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ABSTRACT

Retrosynthesis is one of the domains transformed by the rise of generative models,
and it is one where the problem of nonsensical or erroneous outputs (hallucinations)
is particularly insidious: reliable assessment of synthetic plans is time-consuming,
with automatic methods lacking. In this work, we present RetroTrim, a retrosyn-
thesis system that successfully avoids nonsensical plans on a set of challenging
drug-like targets. Compared to common baselines in the field, our system is not
only the sole method that succeeds in filtering out hallucinated reactions, but it
also results in the highest number of high-quality paths overall. The key insight
behind RetroTrim is the combination of diverse reaction scoring strategies, based
on machine learning models and existing chemical databases. We show that our
scoring strategies capture different classes of hallucinations by analyzing them
on a dataset of labeled retrosynthetic intermediates. To measure the performance
of retrosynthesis systems, we propose a novel evaluation protocol for reactions
and synthetic paths based on a structured review by expert chemists. Using this
protocol, we compare systems on a set of 32 novel targets, curated to reflect recent
trends in drug structures. While the insights behind our methodology are broadly
applicable to retrosynthesis, our focus is on targets in the drug-like domain. By
releasing our benchmark targets and the details of our evaluation protocol, we hope
to inspire further research into reliable retrosynthesis.

1 INTRODUCTION

The advent of deep generative modeling has transformed a broad range of domains, and resulted
in impressive applications such as photorealistic image synthesis, code generation, and automated
theorem proving (Rombach et al., 2022; Li et al., 2022; Yang et al., 2023). The undisputed efficacy of
generative models is nonetheless hindered by the possibility of factually wrong or outright nonsensical
output, often called "hallucinations" (Sahoo et al., 2024). In some applications, such as automated
theorem proving, hallucinations can be curtailed with formal verification of output. In others, they
can only be mitigated through partial and often imprecise verification.

Retrosynthesis, the task of constructing synthetic routes — sequences of chemical reactions that
lead to a desired target molecule from simpler precursors — is another domain that has undergone
significant developments with the rise of generative modeling (Coley et al., 2018)). Modern systems
typically generate complete synthetic routes by iteratively applying predictions from a single-step
retrosynthesis (SSR) model within a graph-based search algorithm. When reactions have no known
chemical precedent or display features such as unstable reagents, they jeopardize the validity of the
synthetic path they are part of. Generative SSR models inherit the limitations of generative modeling:
the reactions they propose are frequently hallucinated, that is, chemically unsound (Torren-Peraire
et al., 2024). An example of a hallucinated reaction is shown in Figure 1

In this work, we propose RetroTrim, a retrosynthesis system designed to tackle the issue of halluci-
nated reactions by pairing a performant SSR generator with an ensemble of complementary reaction
scorers as a plausibility filter. We show that RetroTrim is the only among common retrosynthetis
solutions that successfully avoids all hallucinated reactions in proposed synthetic plans for a set of
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Figure 1: An example of grossly incorrect (hallucinated) reaction generated by a Single-Step Ret-
rosynthesis model. A PhD-level chemist recognizes that the only reasonable atom mapping between
the substrates and the product is one where the reaction center is an ortho-amino benzoate converting
into a triazole (highlighted in yellow). It does not belong to any commonly known reaction class,
and further investigation involving extensive searches of synthetic databases yields no examples that
would inform what reagents and conditions could induce such a reaction. Executing this transfor-
mation would be impractical and require the development of a novel synthetic methodology, which
typically entails a multi-month research program.

unpublished challenging drug-like targets. Moreover, RetroTrim does so while leading in the number
of targets for which a synthetic plan without issues is found.

Our approach in developing RetroTrim is based on the principle of ensemble learning (Hansen &
Salamon, 1990): combining diverse scorers with distinct error patterns yields a more robust and
accurate assessment of reaction plausibility. The ensemble scorer (MetaScorer) functions as an
external validator of the generative SSR model. It prunes all reactions below a given score threshold
from the synthesis tree, curtailing expansion of hallucinated nodes. For an overview see Fig. 2. The
three scorers which make up the plausibility filter are as follows:

1. Reaction Prior (RP): A Transformer-based architecture (Vaswani et al., 2017) whose scoring
function is designed to mimic the considerations chemists take into account when evaluating
reaction plausibility. Its training and scoring method lends itself to discovering a broad
spectrum of hallucinations.

2. Reaction Graph Plausibility (RGP): A graph model trained to distinguish positive/feasible
reactions from synthetically generated negatives. Negative reactions are generated by
applying reaction templates at random in both the forward and retro- direction. The forward
negatives are designed to increase fidelity in discriminating selectivity problems, while
retro- negatives lead of a broader spectrum of incompatibilities between functional groups
in reactants.

3. Reaction Retrieval Score (RRS): A mechanism that assesses the similarity of proposed
reactions to known experimental precedents in reaction databases. It is designed to catch hal-
lucinations of the more gross kind: reactions with no precedents and significant mismatches
between the target and reactants.

We compare performances of RP, RGP and RRS on a dataset of retrosynthetic intermediates. We
show that each scorer excels at filtering different kinds of hallucinations, and that the MetaScorer
further improves performance in most areas.

In identifying hallucinations of retrosynthesis systems, common automated metrics can at best serve
as surrogates: algorithmic procedures cannot model the whole concept of chemical plausibility, and
exact matches to literature are rare in practice for complex targets. The only way to arrive at a verdict
on a synthetic route in practice is to propose it to one or more expert chemists. If the route contains
reactions for which no known synthetic methodology exists, such a route will be rejected without the
need for experimental verification.

For this reason, to measure the performance of both retrosynthesis systems as well as reaction
scorers, we employ a novel reaction validation protocol in which PhD-level chemists assess each
reaction in a given synthetic plan according to a predefined labeling schema. Reactions are sorted
into seven categories depending on the kind of issue they raise: Magic, Selectivity, Functional group
incompatibility, Reactivity, One pot, Unstable, or Reactants mismatch; and according to the severity
of said issue: Worthwhile, Rather not, and Nonsense. Reactions which present no issues are given the
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Figure 2: Visualization of RetroTrim (above) and retrosynthetic search with plausibility filtering
(below). RetroTrim encompasses a generator, which proposes precursor molecules for a given
target, and a scorer, which evaluates the plausibility of the generated reaction. In the search process,
plausible precursors are expanded further, until we arrive at commercially available starting materials.
Implausible reactions terminate the search branch. The search concludes when a complete synthetic
route from commercially-available starting materials to the target molecule is found.

special labels No problem and Safe bet, respectively. Under this categorization, Nonsense corresponds
to hallucinated reactions, while Worthwhile and Rather not reactions contain mild or moderate issues
which make them undesirable or unpredictable. The overall confidence in a synthetic pathway is
determined by the reaction with the highest issue severity within it.

All retrosynthesis systems are evaluated on a set of thirty-two challenging drug-like targets (see
Appendix D). These targets were defined so as to match common structural features present in
modern drugs while not being close analogs of any structure found in synthetic literature. This
ensures no data leakage occurred in-between training and inference of compared models, while still
being representative of the medicinal chemistry domain.

Our main contributions are as follows:

• We propose RetroTrim which achieves state-of-the-art accuracy, rejecting as the only method
all hallucinated reactions for a set of challenging targets while at the same time finding
flawless synthetic routes for the largest number of them.

• We demonstrate that the three scorers used in RetroTrim as reaction filters display different
strengths across potential issues with reactions, and furthermore that they are complementary:
combining them leads to the best-performing system.

• We outline a reaction labeling protocol that recognizes seven kinds of possible issues at three
levels of severity, to be used by expert chemists for granular evaluation of both reactions
and the synthetic routes composed of them.

• We release a set of 32 unpublished drug-like targets, designed as a challenging test set for
retrosynthesis systems.

2 RELATED WORK

To contextualize our proposed method, this section examines the workflow in automated retrosyn-
thesis, covering both the generation of reactions by Single-Step Retrosynthesis (SSR) models and
techniques used for their validation.
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2.1 MULTI-STEP RETROSYNTHESIS

Multi-step retrosynthesis constructs complete synthetic routes by iteratively applying single-step
retrosynthesis (SSR) predictions. Classical search strategies, such as Monte Carlo tree search (Segler
et al., 2018) and A* search (Retro*) (Chen et al., 2020), use SSR models to expand compounds
during generation of synthetic pathways.

SSR models can be categorized into template-based, template-free, and semi-template-based ap-
proaches. Template-based methods (e.g., RetroSim (Coley et al., 2017), NeuralSym (Segler & Waller,
2017), GLN (Dai et al., 2019a)) use predefined reaction templates, ensuring interpretability, but
their coverage is limited and their construction involves trade-offs that can lead to invalid template
application. Template-free models (e.g., sequence-to-sequence Transformers (Zhong et al., 2022),
GNNs (Liu et al., 2017; Karpov et al., 2019; Sacha et al., 2021)) learn chemical rules directly from
data, offering scalability and the ability to generalize to novel reactions, but with little guarantee as
to the validity of output. Semi-template-based approaches (e.g., GraphRetro (Somnath et al., 2021),
RetroXpert (Yan et al., 2020)) combine templates with learned representations, inheriting both the
advantages and limitations of both approaches. Regardless of their category, SSR models are all
prone to erroneous output (Coley et al., 2018).

Evaluating single-step retrosynthesis (SSR) models remains challenging. Traditional metrics, such as
top-k accuracy, measure whether the correct reactants appear among the top predicted candidates, but
they provide limited insight into chemical plausibility and alternative valid reactions.

To address this, round-trip accuracy (Schwaller et al., 2020) is commonly used. This metric evaluates
a predicted reaction by passing the predicted reactants through a forward reaction model and checking
if the original product is recovered. Round-trip accuracy is considered a better proxy for chemical
validity than top-k accuracy.

However, it remains unclear how well round-trip accuracy reflects the actual plausibility of the
predicted reactions. There is currently no exhaustive data quantifying how many predictions that pass
or fail the round-trip check correspond to chemically plausible reactions.

Evaluating multi-step retrosynthetic routes is typically limited to basic pathway properties, such as
the number of steps, route length, branching factor, or overall synthesizability (Maziarz et al., 2025).
These metrics provide little insight into the actual correctness or chemical plausibility of the complete
synthetic route.

Evaluation of multi-step routes by expert chemists provides a more trustworthy viability assessment.
To our knowledge, the only work containing human evaluation of routes powered by generative
models is Segler et al. (2018), which conducts a double-blind A/B test comparing routes existing in
literature and those produced by their model. Their results showed that for the first time, computer-
generated routes could be on-par or preferred to those found in the literature by chemists. While
a significant result in its own right, their test only recorded preference between paths as opposed
to measuring the rate of significant system errors. It also spanned only 9 randomly chosen targets.
In contrast, we conduct fine-grained error-analysis of routes proposed by 4 modern retrosynthesis
systems, as well as 6 variants of our own system, including the full RetroTrim and simpler baselines.
Moreover, we do so on a set of 32 targets chosen for their challenging nature.

2.2 MID-SEARCH REACTION VALIDATION

The plausibility of multi-step retrosynthetic routes has drawn increasing attention from researchers,
leading to the development of methods aimed at improving pathway validity. A commonly used
approach is to employ a plausibility model as a filter. Such models are typically trained as classifiers
to distinguish correct reactions from artificially generated negative examples, which are often created
by perturbing positive reactions, for example by randomly modifying substrates or swapping the
original product with a chemically similar one (Segler et al., 2018; Genheden et al., 2020a). A
forward model (predicting products based on substrates) trained only on positive data was used in the
same way in IBM RXN (Schwaller et al., 2020).

Another strategy is to use the likelihood of a generated reaction as a scoring function during search.
This can be computed from template-free models, such as the Molecular Transformer (Schwaller
et al., 2019) architecture, where the model’s confidence, derived from output token probabilities, has
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been shown to correlate with reaction correctness, or from template-based models using softmax
scores, as in RetroFallback (Tripp et al., 2023). In order to improve the quality of predicted reactions,
RetroGFN (Gaiński et al., 2024) was trained using feedback from a forward model and round-trip
accuracy. RetroChimera (Maziarz et al., 2024) takes a complementary approach by selecting the most
plausible predictions from an ensemble of diverse reaction generators, effectively combining their
strengths to increase overall accuracy.

Finally, evidence-based validation via retrieval grounds model predictions in established chemi-
cal knowledge, mirroring a chemist’s workflow of searching for literature precedents. Retrieval-
augmented methods, such as the Retrieval-Augmented RetroBridge (RARB) framework, retrieve
similar molecules from a database to guide the generation of reactants (Qiao et al., 2025). These
approaches help ensure that generated reactions are consistent with known chemistry, further improv-
ing the plausibility of multi-step routes. In the context of these works, RetroTrim is the first to use
retrieved reactions to filter predictions of a reaction generation.

To date, none of these approaches have been extensively validated through human expert evaluation.

3 METHODS

RetroTrim is a combination of an SSR reaction generator and a reaction scorer. The key innovation
in RetroTrim is the design of the scorer, which is built around a central, best-performing scorer
called Reaction Prior, supported by two additional scorers: Reaction Graph Plausibility scorer and
Reference Reaction Scorer. The additional scorers are designed to compliment Reaction Prior by
targeting specific error types. Together, they aggregate into the MetaScorer which provides the final,
robust assessment of reaction correctness.

3.1 REACTION PRIOR

The Reaction Prior (RP) is a novel method inspired by how experienced chemist reason about
reactions: considering the reaction globally, assessing the reaction center, and comparing it to
alternative reactions that could occur. The RP score Sfinal is thus a weighted combination of three
components: Sfinal = Sα

RP · Sβ
Regio · S

γ
RC . Here, SRP is the Reaction Prior (global) Score, SRC

is the Reaction Center Score, and SRegio is the Regioselectivity Score, with α, β, and γ serving as
weighting factors. These weights can be tuned to optimize a metric of interest. In practice, we find
α = 1, β = 1.5 and γ = 2.5 to be reasonable default values for drug-like targets. RP is implemented
as an autoregressive, encoder-decoder BART (Lewis et al., 2019a) architecture, where substrates and
products are processed by the decoder, trained for next-token prediction by minimizing cross-entropy
loss.

Reaction Prior Score (SRP ) This score reflects the overall feasibility of the reaction. It is propor-
tional to the log probability assigned by the model to the reaction sequence. Analogously to language
models, which assign higher probabilities to sequences close to the training set, this score acts as
a measure of reaction similarity to the dataset on which the model is trained on. In this respect, it
mimics the way in which a chemist would look for precedent for the overall transformation. We
normalize the log probability by the square root of the total number of tokens (T ), which we find to
maximize predictive performance in practice: SRP = 1√

T
logP (reaction).

Reaction Center Score (SRC ) When evaluating reactions, chemists pay special attention to the sites
where changes in connectivity occur. The SRC score analogously evaluates the model’s confidence
in the identified reactive sites. It is proportional to the sum of log probabilities of tokens representing
atoms in the reaction’s center. Unlike SRP , here we normalize by the number of such tokens (TRC),
similarly guided by empirical calibration: SRC = 1

TRC

∑
i∈reaction center logP (tokeni).

Regioselectivity Score (SRegio) This component quantifies reaction site specificity. It is calculated
by comparing the probability of the reaction at the given reaction site (Pdesired) to the summed
probabilities of all sites where the reaction might occur (Pundesired): SRegio = log

(
Pdesired

Pundesired+ϵ

)
, where

ϵ is a small constant to prevent division by zero. This score component reflects the tendency for
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chemists to evaluate whether the particular site where a reaction occurs is preferred compared to
potential alternatives.

3.2 REACTION GRAPH PLAUSIBILITY

A Graph Attention Network (GAT) (Veličković et al., 2017) is trained to differentiate chemically
valid reactions from implausible ones. Training uses reaction datasets for positive examples and
synthetic negative examples generated through forward and two-step backward template applications.
This approach is similar to those proposed by (Segler et al., 2018; Genheden et al., 2020a), but it uses
a graph neural network instead of a feedforward network with fingerprint inputs, and employs more
sophisticated artificial negative reactions, generated not only by applying random templates in the
forward direction but also through retro-synthetic random template applications, which increases
the diversity of types of generated incorrect reactions. Details of GAT featurization are described in
Appendix B.

3.3 REFERENCE REACTION SCORER

We developed a structured retrieval pipeline that extracts chemical precedent information through
a two-tiered reaction clustering procedure based on bond change patterns. First Coarse-grained
clustering extracts connected components of the reaction center and applies atom mapping to identify
the underlying transformation pattern. Reactions belong to the same cluster if their transformation
patterns are identical. Then Fine-grained clustering extends the coarse-grained approach by incorpo-
rating chemically significant substructures — aromatic systems and conjugated double bonds - into
the cluster classification.

Our Reference Reaction Retrieval Scorer (RRS) quantifies reaction plausibility through a logarithmic
transformation of the unique reference reaction count, where we sum the number of coarse-grained
and fine-grained references of a candidate reaction:

p(reaction) = log(nref(reaction) + 1) (1)

where nref(reaction) represents the unique number of reference reactions in the coarse-grained
and fine-grained clusters containing reaction.

3.4 METASCORER AGGREGATION

To improve reaction filtering, our MetaScorer integrates scores from Reaction Prior (sRP), Reaction
Graph Plausibility (sRGP), and empirical precedents (nref > 0) retrieved via the pipeline in Sec. 3.3.
This hybrid approach mitigates the weaknesses of purely data-driven or precedent-based methods.
The continuous score is described by equation sMETA = max(sRGP, sRP) if nref > 0 (0 otherwise).

For binary classification tasks and search, reactions are filtered using predefined thresholds, which
can be selected through grid search to balance precision and recall:

sMETA =

{
1 if sRGP > thrRGP and sRP > thrRP and nref > 0

0 otherwise
(2)

By synthesizing diverse evidence types MetaScorer enables more reliable reaction filtering for
multi-step synthesis planning. This integrated approach mitigates individual weaknesses of purely
data-driven or precedent-based methods, yielding improved performance.

3.5 GENERATOR AND INTEGRATION WITH SEARCH (RETRO*)

For the generator part of RetroTrim, we use the encoder-decoder BART architecture (Lewis et al.,
2019b) trained on root-aligned SMILES (Zhong et al., 2022), where the product (target) is processed
by the encoder, and the substrates are generated by the decoder. We call this generator RootAligned.
The calibrated MetaScorer is used during multi-step retrosynthesis search to improve the quality of
the pathways predicted by the BART generator. We integrate the scorer into the Retro* (Chen et al.,
2020) search framework as a reaction filtering mechanism. Reactions are pruned from the search tree
if sMETA defined in 2 is equal to 0.
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4 HUMAN EVALUATION

We curated a dataset of over 4,500 reactions generated by our SSR models. Each reaction was
evaluated and labeled by PhD-level chemists into one of the expert-defined categories, creating the
first comprehensive dataset of its kind. This datased provides a way to evaluate the error patterns
of our reaction plausibility scorers. A subset of 500 reactions from this dataset will be released as a
benchmark for the community.

Reaction Evaluation Protocol was designed to systematically evaluate predicted reactions based on
expert-defined heuristics. Reactions were rated using a four-point confidence scale: Nonsense, Rather
not, Worthwhile, and Safe bet. Safe bet reactions are considered fully reliable; Worthwhile reactions
remain plausible but carry a moderate risk of failure; Rather not reactions are associated with a high
risk of major difficulties; and Nonsense reactions are effectively infeasible, i.e. hallucinated. For the
system to be reliable, valid pathways should consist primarily of Safe bets reactions. The presence of
Nonsense reactions effectively invalidates a pathway, while the presence of a Rather Not reaction may
still be acceptable in target-oriented synthesis when no alternatives exist. Reactions which aren’t a
Safe bet receive an additional label specifying the cause of their incorrectness, chosen from: Reactants
mismatch, Unstable, Magic, One pot, Reactivity, Functional group incompatibility, and Selectivity.
These error categories correlate with confidence levels to varying degrees: for example, Magic errors
almost always map to Nonsense, while Selectivity issues more often correspond to Worthwhile or
Rather Not. Otherwise, a reaction is assigned a No Problem label. A detailed description of the
evaluation framework is provided in Appendix C.

5 EXPERIMENTS

5.1 DATASET

All of our generators and scorers are based on the proprietary Pistachio (2024Q3 release) (Mayfield
et al., 2017) dataset, either used as training data (RootAligned, RP, RGP), or as a source of reference
reactions (RRS). Pistachio offers substantial advantages over the commonly used USPTO-50K
(Schneider et al., 2016) and USPTO-FULL (Dai et al., 2019b) datasets - it features enhanced curation,
resulting in higher data quality and more comprehensive coverage of chemical reaction space. For
training, we preprocess the dataset through a multi-step filtering pipeline that removes duplicate
reactions, reactions from unrecognized reaction classes, entries with invalid SMILES, unmapped
reactions, and reactions deemed unrelated to drug-like compound synthesis (molecules with >100
atoms, "separation" reaction classes), retaining approximately 4 million reactions.

5.2 PATH-LEVEL PLAUSIBILITY EVALUATION

We compared the ability of each individual scorer (RP, RGP, and RRS) as well as the MetaScorer at
filtering out implausible reactions in multi-step retrosynthesis. All scorer variants were used together
with our BART-based RootAligned generator.

The thresholds for filtering implausible reactions were maximized under the constraint that the
resulting system finds paths for at least 90% of targets. In practice, this corresponded to a precision
value of 0.8 on the reaction dataset described in 4. We targeted both a relatively strict threshold (to
keep precision high) and broad coverage in terms of targets for which routes are found. Importantly,
these thresholds were not tuned to optimize benchmark performance. As baselines, we report results
for RootAligned without scoring, RootAligned with a forward reaction scorer, and LocalRetro (Chen
& Jung, 2021). The forward scorer is implemented in the same BART architecture as RootAligned,
except it is trained to predict products based on substrates. For the search, we used the widely adopted
Retro* algorithm based on the implementation from (Maziarz et al., 2025) with the expansion limit
set to 500. For all systems, we used the same starting material database, eMolecules.

Additionally, we compared against three publicly accessible retrosynthesis systems: AiZynthFinder
(Genheden et al., 2020b), IBM RXN (IBM, 2025), and RetroChimera (Maziarz et al., 2024). AiZyn-
thFinder was used in its default configuration from the official repository, which includes a template
generator with a filtering model trained to distinguish valid reactions from artificially generated
negatives. The only modification we make is an increased time limit of 15 minutes to better match
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the runtime of other systems. IBM RXN, which makes use of a forward model in its search, was
accessed through its free web application (IBM, 2025). RetroChimera was queried via the Azure
Foundry multi-step retrosynthesis endpoint (Microsoft, 2025). Due to a low per-call timeout, we
repeated the queries multiple times for each target; thanks to prediction caching, this resulted in an
effective 15-minute search time. Like RetroTrim, RetroChimera does not employ an explicit reaction
scorer, instead it aims to enforce plausibility by selecting the top-ranked reactions from an ensemble
of generators.

We evaluated the top-1 synthesis paths generated by all systems for 32 selected targets (listed in
D). Each reaction in the generated paths was manually evaluated by expert chemists according to
the evaluation protocol described in 4. Each path was assigned a four-tier confidence score (Safe
bet, Worthwhile, Rather not, Nonsense), determined by the lowest-scoring reaction in the path. This
conservative scoring reflects the intuition that a single implausible step can invalidate an otherwise
promising synthesis. Increasing the proportion of Safe bets, while eliminating Nonsense and reducing
Rather Not paths is the goal of all retrosynthesis systems.

5.3 REACTION-LEVEL PLAUSIBILITY PREDICTION

Additionally, we compare the performance of individual scorers (RP, RGP and RRS) and the MetaS-
corer on individual reactions with ground truth labels established through expert chemist evaluations
described in Section 4.

Model performance was assessed using precision-recall (PR) and receiver operating characteristic
(ROC) curves, with area under the curve metrics (PR-AUC and ROC-AUC) reported for each method.
Reactions with confidence rating Safe Bet were treated as positive examples. Worthwhile reactions
were excluded from the test set as they represent borderline cases where chemist confidence is
uncertain, making them neither clearly positive nor negative examples for evaluation purposes. All
others (Rather Not and Nonesense) were labeled as negatives. We also conducted additional analysis
across each failure category, reporting individual ROC-AUC and PR-AUC scores, as well as false
positive counts.

To evaluate model complementarity, we analyzed the overlap in false positive predictions across
individual scorers, calculated as:

overlap =

∣∣∣⋂scorer∈{RGP,RP,RRS} FPscorer
∣∣∣

minscorer∈{RGP,RP,RRS} |FPscorer|
, (3)

where FP is a set of false positives produced by a given scorer.

6 RESULTS

6.1 PATH-LEVEL PLAUSIBILITY EVALUATION

Pathway correctness comparison is presented in the figure 3. AiZynthFinder demonstrates significant
limitations, failing to identify viable pathways for significant number of the target molecules while
generating a substantial proportion of unreliable routes classified as Nonsense and Rather Not. IBM
RXN shows improved performance by increasing the number of reliable pathways and reducing
hallucinated predictions, yet fails to produce valid synthetic routes for a considerable fraction of
target compounds. RetroChimera outputs pathways for the vast majority of targets. Although it
produces a large percentage of Safe Bet pathways, it also generates a substantial number of Nonsense
pathways, showing that ensembling current generators alone is not sufficient to mitigate errors for
challenging targets.

RetroAligned without scoring significantly improves number of pathways found, providing solutions
for all targets. However, confidence in its results is undermined by the significant presence of
unreliable Nonsenense and Rather Not paths. Introducing individual scorers increases the fraction
of targets for which no paths are found, a trade-off that can be desirable for the trustworthiness of
the system — rejecting some targets is preferable to mixing reliable and unreliable pathways, as
long as the remaining routes are correct. While RGP and RRS scorers reduce number of unreliable
paths only modestly, our RP scorer demonstrates its value as a primary filter by eliminating all
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Figure 3: Comparison of our retrosynthesis generator (RootAligned) with different scorers against
IBM RXN, AiZynthFinder, LocalRetro, and RetroChimera. Among AiZynthFinder, IBM RXN,
LocalRetro and RetroChimera, RetroChimera performs significantly better than others, but it still
fails on >25% targets, with a significant number of hallucinations. RootAligned without any reaction
scorer finds pathways for all targets but includes unreliable routes. Introduction of individual scorers
trades coverage for reliability, with RP eliminating all Nonsense pathways. RetroTrim, backed by the
MetaScorer produces the most trustworthy results.

Nonsense reactions, though this comes at the cost of fewer Safe Bet and Worthwhile pathways. Finally,
RetroTrim, utilizing the MetaScorer, delivers substantial improvements in reliability: significantly
increasing Safe Bet paths, maintaining zero Nonsense results, and reducing Rather Not pathways. In
our results, individual scorers similar to those commonly appearing in the literature (such as RGP -
feasibility classifier and forward scorers), weren’t sufficient to achieve correct pathways. RetroTrim
provides the largest number of problematic routes while eliminating the most serious errors.

6.2 REACTION-LEVEL PLAUSIBILITY EVALUATION

Our results show that the MetaScorer outperforms individual scorers in both precision and recall,
demonstrating effective integration of complementary signals. Figure 4 presents the ROC and
precision-recall curves, with the MetaScorer achieving consistently higher area under the curve
(AUC) values across both metrics. Similar curves broken down by reaction failure category can be
found in Appendix E.

Figure 4: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the MetaScorer. The MetaScorer achieve higher AUC values for both ROC
and PR curves, indicating better discrimination between plausible and implausible reactions. Among
the individual scorers, RP shows the best performance.

Figure 5 shows ROC-AUC values for each scorer broken down into different failure categories, illus-
trating that individual scorers demonstrate proficiency in filtering out reactions deemed implausible
under different evaluation criteria. RGP achieves the best performance on Selectivity and Reactivity
errors. RRS is most capable of detecting fundamental structural issues such as Reactant mismatches
and Magic, in addition to One pot errors. RP shows a balanced profile, which explains its overall
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superior performance compared to RGP and RRS in Figure 4. By leveraging the unique strengths
of each individual scorer, the MetaScorer maintains robust predictive performance across all failure
categories.

Figure 5: ROC-AUC performance of individual
scorers across different failure categories, with
sample sizes indicated for each category.

Figure 6: Overlap between individual pairs of
scorers and triple of all scorers across different
failure categories, with sample sizes indicated
for each category.

We also analyze the overlap between false positives that each scorer fails to filter, as shown in Figure
6. The results show distinct complementarity: while RRS and RP exhibit high overlap in most
categories, it is notably reduced for One-pot, Magic, and Reactant mismatch failure modes — the
categories where Figure 5 demonstrates RRS’s superior performance. RGP and RP show consistently
low overlap across all failure categories, indicating that these scorers capture different aspects of
reaction implausibility. Importantly, when considering all three scorers jointly, the overlap drops to
very low levels across all categories, providing strong evidence that each scorer contributes unique
discriminative value essential for building a robust MetaScorer.

7 CONCLUSIONS

In this work, we introduced RetroTrim, a retrosynthesis system designed to avoid hallucinations in
the synthesis tree through a combination of three complementary reaction scoring strategies. We
demonstrated its success on thirty-two unpublished drug-like targets, where no generated paths
contained hallucinated reactions. Among the available methods we compared RetroTrim with, our
method was the only one to compltetely avoid hallucinations, while at the same time finding more
paths without issues than other methods. To understand the strengths and complementarity of each
scoring strategy, we compared their performance across different classes of possible issues. We found
evidence of synergy between the scorers, both at the level of filtering individual reaction, and in terms
of the retrosynthetic paths resulting from their use.

In evaluating retrosynthesis systems and scorers, we made use of a novel labeling protocol where
we leveraged chemists’ expertise to produce fine-grained labels for generated reactions. To our
knowledge, this is the first instance of such a granular analysis of retrosynthetis systems’ output,
where automated metrics and ad-hoc manual inspection were the norm. In order to facilitate further
development in the field, we release the thirty-two targets used for path generation. While our
evaluation process is generally applicable to retrosynthesis, RetroTrim was trained on data that biases
it towards the medicinal chemistry context. We also note that by focusing on the top-1 performance
of retrosynthesis systems, we leave open for further work the analysis of how different plausibility
filtering methods impact the diversity of resulting paths. Nonetheless, we hope that the insights and
methodologies presented in this work lead to more reliable retrosynthesis in general.
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A EXAMPLES OF REACTION PATHWAYS

Safe bet

Safe bet Worthwhile

Safe bet

Worthwhile Safe bet Safe bet

Figure 7: Example of a pathway with Safe Bet and Worthwhile reactions

Safe bet Rather not

Safe bet

Safe bet

Safe bet

Safe betSafe betSafe bet

Figure 8: Example of a pathway with a Rather Not reaction
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Safe bet

Safe bet

Safe bet

Worthwhile

Worthwhile Safe bet

Safe bet

Nonsense

Safe bet

Figure 9: Example of a pathway with a Nonsense reaction

B GAT

The GAT model processes reaction graphs where individual atoms and bonds are featurized with
chemically-meaningful characteristics, outputting a scalar plausibility score for each reaction. The
attention mechanism is modified to ensure that attention weights between non-connected nodes
approach zero, preserving the chemical connectivity structure. The key difference to the original
GAT is the support of global information exchange across the entire molecular graph, ensured by an
artificial supernode that connects to all other nodes in the graph.

C REACTION EVALUATION PROTOCOL

Each candidate reaction is assessed sequentially along the following dimensions. Unless specified
otherwise, in each of them the reaction is scored on a four-level confidence scale: Nonsense, Rather
Not, Worthwhile, and Safe Bet, indicating the plausibility of the reaction. Every reaction that is not a
safe bet is assigned an additional label explaining the reason for its incorrectness.

1. Reactant-Product Consistency: Structural alignment between reactants and product is
verified. Reactions in which the product contains a large fragment that is neither present in
the substrate nor originates from a commonly used reagent, or in which no clear relationship
between the atoms of the product and the substrates can be established, are marked as
Nonsense, with the reason for incorrectness labeled as Reactants mismatch.

2. Stability: Reactions producing products or including substrates that are not isolable under
the typically achievable conditions are marked as Nonsense, with the reason for inplausibility
labeled as Unstable.

3. Mechanistic Plausibility: Reactions lacking a plausible mechanism are classified as Non-
sense or Rather Not due to Magic, covering transformations requiring unknown or highly
implausible reactivity. Transformations that would require more than two non-trivial steps
are also placed in this category.

4. Multistep Feasibility and One-Pot Potential: Reactions not achievable in a single step are
assessed for decomposability into two coherent steps. If they pass this test, feasibility in a
one-pot setting is scored on a four-level scale and failing reactions are marked as One pot.

5. Reactivity of Substrates: Feasibility of the reaction, given the reactivity of the substrates
(e.g., electron deficiency), is verified. Reactions that cannot be reasonably expected to occur
are marked as implausible, with the reason for incorrectness labeled as Reactivity.
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6. Functional Group Compatibility: Molecules are screened for other functional groups
that can undergo a reaction. If other groups are more probable to react first, the reaction is
marked with problem Functional group incompatibility.

7. Selectivity: Selectivity of the reaction is verified, including competition between functional
groups of the same type, regioisomeric outcomes (e.g., in electrophilic aromatic substitution),
or other cases where multiple plausible products can arise. Reactions that fail this evaluation
are marked as Selectivity.

C.1 TYPES OF ERRORS IN PATHWAYS GENERATED BY EVALUATED SYSTEMS

Figure 10: Detailed information on the types of errors for each reaction in the pathways from Fig. 3.
Note that only reactions from the found pathways are presented here.

C.2 IMPLAUSIBILITY ANNOTATION EXAMPLES

C.2.1 REACTANTS MISMATCH

Figure 11: Nonsense: No clear relationship between atoms in the product and the substrate can be
confidently proposed

Figure 12: Nonsense: The pyridyl fragment require an additional substrate, that is missing
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C.2.2 UNSTABLE

Figure 13: Nonsense: The carbon atom with amine and chlorine is not something seen in literature

Figure 14: Nonsense: The second substrate would tautomerize to phenol instantly

Figure 15: Nonsense: The substrate is unstable, it would tautomerize to imine

C.2.3 MAGIC

Figure 16: Nonsense: Changing length of the alkyl chain, no known precedent of such variant of
carbon alkylation
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Figure 17: Nonsense: An alkyl chain acting as a leaving group and bond formation by an unactviated
amine carbon. No such reactivity ever demonstrated in literature

C.2.4 ONE POT

Figure 18: Rather not: 2 steps required – Boc deprotection and acylation

Figure 19: Rather not: 2 steps required - Cbz deprotection and Boc protection

C.2.5 REACTIVITY

Figure 20: Rather not: Most of the references for this reaction are around electron-deficient heterocy-
cles, only one example with pyrazole in literature
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Figure 21: Rather not: High likelihood of steric hindrance

C.2.6 FUNCTIONAL GROUP INCOMPATIBILITY

Figure 22: Rather not: No literature references where a bromine is located in alpha to the ester
position. The alkyl bromine would most likely react more readily than the ester.

Figure 23: Nonsense: No conditions allow to cleave a methyl ether in a way that wouldn’t affect the
sulfonyl chloride

C.2.7 SELECTIVITY

Figure 24: Rather not: There is a considerable risk that achieving the disubstituted product at a
satisfactory yield would be very difficult (especially accounting for the presence of amine in the
structure).
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Figure 25: Rather not: There are 3 equivalent hydroxyl groups, so in bromination we expect triple
substitution rather than this scenario

D RETROSYNTHESIS TARGETS

D.1 SMILES

Clc1ccc(-c2c(N(CC)CC)c(c(nc2C)C)CC(=O)NCC)cc1

O(c1cc(c([N+](=O)[O-])cc1)COC1CN(C(=O)[C@@H]2C[C@]3(NC(OC3)=O)C2)C
1)C1CCCC1

FC1(F)C(N2N=CC(=C2C)c2cc(ccc2)C#Cc2c(OC)cc(nc2)C(=O)O)C1

O(C(C)(C)C)[C@H](C(=O)Nc1nc2[C@](O)(CCc2cc1)CC)c1c(nc(cc1)C)C

FC1(F)Oc2c(O1)cc(nc2)C(=O)NC1=NN2C(C(=O)N[C@@H]3[C@H]2CCC3)=C1

Clc1c(N2CCC(F)(F)CC2)c(Cl)cc(NC(=O)CC[C@]2(NC(=O)NC2=O)C2CC2)c1

S(=O)(=O)(Nc1nc2N(N(C(=O)c2cn1)CC=C)C)c1ccc([C@@H](C2=Nc3c(N2)cccc
3)CCO)cc1

Fc1cc(F)cc(N2[C@H](CN(CC(=O)Nc3ncnc4N(C(C)C)C=C(F)c34)CC2)C)c1

Fc1c(nc2c(c(F)ccc2)c1)Nc1cc2C(OC(=O)c2cc1)(C)C

O1C(=NN=C1)c1c(ncnc1)NC1C[C@H](O)[C@@H](O)C1

Fc1cc2c(OB(O)[C@@H](NC(=O)C3CC3)C2)cc1

S(C=1NN=NC1C(=O)NCCOCCNC(=O)C=1N=C(SC1)N1N=CC(=C1)C)c1ccccc1

O1C(Oc2c1c(ccc2C)C)([C@@H]1CC[C@@H](NC(=O)c2ncc(cc2)C#N)CC1)C

S(C1=C(C(=O)NC(=C1)C)CN(c1c2c(nccc2)c(cc1)C#N)C)C

O(CC(=O)NC1CC2N(C(C1)CC2)C)CCN1c2c3N(C(=O)C1=O)CCCc3ccc2

FC(F)(F)c1cc(C2=CN(C(=O)C(NC(=O)C3=NN(c4c3cccc4)C)=C2)C)ccc1

Fc1cc(F)cc(C(=O)NC23CC([C@@H](C(=O)N[C@H]4c5c(OC4)ccc(-c4c(OC)ccc(
c4)C)c5)C)(C2)C3)c1

O1c2c(cc(C3=CN4N=C(N=C4N=C3)c3cnc(C(=O)C)cc3)cc2)CCC1

S1C(N(C(=O)C2C(OCC)C=CCC2)C)=C(C2=C1CC1(N(C2)CC2CC2)CCCC1)C#N

S(=O)(=O)(N[C@@H]([C@@H]1CC[C@H](c2cnccc2)CC1)C)c1cc(F)cc(-c2ncccc
2)c1

FC(F)(F)[C@@H](N1CCC2(C(=O)N(Cc3c4OC=C(c4cc(OC(C)C)c3)C)CC2)CC1)CC
1[C@@H](O)[C@@H](O)CC1

FC(F)(F)[C@@H]([C@H](C(=O)N[C@@H]([C@@](O)(N)CC)C)c1cc(OC)cc(OC)c1
)C
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FC(F)(F)c1ncc(-c2ncc(C(F)(F)F)c(c2)CNC(c2cc(C3=NOC(=C3CO)CC)ccc2)C
2CC2)cn1

O1c2c(nc(N3C(=CC=C3C)C)nc2CCC1)NC1CCC(CO)CC1

O(c1ccc([N+](=O)[O-])cc1)CC[C@@](N)(CCN(C(=O)c1c2c(C(=O)c3c(C2=O)c
ccc3)ccc1)C)C

S(=O)(c1ccccc1)CCNC(=O)CN(c1ncnc([C@@H]2C[C@@H](O)C2)c1)C

Fc1c(C=2OC(=NN2)C=2Oc3c(cc4NC(Oc4c3)=O)C2)cc(F)cc1

O=C(N1C2C(Nc3ncc(-c4cnccc4)cn3)CC1CC2)C1C(O)C(O)CC1

S1[C@]2(C(=O)N3CC4[C@@H](NC5=NN(C=N5)CC(F)(F)F)[C@H](C3)CC4)[C@H](
[C@](N=C1N)(c1ccccc1)C)C2

P(=O)(O)(O)CO[C@H]1C(C=2N(N=CC2)C/C=C/c2ccccc2)CCCC1

FC(F)(F)C(Nc1cncc(C(CO)C)c1)c1c(F)cc(OC2CN(C2)CCCF)cc1

O=C(N1CC(N2C(=O)CNC(C2)C)C1)N[C@H]1C(=O)NC[C@@H]1c1ccc(N2C[C@@H](O
)CC2)cc1
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D.2 VISUALIZATION

Figure 26: 32 molecules that have been used as targets for retrosynthesis.
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E ROC AND PRECISION-RECALL CURVES BY FAILURE CATEGORY

E.1 MAGIC

Figure 27: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the MetaScorer on Magic and No Problem reactions.

E.2 SELECTIVITY

Figure 28: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the MetaScorer on Selectivity and No Problem reactions.
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E.3 FUNCTIONAL GROUP INCOMPATIBILITY

Figure 29: ROC (on the left) and precision-recall (on the right) curves comparing the performance
of individual scorers versus the MetaScorer on Functional group incompatibility and No Problem
reactions.

E.4 REACTIVITY

Figure 30: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the MetaScorer on Reactivity and No Problem reactions.
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E.5 ONE POT

Figure 31: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the MetaScorer on One pot and No Problem reactions.

E.6 UNSTABLE

Figure 32: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the MetaScorer on Unstable and No Problem reactions.
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E.7 REACTANTS MISMATCH

Figure 33: ROC (on the left) and precision-recall (on the right) curves comparing the performance of
individual scorers versus the MetaScorer on Reactants mismatch and No Problem reactions.

F FALSE POSITIVES COUNTS BY FAILURE CATEGORY

Figure 34: Counts of false positives produced by individual scorers versus the MetaScorer across
different failure categories, with sample sizes indicated for each category.
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G TRUE NEGATIVES COUNTS BY FAILURE CATEGORY

Figure 35: Counts of true negatives produced by individual scorers versus the MetaScorer across
different failure categories, with sample sizes indicated for each category.

H LARGE LANGUAGE MODEL USAGE

We used large language models solely to polish the writing by correcting grammar and spelling errors.
No part of the technical content, methodology, or results was generated or influenced by these models.
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