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Abstract

Time series segmentation is a fundamental task in analyzing temporal data across
various domains, from human activity recognition to energy monitoring. While
numerous state-of-the-art methods have been developed to tackle this problem,
the evaluation of their performance remains critically limited. Existing measures
predominantly focus on change point accuracy or rely on point-based measures
such as Adjusted Rand Index (ARI), which fail to capture the quality of the
detected segments, ignore the nature of errors, and offer limited interpretability.
In this paper, we address these shortcomings by introducing two novel evaluation
measures: WARI (Weighted Adjusted Rand Index), that accounts for the position
of segmentation errors, and SMS (State Matching Score), a fine-grained measure
that identifies and scores four fundamental types of segmentation errors while
allowing error-specific weighting. We empirically validate WARI and SMS on
synthetic and real-world benchmarks, showing that they not only provide a more
accurate assessment of segmentation quality but also uncover insights, such as
error provenance and type, that are inaccessible with traditional measures.

1 Introduction

Massive collections of time-varying measurements, commonly referred to as time series, have become
a reality in every scientific and industrial domain [1, 2, 3, 4]. Such temporal measurements can
correspond to different physical quantities, such as temperature and pressure [5], electricity consump-
tion [6], or human pose [7]. Several tasks have emerged from the pressing need to analyze time
series, such as classification [8], clustering [9], anomaly detection [10, 11, 12], motif discovery [13],
and time series segmentation [14]. The latter (sometimes referred to as change point detection or
state detection) is a crucial task. The goal is to identify distinct states or patterns within the data,
which can provide valuable insights into the underlying processes. More generally, time series
segmentation aims to respectively detect change points, which delineate different states, and to cluster
these states in order to recognize recurring states. Such states can correspond to a human activity
such as walking and running [15], or specific appliances in electrical consumption time series [6].
Although a wide variety of state-of-the-art algorithms have been proposed, leveraging diverse ap-
proaches (e.g., statistical methods [14, 16, 17], Markov models [18, 19], auto-encoders [20, 21, 22],
or symbolic representations [23]), enabling notable progress in recent benchmarks, we observe three
major limitations that undermine their ability to reliably assess segmentation quality.

First, change point-based measures, which focus solely on the accuracy of detecting transition points,
do not adequately capture the overall quality of the segmentation itself. Even if change points
are correctly detected, the resulting segment labels might still be incorrect or uninformative. Second,
most widely used measures, such as Adjusted Rand Index (ARI), are point-based and thus treat all
errors (i.e., points belonging to wrongly segmented subsequences) equally, failing to distinguish
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between different types of errors. For instance, a delay in detecting a transition may simply reflect
minor misalignment with human annotation, whereas an isolated error, such as labeling an entire
segment incorrectly, is far more severe. These two types of errors carry very different implications,
yet traditional measures weight them equally. Lastly, current evaluation measures cannot track and
categorize the nature of errors (e.g., delay vs. isolation), leading to limited interpretability. This
hinders deeper diagnostic and reduces the practical value of the measure for improving models.

To address these limitations, we introduce two new evaluation measures: WARI (Weighted Adjusted
Rand Index) and SMS (State Matching Score). The first measure, WARI, extends the traditional
Adjusted Rand Index by incorporating the temporal position of segmentation errors. This allows
it to differentiate between positions of errors, such as between errors close but misaligned with
the ground truth, and isolated errors which indicate more substantial segmentation failures. While
WARI provides a more nuanced and temporally aware variant of ARI, SMS offers a complementary
perspective by explicitly identifying and scoring four fundamental types of segmentation errors. More
specifically, SMS allows practitioners to weight each error type based on their application, thus
providing a customizable and interpretable evaluation measure. By maintaining error provenance and
enabling targeted analysis, SMS enhances the transparency of segmentation assessments. Finally, we
empirically evaluate the validity of WARI and SMS by comparing them to existing measures. We
then report the impact of our measures on the evaluation of state-of-the-art segmentation methods.
We also provide additional insights, such as the prevalence and severity of specific error types, that
were previously inaccessible. Overall, our contributions are as follows:

• We provide a thorough analysis of the literature on time series segmentation and propose a typology
of fundamental and distinct segmentation errors (cf. Sec. 2.1 to 2.2).

• We critically examine the limitations of existing evaluation measures, highlighting their inability to
capture key aspects of segmentation quality (cf. Sec. 2.3).

• We introduce our two novel evaluation measures, WARI and SMS, and provide detailed descriptions
of their design, objectives, and theoretical advantages (cf. Sec. 3).

• We empirically demonstrate that our proposed measures offer a more appropriate and insightful
evaluation of segmentation quality compared to existing measures (cf. Sec. 4.1).

• We analyze WARI and SMS impact on the assessment of state-of-the-art segmentation methods,
and present novel insights that are impossible with traditional evaluation measures (cf. Sec. 4.2).

2 Background and Foundations

This section provides the foundational concepts and formal definitions necessary for understanding
time series segmentation and evaluation strategies. We first introduce fundamental definitions to
assess the technical differences between problem formulations and existing algorithms.

Definition 1 (Real-valued Time Series) A real-valued time series of length N and dimension D is
a time-ordered sequence denoted by T = [t1, . . . , tN ], where each ti ∈ RD for i = 1, . . . , N .

We define a univariate time series as a time series with D = 1. Moreover, a subsequence of T from
index i to j (with 1 ≤ i ≤ j ≤ N ) is denoted by T[i,j] = [ti, ti+1, . . . , tj ] and has length j − i+ 1.
We now define a state sequence as follows:

Definition 2 (State Sequence) A state sequence S = [s1, . . . , sN ] associated with a time series
T = [t1, . . . , tN ] is a sequence of the same length, where each si ∈ S is a discrete label representing
the latent state of the system at time step i, and S is a finite set of possible states. In a state sequence,
i (with 1 ≤ i < N ) is a change point if si ̸= si+1.

2.1 Time Series Segmentation: A Multifaceted Problem

Time series segmentation refers to the task of dividing a time series into meaningful and homogeneous
segments, where each segment corresponds to a period during which the underlying generative process
is assumed to be stable. Two common approaches to segmentation are change point detection and
state detection, illustrated in Fig. 1. While they differ in assumptions and goals, both aim to capture
shifts in the behavior in the time series.
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Figure 1: Illustration of Change Point Detection vs. State Detection.

2.1.1 Change Point Detection

The output of a change point detection algorithm is an increasing sequence of integers (c1, . . . , cM ),
where each change point (CP) marks a transition between two segments. The resulting segments are
contiguous and non-overlapping, each corresponding to a stationary or stable regime. Change point
detection is typically used when the goal is to precisely localize transitions.

A large panel of approaches tackling change point detection has been introduced in the literature. First,
profile-based methods, such as ClaSP [14], FLUSS [16], and ESPRESSO [17], typically operate by
constructing a profile from the time series and identifying CPs at local extrema. Second, other methods
proposed in the literature rely on statistical principles. For instance, binary segmentation [24] (BinSeg)
employs recursive likelihood hypothesis testing, and PELT [25] offers a pruned, optimization-based
variant. Finally, Bayesian approaches, such as BOCD [26], sequentially update the probability of a
CP presence as new data arrives.

2.1.2 State Detection

In contrast, state detection assumes that the time series is generated by an underlying sequence of
latent states. Each state corresponds to a specific pattern or regime, and the same state can recur at
different points in time. Hence, the output of a state detection algorithm is a predicted state sequence
P = (p1, . . . , pN ). The primary goal of state detection is to identify changes in the latent state itself,
allowing for the recognition of recurring patterns, rather than simply detecting any statistical shift.

Diverse approaches have been proposed for state detection. These include methods based on encoder
architectures (e.g., E2USD [20], Time2State [21], HVGH [22]), convolutional neural networks such
as RP-mask [27] and PrecTime [28], graph representations such as GRAB [29] and uGLAD [30]),
probabilistic graphical models such as hidden Markov models (e.g., HDP-HSMM [18] and MASA
[19]), Markov random fields (e.g., TICC [31]), or rule-based systems (e.g., PaTSS [23]).

Importantly, change point detection can be viewed as a subproblem of state detection. Once change
points have been identified, they partition the time series into segments. A clustering algorithm can
then be applied to these segments to assign state labels (as performed in [20, 21] for the change point
detection method ClaSP [14]). This two-step approach enables the reconstruction of a state sequence
from raw change points, highlighting that state detection generalizes change point detection. Thus,
for the rest of the paper, we will mainly focus on the state detection problem.

2.2 Evaluating Time Series Segmentation: Typology of Errors and Desired Properties

In order to accurately assess the quality of a segmentation when compared with a ground-truth, we
need to formally define segmentation error types. Let S = {s1, . . . , sM} be a finite set of states.
Let R = (r1, r2, . . . , rN ) ∈ SN be the real, state sequence, and let P = (p1, p2, . . . , pN ) ∈ SN the
predicted state sequence. We define an error block as a maximal contiguous index interval [i, j] that
cannot be extended without including a correctly classified point such that ∀k, l ∈ [i, j], pk = pl and
∀k ∈ [i, j], pk ̸= rk.

For an error block [i, j] in P , we define the atomicity A[i,j] =
∣∣{ rk : k ∈ [i, j] }

∣∣ as the number of
distinct states within R[i,j]. Based on A[i,j], we introduce a novel typology of errors (illustrated in
Fig. 2), such that each error block belongs to exactly one error type. Our typology is as follows:

Delay (A = 1): The real and predicted states within [i, j] are constant, say r and p respectively.
Moreover, at least one block neighbor exists and satisfies ri−1 = pi−1 = p or rj+1 = pj+1 = p.
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Figure 2: Ground truth (top) with four error examples below: delay, isolation, transition, and missing.

Isolation (A = 1): The real and predicted states within [i, j] are constant, say r and p respectively.
Moreover, the error occurs in a middle of a constant real state, when ri−1 = rj+1 = r.
Transition (A = 2): There are exactly two distinct real states within [i, j], indicating the error spans
a real state change.
Missing (A ≥ 3): Three or more distinct real states appear within [i, j], indicating omission of three
or more real states.

This typology is important as some errors might be less severe than others. Indeed, state boundaries
are generally identified in a strictly binary manner, which may not suit some real-world applications.
In practice, transitions between activities are often gradual rather than instantaneous. Thus, differences
between real and predicted states can arise from alternative interpretations of these transient periods.
While some research propose to introduce gradual labelling [23], a simpler strategy would be to
propose measures that are robust to labeling ambiguities—for instance, deciding exactly where to
place the boundary between walking and running, with the hypothesis that in such cases, an error
near a real boundary (i.e., transient state or delay) is less severe than one that occurs in the middle of
a homogeneous region (i.e., missing state or isolated state).

Desired Properties: Based on the need to rank error types (as motivated above), we propose a set of
properties that should be satisfied by any measure for state detection. These properties are designed
to provide a more meaningful evaluation of state detection algorithms.

P1: The measure should be sensitive to the errors length, with larger errors leading to lower scores.
P2: The measure should account for the temporal structure, penalizing positions of errors differently.
P3: The measure should be sensitive to the type of error, with different penalties for different types.
P4: The measure should be interpretable and provide insights into the quality of the segmentation.

While these properties provide valuable guidance for the development and evaluation of state detection
measures, we emphasize that they are not formal axioms and may not be strictly or simultaneously
satisfied in all cases. For example, although Property P1 suggests that longer errors should lead to
lower scores, the impact of an error’s length may depend on its context, such as whether it results
from a delay or from an isolated error. In such cases, the score may be moderated by considerations
of temporal position (Property P2) or error type (Property P3). Thus, these properties should be
viewed as guiding principles rather than rigid requirements.

2.3 Existing Measures and Limitations

While several measures have been adopted in the literature, each comes with a set of assumptions and
drawbacks, failing to catch some of the desired properties mentioned above. This section reviews
these commonly used measures, discussing their strengths and limitations.

2.3.1 Change Point Detection Measures

Among the commonly used measures for change point detection, the F1 score is a harmonic measure
that combines precision and recall. Following previous work, we value a margin tolerant F1 score,
identifing the correct detections by matching predicted change points to ground-truth annotations
within a given margin, while preventing double-counting of predictions by removing matched points
after association. However, selecting the appropriate margin is challenging. The example in Fig. 3(a)
illustrates two scenarios S1 and S2 in which the F1 score is 1, although S1 contains a longer error
than S2, thus failing to meet Property P1. A margin parameter that is a function of the time series
length is often preferred, as proposed in [14], where it is set to 1% of the time series length.
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Figure 3: Limitations of (a) F1, (b) Covering, and (c) ARI scores. For two different segmentations
(S1 more accurate than S2 according to the ground truth GT), all measures return the same score.

The covering score, another commonly used measure, captures segment-level similarity rather than
exact change point matching. Unlike the F1 score, which treats change points as discrete events,
covering accounts for segment overlap. It is defined as the average of the intersection over union
(IoU) scores for each segment in the ground truth, normalized by the number of segments. With R
and P representing real and predicted state sequences, the Covering score is calculated as follows:

C =
1

N

∑
r∈R

|r|max
p∈P

|r ∩ p|
|r ∪ p|

(1)

However, the covering score can assign identical scores to segmentations that are qualitatively
different, thus, failing to meet Property P1. Fig. 3(b) illustrates this limitation with two predicted
segmentations that achieve the same covering score despite significant differences. This highlights
the need for complementary measures that better capture segmentation quality.

2.3.2 State Detection Measures

State detection performance is most commonly evaluated with clustering-based measures [21, 20],
such as the Adjusted Rand Index (ARI), the Normalized Mutual Information (NMI) and the
Adjusted Mutual Information (AMI). In the rest of the paper, we will focus on ARI and we provide
details on the additional clustering-based measures in the Appendix.

The computation of ARI is based on the Rand Index (RI) that computes the fraction of agreeing pairs
(i.e., pairs that are either grouped or separated together) over the total number of pairs. Formally,
with R and P representing real and predicted state sequences and UR = {ri : ri ∈ R} and
UP = {pi : pi ∈ P} the unique sets of states, we define the contingency matrix C = [nij ] of size
|UR| × |UP | with nij =

∑N
k=1 1{rk = UR[i] ∧ pk = UP [j]}, i.e., the number of observations at

timestamp k that belong to state UR[i] in the first state sequence R and UP [j] in the second state
sequence P . Finally, with E[RI] the expected Rand Index under a random model, ARI is computed
as follows:

RI =

∑
i,j

(
nij

2

)(
N
2

) , ARI =
RI− E[RI]
1− E[RI]

(2)

As shown in the equations above, the Adjusted Rand Index (ARI) is sensitive to the number of
matching temporal point pairs between segmentations. Thus, the total number of segmentation errors
directly influences the ARI score, satisfying Property P1. However, clustering-based measures like
ARI are inherently point-based and do not account for the position or type of segmentation errors.
For example, Fig. 3(c) demonstrates this limitation: two predicted segmentations yield the same ARI
score despite exhibiting markedly different segmentation error patterns (one delay versus one isolated
error). Consequently, clustering-based measures fail to satisfy Properties P2 and P3.

3 WARI and SMS: Our Proposed Measures

As outlined in the previous section, existing evaluation measures exhibit significant limitations (failing
to meet either Property P1, P2 or P3). Moreover, these measures provide limited interpretability,
making it difficult for practitioners to understand accuracy scores or pinpoint specific weaknesses and
areas for improvement (failing to meet Property P4). To address these shortcomings, we propose
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two state detection measures. The first one, WARI, consists of a modified (weighted) version of the
standard ARI, making it distance-to-boundary sensitive. The second one is a new measure, namely
SMS (State Matching Score), that identifies a mapping between the predicted and real states, which
is then used to compute a score based on the contexts and types of errors encountered according to
the taxonomy defined in the previous section (Sec. 2.2).

3.1 Toward Position-Sensitivity: The Weighted Adjusted Rand Index

As mentioned in Sec. 2.3, the Adjusted Rand Index (ARI) treats all segmentation errors equally.
However, segmentation errors near cluster boundaries are less critical than errors in the cluster interior
(i.e., Property P2). To account for this, we define a weighted version of ARI, Weighted Adjusted
Rand Index (WARI), based on the distances to change points. More specifically, this distance, called
di, is defined for each time step i and corresponds to the distance from the nearest ground truth change
point. We then define a weight wi = 1 + αdi for each timestamp. α ≥ 0 is a user-parameter, set by
default to 0.1 in the rest of the paper. For α > 0, observations deep inside ground truth segments (i.e.,
with high di) are given more weight, and thus, more penalized if wrongly predicted.

Weighted Contingency Matrix: In the weighted setting described above, the contingency matrix
(defined in Sec. 2.3.2) is adapted by replacing counts with weighted sums: ñij =

∑
xk∈Ui∩Vj

wk.

The weighted Adjusted Rand Index is then computed by using ñij values (and the corresponding
total weighted sum of pairs) in Equation 2. Note that such weighted procedure can be applied to other
clustering-based measures, such as Normalized Mutual Information (NMI) and Adjusted Mutual
Information (AMI). We provide more details in the Appendix.

Properties: WARI behaves like ARI with a boundary-aware lens. When α = 0, the weights
collapse to wi ≡ 1 and WARI exactly coincides with ARI. As soon as α > 0, the measure starts
to “prefer” boundary-adjacent mistakes: points far from change points receive larger weights than
those near them, so interior misclassifications are penalized more strongly, encoding the desired
position sensitivity (P2). Yet the overall scale remains familiar—WARI reaches 1 under perfect
agreement, drifts toward 0 for random labelings, and may become negative for strongly discordant
segmentations—preserving ARI’s qualitative range and interpretation.

Sensitivity to the position parameter α: Because wi(α) = 1 + αdi varies linearly in α with
di ∈ [0, Dmax], the weighted contingency and the resulting WARI vary smoothly with α. In particular,
for two settings α and α′, the score difference is bounded linearly: |WARI(α) − WARI(α′)| ≤
L |α − α′|, where L depends only on the dataset via distances to boundaries and segment masses
(details in Appendix). Practically, this yields a robust behavior around the default α=0.1: moderate
changes of α produce limited, predictable variations in the score. Larger α emphasizes interior purity
(harsher penalties far from boundaries), while smaller α increases boundary tolerance.

Algorithm 1 Optimal State Mapping

Require: The real and predicted state sequences R = (r1, . . . , rN ) and P = (p1, . . . , pN ).
1: Compute unique sets UR = {ri : ri ∈ R} and UP = {pi : pi ∈ P}
2: Compute cost matrix C of size |UP | × |UR|, such that, for pu ∈ UP (row i) and ru ∈ UR (column j), the

negative overlap Cij is as follows:

Cij = −
N∑

k=1

1{pk = pu ∧ rk = ru}.

3: Find Optimal Assignment: Apply the Hungarian algorithm [32] to C to find a mappingM from states in
UP to states in UR that minimizes the total cost (maximizes total overlap).

4: for all pu ∈ UP not assigned byM do ▷ Handle unassigned predicted labels
5: SetM(pu) to the smallest non-negative integer m such that m is not assigned byM.
6: end for
7: return Final mappingM.
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Algorithm 2 State Matching Score (SMS)

Require: Real sequence R, prediction P , mappingM, penalty weight w = {wdelay, wtransition, wisolation, wmissing}
1: P̃ ← (M(p1), . . . ,M(pN )) ▷ Map predictions to real states
2: Let B be the set of error blocks in P̃ (cf. typology, Sec. 2.2).
3: for all b = [i, j] ∈ B do
4: l← j − i+ 1 (block length)
5: A← |{rk : i ≤ k ≤ j}| (atomicity)
6: e← {delay, isolation, transition,missing} (determine error type)
7: if e ∈ {isolation, transition} then
8: find nearest real change points bprev < i and bnext > j

9: d← 2 min(i− bprev, bnext − j)

N
(normalized distance to change point)

10: end if

11: Pen(b) =


l (1 + we), e = delay,

l
(
1 + dwe

)
, e ∈ {isolation, transition},

l
(
1 + we (1 +

3

A
(we − 1))

)
, e = missing.

12: end for
13: return SMS = 1− 1

N

∑
b∈B

Pen(b).

3.2 Enhancing Interpretability: The State Matching Score

Whereas WARI takes into account the position of the errors (i.e., satisfying Property P2), the types
of the errors are not considered in the accuracy score, and the interpretability of the score is low
(i.e., failing to meet Properties P3 and P4). To address these shortcomings, We introduce a novel
interpretable and customizable measure, called the State Matching Score (SMS). The core idea
relies on aligning the predicted and ground truth state sequences, taking into account the types and
associated severity of errors made by the algorithm.

The State Matching Score (SMS) is computed through a two-stage process, detailed in Algorithm 1
and 2. First, an optimal mapping between predicted and real states is established using the Hungarian
algorithm [32] on a cost matrix representing the negative overlap between unique states (Algorithm 1).
This ensures that predicted state labels are aligned with real state labels in a way that maximizes
overall agreement. Second, the State Matching Score itself is computed (Algorithm 2). This involves
identifying error blocks in the mapped predicted sequence, classifying these errors according to the
typology in Sec. 2.2, and assigning a penalty to each block based on its type, length, and context (i.e.
distance to real boundaries, atomicity). The final SMS is a normalized score reflecting the overall
quality of the state detection.

As shown in Algorithm 2, SMS incorporates penalty weights for different error types, allowing for
customization to specific applications. For instance, in scenarios where reaction time is critical and
false positives are tolerable, delays might be penalized more heavily than missing states. Despite this
flexibility, the SMS exhibits robustness to the choice of these penalty weights. The overall score is
primarily influenced by the total number of errors rather than the precise weight distribution.

Formal properties and guarantees. SMS is designed to be interpretable, predictable and robust to
changes of its knobs. Intuitively, the score first reflects how much time is mislabelled (the total length
of error blocks), and then applies controlled, interpretable refinements for error types and contexts.

If all penalty weights are set to zero, SMS simply reduces to the fraction of correctly labelled time:

SMS = 1− E

N
,

where E is the total length of error blocks and N the sequence length. With nonzero weights, since
d ∈ [0, 1] and A ≥ 3 (as defined above), the score remains tightly bounded:

1− (1 + wmax)E

N
≤ SMS ≤ 1− E

N
,

where wmax is the largest penalty weight. Thus, weights can only modulate the score within explicit,
predictable limits around the baseline 1− E/N .
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Changing the weights moderately cannot swing the score wildly. For two weight settings w and w′,
the difference in scores is bounded by

|SMS(w)− SMS(w′)| ≤ ∥w − w′∥∞
E

N
.

When the overall error mass E/N is small—as desired for good segmentations—SMS is provably
stable to weight choices. We provide additional experiments measuring the robustness of SMS in the
Appendix.

4 Experimental Evaluation

We now empirically evaluate the advantages of our proposed measures. In total, we consider a
panel of 6 segmentation methods (E2USD [20], Time2State [21], HDP-HSMM [18], TICC [31],
ClaSP [14] (used with kMeans clustering), and PaTSS [23]). We exclude HVGH [22] due to its poor
performance [20, 21], and AutoPlait [33], which previous studies reported as non-functional [20, 21].
In addition, we consider a benchmark of 5 datasets (PAMAP2 [15], USC-HAD [34], UCR-SEG [35],
ActRecTut [36], MoCap [37]) spanning various domains. Given the emphasis of this paper on
state detection, particular attention is given to comparing WARI and SMS with ARI, i.e., the most
commonly used measure in the literature. Finally, we provide an open-source implementation 1 of
our measures and evaluation. Additional experimental setup details can be found in Appendix.

4.1 Evaluating the Evaluation Measures

We first design a synthetic experiment that evaluates sensitivity to error length, position, and type.
The results, shown in Fig. 4, highlight distinct behaviors across the three measures (ARI, WARI, and
SMS). First, all measures are sensitive to the error length (cf. Fig. 4(a)), exhibiting decreasing scores
as segmentation errors grow is length, across segmentations S1 to S9 (satisfying Property 1). Second,
while WARI and SMS react to the position of the error—penalizing isolated errors more heavily—
ARI remains insensitive (cf. Fig. 4(b)), assigning a constant score regardless of the error’s location
(failing to meet Property 2). Finally, we assess sensitivity to error type, comparing measures
behavior on a delay and a transition error of same lenght (cf. Fig. 4(c)). While SMS assigns different
scores to each case, both ARI and WARI return identical values, demonstrating their insensitivity to
error type (failing to meet Property 3).

We now present in Fig. 5 a qualitative comparison of segmentation results from E2USD and
Time2State on a MoCap dataset time series. Traditional measures like ARI marginally favor
E2USD, despite exhibiting clear isolated errors and a less accurate segmentation overall. In contrast,
Time2State produces a more consistent segmentation, primarily with delay and transition errors. The
proposed SMS, along with WARI, pick Time2State’s output as the best segmentation. Specifically,
SMS offers an interpretable diagnostic of error types, a feature lacking in conventional measures.

1Public Repository: https://github.com/fchavelli/seg-eval/

…… …

(a) Evaluating Property 1 (b) Evaluating Property 2 (c) Evaluating Property 3
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Figure 4: Synthetic data examples illustrating various error types and measure responses.
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E2USD:     ARI: 0.80,     WARI: 0.86,     SMS: 0.77

Time2State:     ARI: 0.77,     WARI: 0.93,     SMS: 0.86

E2USD Segmentation Error Diagnostic (produced by SMS)

Time2State Segmentation Error Diagnostic (produced by SMS)

⤫ Best according to ARI

✓ Best according to WARI and SMS

Figure 5: Segmentation of a time series from the MoCap dataset using E2USD and Time2State.

(a) SMS versus ARI for 5 datasets and 6 methods

Adjusted Rand 
Index (ARI)

State Matching 
Score (SMS)

(b) CLASP on UCRSEG (d) TICC on PAMAP2

Ground Truth (GT)Ground Truth (GT)

Segmentation

(c) TICC on UCRSEG

Ground Truth (GT)

Segmentation

(e) PATSS on UCRSEG

Ground Truth (GT)

Segmentation

Segmentation

Figure 6: Comparison of ARI and SMS on real datasets collection.

More generally, we investigate how the proposed WARI and SMS measures compare to ARI on
real-world data. Fig. 6 shows a scatter plot of SMS versus ARI across the 5 datasets with the 6
segmentation methods (the comparison with WARI can be found in Appendix). While most points
align along the diagonal (i.e., similar ARI and SMS scores), several points deviate significantly.
In many cases, these deviations arise in settings with very few ground truth segments, where ARI
assigns low scores for predictions consisting of a single segment. In contrast, SMS still assigns
a proportional score based on how much of the smallest ground truth segment is recovered. For
example, Fig. 6(c) shows an time series from the UCRSEG dataset where TICC predicts a single
segment, resulting in ARI ≈ 0, whereas SMS captures the partial match and yields a higher score. In
other scenarios, such as Fig 6(b) and 6(e), SMS assigns more favorable scores than ARI due to its
tolerance to temporal misalignment (e.g., delay errors), especially in cases where ground truth labels
may themselves be subjective or ambiguous. This illustrates that SMS can better capture meaningful
segmentations despite imperfect annotations. However, as SMS is not adjusted for chance, it may
overvalue simplistic segmentations (e.g., a single segment) where error types are less relevant due
to few states. As WARI (shown to be more accurate than ARI earlier) is adjusted for chance, we
highlight the complementary nature of SMS and WARI, suggesting the interest in their joint usage.

4.2 Impact on State of the Art

We evaluate the relative performance of segmentation algorithms across datasets, using the pairwise
Wilcoxon sign rank test, with a critical value of α = 0.05. Each time series is treated as an individual
test instance. The corresponding critical diagrams are in Fig. 7 for ARI, WARI and SMS. Critical
Diagrams for F1 and Covering can be found in the Appendix.

Where we are: The algorithm rankings remain consistent, with the only notable exception being
SMS on univariate datasets. In the univariate context, ClaSP systematically achieves the highest
rank, aligning with previous works results [20, 21]. Regarding multivariate time series, Time2State
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Figure 7: Critical diagrams of state detection algorithms on (a) multivariate and (b) univariate datasets.
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Figure 8: Error rate and error type contribution for (a) all datasets, and (b) per datasets.

outperforms other methods with a statistically significant difference in all measures. We also observe
that TICC and HDP-HSMM are often ranked last in both univariate and multivariate settings.

What is new: While previous studies typically conclude at the level of the analysis described
above, we employ SMS to further explore performance comparisons across different types of errors.
Fig. 8 depicts the errors (i.e., 1−Score) of each method, per dataset and measure, with the types
of errors highlighted in the SMS bar. On average (Fig. 8(a)), we observe a significant distinction
between (i) neural and probabilistic methods (such as Time2State, E2USD, and HDP-HSMM) which
tend to produce more isolated errors, while (ii) other methods (such as ClaSP, TICC, and PaTSS)
predominantly make missing and delay errors. However, the frequency and type of error vary
significantly across datasets and methods, suggesting deep heterogeneity in segmentation behavior.

What is ahead: Beyond evaluation, the interpretable SMS framework suggests interesting research
directions. The diversity in error types highlights opportunities for refining method selection, parame-
ter tuning, and algorithm development. Specifically, error-type analysis guide the learning process
and assess the parameter tuning step. For instance, the prevalence of isolated errors in Time2State,
E2USD, and HDP-HSMM might be mitigated by adjusting parameters that control the number of
clusters (e.g., the concentration parameter in the Dirichlet Process Gaussian Mixture Model used by
Time2State). Conversely, for methods like ClaSP, TICC, and PATSS, which tend to produce missing
errors, increasing the number of generated clusters could be beneficial (e.g., for ClaSP, by lowering
the statistical test threshold for change point detection). Overall, error-type analysis can enhance both
evaluation pipelines, as well as training, tuning and development processes.

5 Conclusion

We address a key gap in time series segmentation evaluation by formalizing a typology of four distinct
errors types, and proposing a set of desirable properties for evaluation measures. We introduce two
new evaluation measures, WARI and SMS, that overcome major limitations of existing approaches
and provide important novel insights. Such insights, open promising directions for error-aware model
selection, development, tuning, and ensembling. Overall, this work contributes to interpretable,
robust, and customizable tools to advance the evaluation and design of segmentation algorithms.
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A Technical Appendices and Supplementary Material

State Detection Related Work

The Time2State method utilizes an encoder with a custom loss for a representation learning part, then
clusters the time series using sliding windows. The E2USD algorithm, builds upon Time2State by
targeting the high computational overhead hindering streaming applications and improves contrastive
learning by better handling false negatives. HDP-HSMM adopts a non-parametric Bayesian approach
to model temporal dependencies and duration distributions, while TICC utilizes temporal consistency
and clustering to identify recurring patterns. The ClaSP + k-means approach relies on the state-of-
the-art change point detection algorithm ClaSP, followed by kMeans clustering for grouping similar
segments. Finally, PaTSS leverages pattern matching techniques to detect and align state transitions.

Normalized Mutual Information (NMI)

The NMI measures the mutual information I(U ;V ) between two segmentations U and V , normalized
by their entropies H(U) and H(V ):

NMI(U, V ) =
2I(U ;V )

H(U) +H(V )

Mutual information I(U ;V ) and entropies H(U), H(V ) are typically computed from the contingency
matrix nij . The NMI ranges from 0 to 1, with 1 indicating perfect agreement between the two
segmentations.

Weighted Normalized Mutual Information (WNMI)

Similar to the ARI, the NMI treats all points equally, regardless of their position within a segment. To
incorporate temporal structure and boundary awareness, we propose a weighted version, the Weighted
Normalized Mutual Information (WNMI).

Using the same weighting scheme as for WARI, where each observation xk has a weight wk based
on its distance to the nearest boundary, we adapt the NMI calculation using the weighted contingency
matrix nij .

Datasets

The datasets used in this study are publicly available and can be accessed through the following links:

• PAMAP2 The Physical Activity Monitoring dataset is a comprehensive collection of data aimed
at facilitating research in human activity recognition. It comprises recordings from nine subjects,
each equipped with three Inertial Measurement Units (IMUs) placed on the wrist of the dominant
arm, chest, and ankle, along with a heart rate monitor. The dataset includes 18 different physical
activities, such as walking, running, and various household tasks. [15]

• USC-HAD The University of Southern California Human Activity Dataset is designed to support
research in human activity recognition using wearable sensors. It contains data from 14 subjects,
wearing a single MotionNode sensor on the front right hip. The sensor captures tri-axial accelerom-
eter and gyroscope data at a sampling rate of 100 Hz. The dataset encompasses 12 activity classes,
including walking, running, sitting, standing, and various transitional movements. [34]

• UCR-SEG The UCR Time Series Archive [35] is a repository of time-series datasets widely
used for evaluating algorithms in various domains, including human activity recognition. It offers
a diverse collection of datasets with varying lengths and dimensions, encompassing a range of
activities and sensor modalities.

• ActRecTut This dataset is designed to support research in human activity recognition using body-
worn inertial sensors [36]. It focuses on recognizing various hand gestures by analyzing data from
inertial measurement units (IMUs) attached to the upper and lower arms. The dataset provides a
comprehensive framework for designing and evaluating activity recognition systems, detailing each
component and offering best practices developed by the research community.
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• MoCap The CMU Graphics Lab Motion Capture Database [37] is a comprehensive collection of
motion capture recordings performed by over 140 subjects. It includes a wide range of activities
such as walking, dancing, and various sports, providing free motion data for research purposes.
The database offers downloadable motion files in various formats, supporting research in fields like
computer graphics, animation, and human motion analysis.

The properties of the datasets used are detailed in Table 1, as described in [20, 21].

Table 1: Properties of the datasets used in the experiments.
Datasets # States # Channels Length (k) # Time series # Segments State duration (k)
MoCap 5∼8 4 4.6∼10.6 9 6∼11 0.4∼2.0
ActRecTut 6 10 31.4∼32.6 2 42 0.02∼5.1
PAMAP2 11 9 253∼408 10 18∼25 2.0∼40.3
USC-HAD 12 6 25.4∼56.3 70 12 0.6∼13.5
UCR-SEG 2∼3 1 2∼40 32 2∼3 1∼25

Table 2: Licenses of datasets used in our experiments.
Dataset License / Usage Terms
PAMAP2 CC BY 4.0
USC-HAD License not found; encouraged for use by ubiquitous computing researchers
UCR-SEG License not found; widely used in research with at least 1000 papers citing the archive
ActRecTut License not found
MoCap Free for research; commercial use allowed in products, but resale (even converted) is prohibited

Experimental Setup

We evaluated each algorithm on each dataset, using the same hyperparameters as in [20]. We evaluated
the runtime and performance of each algorithm, comparing their results on the different datasets. The
experiments were conducted on a standard hardware setup including an Intel Core i7 processor and
32GB of RAM. We set a time limit of 24 hours for each dataset.

PaTSS and ClaSP did not run on PAMAP2, which contains sequences of 300,000 points long on
average—about ten times longer than other datasets (see Table 1). They exceeded the runtime or
memory limitations of our evaluation setup. While prior works reported results for these methods
on subsampled versions of PAMAP2, we argue that evaluating on truncated sequences significantly
distorts the segmentation task.

Hyperparameters

Table 3 provides the hyperparameters used in the experiments.
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Table 3: Parameters for State Detection and Evaluation Measures
Component Parameters
State Detection Methods Parameters Provided as config.json files in the config folder at the repos-

itory root.

Evaluation Measure Parameters
• WARI Weight:

– α = 0.1

• SMS Weights:
– wdelay = 0.1

– wtransition = 0.3

– wisolation = 0.8

– wmissing = 0.5

Table 4: Algorithm performance across datasets and measures (mean ± std dev). ’x’ indicates timeout
or memory error.

Dataset Measure HDP-HSMM E2USD PaTSS Time2State TICC ClaSP

ActRecTut

F1 0.03 ± 0.00 0.03 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 0.07 ± 0.00 0.08 ± 0.00
Covering 0.27 ± 0.00 0.49 ± 0.07 0.66 ± 0.25 0.74 ± 0.10 0.33 ± 0.01 0.41 ± 0.03
ARI 0.71 ± 0.14 0.54 ± 0.09 0.73 ± 0.25 0.78 ± 0.09 0.37 ± 0.00 0.31 ± 0.05
NMI 0.70 ± 0.08 0.64 ± 0.04 0.74 ± 0.16 0.73 ± 0.05 0.53 ± 0.00 0.43 ± 0.01
WARI 0.67 ± 0.24 0.60 ± 0.17 0.92 ± 0.11 0.83 ± 0.18 0.51 ± 0.01 0.44 ± 0.04
WNMI 0.60 ± 0.12 0.56 ± 0.04 0.76 ± 0.10 0.68 ± 0.05 0.62 ± 0.01 0.47 ± 0.01
SMS 0.74 ± 0.11 0.58 ± 0.11 0.77 ± 0.22 0.80 ± 0.08 0.42 ± 0.01 0.35 ± 0.10

MoCap

F1 0.15 ± 0.05 0.18 ± 0.06 0.14 ± 0.12 0.19 ± 0.04 0.21 ± 0.07 0.25 ± 0.05
Covering 0.53 ± 0.11 0.75 ± 0.14 0.50 ± 0.25 0.65 ± 0.08 0.74 ± 0.16 0.72 ± 0.15
ARI 0.60 ± 0.13 0.71 ± 0.18 0.57 ± 0.20 0.58 ± 0.15 0.65 ± 0.26 0.61 ± 0.16
NMI 0.70 ± 0.09 0.73 ± 0.14 0.68 ± 0.14 0.66 ± 0.12 0.68 ± 0.26 0.71 ± 0.13
WARI 0.61 ± 0.14 0.82 ± 0.20 0.65 ± 0.21 0.75 ± 0.14 0.75 ± 0.29 0.68 ± 0.19
WNMI 0.73 ± 0.09 0.77 ± 0.12 0.72 ± 0.11 0.70 ± 0.10 0.72 ± 0.27 0.74 ± 0.12
SMS 0.64 ± 0.12 0.77 ± 0.13 0.63 ± 0.17 0.70 ± 0.09 0.76 ± 0.15 0.73 ± 0.11

UCRSEG

F1 0.16 ± 0.10 0.18 ± 0.10 0.05 ± 0.05 0.22 ± 0.19 0.54 ± 0.11 0.59 ± 0.10
Covering 0.14 ± 0.12 0.41 ± 0.24 0.20 ± 0.21 0.44 ± 0.29 0.67 ± 0.20 0.79 ± 0.19
ARI 0.11 ± 0.12 0.36 ± 0.23 0.15 ± 0.22 0.37 ± 0.30 0.16 ± 0.30 0.59 ± 0.33
NMI 0.20 ± 0.18 0.43 ± 0.19 0.17 ± 0.21 0.40 ± 0.27 0.17 ± 0.30 0.62 ± 0.29
WARI 0.11 ± 0.12 0.40 ± 0.28 0.17 ± 0.25 0.42 ± 0.34 0.18 ± 0.33 0.65 ± 0.36
WNMI 0.18 ± 0.18 0.41 ± 0.21 0.18 ± 0.23 0.40 ± 0.28 0.14 ± 0.25 0.59 ± 0.33
SMS 0.28 ± 0.11 0.48 ± 0.22 0.50 ± 0.16 0.57 ± 0.24 0.60 ± 0.18 0.82 ± 0.17

USC-HAD

F1 0.08 ± 0.03 0.14 ± 0.04 0.08 ± 0.06 0.09 ± 0.04 0.14 ± 0.03 0.15 ± 0.03
Covering 0.18 ± 0.04 0.70 ± 0.10 0.49 ± 0.17 0.66 ± 0.08 0.60 ± 0.10 0.70 ± 0.08
ARI 0.48 ± 0.09 0.63 ± 0.11 0.27 ± 0.16 0.72 ± 0.10 0.38 ± 0.16 0.64 ± 0.12
NMI 0.71 ± 0.06 0.79 ± 0.05 0.50 ± 0.16 0.83 ± 0.04 0.69 ± 0.10 0.81 ± 0.06
WARI 0.58 ± 0.13 0.77 ± 0.13 0.37 ± 0.21 0.81 ± 0.12 0.52 ± 0.21 0.73 ± 0.15
WNMI 0.66 ± 0.07 0.75 ± 0.06 0.49 ± 0.17 0.77 ± 0.05 0.65 ± 0.11 0.75 ± 0.06
SMS 0.54 ± 0.08 0.66 ± 0.09 0.28 ± 0.19 0.71 ± 0.07 0.44 ± 0.14 0.67 ± 0.10

PAMAP2

F1 0.02 ± 0.04 0.02 ± 0.03 x 0.03 ± 0.04 0.14 ± 0.16 x
Covering 0.05 ± 0.04 0.43 ± 0.08 x 0.37 ± 0.06 0.51 ± 0.16 x
ARI 0.28 ± 0.07 0.32 ± 0.10 x 0.31 ± 0.10 0.29 ± 0.14 x
NMI 0.52 ± 0.09 0.60 ± 0.10 x 0.59 ± 0.11 0.55 ± 0.07 x
WARI 0.42 ± 0.16 0.50 ± 0.20 x 0.49 ± 0.20 0.43 ± 0.20 x
WNMI 0.60 ± 0.18 0.65 ± 0.19 x 0.65 ± 0.19 0.66 ± 0.14 x
SMS 0.53 ± 0.07 0.54 ± 0.16 x 0.53 ± 0.15 0.52 ± 0.16 x
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Metrics Implementation

The ARI and NMI are calculated using the sklearn library in Python, which provides efficient
implementations of these measures. The F1-score and covering scores are computed using a custom
implementation, adapted from TSSB code.

WARI vs. ARI

The link between WARI and ARI is displayed in Fig. 9.
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Figure 9: WARI against ARI score of each dataset.

Critical Diagram for Change Point Detection

Figure 10 depicts the critical diagrams for F1 score and Covering score for both univariate and
multivariate time series datasets.
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Figure 10: Critical diagrams of state detection algorithms used as change point detectors. (a)
Multivariate results. (b) Univariate results.

SMS Robustness Evaluation

As shown in Algorithm 2, SMS incorporates penalty weights for different error types, allowing for
customization to specific application requirements. For instance, in scenarios where reaction time is
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Figure 11: SMS variability (std) across 100 runs with random uniform penalty weights in [0, 1]

critical and false positives are tolerable, delays might be penalized more heavily than missing states.
Despite this flexibility, the SMS exhibits robustness to the specific choice of these penalty weights.
The overall score is primarily influenced by the total number of errors rather than the precise weight
distribution.

To demonstrate this, we evaluated all segmentations across the five datasets and six algorithms, using
randomly assigned weights for each error type (drawn uniformly from [0, 1] over 100 runs). As
depicted in Fig. 11, the resulting score distributions showed limited variability, with an average
standard deviation of 0.03169. This indicates that while parameter tuning can refine the distinction
between error types, the fundamental performance ranking remains largely consistent.

Quantitative Evaluation of Error Types

The count of each error type for each method across datasets using the SMS as evaluation measure is
displayed in Fig. 12.
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measure
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims are we (i) review the literature and propose a typology of segmen-
tation errors (cf. Sec. 2.1–2.2), (ii) highlight limitations of existing evaluation measures
(cf. Sec. 2.3), (iii) introduce two new measures—WARI and SMS—with theoretical justifica-
tions (cf. Sec. 3), (iv) empirically show their advantages over existing metrics (cf. Sec. 4.1),
and (v) demonstrate their ability to reveal new insights into segmentation performance
(cf. Sec. 4.2).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work consist in the limitations of the proposed ap-
proaches: (i) WARI not meeting Property 3 and 4 (cf. Sec. 4.1, Fig. 4), (ii) SMS not being
adjusted and leading to high score discrepencies when compared to ARI (cf. Sec. 4.1, Fig. 6),
and being parameter dependant (cf. Sec. 3.2).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main results necessitate only the proposed measures implementation, that
are described and can be re-implemented from information in the main text an Appendix: (i)
WARI is described in Sec. 3.1, and (ii) SMS is explained with pseudo code (cf. Algo. 1 and
Algo. 2).

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data and documented code are available with open access from the url provided
in the footnote 1 in Sec. 4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details are given in main text (cf. Sec. 4) or in the appendix
in case of missing space. Hyperparameters are given in the main text (as well as in the
appendix) for WARI (cf. Sec. 3.1), while parameters for SMS are given in Appendix (cf.
Table. 3).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard deviation of the main experiment are given in appendix. The
statistical test used is defined with the critical value used and critical diagrams with statistical
test values.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides details about the hardware setup used, and the limitations
(time and memory) set for the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Human activity recognition datasets are being used from previous avaible
public archives.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact in the work performed. This work proposes
novel evaluation framework and measures for time series segmentation algorithms. As a
methodological contribution, it does not involve the collection of human data, deployment in
user-facing systems, or direct application to high-stakes domains. The proposed metrics aim
to improve the rigor and interpretability of algorithm evaluation. Potential societal impact is
indirect and depends entirely on how these evaluation measures are applied in downstream
tasks. We do not foresee any immediate negative societal consequences from this research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release any models or datasets with a high risk of misuse. It
introduces evaluation measures for time series segmentation and operates entirely on publicly
available datasets under standard research licenses. The contributions are methodological
and do not pose foreseeable risks requiring specific safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Licenses or usage terms are given for each dataset in Appendix (cf. Table. 2).
When the exact license is not found, usage terms from the accompanying paper are provided.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The supporting code of the paper is provided and documented in the repository
linked in footnote 1 in Sec. 4.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There were no crowdsourcing experiments nor research with human subjects
conducted in this work.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There were no studies with human subjects conducted in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM usage is not an important, original, or non-standard component of the
core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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