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ABSTRACT

Visual planning simulates how humans make decisions to achieve desired goals in
the form of searching for visual causal transitions between an initial visual state
and a final visual goal state. It has become increasingly important in egocentric
vision with its advantages in guiding agents to perform daily tasks in complex
environments. In this paper, we propose an interpretable and generalizable visual
planning framework consisting of i) a novel Substitution-based Concept Learner
(SCL) that abstracts visual inputs into disentangled concept representations, ii)
symbol abstraction and reasoning that performs task planning via the self-learned
symbols, and iii) a Visual Causal Transition model (ViCT) that grounds visual
causal transitions to semantically similar real-world actions. Given an initial state,
we perform goal-conditioned visual planning with a symbolic reasoning method
fueled by the learned representations and causal transitions to reach the goal state.
To verify the effectiveness of the proposed model, we collect a large-scale visual
planning dataset based on AI2-THOR, dubbed as CCTP. Extensive experiments
on this challenging dataset demonstrate the superior performance of our method in
visual task planning. Empirically, we show that our framework can generalize to
unseen task trajectories and unseen object categories. We will release our dataset
and codes upon acceptance.

1 INTRODUCTION

As one of the fundamental abilities of human intelligence, planning is the process of insightfully
proposing a sequence of actions to achieve desired goals, which requires the capacity to think ahead,
to employ knowledge of causality and the capacity of imagination (Walker & Gopnik, 2013), so as
to reason and foresee the proper actions and their consequences on the states for all the intermediate
transition steps before finally reaching the goal state. Visual planning simulates this thinking process
of sequential causal imagination in the form of searching for visual transitions between an initial
visual state and a final visual goal state. With its advantages in guiding agents to perform daily tasks
in the first-person view, visual planning has become more and more important in egocentric vision
(Gupta et al., 2017). In robotics, visual planning could also save large amounts of workforce from
manually designing the required specific goal conditions, action preconditions and effects for robots.

Previous works for visual planning can be roughly categorized into three tracks, i.e., neural-network-
based models (Sun et al., 2022; Oh et al., 2015), reinforcement-learning-based models (Rybkin et al.,
2021; Ebert et al., 2018) and classic search-based models (Paxton et al., 2019; Liu et al., 2020).
Neural-network-based models can be trained in an end-to-end manner, easily adapting to different
tasks and domains. This line of works, however, tends to fall short in terms of its interpretability
(Gao & Guan, 2023). Reinforcement-learning-based models can perform goal-conditioned deci-
sions, but could suffer from sparse reward, low data efficiency (Ladosz et al., 2022), and low envi-
ronment and task generalization ability (Packer et al., 2018). Considering these limitations and in-
spired by human cognition, we conjecture that there exist three key components for visual planning,
namely representation learning, symbolic reasoning, and causal transition modeling. Repre-
sentation learning focuses on extracting objects’ relevant, dynamic, and goal-oriented attributes.
Symbolic reasoning performs action planning at the abstract higher level via self-learned symbols.
Causal transition models the visual preconditions and action effects on attribute changes.
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At the perception level, we propose to learn concept-based disentangled representation, and believe
such human-like perception ability to abstract visual concepts from observations is vital for visual
causal transition modeling (Zhu et al., 2020a). The reason is that such representation learning could
encode images at a higher semantic level than pixels, distinguish different attribute concepts, ex-
tract the “essential” factors of variation, increase robustness and interpretability (Suter et al., 2018;
Träuble et al., 2021; Adel et al., 2018), and promise compositional generalization to unseen scenar-
ios with fewer examples in zero-shot inference (Atzmon et al., 2020; Träuble et al., 2021; Higgins
et al., 2017; Locatello et al., 2020) as well as serve many real-world down-stream tasks such as
causal learning (Träuble et al., 2021). At the reasoning and planning level, we argue that under-
standing the atomic causal mechanisms is crucial and inevitable for task planning. Human infants
begin to make causal predictions and provide causal explanations for physical phenomena in the
world by 2 years of age (Legare et al., 2010; Hickling & Wellman, 2001). Just as human causal cog-
nition understands causality as events based on the forces of actions and their results (Gärdenfors,
2020), the visual causal transition needs to capture the factors of variation in visual observation and
anticipate the effects of actions applied to these factors. The understanding and reasoning of the
abstract higher-level task planning composed of the lower-level atomic causal transition also have
the potential to be more generalizable and interpretable (Edmonds, 2021; Schölkopf, 2022). Thus,
we propose a visual causal transition model as well as its abstracted symbolic transition model. The
abstracted symbolic transition corresponds to the discrete higher-level task planning, which is more
interpretable, more data-efficient, more reliable and robust, easier to generalize, and better for avoid-
ing the problem of “error accumulation” (Garcez et al., 2022). Guided by symbolic transition, the
visual transition reconstructs intermediate and final goal images.

Technically, there are three critical modules in our visual planning framework. First, a novel con-
cept learner (Sec. 4.1) is learned by switching the latent concept representations of a pair of images
with different attribute concepts. Second, a set of state symbols are abstracted from clustering low-
level concept token representations (Sec. 4.2). The most efficient symbolic transition path can be
found via a Markov Decision Process (MDP). Third, a visual transition model (Sec. 4.3) is proposed
to learn the action-induced transition of the changeable attributes given the concept representations
of the precondition image; it serves to generate the resulting effect image. To verify the effective-
ness of the proposed framework, we collect a large-scale visual planning dataset, which contains a
concept learning dataset and a causal planning dataset. Extensive comparison experiments and abla-
tion studies on this dataset demonstrate that our model achieves superior performance in the visual
planning task and various forms of generalization tests.

To summarize our main contributions: (i) We propose a novel concept-based visual planning
framework, which models both discrete symbolic transition and continuous visual transition for
efficient path search and intermediate image generations. Comprehensive experiments show that
our method achieves superior performances in visual task planning and generalization tests. (ii) In
addition to generalizability, our method has better interpretability by generating a causal chain (the
action sequences and the intermediate state images) to explicitly demonstrate the transition process
to the goal. (iii) We collect a new large-scale visual planning dataset, which can foster concept and
task planning in the community.

2 RELATED WORK

2.1 VISUAL PLANNING

Visual planning is feasible with the learned representation and atomic causal effects. Lin et al.
(2022) proposed a method for long-horizon deformable object manipulation tasks from sensory ob-
servations, which relies heavily on differentiable physics simulators. Paxton et al. (2019) performed
a tree-search-based planning algorithm on the learned world representation after applying high-level
actions for visual robot task planning, but they ignored learning disentangled representations. Sun
et al. (2022) learned how to plan a goal-directed decision-making procedure from real-world videos,
leveraging the structured and plannable latent state and action spaces learned from human instruc-
tional videos, but their transformer-based end-to-end model is hard to generalize to unseen planning
tasks. Oh et al. (2015) proposed a model based on deep neural networks consisting of encoding,
action-conditional transformation, and decoding for video prediction in Atari Games, but they do
not abstract symbols for efficient reasoning. Silver et al. (2021) is the most similar to ours, which
learned symbolic operators for task and motion planning, but cannot generate intermediate images.
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2.2 CONCEPT DISENTANGLEMENT

Concept-based disentangled representation learning has emerged as a popular way of extracting
human-interpretable representations (Kazhdan et al., 2021). Discrete and semantically-grounded
representation is argued to be helpful for human understanding and abstract visual reasoning, enables
few-shot or zero-shot learning, facilitates human-machine interaction, and leads to better down-
stream task performance (Van Steenkiste et al., 2019; Yu et al., 2022). Automatically learning visual
concepts from raw images without strong supervision is challenging in AI research. Previous studies
tried to learn disentangled concept representation either in a completely unsupervised manner (Chen
et al., 2016; Zhu et al., 2020b; Higgins et al., 2016a; Yang et al., 2022; Yu et al., 2021), or via
weak supervision and implicit prototype representations (Stammer et al., 2022), or by employing
supervision from the linguistic space (Saini et al., 2022; Mao et al., 2019). There have been diverse
learning techniques, such as Transformer (Yang et al., 2022), (sequential) variational autoencoder
(Zhu et al., 2020b; Higgins et al., 2016a), and information maximizing generative adversarial nets
(Chen et al., 2016), etc. Existing techniques have proved successful on objects mostly with limited
variation, such as digits, simple geometric objects (Stammer et al., 2022), and faces (Chen et al.,
2016). In this work, we propose a variant of (Yang et al., 2022) by imposing more reconstruction
constraints, which works very well on more complex household objects (Sec. 3) and benefits for the
downstream planning task compared to prior works.

2.3 CAUSAL LEARNING AND REASONING

Visual reasoning for human task understanding is one of the essential capabilities of human intel-
ligence, and a big challenge for AI with the difficulty of generating a detailed understanding of
situated actions, their dependencies, and causal effects on object states (Jia et al., 2022). Various
evaluated state-of-the-art models only thrive on the perception-based descriptive task, but perform
poorly on the causal tasks (i.e., explanatory, predictive, and counterfactual tasks), suggesting that a
principled approach for causal reasoning should incorporate not only disentangled and semantically
grounded visual perception, but also the underlying hierarchical causal relations and dynamics (Yi
et al., 2019). Concept-based disentangled representation learning could benefit causal learning by
finding a latent space where important factors could be extracted from other confounding factors,
thus facilitating the learning of causal effects (Atzmon et al., 2020). Fire & Zhu (2017) built a se-
quential Causal And-Or Graph (C-AOG) to represent actions and their effects on objects over time.
Our work exploits the disentangled concept representation to ground action to their causal effects on
object attributes.

3 ENVIRONMENT AND DATASET

To facilitate the learning and evaluation of the concept-based visual planning task, we collect a large-
scale RGB-D image sequence dataset named CCTP (Concept-based Causal Transition Planning)
based on AI2-THOR simulator (Kolve et al., 2017). We exclude scene transitions in each task by
design to focus more on concept and causal transition learning, i.e., each task is performed on a
fixed workbench, although the workbenches and scenes vary from task to task. The frame resolution
is 384 ˆ 256, which is converted into 256 ˆ 256 at the very beginning of our method. The whole
dataset consists of a concept learning dataset and a visual causal planning dataset, which we will
illustrate in detail below.

3.1 CONCEPT LEARNING DATASET

We learn six different kinds of concepts: TYPE, POSITION X, POSITION Y, ROTATION,
COLOR, and SIZE. TYPE refers to the object category. The dataset has eight different types of
objects in total, including Bread, Cup, Egg, Lettuce, Plate, Tomato, Pot, and Dyer, all of which can
be manipulated on the workbench. We manually add the COLOR concept to the target object by
editing the color of the object in its HSV space. This leads to 6 different colors in all for each object,
and 20 samples are provided for each color to avoid sample bias. For SIZE concept, we rescale
each target object to 4 different sizes as its concept set. As for the position, we use POSITION X
and POSITION Y to refer to the coordinates along the horizontal X-axis and the vertical Y-axis
w.r.t. the workbench surface. We discretize POSITION X with 3 values and POSITION Y with 5.
Notably, changes in POSITION X and POSITION Y also cause variant perspectives of an object.
For ROTATION, we set 0, 90, 180 and 270 rotation degrees for all types of objects. We exhaustively
generate all possible target objects with different value combinations of the six concepts, resulting in
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234,400 images. Leveraging the masks provided by AI2-THOR, we isolate the foreground images,
containing only the target object with a black background. We randomly choose 40% of the concept
combinations for training. For each image X0,f in the training set and each concept index i, we
search for image X1,f within the training set such that X0,f and X1,f differ only in the i-th concept.
We use such paired images and the corresponding label i for concept learning.

3.2 CAUSAL PLANNING DATASET

A causal planning task consists of several steps of state transitions, each caused by an atomic ac-
tion. We define seven different atomic actions in our dataset, including move front, move back,
move left, move right, rotate left, rotate right, and change color. The mag-
nitude of each action is fixed. The target object states (e.g., its color) are randomly initialized in each
task from our dataset. The task lengths (i.e., the number of steps for each task) are not fixed. We
collect four subsets of tasks, each representing a difficulty level. In the first level, the workbench has
no obstacles, and the ground truth actions involve only movements. In the second level, several fixed
obstacles appear on the workbench. In the third level, a dyer additionally appears on the workbench
and the target object must be moved adjacent to the dyer to change its color if necessary before
being moved to the target position. In the fourth level, rotation actions are involved additionally.
The action sequence in each task is paired with the corresponding visual observations. Each subset
contains 10,000 tasks: 8,000 for training, 1,000 for validation, and 1,000 for testing.

We construct additional generalization test benchmarks based on our collection. We provide 4 levels
of Unseen Object generalization tests for object-level generalization. We generate 1000 tasks for
each level in which the target object types are unseen in the training dataset, including object types of
Cellphone, Dish Sponge, Saltshaker, and Potato. Additionally, we have testbeds for generalization
tests for unseen tasks. The training and testing tasks in the Unseen Task dataset have different
combinations of action types. For example, the training dataset may include tasks that consist of
only move left and move front actions, as well as tasks that consist of only move right and
move back actions, while the testing dataset contains tasks from the held-out data with different
combinations. Unseen Task dataset is limited to the first and the second difficulty levels because
limited combinations of actions are not sufficient to accomplish harder tasks.

4 METHOD

Figure 1: Architecture of SCL. Foreground images X0,f

and X1,f differ only in the COLOR concept. After extract-
ing their concept tokens, the COLOR concept c50 of X0,f is
substituted by c51 from X1,f , which are then fed into the
detokenizer and decoder to reconstruct images.

Given an initial RGB-D state image
X0 and a final RGB-D state image
XT , our task is to find a valid and
efficient state transition path with an
inferred sequence of actions Γ “

tatut“1,...,T , as well as generating
intermediate and final state images
X̃ “ tX̃tut“1,...,T . To fulfill this
task, we use a concept learner to ex-
tract disentangled concept represen-
tations for state images, abstract con-
cept symbols for reasoning, and train
a visual causal transition model to
generate intermediate state images.

4.1 SUBSTITUTION-BASED CONCEPT LEARNER

The architecture of our Substitution-based Concept Learner (SCL) is illustrated in Fig. 1. Given
a pair of foreground images X0,f and X1,f as the input, both contain objects that differ only in
one concept, e.g., a yellow pot and a green pot. A shared encoder ϕE is applied to the foreground
images to obtain the latent embeddings Zi,f “ ϕEpXi,f q. The embedding Zi,f is further fed into
a concept tokenizer ψT to generate the concept tokens Ci “ tcki uk“1,...,6 “ ψT pZi,f q. Here k
is the concept index, and we assume there exist six visual concepts, i.e., TYPE, COLOR, SIZE,
POSITION X, POSITION Y, and ROTATION, representing the visual attributes of the target ob-
jects (refer to Sec. 3.1 for details).
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The concept token ci0 is substituted with ci1 to get a new concept token vectorC
1

0, where i indexes the
different concepts between the paired images X0,f and X1,f . For example, the token c5i represents
the color concept in Fig. 1, replacing c50 with c51 will change the original yellow pot to a green pot.
The token vectorC

1

0 is fed into a concept detokenizer ψD to reconstruct the latent embeddingZ
1

1,f “

ψDpC
1

0q, which is further decoded into image X̃1,f “ ϕDpZ
1

1,f q. After the concept detokenizer and
decoder, we obtain a combined reconstruction loss as follows:

L1 “ LMSEpX
1

0,f , X0,f q ` LMSEpX̃1,f , X1,f q, (1)

where LMSE is the mean squared error. In addition, we add another branch directly connecting
the encoder to the decoder. This branch aims to distinguish the role of the encoder from that of the
concept tokenizer; it enforces the encoder to learn hidden representations by reconstructing X0,f .
The reconstructed image and reconstruction loss of this branch are X̂0,f and LMSEpX̂0,f , X0,f q,
respectively. Similar to Yang et al. (2022), a Concept Disentangling Loss (CDL) is employed to
reduce interference between the concept tokens. The CDL can be formulated as follows:

LCDL “ LCEp∥C0 ´ C1∥2, iq, (2)
where LCE is the cross-entropy loss. ∥C0 ´ C1∥2 calculates the l2 norm of the variation of each
concept token. i is the ground-truth token index and indicates that the i-th concept token is replaced.
The total loss LC of concept learner is as follows:

LC “ L1 ` LMSEpX̂0,f , X0,f q ` LCDL, (3)
where the equal weights for each loss work well in our experimental settings.

4.2 SYMBOL ABSTRACTION AND REASONING

Figure 2: Symbol abstraction and reasoning. The
symbolic reasoning module generates the most plausi-
ble action sequences given the inital and the goal con-
cept symbols. These action sequences are then fed into
ViCT to generates effect images.

Symbol abstraction aims to convert con-
cept tokens into discrete symbols for later
symbolic reasoning. Our empirical results
in Fig. 6 show that the concept tokens
learned in Sec. 4.1 are well-disentangled
and can be easily clustered into several
categories. Therefore a clustering algo-
rithm could be applied to the concept
tokens to generate symbols. Specifi-
cally, we collect all the concept tokens
extracted from the training data using
the substitution-based concept learner and
create the concept token spaces: C “ tcnu. Then, we employ the K-means algorithm to cluster
data points within the concept spaces, resulting in the concept centers tc̄u and a symbol assignment
ω “ σpc, tc̄uq for each concept token c. Here σ is the nearest neighbor function which assigns the
symbol of the nearest concept center to c. This process is applied to six defined concepts separately,
abstracting a set of concept symbols Ω “

␣

ωk
(

k“1,...,6
for each image.

The symbolic reasoning aims to find the most plausible transition path from the initial state to the
goal state at the symbol level, which can be formulated as a Markov Decision Process (MDP). Given
the initial concept symbols Ω0 “ tωk

0uk“1,...,6 and the action a0, the symbol reasoner computes

the distribution of concept symbols at the next timestep Pr
”

Ω
1

1 | a0,Ω0

ı

. The concept symbol
distribution at the timestep t can be obtained as follows:

Pr
”

Ω
1

t | a0:t´1,Ω0

ı

“
ÿ

oPΩ

Pr
”

Ω
1

t | at´1,Ω
1

t´1 “ o
ı

¨ Pr
”

Ω
1

t´1 “ o | a0:t´2,Ω0

ı

, (4)

where Ω denotes the the entire concept symbol space. Additionally, two legality checks are imple-
mented during the reasoning process to ensure the validity of the action sequence, involving action
legality and state legality checks. The action legality is defined as 1Prra|Ωsąthresh. This check
aims to prevent the use of noise-inducing transformations caused by the substitution-based concept
learner, thereby modifying Equation 4 to:

Pr
”

Ω
1

t | a0:t´1,Ω0

ı

“
ÿ

oPΩ

1Prrat´1|osąthresh Pr
”

Ω
1

t | at´1,Ω
1

t´1 “ o
ı

Pr
”

Ω
1

t´1 “ o | a0:t´2,Ω0

ı

.

(5)
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The state legality check is designed to eliminate contributions to the distribution originating from
invalid states (e.g., collisions with obstacles on the workbench). It can be written as follows:

Pr
”

Ω
1

t “ o0 | a0:t´1,Ω0; tΩenvu

ı

“

1o0PΩvalid
¨ Pr

”

Ω
1

t “ o0 | a0:t´1,Ω0

ı

ř

oPΩvalid
Pr

“

Ω
1

t “ o | a0:t´1,Ω0

‰ , (6)

where Ωvalid Ď Ω represents the set of valid concept symbols given the concept symbols of other
objects in the environment, and o0 is an arbitrary element within Ω. To reduce computational
complexity, the reasoning process is individually applied to each concept. This approach is effective
due to the well-designed disentangled concepts, which ensure that the changes in each concept are
independent given a particular action. The MDP aims to discover the most possible action sequence
a0:T´1 for which the corresponding distribution of concept symbols Ω

1

T closely approximates the
goal concept symbols ΩT . This action sequence is then passed into the Visual Causal Transition
model (See Sec. 4.3) to generate predicted intermediate images (Fig. 2).

4.3 VISUAL CAUSAL TRANSITION LEARNING

Figure 3: Architecture of ViCT. The concept tokenizer ex-
tracts object concept tokens for causal transition. The causal
transition model transforms concept tokens from C0 to C

1

1
with the action embedding Vpaq. The background encoder
converts the background image into latent vectors, which are
then combined with predicted concept tokensC

1

1 to generate
the effect image X̃1.

The aim of visual causal transition
model (ViCT) is to generate visual ef-
fect images based on visual precondi-
tion images and human actions. For
example, Fig. 3 shows an action that
moves the pot one step to the right.
ViCT predicts the low-position image
X1 by transforming the high-position
image X0 with a put down action.

As seen in Fig. 3, three parts exist
in the framework of ViCT. Firstly,
the causal transition is the key part of
ViCT. This process transforms ob-
ject concept tokens from C0 to C

1

1
with the help of an action embedding
Vpaq. The action a is encoded into
a one-hot vector and further embed-
ded via an embedding function V to
achieve this. The transition process is
as follows:

C
1

1 “ T pC0,Vpaqq, (7)

where C
1

1 represents the resulting concept tokens. T denotes the transition function involved in this
causal transition process.

In addition to the causal transition component, two other crucial parts in ViCT are dedicated to
managing visual extraction and reconstruction. The second part contains a concept tokenizer to
extract foreground object concept tokens C0 for later transitions. This concept tokenizer has been
trained as described in Sec. 4.1 and fixed here. This part also involves a background encoder ρE ,
which processes the background image to produce latent vectors represented as Z0,b. The vectors
Z0,b store background-related information and will be used to generate the resultant image X̃1, as
illustrated in the rightmost part of Fig. 3. The third part combines foreground object concept tokens
and background latent vectors to predict effect image X̃1 with the background decoder ρD. Instead
of directly using concept tokens, we convert them back to latent embeddings, i.e., from C

1

1 to Z
1

1,f ,
and then concatenate Z

1

1,f with latent vectors Z0,b as the input to the decoder. Similarly, we can also
combine Z

1

0,f and Z0,b to obtain a reconstruction image X
1

0.

Up to now, two losses can be computed during training: a reconstruction loss LMSEpX
1

0, X0q and a
prediction loss LMSEpX̃1, X1q. In addition to measuring image-level prediction errors, we can also
evaluate token-level prediction errors. Given a ground-truth effect image X1, we extract its concept
tokens C1, and introduce a token prediction loss LMSEpC

1

1, C1q.
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Figure 4: Qualitative results of our visual planning model. The top two samples are obtained from
the level-3 dataset, and the bottom two are from the level-4 datasets. Our model demonstrates its
capability to manage tasks of varying lengths, effectively planning action sequences, and generating
intermediate and goal state images. Notably, the first sample from the level-4 dataset generates a
different path compared to the ground truth but still achieves success and maintains high efficiency.

The total loss of ViCT is summarized as follows:

LT “ LMSEpC
1

1, C1q ` LMSEpX̃1, X1q ` LMSEpX
1

0, X0q. (8)

The visual causal transition model is trained on our causal planning dataset (see Sec. 3.2).

5 EXPERIMENTS

In our experiments, we aim to answer the following questions: (1) Is our model design effective
and applicable to visual planning tasks? (2) How do the proposed key components contribute to
the model performance? (3) Are the learned concepts and causal transitions interpretable? (4)
Does the proposed method exhibit generalization on novel tasks? To answer these questions, we
perform extensive experiments on dataset CCTP. As shown, the proposed methods are interpretable,
generalizable, and capable of producing significantly better results than baseline methods.

5.1 EVALUATING VISUAL PLANNING ON DATASET CCTP

Table 1: Quantitative results for visual task plan-
ning. Models corresponding to the model IDs are: 1.
Chance, 2. PlaTe (Sun et al., 2022), 3. Ours w/ β-VAE
(Higgins et al., 2016b) , 4. Ours w/ VCT (Yang et al.,
2022), 5. Ours w/o symbol, 6. Ours w/o concept, 7.
Ours w/o causal, 8. Ours w/ RL, 9. Ours. The best
scores are marked in bold.

Model
ID

ASAcc.(%)(Ò) ASE(Ò) FSD(Ó) ASAcc.(%)(Ò) ASE(Ò) FSD(Ó)
Top-1 Top-5 Top-1 Top-5

Dataset level-1 Dataset level-2
1 1.3 7.3 - 3.139 0.4 2.2 - 3.499
2 38.9 - - - 15.3 - - -

3 0.5 3.0 0.970 3.220 0.0 3.5 - 3.670
4 54.1 60.6 0.972 1.483 1.6 4.9 0.988 1.294
5 65.8 76.9 0.983 1.197 41.0 52.6 0.962 1.627
6 56.9 77.6 0.986 1.644 - - - -
7 1.4 - - 3.326 0.3 - - 3.419
8 29.7 35.1 0.991 2.418 2.5 6.0 1.000 3.150
9 97.9 99.2 0.971 0.025 99.4 99.6 0.981 0.013

Dataset level-3 Dataset level-4

1 0.0 0.4 - 3.513 0.1 0.4 - 3.147
2 0.7 - - - 0.4 - - -

3 0.0 0.5 - 3.596 0.0 0.0 - 3.107
4 0.7 1.2 0.968 3.442 0.2 0.3 1.000 3.193
5 15.4 24.1 0.970 2.278 9.8 14.0 0.981 2.149
7 0.0 - - 3.691 0.0 - - 3.201
8 3.0 3.9 1.000 3.030 2.8 3.5 1.000 2.498
9 86.5 87.0 0.966 0.037 55.1 76.7 0.978 0.003

To validate the effectiveness of our model
design, we employ PlaTe (Sun et al., 2022),
the state-of-the-art method for visually-
grounded planning, as our baseline. To
probe the contribution of our proposed
components, we replace each component
with alternative baselines to compare with.
We replace the proposed concept learner
with strong baselines such as beta-VAE
(Higgins et al., 2016b) and VCT (Yang
et al., 2022) model to verify the effec-
tiveness of our concept learning module.
Additionally, we compare our model to a
reinforcement-learning-based decision pro-
cess, noted as “w/ RL”. Furthermore, to ver-
ify the necessity of our symbolization pro-
cess, we apply the reasoning process di-
rectly to the concept tokens, employing our
causal transition model to search for states
closest to the goal state within the concept
token spaces. We also conduct experiments
where we further remove the concept learn-
ing process. Instead, we use an autoencoder
to extract latent embedding for causal transition. The corresponding results are denoted as “w/o.
symbol” and “w/o. concept”, respectively. The “w/o. concept” experiments are limited to the level-
1 dataset because the method is unable to handle obstacles. Finally, we replace the explicit planning
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module with a transformer architecture. It takes the concept symbols of the initial state and goal
state, provided by our concept learner and symbolizer, as inputs to generate the action sequence. We
refer to this variant as “w/o causal”. We also substitute the planning module with random action pre-
dictions for each step as an additional baseline for reference. Detailed implementation for baselines
is illustrated in Sec. A.3.

Evaluation metrics To thoroughly inspect the performance of visual planning, we employ metrics
including Action Sequence Prediction Accuracy (ASAcc), Action Sequence Efficiency (ASE), and
Final State Distance (FSD). ASAcc evaluates the sequence prediction accuracy. In level-1 and 2
tasks, a successful prediction entails moving the target object accurately to the position of goal
states without encountering any collisions with obstacles (if present). In level-3 tasks, when the
target object’s color changes, success requires moving the object adjacent to the dyer, applying
the change color action, and then moving it to the goal position. In level-4 tasks, the target
object must also be correctly rotated for success. ASacc is measured as the success rate. During
testing, the planning models make 5 attempts for each task. The top-1 accuracy is based on the first
attempt, while the top-5 accuracy checks if any of the 5 attempts are successful. ASE measures
the efficiency of the planning by comparing the length of the ground truth sequence to that of the
predicted sequence. We only take the successfully predicted sequences into consideration. The ASE
is defined as follows:

ASE “

řN
i“1 IpΓ

pred
i qℓpΓgt

i q{ℓpΓpred
i q

řN
i“1 IpΓ

pred
i q

, (9)

Figure 5: Fine-grained attribute level concept
manipulation. The concept learner generates
new images by substituting each concept token ci0
from X0,f with ci1 from X1,f .

where I is a indicator function for a success-
ful prediction, ℓ represents the length of an ac-
tion sequence. Of note, the ground truth action
sequences in CCTP are the most efficient, so
the efficiency of a predicted sequence will be
no more than 1. FSD calculates the distance
between the positions of the foreground object
in the final predicted state and in the goal state.
The distance is defined based on the object’s co-
ordinates w.r.t. the workbench.

Results We can see from Tab. 1 that the pro-
posed method achieves significantly higher per-
formance compared with baselines. Specifi-
cally, we compare our method with different
ablative variants and a strong baseline PlaTe
(Sun et al., 2022). Our method outperforms baselines in terms of sequence accuracy (ASAcc) by a
large margin and achieves the smallest final state distance (FSD), which demonstrates our method
can obtain an accurate planning path to reach the goal state. Our method achieves very competi-
tive ASE if not the best among all the models. Moreover, our model maintains strong performance
when encountering hard tasks, while competitive baselines’ performances significantly decrease as
task difficulty increases. These results demonstrate the effectiveness of our model design. Our full
model achieves the best overall performance in all four levels of tests, and each component of our
model contributes remarkably to the performance improvements. Of note, our experiments demon-
strate a large boosted performance by adding symbolic transition. The qualitative results are shown
in Fig. 4.

5.2 INTERPRETABLE CONCEPTS AND CAUSAL TRANSITIONS

We qualitatively show the interpretability of the concept learned by our model. We randomly choose
2 images X0,f and X1,f , substituting the concept token ci0 with ci1 for i “ 1, 2, 3, 4, 5, 6, which are
then fed into the concept detokenizer and the decoder to generate new images. As Fig. 5 shows, with
the properly learned concept representations, we could perform fine-grained attribute-level concept
manipulation. This indicates that our concept learner is capable of disentangling concept factors and
demonstrates the interpretability of our method.
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(a)
(b)(a)

Figure 6: Action effects on the learned disentangled
concept representations. (a) l2 norm between the con-
cept vectors before and after each action. (b) Distribu-
tions of position change induced by each action.

We quantitatively demonstrate the inter-
pretability of our learned causal transitions
with statistics of the corresponding causal
effects. To be specific, we aim to answer
the question: do the learned causal tran-
sitions have semantic meaning consistent
with the corresponding action? Fig. 6 (a)
shows the correlation between concepts
and actions, measured with l2 norm be-
tween the concept vectors before and af-
ter each action. A larger l2 norm means
a higher correlation. We can see that the
learned rotation actions only affect the rotation status in the concept vector. Similarly, the horizontal
and vertical movements only affect the x and y coordinates. Fig. 6 (b) shows the distribution of posi-
tion change induced by 7 displacement actions. For example, the position changes of move front
distribute along the positive y-axis, while those of move back distribute along the negative y-axis.
This evidence indicates that 1) our learned concept is successfully disentangled, which makes it
possible for our model to learn causal transitions, and 2) the learned causal transition is consistently
grounded to real-world actions with similar semantics.

5.3 GENERALIZATION ON NOVEL OBJECTS AND TASKS

Table 2: Quantitative results for generalization
tests. Models corresponding to the model IDs are: 1.
Chance, 2. PlaTe (Sun et al., 2022), 3. Ours w/o sym-
bol, 4. Ours w/o concept, 5. Ours w/o causal, 6. Ours
w/ RL, 7. Ours. The best scores are marked in bold.

Model
ID

ASAcc.(%)(Ò) ASE(Ò) FSD(Ó) ASAcc.(%)(Ò) ASE(Ò) FSD(Ó)
Top-1 Top-5 Top-1 Top-5

Unseen Object level-1 Unseen Object level-2
1 0.6 4.7 - 3.203 1.1 3.2 - 3.591
2 18.5 - - - 9.7 - - -
3 44.0 59.9 0.968 1.507 29.0 43.8 0.986 1.880
4 37.1 60.5 0.950 1.319 - - - -
5 1.7 - - 3.233 0.2 - - 3.563
6 30.2 35.9 0.989 1.887 2.2 6.1 1.000 3.549
7 72.4 97.2 0.987 0.470 73.2 93.6 0.978 0.491

Unseen Object level-3 Unseen Object level-4

1 0.0 0.0 - 3.544 0 0.1 - 3.518
2 0.6 - - - 0.8 - - -
3 12.6 22.5 0.990 2.710 6.9 11.7 0.972 2.917
5 0.0 - - 3.467 0.0 - - 3.183
6 1.9 5.3 1.000 3.484 1.4 4.9 1.000 3.370
7 61.8 66.9 0.960 0.307 29.1 43.9 0.954 0.424

Unseen Task level-1 Unseen Task level-2

1 0.4 2.1 - 3.550 0.1 0.3 - 3.513
2 1.4 - - - 0.5 - - -
3 63.1 78.0 0.974 1.022 40.0 51.9 0.980 1.407
4 42.7 70.7 0.971 1.485 - - - -
5 0.0 - - 3.536 0.0 - - 3.525
6 26.3 30.1 0.994 2.159 2.8 7.0 1.000 3.417
7 98.7 99.3 0.985 0.015 98.2 99.4 0.991 0.019

We design two experiments to test the gen-
eralizabiliy of our model.

Unseen objects Through this experi-
ment, we aim to investigate if our model
can perform visual planning tasks on ob-
jects unseen during training. We test
our model on the Unseen Object test-
ing dataset (see Sec. 3.2 for details) and
compare the results with several baselines
to demonstrate the generalizability of our
concept-based object representation mod-
ule. We expect our concept learner to
recognize the color, position, and size at-
tributes of unseen object types during test-
ing. If this is the case, the transition
model could consequently apply transitions
on these visual attributes for successful ma-
nipulation tasks. As shown in Tab. 2,
our model is significantly more robust than
PlaTe and RL-based methods against novel
objects.

Unseen tasks Moreover, we aim to verify that our model is flexible in processing atomic actions.
We train our model on tasks with only limited types of action combinations, i.e., the Unseen Task
dataset. In this experiment, PlaTe only performs at the same level as a random guess, while our
model performs as well as it does when being trained on the whole dataset, which demonstrates the
generalizability of our method on unseen tasks.

6 CONCLUSION

In this paper, we propose a novel visual planning model based on concept-based disentangled repre-
sentation learning, symbolic reasoning, and visual causal transition modeling. In the future, we plan
to extend our model to real world task planning, particularly to robotic manipulation.
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Frederik Träuble, Elliot Creager, Niki Kilbertus, Francesco Locatello, Andrea Dittadi, Anirudh
Goyal, Bernhard Schölkopf, and Stefan Bauer. On disentangled representations learned from
correlated data. In International Conference on Machine Learning, pp. 10401–10412. PMLR,
2021.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Sjoerd Van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, and Olivier Bachem. Are disen-
tangled representations helpful for abstract visual reasoning? Advances in Neural Information
Processing Systems, 32, 2019.

Caren M Walker and Alison Gopnik. 22 causality and imagination. The Oxford handbook of the
development of imagination, pp. 342, 2013.

Tao Yang, Yuwang Wang, Yan Lu, and Nanning Zheng. Visual concepts tokenization. arXiv preprint
arXiv:2205.10093, 2022.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B
Tenenbaum. Clevrer: Collision events for video representation and reasoning. arXiv preprint
arXiv:1910.01442, 2019.

Peiyu Yu, Sirui Xie, Xiaojian Ma, Yixin Zhu, Ying Nian Wu, and Song-Chun Zhu. Unsupervised
foreground extraction via deep region competition. Advances in Neural Information Processing
Systems, 34:14264–14279, 2021.

Peiyu Yu, Sirui Xie, Xiaojian Ma, Baoxiong Jia, Bo Pang, Ruiqi Gao, Yixin Zhu, Song-Chun Zhu,
and Ying Nian Wu. Latent diffusion energy-based model for interpretable text modelling. In
International Conference on Machine Learning, pp. 25702–25720. PMLR, 2022.

Yixin Zhu, Tao Gao, Lifeng Fan, Siyuan Huang, Mark Edmonds, Hangxin Liu, Feng Gao, Chi
Zhang, Siyuan Qi, Ying Nian Wu, et al. Dark, beyond deep: A paradigm shift to cognitive ai with
humanlike common sense. Engineering, 6(3):310–345, 2020a.

Yizhe Zhu, Martin Renqiang Min, Asim Kadav, and Hans Peter Graf. S3vae: Self-supervised
sequential vae for representation disentanglement and data generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6538–6547, 2020b.

12



Under review as a conference paper at ICLR 2024

APPENDIX A MODEL IMPLEMENTATION DETAILS

A.1 SUBSTITUTION-BASED CONCEPT LEARNER

For 256 ˆ 256 images, the encoder transforms them into 8 ˆ 8 with 64 channels by a sequence of
networks: 3 convolutional layers and 2 residual blocks, followed by another 4 convolutional layers
and 2 residual blocks. The decoder involves 4 transposed convolutional layers and 2 residual blocks,
followed by another 3 transposed convolutional layers and 2 residual blocks. We use the architecture
in VCT (Yang et al., 2022) as our concept tokenizer and detokenizer. The concept number is set to
6.

A.2 SYMBOL REASONING AND VISUAL CAUSAL TRANSITION

In the causal transition model, the action is initially embedded into a 64-dimensional vector, which
is then concatenated with six separate 64-dimensional concept vectors. Following this, a four-layer
MLP is applied for each concatenated vector to predict the six affected concept vectors.

The symbol-level transition model logs all the (input, action, output) triplets in the training data.
It forecasts the probability distribution for all six affected concepts when provided with the input
concept symbol and the action.

In the visual extraction process, the background encoder involves 3 convolutional layers and 2 resid-
ual blocks, transforming background images into 64 ˆ 64 latent vectors with 64 channels. The
background decoder involves two decoding modules and a transition module. The first decoding
module has 4 convolutional layers and 2 residual blocks, decoding the front latent vectors into
64 ˆ 64 with 64 channels. Then the transition module is applied, involving 3 convolutional layers
and 3 transposed convolutional layers, converting the concatenated front and background vectors
into the transitioned background latent vectors, which are 64 ˆ 64 with 64 channels. After that,
the transitioned background latent vectors are concatenated with the front latent vectors again, being
fed into the second decoder module, which involves 3 transposed convolutional layers and 2 residual
blocks and decodes the vectors into effect images.

During training, all models are optimized by Adam (Kingma & Ba, 2014), with the start learning
rate 10´5 for concept tokenizer and detokenizer and 3ˆ10´4 for the rest models. We train our SCL
for 180 epochs and our ViCT model for 70 epochs on a single NVIDIA RTX 3090 GPU.

A.3 BASELINES

Reasoning applied on the continuous domains In Sec. 5.3, we introduced two baselines that
involve a reasoning process within continuous vectors. The ”w/o. symbol” method employs our
trained causal transition model to explore the action space, aiming to discover the action sequence
that transforms the concept tokens closest to the goal state. The distance between concept tokens is
measured using the l2-norm. Similarly, a causal transition model based on image vectors is trained
for the ”w/o. concept” method in later experiments. One significant drawback of these methods is
that defining action validity becomes challenging. This implies that these methods might predict
action sequences that move the target object outside the workbench, resulting in vectors that the
transition model cannot comprehend.

Reinforcement Learning A goal-conditioned Double DQN agent (Van Hasselt et al., 2016) is
trained with prioritized experience replay (Schaul et al., 2015) to choose actions, taking the concept
symbols of the current state and goal state given by our concept learner as inputs. We use our
symbolic reasoning model to mimic the learning environment for the agent. The symbolic reasoning
model applies the chosen action to the concept symbols and returns the concept symbols of the next
state for the agent. The agent gets a reward of 1 only if the current concept symbols are equal to the
goal state’s symbols.

PlaTe PlaTe (Sun et al., 2022) is a Transformer-based planning method that simultaneously learns
an action predictor based on current and goal state features and a state predictor based on the pre-
dicted action and state features. We follow the official implementation of PlaTe and use a pre-trained

13



Under review as a conference paper at ICLR 2024

ResNet-50 (He et al., 2016) to extract 1024-d features of images of the target object, dyer, and ob-
stacles separately as the input state features. We use the features of one image frame as one state.
The model is trained without parameter tuning for 500 epochs on dataset CCTP.

VCT VCT (Yang et al., 2022) is an unsupervised method to extract disentangled concepts from
simple images. We trained a VCT model with our image encoder and decoder architectures on our
concept dataset. It is capable of reconstructing the images well but fails to achieve disentanglement.
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