃,U . We will apply the following
re-proved CMI bound that handles the extra dependence on (S̃, U) of W̃T :

E
[
Lµ(W̃T )− L̂S(W̃T )

]
= 2E

[
L̂S̃(W̃T )− L̂S(W̃T )

]
=2ES̃

[
E
[
L̂S̃(W̃T )− L̂S(W̃T ) | S̃

]]
= 2ES̃

[
gen(PU , PW̃T |U,S̃) | S̃

]
≤2ES̃

[√
2R2

n
I(W̃T ;U | S̃ = S̃) | S̃

]
(Lemma 1)

≤2

√
2R2

n
ES̃

[
I(W̃T ;U | S̃ = S̃)

]
= 2

√
2R2

n
I(W̃T ;U | S̃),

where the first step is because

E
[
L̂S̃(W̃T )− L̂S(W̃T )

]
=E

[
1

n

n∑
i=1

1

2

(
L̂Z2(i−1)+Ui

(W̃T ) + L̂Z2(i−1)+1−Ui
(W̃T )

)
− 1

n

n∑
i=1

L̂Z2(i−1)+Ui
(W̃T )

]

=
1

2
E

[
1

n

n∑
i=1

L̂Z2(i−1)+1−Ui
(W̃T )− L̂S(W̃T )

]
=

1

2
E
[
Lµ(W̃T )− L̂S(W̃T )

]
.

The following steps are similar to the proof of Theorem 1 and Corollary D.1, including an
application of the chain rule to the conditional MI and an application of Lemma B.1, where
X = S, Y = W̃0:t−1 O = (W0:T , V, S̃, U) and Ω = W̃t − E

[
gt | S̃

]
.
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D.3 COMBINATION WITH NEGREA ET AL.(2019)’S SGLD BOUND

To state Corollary D.3, we need extra notations. For an array a1:l of length l and a list U ∈ [l]k of
indices, define aU := (aUi

)ki=1. For two lists of non-repeated indices U1 ∈ Nk1 and U2 ∈ Nk2 , let
U1 \ U2 be the list of indices that can be found in U1 but not in U2, ordered as in U1. Let U1 ∩ U2

be their intersection ordered as in U1.

Corollary D.3 Assume ℓ(w, ·) is R-sub-Gaussian on µ for any w ∈ W . Assume the following
specific form for the algorithm:

• The randomness V = B1:T , where Bt ∈ [n]b specifies the samples in the b-sized batch at
step t with no repeated entries;

• The update function can be written as

gt(Wt−1, S, V,W0:t−2) = ∇̄L̂SBt
(Wt−1),

where ∇̄ stands for samplewisely clipped gradient operator (i.e., compute gradients for
each sample, clip and then average).

Let U ∈ [n]m be the result of m uniform (over the remaining indices) sample indices without
replacement in [n], independent of previous random variables. Define

ξt :=
b− |U ∩Bt|

b

(
∇̄L̂SBt\U

(Wt−1)− ∇̄L̂SU
(Wt−1)

)
to be the gradient incoherence. For omniscient trajectories defined by bounded ∆g1:T that addition-
ally depends on U , then we have

gen(µn, PW |S) ≤

√√√√ R2

n−m

T∑
t=1

1

σ2
t

E
[
∥ξt −∆gt∥2

]
+ E

[
∆

∑
t σ

2
t

ΓT
(WT , S

c
U )−∆

∑
t σ

2
t

ΓT
(WT , S

′)
]
.

Corollary D.3 is an application of the following more general result:

Corollary D.4 Assume ℓ(w, ·) is R-sub-Gaussian on µ for any w ∈ W . Assume samples have no
interactions in updates in the following sense:

• The randomness V in the update is V = B1:T , where Bt ∈ [n]b specifies the samples in
the b-sized batch at step t with no repeated entries;

• The update function can be written as

gt(Wt−1, S, V,W0:t−2) = pt(Wt−1, SBt
,W0:t−2),

where pt : W ×
⋃∞

i=0 Zi ×Wt−1 → W is defined by

pt(wt−1, s, w0:t−2) :=

{
0 |s| = 0,
1
|s|
∑|s|

i=1 ft(wt−1, si, w0:t−2) |s| > 0,

and ft : W ×Z ×Wt−1 → W is a deterministic function.

Also, let U ∈ [n]m be the result of m uniform (over the remaining indices) sam-
ples without replacement in [n], independent of previous random variables. Lastly, as-
sume that given (U, SU , S

c
U , V, W̃0:t−1), then pt(Wt−1, SBt

,W0:t−2), pt(Wt−1, SU ,W0:t−2) and
pt(Wt−1, SBt∩U ,W0:t−2) all have bounded second moments (e.g., by samplewise gradient clip-
ping).

Define

ξt :=
b− |U ∩Bt|

b

(
pt(Wt−1, SBt\U ,W0:t−2)− pt(Wt−1, SU ,W0:t−2)

)
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to be the gradient incoherence. For omniscient trajectories defined by ∆g1:T that additionally de-
pend on U , if ∆gt also satisfies the above conditional bounded second moments (e.g., bounded in
value), then we have

gen(µn, PW |S) ≤

√√√√ R2

n−m

T∑
t=1

1

σ2
t

E
[
∥ξt −∆gt∥2

]
+ E

[
∆

∑
t σ

2
t

ΓT
(WT , S

c
U )−∆

∑
t σ

2
t

ΓT
(WT , S

′)
]
.

Remark D.3 The omniscient trajectory additionally depends on U and then ξt, the two featuring
random variables of Negrea et al. (2019)’s SGLD bound.

Proof In this proof, we combine Theorem 2.4 and Theorem 3.1 of Negrea et al. (2019) with our
technique. As Negrea et al. (2019), let Sc

U := S(1,2,...,n)\U . Due to extra dependence on (U, V )
of the omniscient trajectory, the SGLD-like trajectory is determined by PW̃0:T |(U,S,V ), violating the
assumptions Negrea et al. (2019)’s Theorem 2.4. Therefore we must re-prove this data-dependent
prior bound, during which we insert the auxiliary trajectories:

gen(µn, PW |S) = E
[
Lµ(WT )− L̂Sc

U
(WT )

]
= E

[
Lµ(W̃T )− L̂Sc

U
(W̃T )

]
+ E

[
∆

∑
t σ

2
t

ΓT
(WT , S

c
U )−∆

∑
t σ

2
t

ΓT
(WT , S

′)
]
,

where the first equality is because given (S,WT ), L̂Sc
U
(WT ) is an unbiased estimator on the em-

pirical loss. With the penalty term matching with the statement of the corollary, we focus on the
generalization error of the SGLD-like trajectory, which can be bounded by

E
[
Lµ(W̃T )− L̂Sc

U
(W̃T )

]
= EU,SU ,V

[
E
[
Lµ(W̃T )− L̂Sc

U
(W̃T ) | U, SU , V

]]
=EU,SU ,V

[
gen(µn−m, PW̃T |U,Sc

U ,SU ,V )
]

≤EU,SU ,V

[√
2R2

n−m
I(W̃T ;Sc

U | U = U, SU = SU , V = V )

]
. (Lemma 1)

By the “golden formula” of MI (Eq.(8.7) of Csiszár & Körner (2011)), for any data-dependent prior
QW̃ ′

0:T
(u, su, v) over WT+1 under the Definition 2.1 of Negrea et al. (2019), we have

E
[
Lµ(W̃T )− L̂Sc

U
(W̃T )

]
≤ EU,SU ,V

[√
2R2

n−m
ESc

U |U,SU ,V

[
DKL

(
PW̃T |U,SU ,Sc

U ,V ∥ QW̃ ′
T
(U, SU , V )

)]]

Now we turn to bound the KL divergence given any realization (u, su, s
c
u, v) of the conditioned

variables. We restrict the data-dependent prior to have the same distribution as the real distribution
for W̃0, i.e., PW̃0|u,su,scu,v

= PW̃0
= QW̃ ′

0
(u, su, v). By Proposition 2.6 of Negrea et al. (2019), we

have

DKL

(
PW̃0:T |u,su,scu,v

∥ QW̃T
(u, su, v)

)
≤ DKL

(
PW̃0:T |u,su,scu,v

∥ QW̃ ′
0:T

(u, su, v)
)

≤
T∑

t=1

EW̃0:t−1∼PW̃0:t−1|u,su,scu,v

[
DKL

(
PW̃t|W̃0:t−1,u,su,scu,v

∥ QW̃ ′
t |W̃0:t−1

(u, su, v)
)]

(D.2)

We fix a condition c = (u, su, s
c
u, v, w̃0:t−1) and turn to bound the KL divergences in the above

expectation. We also instantiate the data-dependent prior to the prior designed by Negrea et al.
(2019) for SGLD, which uses samples in SU to predict the update using Bt and the error between
the predicted and the true update eventually becomes the trajectory term. In their proof for SGLD,
the prediction is made at the latest weight of the SGLD algorithm, which is not an auxiliary but the
original trajectory and is directly accessible from the condition. However, in our case, we have the
latest step of the SGLD-like trajectory in the condition, which is not the original SGD weight but

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

corresponds to many Wt−1 or W̆t−1 on the SGD or the omniscient trajectory, since the SGLD-like
trajectory is constructed by adding Gaussian noises to the omniscient trajectory. Directly predicting
and comparing gradients at the SGLD-like trajectory will make the final result related to the SGLD-
like trajectory. Switching back using local smoothness along the trajectory will result in a “local
gradient sensitivity” term as Neu et al. (2021) that accumulates very fast along the training process
(Wang & Mao, 2022). The ideal adapted proof would be tracing back to the SGD weight Wt−1 that
leads to the SGLD weight in the condition, making predictions based on the SGD weight Wt−1,
and comparing it with the update gt(Wt−1) on the SGD trajectory, followed by averaging over the
distribution of Wt−1 given the SGLD-like trajectory weight. This intuition suggests a coupling by
Wt−1 between the true and the predicted update, which reminds us of a lemma by Neu et al. (2021):

Lemma D.1 (Lemma 4 of Neu et al. (2021)) Let X and Y be random variables taking values in
Rd with bounded second moments and let σ > 0. Letting ϵ ∼ N (0, σ2I) be independent of (X,Y ),
the KL divergence between the distributions of X + ϵ and Y + ϵ is bounded as

DKL (PX+ϵ ∥ PY+ϵ) ≤
1

2σ2
E
[
∥X − Y ∥2

]
,

where the expectation is taken over any joint distribution with any coupling between X and Y as
long as the marginals are still PX , PY , respectively.

The arbitrariness of the coupling allows a specific one through Wt−1. Therefore, we turn to construct
the coupling of the data-dependent prior.

Since the coupling involves multiple random variables, it must start from a joint distribution. For
any condition (u, su, s

c
u, v, w̃0:t−1), let QM0:T ,M̆t,M̆ ′

t,M̃t,M̃ ′
t|u,su,scu,v,w̃0:t−1

be the joint distribution

over W5 given by the Markov chain M0:T → (M̆t, M̆
′
t) → (M̃t, M̃

′
t), where M0:T is sampled from

PW0:T |u,su,scu,v,w̃0:t−1
and

M̆t :=w̃t−1 − (gt(Mt−1, s, v,M0:t−2)−∆gt(s, v, g1:T ,M0:T , u)),

M̆ ′
t :=w̃t−1 −

(
|ut|
b

pt(Mt−1, sut
,M0:t−2) +

b− |ut|
b

pt(Mt−1, su,M0:t−2)

)
, (D.3)

M̃t =M̆t +N ′
t , M̃

′
t = M̆ ′

t +N ′
t ,

where jt := j ∩ bt is the samples in j contained in the current batch, N ′
t ∼ N (0, σ2

t I) is in-
dependent of other random variables in the random process defining Q. By assumption, terms
defining M̆t and M̆ ′

t have bounded second moments, resulting in the boundedness of their sec-
ond moments. It can be easily verified that the marginal distribution QM̃t|c = PW̃t|c. More-
over, all used samples in Eq. (D.3) are contained in SU . As a result, the marginal distribution of
M ′

t is independent of Sc
U . Therefore, by setting the data-dependent prior QW̃ ′

t |W̃0:t−1
(u, su, v) =

QM̃ ′
t|u,su,(scu)′(u,w̃0:t−1,su,v),v,w̃0:t−1

, where (scu)
′(·) is a function that outputs some (conditionally)

supported realization of Sc
U , we have QW̃ ′

t |W̃0:t−1
(u, su, v) = QM̃ ′

t|c
. With the help of this coupling
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and Lemma D.1, we can bound the KL divergence in Eq. (D.2) by

DKL

(
PW̃t|c ∥ QW̃ ′

t |W̃0:t−1
(u, su, v)

)
= DKL

(
QM̃t|c ∥ QM̃ ′

t|c

)
=DKL

(
QM̆t+N ′

t|c
∥ QM̆ ′

t+N ′
t|c

)
≤ 1

2σ2
t

E(M̆t,M̆ ′
t)∼QM̆t,M̆

′
t|c

[∥∥∥M̆t − M̆ ′
t

∥∥∥2] (Lemma D.1)

=
1

2σ2
t

EQ

[∥∥∥∥gt(Mt−1, s, v,M0:t−2)−∆gt(s, v, g1:T ,M0:T , u)

−
(
|ut|
b

pt(Mt−1, sut
,M0:t−2) +

b− |ut|
b

pt(Mt−1, su,M0:t−2)

)∥∥∥∥2 | c

]
Eq. (D.3)

=
1

2σ2
t

EP

[∥∥∥∥gt(Wt−1, s, v,W0:t−2)−∆gt(s, v, g1:T ,W0:T , u)

−
(
|ut|
b

pt(Wt−1, sut
,W0:t−2) +

b− |ut|
b

pt(Wt−1, su,W0:t−2)

)∥∥∥∥2 | c

]

=
1

2σ2
t

E
[
∥ξt −∆gt∥2 | c

]
,

where the penultimate step is because, by construction, we have QM0:T |c = PW0:T |c.

After plugging everything together, interchanging the order of the expectation and the square root
by the latter’s concavity, and putting expectations together, the corollary is obtained.

D.4 GENERALIZATION OF STABLE ALGORITHMS AND GD ON CLB PROBLEMS

Theorem 3 Assume n, d ∈ N+, L,D > 0 and η > 0, T ∈ N+. Assume the algorithm starts from a
fixed initialization W0 := w0 ∈ W and the whole trajectory remains within W , i.e., W0:T ∈ WT+1.
For any CLB problem (W,Z, ℓ) ∈ CL,D and any data distribution µ ∈ M1(Z), we have the
following data-dependent and -agnostic bounds that recover stability bounds:

gen(µn, PW |S)

≤ inf
∆G1:n

LD

n

n∑
i=1

√
2I (WT +∆Gi;Zi | Z−i) +

1

n

n∑
i=1

E [∆∆Gi(WT , Zi)−∆∆Gi(WT , S
′)]

≤ 2L

n

n∑
i=1

E [∥WT − E [WT | Z−i]∥] .

If the algorithm is a GD algorithm using projected subgradients of step size η and step count T , we
have

gen(µn, PW |S) ≤ 8L2
√
Tη +

8L2Tη

n
.

Therefore, we have the following worst-case generalization error bound for CLB and GD:

sup
(W,Z,ℓ)∈CL,D

sup
µ∈M1(Z)

gen(µn, P
GDn,η,T

W |S ) ≤ 8L2
√
Tη +

8L2Tη

n
.

Proof Let (W,Z, ℓ) ∈ CL,D be an SCO problem and µ ∈ M1(Z) be a distribution of samples.
Therefore, the sample loss ℓ, the empirical loss L̂S(·) and the population loss L̂S(·) are L-Lipschitz
w.r.t. the weight and W is bounded with a diameter D and convex. Let W0:T be the trajectory given
by GD, where Wt ∈ W .

The proof essentially resembles the uniform stability argument of Bassily et al. (2020) through the
superior expressivity added to the MI bounds by the omniscient trajectory. Since uniform stability
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considers replacing one sample in the training set, we need to focus on one sample instead of the
entire training set. To keep other samples “unchanged” in the replacement, we also need to condition
on other samples. Therefore, we will start from the “individual sample” technique (Bu et al., 2020).
This observation motivates us to use Corollary D.1. However, losses in CLB problems are not
sub-Gaussian in general. Therefore, we need variants similar to Theorem 11 of Haghifam et al.
(2023) that replaces sub-Gaussianity with Lipschitzness and boundedness. By repeating the proof
of Corollary D.1 but with Theorem 11 of Haghifam et al. (2023) instead of Lemma 1, we obtain

gen(µn, PW |S) ≤
LD

n

n∑
i=1

√√√√2I

(
WT +

T∑
t=1

∆git;Zi | Z−i

)

+
1

n

n∑
i=1

E
[
∆Γi

T
(WT , Zi)−∆Γi

T
(WT , S

′)
]
, (D.4)

where
{
∆gi1:T

}n
i=1

is a family of omniscient perturbations, which moves the terminal within W ,
i.e., WT + Γi

T ∈ W .

Remark D.4 The SGLD-like trajectory is not used in this proof. This is because the SGLD-like
trajectory is used only to bound the MI of the omniscient trajectory. As one will see later, the
omniscient trajectory in this proof has a very special form (constant) with a trivial MI bound (0). As
a result, an MI bound through the SGLD-like trajectory is no longer needed.

This proof proceeds by bounding the penalty terms in Eq. (D.4) with the help of the inherited Lips-
chitzness of ℓ in the empirical and the population loss:∣∣∣∆Γi

T
(WT , Zi)

∣∣∣ := ∣∣∣L̂Zi
(WT + Γi

T )− L̂Zi
(WT )

∣∣∣ ≤ L
∥∥Γi

T

∥∥ ,∣∣∣E [∆Γi
T
(WT , S

′)
]∣∣∣ := ∣∣E [Lµ(WT + Γi

T )− Lµ(WT )
]∣∣ ≤ LE

[∥∥Γi
T

∥∥] .
Therefore, we have the following bound for the penalty terms:∣∣∣∣∣ 1n

n∑
i=1

E
[
∆Γi

T
(WT , Zi)−∆Γi

T
(WT , S

′)
]∣∣∣∣∣ ≤ 2L

n

n∑
i=1

E
[∥∥Γi

T

∥∥] .
Plugging this bound to Eq. (D.4) leads to

gen(µn, PW |S) ≤
LD

n

n∑
i=1

√
I(WT + Γi

T ;Zi | Z−i) +
2L

n

n∑
i=1

E
[∥∥Γi

T

∥∥] .
By setting ∆git = E [gt | Z−i] − gt, we have WT + Γi

T = E [WT | Z−i]. By convexity of W and
that WT ∈ W , we have WT +Γi

T ∈ W . Notably, given Z−i, WT +Γi
T is constant regardless of Zi.

Therefore, we have I(WT + Γi
T ;Zi | Z−i) = 0 and

gen(µn, PW |S) ≤
2L

n

n∑
i=1

E
[∥∥Γi

T

∥∥] . (D.5)

Note that E [∥WT − E [WT | Z−i]∥ | Z−i] is the expected distance to the center given Z−i. By
Corollary A.1, this value is smaller than E [∥WT −W ′

T ∥ | Z−i], where W ′
T is the terminal weight

trained by the same Z−i and an independently sampled i-th sample.

Now we turn to GD. By Theorem 3.2 of Bassily et al. (2020), given Z−i, ∥WT −W ′
T ∥ of GD has a

data-agnostic upperbound 4L
√
Tη + 4LTη

n . Plugging this bound, we obtain

gen(µn, PW |S) ≤
2L

n

n∑
i=1

EZ−i
[E [∥WT − E [WT | Z−i]∥ | Z−i]]

≤2L

n

n∑
i=1

EZ−i [E [∥WT −W ′
T ∥ | Z−i]]

≤8L2
√
Tη +

8L2Tη

n
.
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Remark D.5 Although adding the omniscient trajectory can address the limitation of representative
information-theoretic bounds on CLB problems, we currently do not know whether it is exactly our
technique that makes it happen. This is because, between the Gaussian-perturbed individual-sample
(C)MI bound considered by Haghifam et al. (2023) and the omniscient bound, there exist bounds
derived by non-isotropic Gaussian perturbations, bounds by non-Gaussian but general independent
perturbations, and bounds by general weight-dependent perturbations (Rate-Distortion bounds (Se-
fidgaran et al., 2022)). It is possible some of these bounds can already address the limitation but
we have not obtained any positive or negative results for them before the submission deadline. Nev-
ertheless, our technique makes the proof extremely simple and without it the proof will be at least
much longer. For example, it will be harder to make the (conditional) MI diminish without knowing
Z−i.

D.5 EXTENSION TO ϵ-LEARNERS ON CLB PROBLEMS

Attias et al. (2024) has found that any ϵ-learners have at least Ω(1/ϵ) CMI on CLB problems,
indicating a CMI-accuracy trade-off. Here, a learning algorithm is an ϵ-learner is for CLB problem
(W,Z, ℓ) if fir every data distribution µ over Z , the excess generalization risk of the algorithm is at
most ϵ.

Our Theorem 3 and its proof have given an intuitive alternative to the trade-off: although ϵ-learners
have large CMI themselves, they are quite close to learners with low CMI. However, Theorem 3
assumes GD or stable algorithms, yet Attias et al. (2024)’s trade-off covers more general algorithms.
Therefore, we explore whether our technique and alternative can extend to more (expectation-)ϵ-
learners in Theorem 4. It states our technique can indeed extends to more ϵ-learners under some
assumptions. It also states if one sees the omniscient trajectory augmented MI as a new information
measure, then the information-accuracy trade-off no longer holds because both can vanish as n →
∞. However, the result is still partial and preliminary, because we only covers ϵ-learners that are
also O(ϵ)-optimizers, i.e., they are “well-behaved” in the sense that its excess optimization error is
not too large compared to the excess generalization error ϵ. Nevertheless, we believe this assumption
is rather gentle.

Theorem 4 Assume d ∈ N+, L,D > 0 and let (W,Z, ℓ) ∈ CL,D be a CLB problem. Assume for
any w ∈ W and z ∈ Z , we have ℓ(w, z) ∈ [−LD,+LD]. If not, shift the loss functions, which does
not affect the excess generalization risks or the excess optimization errors.

Let ϵ be a function of sample number n. Let {An : Zn → W} be a family of expectation-ϵ-
learners for (W,Z, ℓ). That is, for sufficiently large n, for every distribution µ over Z , one has
ES∼µn [Lµ(A(S))] − infw∈W Lµ(w) ≤ ϵ. Assume n ∈ N+ is large enough so that ϵ bounds the
excess generalization risk.

Assume An is also an O(ϵ)-optimizer. That is, An has an excess optimization error

ES∼µn

[
L̂S(An(S))− infw L̂S(w)

]
≤ O(ϵ), then we have

gen(µn, PW |S) ≤ inf
{∆Gi}n

i=1

LD

n

n∑
i=1

√
2I (W +∆Gi;Zi | Z−i) +

1

n

n∑
i=1

E [∆∆Gi(W,Zi)−∆∆Gi(W,S′)]

≤O(ϵ) +O

(
LD√
n

)
,

where
{
∆Gi

}n
i=1

is a family of omniscient perturbations that additionally depend on i and Z−i.
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Proof After repeating the initial steps of the proof and obtaining Eq. (D.4)

gen(µn, PW |S) ≤
LD

n

n∑
i=1

√
2I (W +∆Gi;Zi | Z−i)

+
1

n

n∑
i=1

E [∆∆Gi(W,Zi)−∆∆Gi(W,S′)]

≤ LD

n

n∑
i=1

√
2I (W +∆Gi;Zi | Z−i) +

1

n

n∑
i=1

E
[∣∣∣L̂S(W +∆Gi)− L̂S(W )

∣∣∣]
+

1

n

n∑
i=1

E
[∣∣Lµ(W +∆Gi)− Lµ(W )

∣∣] ,

we turn to the construction of the omniscient trajectory.

After applying a similar omniscient perturbation ∆Gi := E [W | Z−i] − W as in the proof of
Theorem 3, we have

gen(µn, PW |S) ≤
LD

n

n∑
i=1

√
2I (E [W | Z−i] ;Zi | Z−i) +

1

n

n∑
i=1

E
[∣∣∣L̂S(E [W | Z−i])− L̂S(W )

∣∣∣]
+

1

n

n∑
i=1

E [|Lµ(E [W | Z−i])− Lµ(W )|]

=
1

n

n∑
i=1

E
[∣∣∣L̂S(E [W | Z−i])− L̂S(W )

∣∣∣]+ 1

n

n∑
i=1

E [|Lµ(E [W | Z−i])− Lµ(W )|] .

(D.6)

We first bound the population loss difference by applying Lemma A.3 to the difference with convex
f(w) = Lµ(w)− Lµ(w

∗) ≥ 0, where w∗ is the weight with optimal generalization risk:

E [|Lµ(E [W | Z−i])− Lµ(W )|] =EZ−i [E [|(Lµ(E [W | Z−i])− Lµ(w
∗))− (Lµ(W )− Lµ(w

∗))| | Z−i]]

≤2EZ−i [E [f(W ) | Z−i]]

=2(E [Lµ(W )]− Lµ(w
∗))

≤2ϵ.

Now we bound the empirical loss difference. Let w∗
s be the empirical loss minimizer of training set

s. The main difficulty is that different W corresponds to different S, and one cannot find an f to be
L̂S(·)−L̂S(w

∗
S) and L̂S′(·)−L̂S′(w∗

S′) at the same time. Fortunately, with the individual technique,
we can put weights corresponding to Z−i together. Most of their training set is the same, while the
only different sample only contributes 1/n of the loss, which vanishes as n → ∞. Therefore, we
have

E
[∣∣∣L̂S(E [W | Z−i])− L̂S(W )

∣∣∣] =EZ−i

[
E
[∣∣∣L̂S(E [W | Z−i])− L̂S(W )

∣∣∣ | Z−i

]]
,
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where

E
[∣∣∣L̂S(E [W | Z−i])− L̂S(W )

∣∣∣ | Z−i

]
≤n− 1

n
E
[∣∣∣L̂Z−i

(E [W | Z−i])− L̂Z−i
(W )

∣∣∣ | Z−i

]
+

1

n
E
[∣∣∣L̂Zi

(E [W | Z−i])− L̂Zi
(W )

∣∣∣ | Z−i

]
(Lipschitzness and boundedness of CLB problems)

≤n− 1

n
E
[∣∣∣L̂Z−i(E [W | Z−i])− L̂Z−i(W )

∣∣∣ | Z−i

]
+

LD

n

(Lemma A.3 with convex f(w) := L̂Z−i
(w)− L̂Z−i

(w∗
Z−i

) ≥ 0)

≤n− 1

n
· 2E [f(W ) | Z−i] +

LD

n

≤n− 1

n
· 2E

[
L̂Z−i

(W )− L̂Z−i
(w∗

Z−i
) | Z−i

]
+

LD

n( 1
n
E
[
L̂Zi

(W )− L̂Zi
(w∗

Zi
) | Z−i

]
≥ 0
)

≤2E
[
L̂S(W )−

(
n− 1

n
L̂Z−i

(w∗
Z−i

) +
1

n
L̂Zi

(w∗
Zi
)

)
| Z−i

]
+

LD

n

Taking expectation over Z−i leads to

E
[∣∣∣L̂S(E [W | Z−i])− L̂S(W )

∣∣∣] ≤2E
[
L̂S(W )

]
− 2

(
n− 1

n
E
[
L̂Sn−1

(w∗
Sn−1

)
]
+

1

n
E
[
L̂Z(w

∗
Z)
])

+
LD

n
,

(D.7)

where Sn−1 ∼ µn−1. We need to relate n−1
n E

[
L̂Sn−1

(w∗
Sn−1

)
]
+ 1

nE
[
L̂Z(w

∗
Z)
]

to E
[
L̂S(w

∗
S)
]
.

We can bound 1
nE
[
L̂Z(w

∗
Z)
]

by LD
n again by the assumption that losses are bounded in

[−LD,+LD], leaving n−1
n E

[
L̂Sn−1

(w∗
Sn−1

)
]

and E
[
L̂S(w

∗
S)
]
, which somehow forms the sta-

bility of the empirical loss minimizer. Since (projected) GD with fixed initialization is proved to be
stable and is proved to approximate the empirical minimizer, we use (projected) GD to bridge the
empirical minimizers.

According to Orabona (2020) and Eq.(1) of Haghifam et al. (2023), on CLB problems, (projected)
GD algorithm GDη,T : Z∗ → W with step size η and step count T and a fixed initialization has
an excess optimization error D2

2ηT + (log T+2)ηL2

2 . As a result, we can approximate the empirical
minimizers using GDs with errors∣∣∣E [L̂Sn−1

(w∗
Sn−1

)
]
− E

[
L̂Sn−1

(GDηn−1,Tn−1
(Sn−1))

]∣∣∣ ≤ D2

2ηn−1Tn−1
+

(log Tn−1 + 2)ηn−1L
2

2
,∣∣∣E [L̂S(w

∗
S)
]
− E

[
L̂Sn

(GDηn,Tn
(S))

]∣∣∣ ≤ D2

2ηnTn
+

(log Tn + 2)ηnL
2

2
.

We assign ηn−1 = ηn, Tn−1 = Tn and select them suitably as in Haghifam et al. (2023)’s Eq.(3),
which bounds the approximation errors by O(LD/

√
n) at the same time:∣∣∣E [L̂Sn−1(w

∗
Sn−1

)
]
− E

[
L̂Sn−1

(GDηn,Tn
(Sn−1))

]∣∣∣ ≤O

(
LD√
n

)
,∣∣∣E [L̂S(w

∗
S)
]
− E

[
L̂Sn

(GDηn,Tn
(S))

]∣∣∣ ≤O

(
LD√
n

)
.

We then need to relate E
[
L̂Sn−1

(GDηn,Tn
(Sn−1))

]
and E

[
L̂Sn

(GDηn,Tn
(S))

]
, which is the

removal-based stability of GD. To this end, for each sn−1, we construct an artificial sample zSn−1
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such that

ℓ(w, zSn−1
) := L̂Sn−1

(w),

and denote S+
n−1 := Sn−1 ∪

{
zSn−1

}
. By construction, we have L̂S+

n−1
(w) = L̂Sn−1

(w) for any

w ∈ W , i.e., the optimizations using Sn−1 and S+
n−1 happen on the same loss landscape. Since

GD relies on (sub-)gradients and thus only relies on loss landscape, we have GDηn,Tn(Sn−1) =
GDηn,Tn

(S+
n−1). If we pair Sn−1 and Sn, then S+

n−1 and Sn only differs by only one sample,
allowing us to apply the replacement-based uniform stability for GD on CLB from Bassily et al.
(2020): ∣∣∣E [L̂Sn−1

(GDηn,Tn
(Sn−1))

]
− E

[
L̂Sn

(GDηn,Tn
(S))

]∣∣∣
≤ESn−1

[∣∣∣L̂Sn−1
(GDηn,Tn

(Sn−1))− L̂Sn
(GDηn,Tn

(S))
∣∣∣ | Sn−1

]
≤L · ESn−1 [∥GDηn,Tn(Sn−1)− GDηn,Tn(S)∥ | Sn−1]

≤L · ESn−1

[∥∥GDηn,Tn
(S+

n−1)− GDηn,Tn
(S)
∥∥ | Sn−1

]
≤O

(
L2
√

Tnηn +
L2Tnηn

n

)
.

With the same selection of (Tn, ηn), the above difference can be bounded by O
(

LD√
n

)
.

As a result, Eq. (D.7) can be bounded by

E
[∣∣∣L̂S(E [W | Z−i])− L̂S(W )

∣∣∣]
≤2

(
E
[
L̂S(W )

]
− n− 1

n
E
[
L̂S(w

∗
S)
])

+O

(
LD

n

)
+O

(
LD√
n

)
≤2
(
E
[
L̂S(W )

]
− E

[
L̂S(w

∗
S)
])

+O

(
LD

n

)
+O

(
LD√
n

)
≤2 ·O(ϵ) +O

(
LD

n

)
+O

(
LD√
n

)
.

Plugging everything back to Eq. (D.6) finishes the proof.

D.6 EXTENSION TO SGD AND SMOOTH LOSSES

In this subsection, we apply our technique to SGD under smooth losses. We will prove an omniscient
information-theoretic bound and then show it recovers some existing stability-based bounds.

To prove the omniscient bound, we need a basic form of information-theoretic bounds like Lemma 1
and Theorem 11 of Haghifam et al. (2023). This is done by results from Lemma D.2 to Corol-
lary D.5. After that, we make the basic bound omniscient in Theorem 5. Finally, we bound the
omniscient bound by the stability-based bound in Proposition 3.

Lemma D.2 (2-Wasserstain Distance Generalization Bound under Smoothness) Assume for
any sample z ∈ Z , ℓ(·, z) is non-negative, differentiable in Rd and β-smooth, i.e., for any
w,w′ ∈ Rd

∥∇ℓ(w, z)−∇ℓ(w′, z)∥ ≤ β ∥w − w′∥ .
Then we have the following 2-Wasserstain-based information-theoretic (individual-sample) bound:

gen(µn, PW |S) ≤
β

γ
E
[
L̂S(W )

]
+

β + γ

2n

n∑
i=1

EZi

[
W2

(
PW |Zi

, PW

)]
,

where γ > 0 is a constant, and W2 (·, ·) denotes 2-Wasserstein distance, the optimal transport
measured by squared L2 norm.
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Proof Let constant γ > 0. Given any index i and any instance of the i-th training sample zi,
let πϵ

zi be the coupling that approximates the 2-Wasserstein distance W2

(
PW |Zi=zi , PW

)
between

PW |Zi=zi and PW by an error at most ϵ > 0. Then for any ϵ > 0, we have

gen(µn, PW |S) =
1

n

n∑
i=1

E(W,Zi),W ′ [ℓ(W ′, Zi)− ℓ(W,Zi)]

=
1

n

n∑
i=1

EZi

[
E(W,W ′)∼πϵ

Zi
[ℓ(W ′, Zi)− ℓ(W,Zi)]

]
≤ 1

n

n∑
i=1

EZi

[
E(W,W ′)∼πϵ

Zi

[
(W ′ −W )⊤∇ℓ(W,Zi) +

β

2
∥W ′ −W∥2

]]
.

We then follow Lei & Ying (2020) to handle the inner product as in their Appendix B:

(W ′ −W )⊤∇ℓ(W,Zi) ≤∥W ′ −W∥ · ∥∇ℓ(W,Zi)∥

≤γ

2
∥W ′ −W∥2 + 1

2γ
∥∇ℓ(W,Zi)∥2 .

Thanks to the self-bounding property of positive smooth functions (Lemma A.1 of Lei & Ying
(2020)), we have ∥∇ℓ(W,Zi)∥2 ≤ 2β · ℓ(W,Zi) and

(W ′ −W )⊤∇ℓ(W,Zi) ≤
γ

2
∥W ′ −W∥2 + β

γ
ℓ(W,Zi).

Plugging this back leads to

gen(µn, PW |S) ≤
1

n

n∑
i=1

EZi

[
E(W,W ′)∼πϵ

Zi

[
β

γ
ℓ(W,Zi) +

β + γ

2
∥W ′ −W∥2

]]

≤β

γ
E
[
L̂S(W )

]
+

β + γ

2n

n∑
i=1

EZi

[
W2

(
PW |Zi

, PW

)
+ ϵ
]
.

By arbitrariness of ϵ > 0, we have

gen(µn, PW |S) ≤
β

γ
E
[
L̂S(W )

]
+

β + γ

2n

n∑
i=1

EZi

[
W2

(
PW |Zi

, PW

)]
.

Lemma D.3 For any random variables (X,Y, Z) such that Y is independent of Z, we have

EY

[
W2

(
PX|Y , PX

)]
≤ EZ

[
EY∼PY |Z

[
W2

(
PX|Y,Z , PX|Z

)]]
.

Proof Let πϵ
y,z be the coupling that approximates the 2-Wasserstein distance W2

(
PX|y,z, PX|y

)
between PX|y,z and PX|y by an error at most ϵ > 0. Then for any ϵ > 0, we have

EZ

[
EY∼PY |Z

[
W2

(
PX|Y,Z , PX|Z

)]]
=EY

[
EZ

[
W2

(
PX|Y,Z , PX|Z

)]]
(Independence between Y,Z)

≥EY

[
EZ

[
E(X,X′)∼πϵ

Y,Z

[
∥X −X ′∥2

]
− ϵ
]]

=EY

[
E(Z,X,X′)∼PZ◦πϵ

Y,Z

[
∥X −X ′∥2

]]
− ϵ

≥EY

[
W2

(
PX|Y , PX

)]
− ϵ.

The lemma follows the arbitrariness of ϵ > 0.

Lemma D.2 is very similar to the fact that I(X;Y ) ≤ I(X;Y | Z) if Y is independent of Z. Follow-
ing this similarity, we write (conditional) expected 2-Wasserstain distances similar to (conditional)
MI, or equivalently, replace the KL-divergence in MI with the Wasserstain distance to compare the
prior and posterior:
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Definition 3 For any random variables (X,Y, Z), let

IW2
(X;Y ) :=EY

[
W2

(
PX|Y , PX

)]
,

IW2(X;Y | Z) :=EZ

[
EY∼PY |Z

[
W2

(
PX|Y,Z , PX|Z

)]]
.

Lemma D.4 If X and Y are independent given Z, then IW2
(X;Y | Z) = 0.

It leads to the following corollary:

Corollary D.5 (Stability-Style 2-Wasserstain Generalization Bound) Under the same assump-
tions as Lemma D.2, we have

gen(µn, PW |S) ≤
β

γ
E
[
L̂S(W )

]
+

β + γ

2n

n∑
i=1

IW2
(W ;Zi)

≤β

γ
E
[
L̂S(W )

]
+

β + γ

2n

n∑
i=1

IW2
(W ;Zi | Z−i)

Proof Zi is independent of Z−i.

Theorem 5 (Omniscient 2-Wasserstain Bound under Smoothness) Assume ℓ is non-negative,
differentiable and β-smooth. Let γ1 > 0, γ2 > β. Let

{
∆Gi

}n
i=1

be a family of omniscient (output-
weight) perturbations, each of which additionally depends on Z−i. Then we have

gen(µn, PW |S) ≤
β

γ1

1

n

n∑
i=1

E
[
ℓ(W +∆Gi, Zi)

]
+

β + γ1
2n

n∑
i=1

IW2
(W +∆Gi;Zi | Z−i)

+
1

n

n∑
i=1

E [∆∆Gi(W,Zi)−∆∆Gi(W,Z ′)] ,

and

gen(µn, PW |S) ≤
1

1− β
γ2

(
β

γ1n

n∑
i=1

E
[
ℓ(W +∆Gi, Zi)

]
+

β + γ1
2n

n∑
i=1

IW2
(W +∆Gi;Zi | Z−i)

+
2β

γ2
E
[
L̂S(W )

]
+

β + γ2
n

n∑
i=1

∥∥∆Gi
∥∥2). (D.8)

Proof This proof is very similar to the proof of Theorem 3. By repeating the proof of Corollary D.1
but with Corollary D.5 instead of Lemma 1, we obtain

gen(µn, PW |S) ≤
β

γ1

1

n

n∑
i=1

E
[
ℓ(W +∆Gi, Zi)

]
+

β + γ1
2n

n∑
i=1

IW2
(W +∆Gi;Zi | Z−i)

+
1

n

n∑
i=1

E [∆∆Gi(W,Zi)−∆∆Gi(W,Z ′)]

The penalty terms can be bounded the same way as in Lemma D.2:

|∆∆Gi(W, z)| ≤
∣∣(∆Gi)⊤∇ℓ(W, z)

∣∣+ β

2

∥∥∆Gi
∥∥2

≤
∥∥∆Gi

∥∥ ∥∇ℓ(W, z)∥+ β

2

∥∥∆Gi
∥∥2

≤γ2
2

∥∥∆Gi
∥∥2 + β

γ2
ℓ(W, z) +

β

2

∥∥∆Gi
∥∥2

=
β

γ2
ℓ(W, z) +

β + γ2
2

∥∥∆Gi
∥∥2 .
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Therefore, we have

gen(µn, PW |S) ≤
β

γ1

1

n

n∑
i=1

E
[
ℓ(W +∆Gi, Zi)

]
+

β + γ1
2n

n∑
i=1

IW2
(W +∆Gi;Zi | Z−i)

+
β

γ2

(
E
[
L̂S(W )

]
+ E [Lµ(W )]

)
+ (β + γ2)

1

n

n∑
i=1

E
[∥∥∆Gi

∥∥2] .
Population loss E [Lµ(W )] appears at the right of the inequality. To move it to the left, we pair it
with a virtual empirical loss term and moving the consequent gen(µn, PW |S) to the left:

gen(µn, PW |S) ≤
β

γ1

1

n

n∑
i=1

E
[
ℓ(W +∆Gi, Zi)

]
+

β + γ1
2n

n∑
i=1

IW2
(W +∆Gi;Zi | Z−i)

+
β

γ2

(
2E
[
L̂S(W )

]
+ gen(µn, PW |S)

)
+

β + γ2
n

n∑
i=1

E
[∥∥∆Gi

∥∥2] ,
(1− β

γ2
) gen(µn, PW |S) ≤

β

γ1

1

n

n∑
i=1

E
[
ℓ(W +∆Gi, Zi)

]
+

β + γ1
2n

n∑
i=1

IW2(W +∆Gi;Zi | Z−i)

+
2β

γ2
E
[
L̂S(W )

]
+

β + γ2
n

n∑
i=1

E
[∥∥∆Gi

∥∥2] .
Restricting γ2 > β allows us to divide the inequality by 1 − β

γ2
without changing the direction of

the inequality:

gen(µn, PW |S) ≤
1

1− β
γ2

(
β

γ1n

n∑
i=1

E
[
ℓ(W +∆Gi, Zi)

]
+

β + γ1
2n

n∑
i=1

IW2(W +∆Gi;Zi | Z−i)

+
2β

γ2
E
[
L̂S(W )

]
+

β + γ2
n

n∑
i=1

E
[∥∥∆Gi

∥∥2]).

Now that we have proved the omniscient bound for smooth losses, we turn to recovering some
existing stability-based bounds.

Proposition 3 Under the same setting as Theorem 5, we have

gen(µn, PW |S) ≤ inf
{∆Gi},γ1>0,γ2>β

[RHS of Eq. (D.8)]

≤ inf
γ2>β

1

1− β
γ2

(
2β

γ2
E
[
L̂S(W )

]
+

β + γ2
2

· ϵstability
)
,

where

ϵstability := EZ−i,V

[
1

n

n∑
i=1

E
[
∥W ′ −W∥2 | Z−i, V

]]
(rephrased in our notation) is exactly the ℓ2 on-average model stability in Definition 4 of Lei & Ying
(2020).

Remark D.6 Proposition 3 recovers the relationship between stability and generalization in Lei &
Ying (2020)’s Theorem 2(b) up to constants.

Proof After setting ∆Gi = −W+E [W | Z−i, V ] as a function of Z−i and V , we have W+∆Gi =
E [W | Z−i, V ], which is a function of Zi-independent Z−i and V . As a result, W + ∆Gi is
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independent of Zi and IW2
(W +∆Gi;Zi | Z−i) = 0 according to Lemma D.4. Therefore, we have

gen(µn, PW |S) ≤ inf
{∆Gi},γ1>0,γ2>0

[RHS of Eq. (D.8)]

≤ inf
γ1>0,γ2>β

1

1− β
γ2

(
β

γ1n

n∑
i=1

E
[
ℓ(W +∆Gi, Zi)

]
+

2β

γ2
E
[
L̂S(W )

]
+

β + γ2
n

n∑
i=1

E
[∥∥∆Gi

∥∥2])

≤ inf
γ2>β

1

1− β
γ2

(
2β

γ2
E
[
L̂S(W )

]
+

β + γ2
n

n∑
i=1

E
[
∥E [W | Z−i, V ]−W∥2

])
(γ1 → +∞)

With a closer look, one can find on-average model stability (Lei & Ying, 2020) term at RHS:

1

n

n∑
i=1

E
[
∥E [W | Z−i, V ]−W∥2

]
=

1

n

n∑
i=1

EZ−i,V

[
E
[
∥E [W ′ | Z−i, V ]−W∥2 | Z−i, V

]]
=

1

2n

n∑
i=1

EZ−i,V

[
E
[
∥W ′ −W∥2 | Z−i, V

]]
=

1

2
ES,S′,V

[
1

n

n∑
i=1

∥∥∥A(S, V )−A(S(i), V )
∥∥∥2]︸ ︷︷ ︸

ℓ2 on-average model stability in Definition 4 of Lei & Ying (2020)

,

where the second step follows Lemma A.2, A(·, v) denotes the SGD when the random seed is v and
S(i) means replacing the i-th sample with the i-th sample from S′.

Now that we have recovered stability arguments, we can directly borrow stability of SGD to derive
excess risk bounds. The following results are based on the on-average model stability bound derived
by Lei & Ying (2020).

Proposition 4 Assume the loss is non-negative, convex and β-smooth. Assume the training algo-
rithm is projected SGD that starts from W0 and runs T steps with non-increasing step sizes {ηt}T+1

t=1
such that ηt ≤ 1/2β. Then for any γ > β, we have the following excess risk bound:

E [Lµ(W
acc)− Lµ(w

∗)]

≤ 2β

γ2 − β
Lµ(w

∗) +
1 + T/n

n

4eγ2β(β + γ2)

γ2 − β

(
η1 ∥w∗∥2 + 2

T∑
t=0

ηt+1

(
t−1∑
τ=0

η2τ+1Lµ(w
∗)

)
/

T∑
τ=0

ητ+1

)

+
γ2 + β

γ2 − β

(
(1/2 + βη1) ∥w∗∥2 + 2β

T∑
t=0

η2t+1Lµ(w
∗)

)
/

T∑
τ=0

ητ+1,

where W acc is the accumulated weight

W acc :=

∑T
t=0 ηt+1Wt∑T
t=0 ηt+1

.

Remark D.7 In separable settings, i.e., when Lµ(w
∗) = 0, the excess risk bound simplifies to

E [Lµ(W
acc)− Lµ(w

∗)]

≤1 + T/n

n

4eγ2β(β + γ2)

γ2 − β

(
η1 ∥w∗∥2

)
+

γ2 + β

(γ2 − β)
∑T

τ=0 ητ+1

(
(1/2 + βη1) ∥w∗∥2

)
.

After setting ηt = η ≤ 1/2β and reparameterizing γ2 = kβ for k > 1, we have

E [Lµ(W
acc)− Lµ(w

∗)] ≤
(
4ekβ2η

n
+

T

n2
· 4ekβ2η +

1/2 + βη

Tη

)(
k + 1

k − 1
∥w∗∥2

)
.

By minimizing over T , we can obtain the following:

E [Lµ(W
acc)− Lµ(w

∗)] ≤
(
4ekβ2η

n
+

2

n
·
√
4ekβ2 · (1/2 + βη)

)(
k + 1

k − 1
∥w∗∥2

)
.
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Now set η = 1/2β to obtain the following:

E [Lµ(W
acc)− Lµ(w

∗)] ≤ inf
k>1

2β

n

(
ek + 2

√
ek
)(k + 1

k − 1
∥w∗∥2

)
= O(β ∥w∗∥2 /n),

which indicates an O(1/n) sample complexity for smooth, convex and separable settings. This result
recovers the Theorem 5 and the O(1/n) rate in Lei & Ying (2020) up to constants.

Proof This proof is adapted from Appendix C.2 of Lei & Ying (2020). The excess risk can be
decomposed into (excess) optimization error and generalization error. The optimization error bound
is directly borrowed from Lei & Ying (2020).The generalization error is bounded by combining the
recovered stability bound Proposition 3 and the stability of SGD from Lei & Ying (2020).

Let w∗ be the weight that achieves the optimal population loss.

D.6.1 EXCESS OPTIMIZATION ERROR

According to Lemma A.2(c) of Lei & Ying (2020), if the loss is non-negative, convex and β-smooth,
and ηt ≤ 1/2L and non-increasing, then for any constant w̄ and constant s, one has

t∑
τ=0

ητ+1E
[
L̂s(Wτ )− L̂s(w̄) | S = s

]
≤ (1/2 + βη1) ∥w̄∥2 + 2β

t∑
τ=0

η2τ+1L̂s(w̄).

After setting w̄ to w∗ and taking expectation over training sets, we have
t∑

τ=0

ητ+1E
[
L̂S(Wτ )− L̂S(w

∗)
]
≤ (1/2 + βη1) ∥w∗∥2 + 2β

t∑
τ=0

η2τ+1Lµ(w
∗). (D.9)

Since the excess training error bound is only given after summing over steps, one has to sum the
generalization error bound over steps as well.

D.6.2 STABILITY AND GENERALIZATION ERROR

Theorem 3 of Lei & Ying (2020) states that if the loss is non-negative, convex and β-smooth, and
SGD has step size ηt ≤ 2/L, the for any p > 0 one has

ϵstabilityt ≤ 8(1 + 1/p)β

n

t−1∑
τ=0

(1 + p/n)t−1−τη2τ+1E
[
L̂S(Wτ )

]
,

where ϵstabilityt is the ℓ2 on-average model stability at step t:

ϵstabilityt := EZ−i,V

[
1

n

n∑
i=1

E
[
∥W ′

t −Wt∥
2 | Z−i, V

]]
Let γ2 > 0 be a constant. Plugging this stability bound into Proposition 3 leads to

gen(µn, PWt|S) ≤
1

1− β/γ2

(
2β

γ2
E
[
L̂S(Wt)

]
+

β + γ2
2

ϵstabilityt

)
≤ 1

1− β/γ2

(
2β

γ2
E
[
L̂S(Wt)

]
+

β + γ2
2

8(1 + 1/p)β

n

t−1∑
τ=0

(1 + p/n)t−1−τη2τ+1E
[
L̂S(Wτ )

])

≤ 1

1− β/γ2

(
2β

γ2
E
[
L̂S(Wt)

]
+

4(1 + 1/p)(β + γ2)β(1 + p/n)t−1

n

t−1∑
τ=0

η2τ+1E
[
L̂S(Wτ )

])

There are empirical losses on the trajectory at RHS of the above inequality. They can be bounded
by Eq. (A.5) of Lei & Ying (2020), which states given any training set s and any constant w̄ ∈ W ,
one has

t−1∑
τ=0

η2τ+1E
[
L̂s(Wτ ) | S = s

]
≤ η1 ∥w̄∥2 + 2

t−1∑
τ=0

η2τ+1L̂s(w̄).
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Setting w̄ to w∗ and taking expectation over training sets, we have

t−1∑
τ=0

η2τ+1E
[
L̂S(Wτ )

]
≤ η1 ∥w∗∥2 + 2

t−1∑
τ=0

η2τ+1Lµ(w
∗).

Plugging it back leads to

gen(µn, PWt|S) ≤
1

1− β/γ2

(
2β

γ2
E
[
L̂S(Wt)

]
+

4(1 + 1/p)(β + γ2)β(1 + p/n)t−1

n

(
η1 ∥w∗∥2 + 2

t−1∑
τ=0

η2τ+1Lµ(w
∗)

))

As in Lei & Ying (2020), one can choose p = n/T to have (1 + p/n)t−1 ≤ (1 + p/n)T−1 =
(1 + 1/T )T−1 < e. As a result, we have

gen(µn, PWt|S) ≤
1

1− β/γ2

(
2β

γ2
E
[
L̂S(Wt)

]
+

4(1 + T/n)(β + γ2)βe

n

(
η1 ∥w∗∥2 + 2

t−1∑
τ=0

η2τ+1Lµ(w
∗)

))

To align the generalization error bounds with the weighted summation form of the optimization
error, we weight them by ηt+1 and sum over steps the above inequality:

T∑
t=0

ηt+1 gen(µ
n, PWt|S)

≤
T∑

t=0

ηt+1

1− β/γ2

(
2β

γ2
E
[
L̂S(Wt)

]
+

4(1 + T/n)(β + γ2)βe

n

(
η1 ∥w∗∥2 + 2

t−1∑
τ=0

η2τ+1Lµ(w
∗)

))

=
1

1− β/γ2

(
2β

γ2

T∑
t=0

ηt+1E
[
L̂S(Wt)

]
+

4(1 + T/n)(β + γ2)βe

n

T∑
t=0

ηt+1

(
η1 ∥w∗∥2 + 2

t−1∑
τ=0

η2τ+1Lµ(w
∗)

))

To get rid of the empirical losses
∑T

t=0 ηt+1E
[
L̂S(Wt)

]
, we apply Eq. (D.9) again and obtain

T∑
t=0

ηt+1 gen(µ
n, PWt|S)

≤ 1

1− β/γ2

(
2β

γ2

(
(1/2 + βη1) ∥w∗∥2 + 2β

T∑
t=0

η2t+1Lµ(w
∗) +

T∑
t=0

ηt+1Lµ(w
∗)

)

+
4(1 + T/n)(β + γ2)βe

n

T∑
t=0

ηt+1

(
η1 ∥w∗∥2 + 2

t−1∑
τ=0

η2τ+1Lµ(w
∗)

))
.
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After obtaining the above generalization error bound, the bound for excess risks can be obtained by
summing up it and the optimization error bound Eq. (D.9):

T∑
t=0

ηt+1E [Lµ(Wt)− Lµ(w
∗)]

≤ 1

1− β/γ2

2β

γ2

(
(1/2 + βη1) ∥w∗∥2 + 2β

T∑
t=0

η2t+1Lµ(w
∗) +

T∑
t=0

ηt+1Lµ(w
∗)

)

+
1

1− β/γ2

4(1 + T/n)(β + γ2)βe

n

T∑
t=0

ηt+1

(
η1 ∥w∗∥2 + 2

t−1∑
τ=0

η2τ+1Lµ(w
∗)

)

+ (1/2 + βη1) ∥w∗∥2 + 2β

T∑
t=0

η2t+1Lµ(w
∗)

≤ 2β

γ2 − β

T∑
t=0

ηt+1Lµ(w
∗) +

1 + T/n

n

4eγ2β(β + γ2)

γ2 − β

T∑
t=0

ηt+1

(
η1 ∥w∗∥2 + 2

t−1∑
τ=0

η2τ+1Lµ(w
∗)

)

+
γ2 + β

γ2 − β

(
(1/2 + βη1) ∥w∗∥2 + 2β

T∑
t=0

η2t+1Lµ(w
∗)

)

The stated inequality can be obtained by dividing
∑T

t=0 ηt+1 and applying the Jensen’s inequality
to the convex L̂S(·).

E DISCUSSION ON THE LIMITATION

The major limitation of our bound is that our bound still relies on population gradients and Hessians.
This limitation harms the applicability of our bound to self-certified algorithms (Pérez-Ortiz et al.,
2021).

However, the limitation is not unique to our bound, but the inherent limitation of auxiliary trajectory
technique. The most essential step of this technique is to switch from the original trajectory to the
auxiliary trajectory with better properties. However, one must relate the auxiliary trajectory back to
the original trajectory by adding their differences into the bound. In this process, the loss differences
are used to measure such differences, resulting in the population loss difference and population
statistics. As a result, previous representative works all have explicit reliance on population statistics.
See S′ in Propositions 1 and 2. This reliance can be alleviated through some assumptions like
Lµ(WT ) ≤ Eξ∼N (0,σI) [Lµ(WT + ξ)] in Wang & Mao (2022). Nevertheless, one still must verify
this assumptions on the population set to rigorously apply them, especially when the model is under-
fitted or the generalization is bad so that the output weight is far from population local minimum. To
sum up, existing representative results based on auxiliary trajectory must rely on population statistics
at least implicitly.

In terms of dependence to population/validation statistics, we also optimize the omniscient trajectory
using validation statistics, which is a heavier dependence. This may forms unfair comparison with
existing bounds. However, we have made the comparison fair by allowing the existing bounds to
rely on the validation statistics (see Appendix C.5). Even with full access to validation sets, the
existing bounds cannot exploit them and are still much numerically looser than ours. Lastly, the
results on existing and our bounds can be seen as not only competitors, but also different trade-offs
between the dependence on validation set and bound tightness. Our bound shows how tight a bound
can be if one allows heavy dependence on validation sets, while previous works show the looseness
when one controls the access to validation sets. Future works can start from these two extremes to
achieve better trade-off or even break this trade-off.
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