

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TRUSTWORTHY RETROSYNTHESIS: ELIMINATING HALLUCINATIONS WITH A DIVERSE ENSEMBLE OF REACTION SCORERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Retrosynthesis is one of the domains transformed by the rise of generative models, and it is one where the problem of nonsensical or erroneous outputs (hallucinations) is particularly insidious: reliable assessment of synthetic plans is time-consuming, with automatic methods lacking. In this work, we present RetroTrim, a retrosynthesis system that successfully avoids nonsensical plans on a set of challenging drug-like targets. Compared to common baselines in the field, our system is not only the sole method that succeeds in filtering out hallucinated reactions, but it also results in the highest number of high-quality paths overall. The key insight behind RetroTrim is the combination of diverse reaction scoring strategies, based on machine learning models and existing chemical databases. We show that our scoring strategies capture different classes of hallucinations by analyzing them on a dataset of labeled retrosynthetic intermediates. To measure the performance of retrosynthesis systems, we propose a novel evaluation protocol for reactions and synthetic paths based on a structured review by expert chemists. Using this protocol, we compare systems on a set of 32 novel targets, curated to reflect recent trends in drug structures. While the insights behind our methodology are broadly applicable to retrosynthesis, our focus is on targets in the drug-like domain. By releasing our benchmark targets and the details of our evaluation protocol, we hope to inspire further research into reliable retrosynthesis.

1 INTRODUCTION

The advent of deep generative modeling has transformed a broad range of domains, and resulted in impressive applications such as photorealistic image synthesis, code generation, and automated theorem proving (Rombach et al., 2022; Li et al., 2022; Yang et al., 2023). The undisputed efficacy of generative models is nonetheless hindered by the possibility of factually wrong or outright nonsensical output, often called "hallucinations" (Sahoo et al., 2024). In some applications, such as automated theorem proving, hallucinations can be curtailed with formal verification of output. In others, they can only be mitigated through partial and often imprecise verification.

Retrosynthesis, the task of constructing synthetic routes — sequences of chemical reactions that lead to a desired target molecule from simpler precursors — is another domain that has undergone significant developments with the rise of generative modeling (Coley et al., 2018)). Modern systems typically generate complete synthetic routes by iteratively applying predictions from a single-step retrosynthesis (SSR) model within a graph-based search algorithm. When reactions have no known chemical precedent or display features such as unstable reagents, they jeopardize the validity of the synthetic path they are part of. Generative SSR models inherit the limitations of generative modeling: the reactions they propose are frequently hallucinated, that is, chemically unsound (Torren-Peraire et al., 2024). An example of a hallucinated reaction is shown in Figure 1

In this work, we propose RetroTrim, a retrosynthesis system designed to tackle the issue of hallucinated reactions by pairing a performant SSR generator with an ensemble of complementary reaction scorers as a plausibility filter. We show that RetroTrim is the only among common retrosynthetic solutions that successfully avoids *all* hallucinated reactions in proposed synthetic plans for a set of

Figure 1: An example of grossly incorrect (hallucinated) reaction generated by a Single-Step Retrosynthesis model. A PhD-level chemist recognizes that the only reasonable atom mapping between the substrates and the product is one where the reaction center is an ortho-amino benzoate converting into a triazole (highlighted in yellow). It does not belong to any commonly known reaction class, and further investigation involving extensive searches of synthetic databases yields no examples that would inform what reagents and conditions could induce such a reaction. Executing this transformation would be impractical and require the development of a novel synthetic methodology, which typically entails a multi-month research program.

069
070
071 unpublished challenging drug-like targets. Moreover, RetroTrim does so while leading in the number
072 of targets for which a synthetic plan without issues is found.

073 Our approach in developing RetroTrim is based on the principle of ensemble learning (Hansen &
074 Salamon, 1990): combining diverse scorers with distinct error patterns yields a more robust and
075 accurate assessment of reaction plausibility. The ensemble scorer (MetaScorer) functions as an
076 external validator of the generative SSR model. It prunes all reactions below a given score threshold
077 from the synthesis tree, curtailing expansion of hallucinated nodes. For an overview see Fig. 2. The
078 three scorers which make up the plausibility filter are as follows:

079 1. Reaction Prior (RP): A Transformer-based architecture (Vaswani et al., 2017) whose scoring
080 function is designed to mimic the considerations chemists take into account when evaluating
081 reaction plausibility. Its training and scoring method lends itself to discovering a broad
082 spectrum of hallucinations.

083 2. Reaction Graph Plausibility (RGP): A graph model trained to distinguish positive/feasible
084 reactions from synthetically generated negatives. Negative reactions are generated by
085 applying reaction templates at random in both the forward and retro- direction. The forward
086 negatives are designed to increase fidelity in discriminating selectivity problems, while
087 retro- negatives lead of a broader spectrum of incompatibilities between functional groups
088 in reactants.

089 3. Reaction Retrieval Score (RRS): A mechanism that assesses the similarity of proposed
090 reactions to known experimental precedents in reaction databases. It is designed to catch hal-
091 lucinations of the more gross kind: reactions with no precedents and significant mismatches
092 between the target and reactants.

093 We compare performances of RP, RGP and RRS on a dataset of retrosynthetic intermediates. We
094 show that each scorer excels at filtering different kinds of hallucinations, and that the MetaScorer
095 further improves performance in most areas.

096 In identifying hallucinations of retrosynthesis systems, common automated metrics can at best serve
097 as surrogates: algorithmic procedures cannot model the whole concept of chemical plausibility, and
098 exact matches to literature are rare in practice for complex targets. The only way to arrive at a verdict
099 on a synthetic route in practice is to propose it to one or more expert chemists. If the route contains
100 reactions for which no known synthetic methodology exists, such a route will be rejected without the
101 need for experimental verification.

102 For this reason, to measure the performance of both retrosynthesis systems as well as reaction
103 scorers, we employ a novel reaction validation protocol in which PhD-level chemists assess each
104 reaction in a given synthetic plan according to a predefined labeling schema. Reactions are sorted
105 into seven categories depending on the kind of issue they raise: *Magic*, *Selectivity*, *Functional group*
106 *incompatibility*, *Reactivity*, *One pot*, *Unstable*, or *Reactants mismatch*; and according to the severity
107 of said issue: *Worthwhile*, *Rather not*, and *Nonsense*. Reactions which present no issues are given the

Figure 2: **RetroTrim** (above) and **retrosynthetic search with plausibility filtering** (below). RetroTrim encompasses a generator, which proposes precursor molecules for a given target, and a scorer, which evaluates the plausibility of the generated reaction. In the search process, plausible precursors are expanded further, until we arrive at commercially available starting materials. Implausible reactions terminate the search branch. The search concludes when a complete synthetic route from commercially-available starting materials to the target molecule is found.

special labels *No problem* and *Safe bet*, respectively. Under this categorization, *Nonsense* corresponds to hallucinated reactions, while *Worthwhile* and *Rather not* reactions contain mild or moderate issues which make them undesirable or unpredictable. *The overall confidence in a synthetic pathway is determined by the reaction with the highest issue severity within it.*

All retrosynthesis systems are evaluated on a set of thirty-two challenging drug-like targets (see Appendix D). These targets were defined so as to match common structural features present in modern drugs while not being close analogs of any structure found in synthetic literature. This ensures no data leakage occurred in-between training and inference of compared models, while still being representative of the medicinal chemistry domain.

Our main contributions are as follows:

- We propose RetroTrim which achieves state-of-the-art accuracy, rejecting as the only method all hallucinated reactions for a set of challenging targets while at the same time finding flawless synthetic routes for the largest number of them.
- We demonstrate that the three scorers used in RetroTrim as reaction filters display different strengths across potential issues with reactions, and furthermore that they are complementary: combining them leads to the best-performing system.
- We outline a reaction labeling protocol that recognizes seven kinds of possible issues at three levels of severity, to be used by expert chemists for granular evaluation of both reactions and the synthetic routes composed of them.
- We release a set of 32 unpublished drug-like targets, designed as a challenging test set for retrosynthesis systems.

2 RELATED WORK

To contextualize our proposed method, this section examines the workflow in automated retrosynthesis, covering both the generation of reactions by Single-Step Retrosynthesis (SSR) models and techniques used for their validation.

162 2.1 MULTI-STEP RETROSYNTHESIS
163

164 Multi-step retrosynthesis constructs complete synthetic routes by iteratively applying single-step
165 retrosynthesis (SSR) predictions. Classical search strategies, such as Monte Carlo tree search (Segler
166 et al., 2018) and A* search (Retro*) (Chen et al., 2020), use SSR models to expand compounds
167 during generation of synthetic pathways.

168 SSR models can be categorized into template-based, template-free, and semi-template-based ap-
169 proaches. Template-based methods (e.g., RetroSim (Coley et al., 2017), NeuralSym (Segler & Waller,
170 2017), GLN (Dai et al., 2019a)) use predefined reaction templates, ensuring interpretability, but
171 their coverage is limited and their construction involves trade-offs that can lead to invalid template
172 application. Template-free models (e.g., sequence-to-sequence Transformers (Zhong et al., 2022),
173 GNNs (Liu et al., 2017; Karpov et al., 2019; Sacha et al., 2021)) learn chemical rules directly from
174 data, offering scalability and the ability to generalize to novel reactions, but with little guarantee as
175 to the validity of output. Semi-template-based approaches (e.g., GraphRetro (Somnath et al., 2021),
176 RetroXpert (Yan et al., 2020)) combine templates with learned representations, inheriting both the
177 advantages and limitations of both approaches. Regardless of their category, SSR models are all
178 prone to erroneous output (Coley et al., 2018).

179 Evaluating single-step retrosynthesis (SSR) models remains challenging. Traditional metrics, such as
180 top-k accuracy, measure whether the correct reactants appear among the top predicted candidates, but
181 they provide limited insight into chemical plausibility and alternative valid reactions.

182 To address this, round-trip accuracy (Schwaller et al., 2020) is commonly used. This metric evaluates
183 a predicted reaction by passing the predicted reactants through a forward reaction model and checking
184 if the original product is recovered. Round-trip accuracy is considered a better proxy for chemical
185 validity than top-k accuracy.

186 However, it remains unclear how well round-trip accuracy reflects the actual plausibility of the
187 predicted reactions. There is currently no exhaustive data quantifying how many predictions that pass
188 or fail the round-trip check correspond to chemically plausible reactions.

189 Evaluating multi-step retrosynthetic routes is typically limited to basic pathway properties, such as
190 the number of steps, route length, branching factor, or overall synthesizability (Maziarz et al., 2025).
191 These metrics provide little insight into the actual correctness or chemical plausibility of the complete
192 synthetic route.

193 **Evaluation of multi-step routes by expert chemists provides a more trustworthy viability assessment.**
194 To our knowledge, the only work containing human evaluation of routes powered by generative
195 models is Segler et al. (2018), which conducts a double-blind A/B test comparing routes existing in
196 literature and those produced by their model. Their results showed that for the first time, computer-
197 generated routes could be on-par or preferred to those found in the literature by chemists. While
198 a significant result in its own right, their test only recorded preference between paths as opposed
199 to measuring the rate of significant system errors. It also spanned only 9 randomly chosen targets.
200 In contrast, we conduct fine-grained error-analysis of routes proposed by 4 modern retrosynthesis
201 systems, as well as 6 variants of our own system, including the full RetroTrim and simpler baselines.
202 Moreover, we do so on a set of 32 targets chosen for their challenging nature.

203
204 2.2 MID-SEARCH REACTION VALIDATION
205

206 The plausibility of multi-step retrosynthetic routes has drawn increasing attention from researchers,
207 leading to the development of methods aimed at improving pathway validity. A commonly used
208 approach is to employ a plausibility model as a filter. Such models are typically trained as classifiers
209 to distinguish correct reactions from artificially generated negative examples, which are often created
210 by perturbing positive reactions, for example by randomly modifying substrates or swapping the
211 original product with a chemically similar one (Segler et al., 2018; Genheden et al., 2020a). A
212 forward model (predicting products based on substrates) trained only on positive data was used in the
213 same way in IBM RXN (Schwaller et al., 2020).

214 Another strategy is to use the likelihood of a generated reaction as a scoring function during search.
215 This can be computed from template-free models, such as the Molecular Transformer (Schwaller
et al., 2019) architecture, where the model’s confidence, derived from output token probabilities, has

216 been shown to correlate with reaction correctness, or from template-based models using softmax
 217 scores, as in RetroFallback (Tripp et al., 2023). In order to improve the quality of predicted reactions,
 218 RetroGFN (Gaiński et al., 2024) was trained using feedback from a forward model and round-trip
 219 accuracy. **RetroChimera** (Maziarz et al., 2024) takes a complementary approach by selecting the most
 220 plausible predictions from an ensemble of diverse reaction generators, effectively combining their
 221 strengths to increase overall accuracy.

222 Finally, evidence-based validation via retrieval grounds model predictions in established chemical
 223 knowledge, mirroring a chemist’s workflow of searching for literature precedents. Retrieval-augmented
 224 methods, such as the Retrieval-Augmented RetroBridge (RARB) framework, retrieve
 225 similar molecules from a database to guide the generation of reactants (Qiao et al., 2025). These
 226 approaches help ensure that generated reactions are consistent with known chemistry, further improving
 227 the plausibility of multi-step routes. In the context of these works, RetroTrim is the first to use
 228 retrieved reactions to filter predictions of a reaction generation.

229 To date, none of these approaches have been extensively validated through human expert evaluation.
 230

231 3 METHODS

232 RetroTrim is a combination of an SSR reaction generator and a reaction scorer. The key innovation
 233 in RetroTrim is the design of the scorer, which is built around a central, best-performing scorer
 234 called Reaction Prior, supported by two additional scorers: Reaction Graph Plausibility scorer and
 235 Reference Reaction Scorer. The additional scorers are designed to compliment Reaction Prior by
 236 targeting specific error types. Together, they aggregate into the MetaScorer which provides the final,
 237 robust assessment of reaction correctness.
 238

239 3.1 REACTION PRIOR

240 The Reaction Prior (RP) is a novel method inspired by how experienced chemist reason about
 241 reactions: considering the reaction globally, assessing the reaction center, and comparing it to
 242 alternative reactions that could occur. The RP score S_{final} is thus a weighted combination of three
 243 components: $S_{final} = S_{RP}^\alpha \cdot S_{Regio}^\beta \cdot S_{RC}^\gamma$. Here, S_{RP} is the Reaction Prior (global) Score, S_{RC}
 244 is the Reaction Center Score, and S_{Regio} is the Regioselectivity Score, with α , β , and γ serving as
 245 weighting factors. **These weights can be tuned to optimize a metric of interest. In practice, we find**
 246 $\alpha = 1$, $\beta = 1.5$ and $\gamma = 2.5$ to be reasonable default values for drug-like targets. RP is implemented
 247 as an autoregressive, encoder-decoder BART (Lewis et al., 2019a) architecture, where substrates and
 248 products are processed by the decoder, trained for next-token prediction by minimizing cross-entropy
 249 loss.
 250

251 **Reaction Prior Score (S_{RP})** This score reflects the overall feasibility of the reaction. It is proportional
 252 to the log probability assigned by the model to the reaction sequence. **Analogously to language**
 253 **models, which assign higher probabilities to sequences close to the training set, this score acts as**
 254 **a measure of reaction similarity to the dataset on which the model is trained on. In this respect, it**
 255 **mimics the way in which a chemist would look for precedent for the overall transformation. We**
 256 **normalize the log probability by the square root of the total number of tokens (T), which we find to**
 257 **maximize predictive performance in practice: $S_{RP} = \frac{1}{\sqrt{T}} \log P(\text{reaction})$.**
 258

259 **Reaction Center Score (S_{RC})** When evaluating reactions, chemists pay special attention to the sites
 260 where changes in connectivity occur. The S_{RC} score analogously evaluates the model’s confidence
 261 in the identified reactive sites. It is proportional to the sum of log probabilities of tokens representing
 262 atoms in the reaction’s center. Unlike S_{RP} , here we normalize by the number of such tokens (T_{RC}),
 263 similarly guided by empirical calibration: $S_{RC} = \frac{1}{T_{RC}} \sum_{i \in \text{reaction center}} \log P(\text{token}_i)$.
 264

265 **Regioselectivity Score (S_{Regio})** This component quantifies reaction site specificity. It is calculated
 266 by comparing the probability of the reaction at the given reaction site ($P_{desired}$) to the summed
 267 probabilities of all sites where the reaction might occur ($P_{undesired}$): $S_{Regio} = \log \left(\frac{P_{desired}}{P_{undesired} + \epsilon} \right)$, where
 268 ϵ is a small constant to prevent division by zero. **This score component reflects the tendency for**
 269

270 chemists to evaluate whether the particular site where a reaction occurs is preferred compared to
 271 potential alternatives.
 272

273 **3.2 REACTION GRAPH PLAUSIBILITY**
 274

275 A Graph Attention Network (GAT) (Veličković et al., 2017) is trained to differentiate chemically
 276 valid reactions from implausible ones. Training uses reaction datasets for positive examples and
 277 synthetic negative examples generated through forward and two-step backward template applications.
 278 This approach is similar to those proposed by (Segler et al., 2018; Genheden et al., 2020a), but it uses
 279 a graph neural network instead of a feedforward network with fingerprint inputs, and employs more
 280 sophisticated artificial negative reactions, generated not only by applying random templates in the
 281 forward direction but also through retro-synthetic random template applications, which increases
 282 the diversity of types of generated incorrect reactions. Details of GAT featurization are described in
 283 Appendix B.
 284

285 **3.3 REFERENCE REACTION SCORER**
 286

287 We developed a structured retrieval pipeline that extracts chemical precedent information through
 288 a two-tiered reaction clustering procedure based on bond change patterns. First *Coarse-grained*
 289 clustering extracts connected components of the reaction center and applies atom mapping to identify
 290 the underlying transformation pattern. Reactions belong to the same cluster if their transformation
 291 patterns are identical. Then *Fine-grained clustering* extends the coarse-grained approach by incorpo-
 292 rating chemically significant substructures — aromatic systems and conjugated double bonds - into
 293 the cluster classification.

294 Our Reference Reaction Retrieval Scorer (RRS) quantifies reaction plausibility through a logarithmic
 295 transformation of the unique reference reaction count, **where we sum the number of coarse-grained**
and fine-grained references of a candidate reaction:

$$296 \quad p(\text{reaction}) = \log(n_{\text{ref}}(\text{reaction}) + 1) \quad (1)$$

297 where $n_{\text{ref}}(\text{reaction})$ represents the unique number of reference reactions in the coarse-grained
 298 and fine-grained clusters containing `reaction`.
 299

300 **3.4 METASCORER AGGREGATION**
 301

302 To improve reaction filtering, our MetaScorer integrates scores from Reaction Prior (s_{RP}), Reaction
 303 Graph Plausibility (s_{RGP}), and empirical precedents ($n_{\text{ref}} > 0$) retrieved via the pipeline in Sec. 3.3.
 304 This hybrid approach mitigates the weaknesses of purely data-driven or precedent-based methods.
 305 The continuous score is described by equation $s_{\text{META}} = \max(s_{\text{RGP}}, s_{\text{RP}})$ if $n_{\text{ref}} > 0$ (0 otherwise).
 306

307 For binary classification tasks and search, reactions are filtered using predefined thresholds, which
 308 can be selected through grid search to balance precision and recall:

$$309 \quad s_{\text{META}} = \begin{cases} 1 & \text{if } s_{\text{RGP}} > \text{thr}_{\text{RGP}} \text{ and } s_{\text{RP}} > \text{thr}_{\text{RP}} \text{ and } n_{\text{ref}} > 0 \\ 310 \quad 0 & \text{otherwise} \end{cases} \quad (2)$$

312 By synthesizing diverse evidence types MetaScorer enables more reliable reaction filtering for
 313 multi-step synthesis planning. This integrated approach mitigates individual weaknesses of purely
 314 data-driven or precedent-based methods, yielding improved performance.
 315

316 **3.5 GENERATOR AND INTEGRATION WITH SEARCH (RETRO*)**
 317

318 For the generator part of RetroTrim, we use the encoder-decoder BART architecture (Lewis et al.,
 319 2019b) trained on root-aligned SMILES (Zhong et al., 2022), where the product (target) is processed
 320 by the encoder, and the substrates are generated by the decoder. We call this generator **RootAligned**.
 321 The calibrated MetaScorer is used during multi-step retrosynthesis search to improve the quality of
 322 the pathways predicted by the BART generator. We integrate the scorer into the Retro* (Chen et al.,
 323 2020) search framework as a reaction filtering mechanism. Reactions are pruned from the search tree
 324 if s_{META} defined in 2 is equal to 0.

324

4 HUMAN EVALUATION

325
 326 We curated a dataset of over 4,500 reactions generated by our SSR models. Each reaction was
 327 evaluated and labeled by PhD-level chemists into one of the expert-defined categories, creating the
 328 first comprehensive dataset of its kind. This dataset provides a way to evaluate the error patterns
 329 of our reaction plausibility scorers. A subset of 500 reactions from this dataset will be released as a
 330 benchmark for the community.

331
 332 **Reaction Evaluation Protocol** was designed to systematically evaluate predicted reactions based on
 333 expert-defined heuristics. Reactions were rated using a four-point confidence scale: *Nonsense*, *Rather*
 334 *not*, *Worthwhile*, and *Safe bet*. *Safe bet* reactions are considered fully reliable; *Worthwhile* reactions
 335 remain plausible but carry a moderate risk of failure; *Rather not* reactions are associated with a high
 336 risk of major difficulties; and *Nonsense* reactions are effectively infeasible, i.e. hallucinated. For the
 337 system to be reliable, valid pathways should consist primarily of *Safe bets* reactions. The presence of
 338 *Nonsense* reactions effectively invalidates a pathway, while the presence of a *Rather Not* reaction may
 339 still be acceptable in target-oriented synthesis when no alternatives exist. Reactions which aren't a
 340 *Safe bet* receive an additional label specifying the cause of their incorrectness, chosen from: *Reactants*
 341 *mismatch*, *Unstable*, *Magic*, *One pot*, *Reactivity*, *Functional group incompatibility*, and *Selectivity*.
 342 These error categories correlate with confidence levels to varying degrees: for example, *Magic* errors
 343 almost always map to *Nonsense*, while *Selectivity* issues more often correspond to *Worthwhile* or
 344 *Rather Not*. Otherwise, a reaction is assigned a *No Problem* label. A detailed description of the
 345 evaluation framework is provided in Appendix C.

346

5 EXPERIMENTS

347

5.1 DATASET

348 All of our generators and scorers are based on the proprietary Pistachio (2024Q3 release) (Mayfield
 349 et al., 2017) dataset, either used as training data (RootAligned, RP, RGP), or as a source of reference
 350 reactions (RRS). Pistachio offers substantial advantages over the commonly used USPTO-50K
 351 (Schneider et al., 2016) and USPTO-FULL (Dai et al., 2019b) datasets - it features enhanced curation,
 352 resulting in higher data quality and more comprehensive coverage of chemical reaction space. For
 353 training, we preprocess the dataset through a multi-step filtering pipeline that removes duplicate
 354 reactions, reactions from unrecognized reaction classes, entries with invalid SMILES, unmapped
 355 reactions, and reactions deemed unrelated to drug-like compound synthesis (molecules with >100
 356 atoms, "separation" reaction classes), retaining approximately 4 million reactions.

357

5.2 PATH-LEVEL PLAUSIBILITY EVALUATION

358 We compared the ability of each individual scorer (RP, RGP, and RRS) as well as the MetaScorer at
 359 filtering out implausible reactions in multi-step retrosynthesis. All scorer variants were used together
 360 with our BART-based RootAligned generator.

361 The thresholds for filtering implausible reactions were maximized under the constraint that the
 362 resulting system finds paths for at least 90% of targets. In practice, this corresponded to a precision
 363 value of 0.8 on the reaction dataset described in 4. We targeted both a relatively strict threshold (to
 364 keep precision high) and broad coverage in terms of targets for which routes are found. Importantly,
 365 these thresholds were not tuned to optimize benchmark performance. As baselines, we report results
 366 for RootAligned without scoring, RootAligned with a forward reaction scorer, and LocalRetro (Chen
 367 & Jung, 2021). The forward scorer is implemented in the same BART architecture as RootAligned,
 368 except it is trained to predict products based on substrates. For the search, we used the widely adopted
 369 Retro* algorithm based on the implementation from (Maziarz et al., 2025) with the expansion limit
 370 set to 500. For all systems, we used the same starting material database, eMolecules.

371 Additionally, we compared against three publicly accessible retrosynthesis systems: AiZynthFinder
 372 (Genheden et al., 2020b), IBM RXN (IBM, 2025), and RetroChimera (Maziarz et al., 2024). AiZynthFinder
 373 was used in its default configuration from the official repository, which includes a template
 374 generator with a filtering model trained to distinguish valid reactions from artificially generated
 375 negatives. The only modification we make is an increased time limit of 15 minutes to better match

378 the runtime of other systems. IBM RXN, which makes use of a forward model in its search, was
 379 accessed through its free web application (IBM, 2025). RetroChimera was queried via the Azure
 380 Foundry multi-step retrosynthesis endpoint (Microsoft, 2025). Due to a low per-call timeout, we
 381 repeated the queries multiple times for each target; thanks to prediction caching, this resulted in an
 382 effective 15-minute search time. Like RetroTrim, RetroChimera does not employ an explicit reaction
 383 scorer, instead it aims to enforce plausibility by selecting the top-ranked reactions from an ensemble
 384 of generators.

385 We evaluated the top-1 synthesis paths generated by all systems for 32 selected targets (listed in
 386 D). Each reaction in the generated paths was manually evaluated by expert chemists according to
 387 the evaluation protocol described in 4. Each path was assigned a four-tier confidence score (*Safe*
 388 *bet*, *Worthwhile*, *Rather not*, *Nonsense*), determined by the lowest-scoring reaction in the path. This
 389 conservative scoring reflects the intuition that a single implausible step can invalidate an otherwise
 390 promising synthesis. Increasing the proportion of *Safe bets*, while eliminating *Nonsense* and reducing
 391 *Rather Not* paths is the goal of all retrosynthesis systems.

392 393 5.3 REACTION-LEVEL PLAUSIBILITY PREDICTION

394 Additionally, we compare the performance of individual scorers (RP, RGP and RRS) and the MetaS-
 395 corer on individual reactions with ground truth labels established through expert chemist evaluations
 396 described in Section 4.

397 Model performance was assessed using precision-recall (PR) and receiver operating characteristic
 398 (ROC) curves, with area under the curve metrics (PR-AUC and ROC-AUC) reported for each method.
 399 Reactions with confidence rating *Safe Bet* were treated as positive examples. *Worthwhile* reactions
 400 were excluded from the test set as they represent borderline cases where chemist confidence is
 401 uncertain, making them neither clearly positive nor negative examples for evaluation purposes. All
 402 others (*Rather Not* and *Nonsense*) were labeled as negatives. We also conducted additional analysis
 403 across each failure category, reporting individual ROC-AUC and PR-AUC scores, as well as false
 404 positive counts.

405 To evaluate model complementarity, we analyzed the overlap in false positive predictions across
 406 individual scorers, calculated as:

$$407 \text{overlap} = \frac{\left| \bigcap_{\text{scorer} \in \{\text{RGP, RP, RRS}\}} \text{FP}_{\text{scorer}} \right|}{\min_{\text{scorer} \in \{\text{RGP, RP, RRS}\}} |\text{FP}_{\text{scorer}}|}, \quad (3)$$

411 where FP is a set of false positives produced by a given scorer.

413 6 RESULTS

415 6.1 PATH-LEVEL PLAUSIBILITY EVALUATION

417 Pathway correctness comparison is presented in the figure 3. AiZynthFinder demonstrates significant
 418 limitations, failing to identify viable pathways for significant number of the target molecules while
 419 generating a substantial proportion of unreliable routes classified as *Nonsense* and *Rather Not*. IBM
 420 RXN shows improved performance by increasing the number of reliable pathways and reducing
 421 hallucinated predictions, yet fails to produce valid synthetic routes for a considerable fraction of
 422 target compounds. RetroChimera outputs pathways for the vast majority of targets. Although it
 423 produces a large percentage of *Safe Bet* pathways, it also generates a substantial number of *Nonsense*
 424 pathways, showing that ensembling current generators alone is not sufficient to mitigate errors for
 425 challenging targets.

426 RetroAligned without scoring significantly improves number of pathways found, providing solutions
 427 for all targets. However, confidence in its results is undermined by the significant presence of
 428 unreliable *Nonsense* and *Rather Not* paths. Introducing individual scorers increases the fraction
 429 of targets for which no paths are found, a trade-off that can be desirable for the trustworthiness of
 430 the system — rejecting some targets is preferable to mixing reliable and unreliable pathways, as
 431 long as the remaining routes are correct. While RGP and RRS scorers reduce number of unreliable
 432 paths only modestly, our RP scorer demonstrates its value as a primary filter by eliminating all

Figure 3: Comparison of our retrosynthesis generator (RootAligned) with different scorers against IBM RXN, AiZynthFinder, LocalRetro, and RetroChimera. Among AiZynthFinder, IBM RXN, LocalRetro and RetroChimera, RetroChimera performs significantly better than others, but it still fails on >25% targets, with a significant number of hallucinations. RootAligned without any reaction scorer finds pathways for all targets but includes unreliable routes. Introduction of individual scorers trades coverage for reliability, with RP eliminating all *Nonsense* pathways. RetroTrim, backed by the MetaScorer produces the most trustworthy results.

Nonsense reactions, though this comes at the cost of fewer *Safe Bet* and *Worthwhile* pathways. Finally, RetroTrim, utilizing the MetaScorer, delivers substantial improvements in reliability: significantly increasing *Safe Bet* paths, maintaining zero *Nonsense* results, and reducing *Rather Not* pathways. In our results, individual scorers similar to those commonly appearing in the literature (such as RGP - feasibility classifier and forward scorers), weren't sufficient to achieve correct pathways. RetroTrim provides the largest number of problematic routes while eliminating the most serious errors.

6.2 REACTION-LEVEL PLAUSIBILITY EVALUATION

Our results show that the MetaScorer outperforms individual scorers in both precision and recall, demonstrating effective integration of complementary signals. Figure 4 presents the ROC and precision-recall curves, with the MetaScorer achieving consistently higher area under the curve (AUC) values across both metrics. Similar curves broken down by reaction failure category can be found in Appendix E.

Figure 4: ROC (on the left) and precision-recall (on the right) curves comparing the performance of individual scorers versus the MetaScorer. The MetaScorer achieve higher AUC values for both ROC and PR curves, indicating better discrimination between plausible and implausible reactions. Among the individual scorers, RP shows the best performance.

Figure 5 shows ROC-AUC values for each scorer broken down into different failure categories, illustrating that individual scorers demonstrate proficiency in filtering out reactions deemed implausible under different evaluation criteria. RGP achieves the best performance on *Selectivity* and *Reactivity* errors. RRS is most capable of detecting fundamental structural issues such as *Reactant mismatches* and *Magic*, in addition to *One pot* errors. RP shows a balanced profile, which explains its overall

superior performance compared to RGP and RRS in Figure 4. By leveraging the unique strengths of each individual scorer, the MetaScorer maintains robust predictive performance across all failure categories.

Figure 5: ROC-AUC performance of individual scorers across different failure categories, with sample sizes indicated for each category.

Figure 6: Overlap between individual pairs of scorers and triple of all scorers across different failure categories, with sample sizes indicated for each category.

We also analyze the overlap between false positives that each scorer fails to filter, as shown in Figure 6. The results show distinct complementarity: while RRS and RP exhibit high overlap in most categories, it is notably reduced for *One-pot*, *Magic*, and *Reactant mismatch* failure modes — the categories where Figure 5 demonstrates RRS’s superior performance. RGP and RP show consistently low overlap across all failure categories, indicating that these scorers capture different aspects of reaction implausibility. Importantly, when considering all three scorers jointly, the overlap drops to very low levels across all categories, providing strong evidence that each scorer contributes unique discriminative value essential for building a robust MetaScorer.

7 CONCLUSIONS

In this work, we introduced RetroTrim, a retrosynthesis system designed to avoid hallucinations in the synthesis tree through a combination of three complementary reaction scoring strategies. We demonstrated its success on thirty-two unpublished drug-like targets, where no generated paths contained hallucinated reactions. Among the available methods we compared RetroTrim with, our method was the only one to completely avoid hallucinations, while at the same time finding more paths without issues than other methods. To understand the strengths and complementarity of each scoring strategy, we compared their performance across different classes of possible issues. We found evidence of synergy between the scorers, both at the level of filtering individual reaction, and in terms of the retrosynthetic paths resulting from their use.

In evaluating retrosynthesis systems and scorers, we made use of a novel labeling protocol where we leveraged chemists’ expertise to produce fine-grained labels for generated reactions. To our knowledge, this is the first instance of such a granular analysis of retrosynthetic systems’ output, where automated metrics and ad-hoc manual inspection were the norm. In order to facilitate further development in the field, we release the thirty-two targets used for path generation. While our evaluation process is generally applicable to retrosynthesis, RetroTrim was trained on data that biases it towards the medicinal chemistry context. **We also note that by focusing on the top-1 performance of retrosynthesis systems, we leave open for further work the analysis of how different plausibility filtering methods impact the diversity of resulting paths.** Nonetheless, we hope that the insights and methodologies presented in this work lead to more reliable retrosynthesis in general.

REFERENCES

Binghong Chen, Chengtao Li, Hanjun Dai, and Le Song. Retro*: learning retrosynthetic planning with neural guided a* search. In *Proceedings of the 37th International Conference on Machine Learning*, ICML’20. JMLR.org, 2020.

540 Shuan Chen and Yousung Jung. Deep retrosynthetic reaction prediction using local reactivity and
 541 global attention. *JACS Au*, 1(10):1612–1620, 2021.

542

543 Connor W. Coley, Luke Rogers, William H. Green, and Klavs F. Jensen. Computer-assisted retrosyn-
 544 thesis based on molecular similarity. *ACS Central Science*, 3(12):1237–1245, 2017. doi: 10.1021/
 545 acscentsci.7b00355. URL <https://doi.org/10.1021/acscentsci.7b00355>. PMID:
 546 29296663.

547 Connor W. Coley, William H. Green, and Klavs F. Jensen. Machine learning in computer-aided
 548 synthesis planning. *Accounts of chemical research*, 51(5):1281–1289, 2018. URL <https://api.semanticscholar.org/CorpusID:13748494>.

549

550 Hanjun Dai, Chengtao Li, Connor Coley, Bo Dai, and Le Song. Retrosynthesis prediction with condi-
 551 tional graph logic network. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
 552 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran
 553 Associates, Inc., 2019a. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf.

554 Hanjun Dai, Chengtao Li, Connor Coley, Bo Dai, and Le Song. Retrosynthesis prediction with
 555 conditional graph logic network. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
 556 E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32.
 557 Curran Associates, Inc., 2019b. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf.

558 Piotr Gaiński, Michał Koziarski, Krzysztof Maziarz, Marwin Segler, Jacek Tabor, and Marek Śmieja.
 559 Retrogfn: Diverse and feasible retrosynthesis using gflownets. *arXiv preprint arXiv:2406.18739*,
 560 2024.

561 Samuel Genheden, Ola Engkvist, and Esben Jannik Bjerrum. A quick policy to filter reactions based
 562 on feasibility in ai-guided retrosynthetic planning. 2020a.

563

564 Samuel Genheden, Amol Thakkar, Veronika Chadimová, Jean-Louis Reymond, Ola Engkvist, and
 565 Esben Bjerrum. Aizynthfinder: a fast, robust and flexible open-source software for retrosynthetic
 566 planning. *Journal of cheminformatics*, 12(1):70, 2020b.

567 L.K. Hansen and P. Salamon. Neural network ensembles. *IEEE Transactions on Pattern Analysis
 568 and Machine Intelligence*, 12(10):993–1001, 1990. doi: 10.1109/34.58871.

569

570 IBM. Rxn for chemistry. <https://rxn.app.accelerate.science/>, 2025. Accessed:
 571 2025-08-26.

572

573 Pavel Karpov, Guillaume Godin, and Igor V. Tetko. A transformer model for retrosynthesis. In
 574 Igor V. Tetko, Věra Kůrková, Pavel Karpov, and Fabian Theis (eds.), *Artificial Neural Networks
 575 and Machine Learning – ICANN 2019: Workshop and Special Sessions*, pp. 817–830, Cham, 2019.
 576 Springer International Publishing. ISBN 978-3-030-30493-5.

577

578 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
 579 Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-training for
 580 natural language generation, translation, and comprehension. *CoRR*, abs/1910.13461, 2019a. URL
 581 <http://arxiv.org/abs/1910.13461>.

582

583 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
 584 Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-training for
 585 natural language generation, translation, and comprehension. *CoRR*, abs/1910.13461, 2019b. URL
 586 <http://arxiv.org/abs/1910.13461>.

587

588 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
 589 Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
 590 de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
 591 Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
 592 Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
 593 generation with alphacode. *Science*, 378(6624):1092–1097, 2022. doi: 10.1126/science.abq1158.
 594 URL <https://www.science.org/doi/abs/10.1126/science.abq1158>.

594 Bowen Liu, Bharath Ramsundar, Prasad Kawthekar, Jade Shi, Joseph Gomes, Quang Luu Nguyen,
 595 Stephen Ho, Jack Sloane, Paul Wender, and Vijay Pande. Retrosynthetic reaction prediction using
 596 neural sequence-to-sequence models. *ACS Central Science*, 3(10):1103–1113, 2017. doi: 10.1021/
 597 *acs*centsci.7b00303. URL <https://doi.org/10.1021/acscentsci.7b00303>. PMID:
 598 29104927.

599
 600 John Mayfield, Daniel Lowe, and Roger Sayle. Pistachio: Search and faceting of large reaction
 601 databases. In *ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY*, volume
 602 254. AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, 2017.

603 Krzysztof Maziarz, Guoqing Liu, Hubert Misztela, Aleksei Kornev, Piotr Gaiński, Holger Hoefling,
 604 Mike Fortunato, Rishi Gupta, and Marwin Segler. Chimera: Accurate retrosynthesis prediction by
 605 ensembling models with diverse inductive biases. *arXiv preprint arXiv:2412.05269*, 2024.

606
 607 Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gaiński, Philipp
 608 Seidl, and Marwin H. S. Segler. Re-evaluating retrosynthesis algorithms with syntheseus. *Faraday
 609 Discuss.*, 256:568–586, 2025. doi: 10.1039/D4FD00093E. URL <http://dx.doi.org/10.1039/D4FD00093E>.

610
 611 Microsoft. Retrochimera. <https://ai.azure.com/catalog/models/RetroChimera>,
 612 2025. Accessed: 2025-10-10.

613
 614 Anjie Qiao, Zhen Wang, Jiahua Rao, Yuedong Yang, and Zhewei Wei. Advancing retrosynthesis
 615 with retrieval-augmented graph generation. *Proceedings of the AAAI Conference on Artificial
 616 Intelligence*, 39(19):20004–20013, Apr. 2025. doi: 10.1609/aaai.v39i19.34203. URL <https://ojs.aaai.org/index.php/AAAI/article/view/34203>.

617
 618 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
 619 Resolution Image Synthesis with Latent Diffusion Models . In *2022 IEEE/CVF Conference
 620 on Computer Vision and Pattern Recognition (CVPR)*, pp. 10674–10685, Los Alamitos, CA,
 621 USA, June 2022. IEEE Computer Society. doi: 10.1109/CVPR52688.2022.01042. URL <https://doi.ieee.org/10.1109/CVPR52688.2022.01042>.

622
 623 Mikołaj Sacha, Mikołaj Błaż, Piotr Byrski, Paweł Dąbrowski-Tumański, Mikołaj Chromiński, Rafał
 624 Łoska, Paweł Włodarczyk-Pruszyński, and Stanisław Jastrzębski. Molecule edit graph attention
 625 network: Modeling chemical reactions as sequences of graph edits. *Journal of Chemical
 626 Information and Modeling*, 61(7):3273–3284, 2021. doi: 10.1021/acs.jcim.1c00537. URL
 627 <https://doi.org/10.1021/acs.jcim.1c00537>. PMID: 34251814.

628
 629 Pranab Sahoo, Prabhash Meharia, Akash Ghosh, Sriparna Saha, Vinija Jain, and Aman Chadha.
 630 A comprehensive survey of hallucination in large language, image, video and audio foundation
 631 models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association
 632 for Computational Linguistics: EMNLP 2024*, pp. 11709–11724, Miami, Florida, USA, November
 633 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.685.
 634 URL <https://aclanthology.org/2024.findings-emnlp.685>.

635
 636 Nadine Schneider, Nikolaus Stiefl, and Gregory Landrum. What’s what: The (nearly) definitive guide
 637 to reaction role assignment. *Journal of Chemical Information and Modeling*, 56, 11 2016. doi:
 638 10.1021/acs.jcim.6b00564.

639
 640 Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A. Hunter, Costas
 641 Bekas, and Alpha A. Lee. Molecular transformer: A model for uncertainty-calibrated chemical
 642 reaction prediction. *ACS Central Science*, 5(9):1572–1583, 2019. doi: 10.1021/acscentsci.9b00576.
 643 URL <https://doi.org/10.1021/acscentsci.9b00576>. PMID: 31572784.

644
 645 Philippe Schwaller, Riccardo Petraglia, Valerio Zullo, Vishnu H. Nair, Rico Andreas Haeuselmann,
 646 Riccardo Pisoni, Costas Bekas, Anna Iuliano, and Teodoro Laino. Predicting retrosynthetic
 647 pathways using transformer-based models and a hyper-graph exploration strategy. *Chem. Sci.*,
 648 11:3316–3325, 2020. doi: 10.1039/C9SC05704H. URL <http://dx.doi.org/10.1039/C9SC05704H>.

648 Marwin H. S. Segler and Mark P. Waller. Neural-symbolic machine learning for retrosynthesis and
 649 reaction prediction. *Chemistry – A European Journal*, 23(25):5966–5971, 2017. doi: <https://doi.org/10.1002/chem.201605499>. URL <https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201605499>.

650

651

652

653 Marwin H. S. Segler, Mike Preuss, and Mark P. Waller. Planning chemical syntheses with deep
 654 neural networks and symbolic ai. *Nature*, 555(7698):604–610, Mar 2018. ISSN 1476-4687. doi:
 655 10.1038/nature25978. URL <https://doi.org/10.1038/nature25978>.

656

657

658 Vignesh Ram Somnath, Charlotte Bunne, Connor Coley, Andreas Krause, and Regina Barzilay.
 659 Learning graph models for retrosynthesis prediction. In M. Ranzato, A. Beygelzimer,
 660 Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural
 661 Information Processing Systems*, volume 34, pp. 9405–9415. Curran Associates, Inc.,
 662 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/4e2a6330465c8ffcaa696a5a16639176-Paper.pdf.

663

664

665 Paula Torren-Peraire, Alan Kai Hassen, Samuel Genheden, Jonas Verhoeven, Djork-Arné Clevert,
 666 Mike Preuss, and Igor V. Tetko. Models matter: the impact of single-step retrosynthesis on
 667 synthesis planning. *Digital Discovery*, 3:558–572, 2024. doi: 10.1039/D3DD00252G. URL
 668 <http://dx.doi.org/10.1039/D3DD00252G>.

669

670 Austin Tripp, Krzysztof Maziarz, Sarah Lewis, Marwin Segler, and José Miguel Hernández-Lobato.
 671 Retro-fallback: retrosynthetic planning in an uncertain world. *arXiv preprint arXiv:2310.09270*,
 672 2023.

673

674 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 675 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
 676 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-
 677 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 678 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.

679

680

681 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 682 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

683

684 Chaochao Yan, Qianggang Ding, Peilin Zhao, Shuangjia Zheng, JINYU YANG, Yang Yu,
 685 and Junzhou Huang. Retropert: Decompose retrosynthesis prediction like a chemist. In
 686 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
 687 ral Information Processing Systems*, volume 33, pp. 11248–11258. Curran Associates, Inc.,
 688 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/819f46e52c25763a55cc642422644317-Paper.pdf.

689

690

691 Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
 692 Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-augmented
 693 language models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
 694 (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 21573–21612. Curran
 695 Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/4441469427094f8873d0fecb0c4e1cee-Paper-Datasets_and_Benchmarks.pdf.

696

697

698

699 Zipeng Zhong, Jie Song, Zunlei Feng, Tiantao Liu, Lingxiang Jia, Shaolun Yao, Min Wu, Tingjun
 700 Hou, and Mingli Song. Root-aligned smiles: a tight representation for chemical reaction prediction.
 701 *Chemical Science*, 13(31):9023–9034, 2022.

A EXAMPLES OF REACTION PATHWAYS

Figure 7: Example of a pathway with Safe Bet and Worthwhile reactions

Figure 8: Example of a pathway with a Rather Not reaction

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

6. **Functional Group Compatibility:** Molecules are screened for other functional groups that can undergo a reaction. If other groups are more probable to react first, the reaction is marked with problem *Functional group incompatibility*.
7. **Selectivity:** Selectivity of the reaction is verified, including competition between functional groups of the same type, regiosomeric outcomes (e.g., in electrophilic aromatic substitution), or other cases where multiple plausible products can arise. Reactions that fail this evaluation are marked as *Selectivity*.

C.1 TYPES OF ERRORS IN PATHWAYS GENERATED BY EVALUATED SYSTEMS

Figure 10: Detailed information on the types of errors for each reaction in the pathways from Fig. 3. Note that only reactions from the found pathways are presented here.

C.2 IMPLAUSIBILITY ANNOTATION EXAMPLES

C.2.1 REACTANTS MISMATCH

Figure 11: Nonsense: No clear relationship between atoms in the product and the substrate can be confidently proposed

Figure 12: Nonsense: The pyridyl fragment require an additional substrate, that is missing

864 C.2.2 UNSTABLE

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Figure 13: Nonsense: The carbon atom with amine and chlorine is not something seen in literature

881

882

883

884

885

886

887

888

889

890

891

Figure 14: Nonsense: The second substrate would tautomerize to phenol instantly

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

Figure 15: Nonsense: The substrate is unstable, it would tautomerize to imine

909

910

911

912

913

914

915

916

917

918

Figure 16: Nonsense: Changing length of the alkyl chain, no known precedent of such variant of carbon alkylation

Figure 17: Nonsense: An alkyl chain acting as a leaving group and bond formation by an unactivated amine carbon. No such reactivity ever demonstrated in literature

C.2.4 ONE POT

Figure 18: Rather not: 2 steps required – Boc deprotection and acylation

Figure 19: Rather not: 2 steps required - Cbz deprotection and Boc protection

C.2.5 REACTIVITY

Figure 20: Rather not: Most of the references for this reaction are around electron-deficient heterocycles, only one example with pyrazole in literature

972
973
974
975
976
977
978
979
980
981982 Figure 21: Rather not: High likelihood of steric hindrance
983984 C.2.6 FUNCTIONAL GROUP INCOMPATIBILITY
985995 Figure 22: Rather not: No literature references where a bromine is located in alpha to the ester
996 position. The alkyl bromine would most likely react more readily than the ester.
997
998
9991000 Figure 23: Nonsense: No conditions allow to cleave a methyl ether in a way that wouldn't affect the
1001 sulfonyl chloride
1002
1003
1004
1005
1006
1007
1008
1009
10101011 C.2.7 SELECTIVITY
10121013
1014 Figure 24: Rather not: There is a considerable risk that achieving the disubstituted product at a
1015 satisfactory yield would be very difficult (especially accounting for the presence of amine in the
1016 structure).
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

Figure 25: Rather not: There are 3 equivalent hydroxyl groups, so in bromination we expect triple substitution rather than this scenario

D RETROSYNTHESIS TARGETS

D.1 SMILES

```

1044 Clc1ccc(-c2c(N(CC)CC)c(c(nc2C)C)CC(=O)NCC)cc1
1045 O(c1cc(c([N+])(=O)[O-])cc1)COC1CN(C(=O)[C@H]2C[C@]3(NC(OC3)=O)C2)C
1046 1)C1CCCC1
1047 FC1(F)C(N2N=CC(=C2C)c2cc(ccc2)C#Cc2c(OC)cc(nc2)C(=O)O)C1
1048 O(C(C)(C)C)[C@H](C(=O)Nc1nc2[C@](O)(CCc2cc1)CC)c1c(nc(cc1)C)C
1049 FC1(F)Oc2c(O1)cc(nc2)C(=O)NC1=NN2C(C(=O)N[C@H]3[C@H]2CCC3)=C1
1050 Clc1c(N2CCC(F)(F)CC2)c(C1)cc(NC(=O)CC[C@]2(NC(=O)NC2=O)C2CC2)c1
1051 S(=O)(=O)(Nc1nc2N(N(C(=O)c2cn1)CC=C)C)c1ccc([C@H](C2=Nc3c(N2)cccc
1052 3)CCO)cc1
1053 Fc1cc(F)cc(N2[C@H](CN(CC(=O)Nc3ncnc4N(C(C)C)C=C(F)c34)CC2)C)c1
1054 Fc1c(nc2c(c(F)ccc2)c1)Nc1cc2C(OC(=O)c2cc1)(C)C
1055 O1C(=NN=C1)c1c(ncnc1)NC1C[C@H](O)[C@H](O)C1
1056 Fc1cc2c(OB(O)[C@H](NC(=O)C3CC3)C2)cc1
1057 S(C=1NN=NC1C(=O)NCCOCCNC(=O)C=1N=C(SC1)N1N=CC(=C1)C)c1cccc1
1058 O1C(Oc2c1c(ccc2C)C)([C@H]1CC[C@H](NC(=O)c2ncc(cc2)C#N)CC1)C
1059 S(C1=C(C(=O)NC(=C1)C)CN(c1c2c(nccc2)c(cc1)C#N)C)C
1060 O(CC(=O)NC1CC2N(C(C1)CC2)C)CCN1c2c3N(C(=O)C1=O)CCCC3ccc2
1061 FC(F)(F)c1cc(C2=CN(C(=O)C(=O)C3=NN(c4c3cccc4)C)=C2)C)ccc1
1062 Fc1cc(F)cc(C(=O)NC23CC([C@H](C(=O)N[C@H]4c5c(OC4)ccc(-c4c(OC)ccc
1063 c4)C)c5)C)(C2)C3)c1
1064 O1c2c(cc(C3=CN4N=C(N=C4N=C3)c3cnc(C(=O)C)cc3)cc2)CCC1
1065 S1C(N(C(=O)C2C(OCC)C=CCC2)C)=C(C2=C1CC1(N(C2)CC2CC2)CCCC1)C#N
1066 S(=O)(=O)(N[C@H]([C@H]1CC[C@H](c2cnccc2)CC1)C)c1cc(F)cc(-c2ncccc
1067 2)c1
1068 FC(F)(F)[C@H](N1CCC2(C(=O)N(Cc3c4OC=C(c4cc(OC(C)C)c3)C)CC2)CC1)CC
1069 1[C@H](O)[C@H](O)CC1
1070 FC(F)(F)[C@H]([C@H](C(=O)N[C@H]([C@H](O)(N(CC)C)c1cc(OC)cc(OC)c1
1071 )C)

```


1080 FC (F) (F) c1ncc (-c2ncc (C (F) (F) F) c (c2) CNC (c2cc (C3=NOC (=C3CO) CC) ccc2) C
 1081 2CC2) cn1
 1082
 1083 O1c2c (nc (N3C (=CC=C3C) C) nc2CCC1) NC1CCC (CO) CC1
 1084 O(c1ccc ([N+] (=O) [O-]) cc1) CC [C@H] (N) (CCN (C (=O) c1c2c (C (=O) c3c (C2=O) c
 1085 ccc3) ccc1) C) C
 1086 S (=O) (c1cccc1) CCNC (=O) CN (c1ncnc ([C@H] 2C [C@H] (O) C2) c1) C
 1087 Fc1c (C=2OC (=NN2) C=2Oc3c (cc4NC (Oc4c3)=O) C2) cc (F) cc1
 1088 O=C (N1C2C (Nc3ncc (-c4cnccc4) cn3) CC1CC2) C1C (O) C (O) CC1
 1089 S1 [C@] 2 (C (=O) N3CC4 [C@H] (NC5=NN (C=N5) CC (F) (F) F) [C@H] (C3) CC4) [C@H] ([C@]
 1090 [C@] (N=C1N) (c1cccc1) C) C2
 1091 P (=O) (O) (O) CO [C@H] 1C (C=2N (N=CC2) C/C=C/c2cccc2) CCCCC1
 1092 FC (F) (F) C (Nc1cncc (C (CO) C) c1) c1c (F) cc (OC2CN (C2) CCCF) cc1
 1093 O=C (N1CC (N2C (=O) CNC (C2) C) C1) N [C@H] 1C (=O) NC [C@H] 1c1ccc (N2C [C@H] (O) CC2) cc1
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134

D.2 VISUALIZATION

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Figure 26: 32 molecules that have been used as targets for retrosynthesis.

1188 E ROC AND PRECISION-RECALL CURVES BY FAILURE CATEGORY
1189
1190
11911192 E.1 MAGIC
1193
1194
1195
1196
11971213 Figure 27: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
1214 individual scorers versus the MetaScorer on *Magic* and *No Problem* reactions.
1215
1216
1217
12181219 E.2 SELECTIVITY
1220
1221
1222
1223
12241238 Figure 28: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
1239 individual scorers versus the MetaScorer on *Selectivity* and *No Problem* reactions.
1240
1241

1242
1243

E.3 FUNCTIONAL GROUP INCOMPATIBILITY

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

Figure 29: ROC (on the left) and precision-recall (on the right) curves comparing the performance of individual scorers versus the MetaScorer on *Functional group incompatibility* and *No Problem* reactions.

1265

1266

1267

1268

1269

1270

1271

1272

E.4 REACTIVITY

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Figure 30: ROC (on the left) and precision-recall (on the right) curves comparing the performance of individual scorers versus the MetaScorer on *Reactivity* and *No Problem* reactions.

1296
1297

E.5 ONE POT

1298
1299
1300
1301
1302
13031304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315Figure 31: ROC (on the left) and precision-recall (on the right) curves comparing the performance of individual scorers versus the MetaScorer on *One pot* and *No Problem* reactions.1316
1317
1318

E.6 UNSTABLE

1321
1322
1323
1324
13251333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344Figure 32: ROC (on the left) and precision-recall (on the right) curves comparing the performance of individual scorers versus the MetaScorer on *Unstable* and *No Problem* reactions.

1350 E.7 REACTANTS MISMATCH
13511355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 33: ROC (on the left) and precision-recall (on the right) curves comparing the performance of individual scorers versus the MetaScorer on *Reactants mismatch* and *No Problem* reactions.

F FALSE POSITIVES COUNTS BY FAILURE CATEGORY

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 34: Counts of false positives produced by individual scorers versus the MetaScorer across different failure categories, with sample sizes indicated for each category.

1404
1405
1406
1407 **G TRUE NEGATIVES COUNTS BY FAILURE CATEGORY**
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428

Figure 35: Counts of true negatives produced by individual scorers versus the MetaScorer across different failure categories, with sample sizes indicated for each category.

1432 **H LARGE LANGUAGE MODEL USAGE**
1433

1434 We used large language models solely to polish the writing by correcting grammar and spelling errors.
1435 No part of the technical content, methodology, or results was generated or influenced by these models.
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457