
Under review as a conference paper at ICLR 2024

FEDPOP: FEDERATED POPULATION-BASED HYPERPA-
RAMETER TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) is a distributed machine learning (ML) paradigm, in
which multiple clients collaboratively train ML models without centralizing their
local data. Similar to conventional ML pipelines, the client local optimization
and server aggregation procedure in FL are sensitive to the hyperparameter (HP)
selection. Despite extensive research on tuning HPs for centralized ML, these
methods yield suboptimal results when employed in FL. This is mainly because
their ”training-after-tuning” framework is unsuitable for FL with limited client
computation power. While some approaches have been proposed for HP-Tuning
in FL, they are limited to the HPs for client local updates. In this work, we propose
a novel HP-tuning algorithm, called Federated Population-based Hyperparameter
Tuning (FedPop), to address this vital yet challenging problem. FedPop employs
population-based evolutionary algorithms to optimize the HPs, which accommo-
dates various HP types at both the client and server sides. Compared with prior
tuning methods, FedPop employs an online ”tuning-while-training” framework,
offering computational efficiency and enabling the exploration of a broader HP
search space. Our empirical validation on the common FL benchmarks and com-
plex real-world FL datasets, including full-sized Non-IID ImageNet-1K, demon-
strates the effectiveness of the proposed method, which substantially outperforms
the concurrent state-of-the-art HP tuning methods in FL.

1 INTRODUCTION

Federated Learning (FL) is an effective machine learning paradigm suitable for decentralized data
sources (McMahan et al., 2017). Similar to the conventional ML algorithms, FL exhibits sensi-
tivity to empirical choices of hyperparameters (HPs), such as learning rate, and optimization steps
(Kairouz et al., 2021). Hyperparameter Tuning (HPT) is a vital yet challenging component of the
ML pipeline, which has been extensively studied in the context of centralized ML (Hutter et al.,
2019). However, traditional HPT methods, such as Bayesian Optimization (Snoek et al., 2012), are
not suitable for FL systems. These methods typically utilize the ”training-after-tuning” framework.
Within this framework, a substantial number of HPs needs to be evaluated, which involves repeti-
tive training of models until convergence and subsequent retraining after optimizing the optimal HP.
Such approaches can drastically increase the client’s local computational costs and communication
overheads, as it needs to execute multiple federated communications when evaluating only one HP.
Furthermore, the distributed validation datasets impose a major challenge for HPT in FL, making it
infeasible to evaluate HP for a large number of participating clients.

Recently, a few approaches have emerged to address the problem intersection of HPT and FL, but
they still exhibit certain limitations: FedEx (Khodak et al., 2021) pre-defines a narrower HP search
space, while FLoRA (Zhou et al., 2021) requires costly retraining after HP-optimization. Moreover,
they are only applicable for tuning the client’s local HPs. In this paper, we propose Federated
Population-based Hyperparameter Tuning (FedPop) to address the challenge of tuning HPs for FL.
FedPop applies population-based evolutionary algorithm (Jaderberg et al., 2017) to optimize the
HPs, which adds minimal computational overheads and accommodates various HP types at the client
and server sides. Most importantly, FedPop employs an online ”tuning-while-training” framework,
enhancing efficiency and thereby allowing the exploration of a broader HP search space.

1

Under review as a conference paper at ICLR 2024

In FedPop, we first construct multiple HP-configurations as our tuning population, i.e., we initial-
ize multiple tuning processes (members) with randomly initialized HP-configuration, containing the
HPs used in the server aggregation and the local client updates. Afterwards, we apply an evolu-
tionary update mechanism to optimize the HPs of each member by leveraging information across
different HP-configurations (FedPop-G). Hereby, the HPs in underperforming members will be
replaced by a perturbed version of the HPs from better-performing ones, enabling an efficient and
effective online propagation of the HPs. To further improve the HPs for the local client updates in a
fine-grained manner, we consider the active clients in each communication round as our local popu-
lation, where each member contains one HP-vector used in the local client update (FedPop-L).
Similarly, evolutionary updates are executed based on the local validation performance of each
member to tune these HP-vectors. Most importantly, all the tuning processes, i.e., members of
the population, are decentralized and can be asynchronous, aligning perfectly with the distributed
system design.

The proposed algorithm FedPop achieves new state-of-the-art (SOTA) results on three common FL
benchmarks with both vision and language tasks, surpassing the concurrent SOTA HPT method for
FL, i.e., FedEx (Khodak et al., 2021). Moreover, we evaluate FedPop on large-scale cross-silo FL
benchmarks with feature distribution shift (Li et al., 2021), where its promising results demonstrate
its applicability to complex real-world FL applications. Most importantly, we demonstrate the scal-
ability of FedPop, where we show its applicability to full-sized ImageNet-1K (Deng et al., 2009)
with ResNet-50 (He et al., 2016). Our contributions in this paper can be summarized as follows:

• We propose an effective and efficient online hyperparameter tuning (HPT) algorithm,
FedPop, to address the HPT problem for decentralized ML systems.

• We conduct comprehensive experiments on three common FL benchmarks with both vision
and language tasks, in which FedPop achieves new SOTA results.

• We verify the maturity of FedPop for complex real-world cross-silo FL applications, and
further analyze its convergence rate on ImageNet-1K, as well as its effectiveness under
different tuning system designs.

2 RELATED WORK

Hyperparameter Tuning for FL System: Previous works for tuning hyperparameters in FL focus
only on specific aspects: Wang et al. (2019) tunes only the local optimization epochs based on the
client’s resources, while Koskela & Honkela (2018); Mostafa (2019); Reddi et al. (2020) focus on
the learning rate of client local training. Dai et al. (2020; 2021) apply Bayesian Optimization (BO)
(Snoek et al., 2012) in FL and optimize a personalized model for each client, while Tarzanagh et al.
(2022) computes federated hypergradient and applies bilevel optimization. He et al. (2020); Xu et al.
(2020); Garg et al. (2020); Seng et al. (2022); Khan et al. (2023) tune architectural hyperparameters,
in particular, adapt Neural Architecture Search (NAS) for FL. Zhang et al. (2022) tunes hyperpa-
rameter based on the federated system overheads, while Maumela et al. (2022) assumes the training
data of each client is globally accessible. Mlodozeniec et al. (2023) partitions both clients and the
neural network and tunes only the hyperparameters used in data augmentation. Khodak et al. (2020;
2021) systematically analyze the challenges of hyperparameter tuning in FL and propose FedEx for
client local hyperparameters. Zhou et al. (2021) proposes a hyperparameter optimization algorithm
that aggregates the client’s loss surfaces via single-shot upload. In contrast, the proposed method,
FedPop, is applicable to various HP types on the client and server sides. In addition, it does not
impose any restrictions on data volume and model architecture.

Evolutionary Algorithms: Evolutionary algorithms are inspired by the principles of natural evo-
lution, where stochastic genetic operators, e.g., mutation and selection, are applied to the members
of the existing population to improve their survival ability, i.e., quality (Telikani et al., 2021). Evo-
lutionary algorithms have shown their potential to improve machine learning algorithms, including
architecture search (Real et al., 2017; Liu et al., 2017), hyperparameter tuning (Jaderberg et al.,
2017; Parker-Holder et al., 2020), and Automated Machine Learning (AutoML) (Liang et al., 2019;
Real et al., 2020). FedPop employs an online evolutionary algorithm, which is computationally ef-
ficient and explores a broader HP search space. To the best of our knowledge, FedPop is the first
work combining evolutionary algorithms with HP optimization in Federated Learning.

2

Under review as a conference paper at ICLR 2024

3 FEDERATED HYPERPARAMETER TUNING

3.1 PROBLEM DEFINITION

In this section, we introduce the problem
setup of hyperparameter tuning for FL. Fol-
lowing the setting introduced by Khodak
et al. (2021), we assume that there are Nc ∈
N+ clients joining the federated communi-
cation. Each client k owns a training, vali-
dation, and testing set, denoted by T k, V k,
and Ek, respectively. To simulate the com-
munication capacity of a real-world feder-
ated system, we presume that there are ex-
actly K ∈ N+ active clients joining each
communication round. In the classical Fed-

Model

Upload

Model
Model 𝒘𝑘

Model ෝ𝒘

Distribute

𝐴𝑔𝑔(𝜶,

𝒘, {𝒘𝒌}𝒌=𝟏
𝑲)

Client 𝟏

Client 𝒌

Model 𝒘𝑘

𝐿𝑜𝑐(𝜷𝒌, 𝒘, 𝑇𝑘)
Model 𝒘

Model 𝒘1

𝐿𝑜𝑐(𝜷1, 𝒘, 𝑇1)
Model 𝒘

Server

𝑉𝑎𝑙(𝒘𝒌, 𝑉𝑘)

𝑉𝑎𝑙(𝒘1, 𝑉1)

𝑠1

𝑠𝑘

Figure 1: Schematic illustration of the operations
involved in one communication round, summarized
as Fed-Opt.

Avg approach (McMahan et al., 2017), the central server obtains the model weight w ∈ Rd by
iteratively distributing w to the active clients and averaging the returned optimized weights, i.e.,
{wk|1 ≤ k ≤ K}.
More specifically, we denote the server aggregation and the client local training functions as Agg
and Loc, respectively. Our goal is to tune the hyperparameter vectors (HP-vectors) used in these
two functions. In particular, we denote the HP-vector used in Agg and Loc as α and β, which are
sampled from the hyperparameter distribution Ha and Hb, respectively. We define the combination
of α and β as one HP-configuration. In the following, we explain the general steps executed in the
communication round, which involves these functions and HP-configurations. We summarize these
steps as federated optimization (Fed-Opt), which is illustrated in Figure 1. Specifically, all active
clients first execute function Loc (➀) in parallel:

wk ← Loc(βk,w, T k), (1)

which takes the HP-vector βk, model parameters w distributed by the central server, and the local
training set T k as inputs, and outputs the optimized model weight wk. Afterwards, the central server
aggregates wk, uploaded by the active clients (➁) , and executes function Agg (➂):

ŵ ← Agg(α,w, {wk|1 ≤ k ≤ K}), (2)

which takes HP-vector α, current model parameter w, updated model parameters from the active
clients {wk|1 ≤ k ≤ K}, and outputs the aggregated model weight ŵ which will be distributed to
the active clients in the next communication round (➃). The goal of the federated hyperparameter
tuning method is to find the optimal HP-vectors α and β within a predefined communication budget.

3.2 CHALLENGES

Given the problem defined in the previous section, we describe the two main challenges when tuning
the hyperparameters for federated learning:

(C1) Extrem resource limitations: The communication budgets for optimizing ML models via FL
are always very constrained due to the limited computational power of the clients and connection ca-
pacity of the overall system (Li et al., 2020). Therefore, common hyperparameter tuning algorithms,
such as extensive local hyperparameter tuning for each client, or experimenting multiple hyperpa-
rameter configurations for the overall federated system and then retraining, may not be suitable in
the context of FL.

(C2) Distributed validation data: In centralized ML, most hyperparameter tuning algorithms select
the HP-configurations based on their validation performance. However, the validation data (V k) is
distributed across the clients in FL. Computing a validation score over all clients is extremely costly
and thus infeasible for FL. The alternative is to use the validation performance of client subsets, e.g.,
the active clients of the communication round, which greatly reduces computational costs. However,
this may lead to evaluation bias when the distributed client data are not independent and identically
distributed (Non-IID).

3

Under review as a conference paper at ICLR 2024

(a) RS (b) SHA (c) FedEx (d) FedPop-G (e) FedPop-L

other baselines. One blue cross represents one HP-
configuration, while one yellow dot represents an additional
client HP-vector (β) used in FedEx and FedPop. FedEx
optimizes the sampling probabilities of additional β based
on validation performance (indicated by the brightness of the
yellow dots). In contrast, our method supports the tuning of
both server (FedPop-G) and clients (FedPop-G and -L)
HP-vectors and explores broader search space with the help
of evolutionary updates. Best viewed in color.

tuning method is to find the optimal HP-vectors α and β
within a predefined communication budget.

3.2 Challenges
Given the problem defined in the previous section, we de-
scribe the two main challenges when tuning the hyperpa-
rameters for federated learning:

(C1) Extrem resource limitations: The communication
budgets for optimizing ML models via FL are always very
constrained due to the limited computational power of the
clients and connection capacity of the overall system (Li
et al. 2020). Therefore, common hyperparameter tuning al-
gorithms, such as extensive local hyperparameter tuning for
each client, or experimenting multiple hyperparameter con-
figurations for the overall federated system and then retrain-
ing, may not be suitable in the context of FL.

(C2) Distributed validation data: In centralized ML,
most hyperparameter tuning algorithms select the HP-
configurations based on their validation performance. How-
ever, the validation data (V k) is distributed across the clients
in FL. Computing a validation score over all clients is ex-
tremely costly and thus infeasible for FL. The alternative is
to use the validation performance of client subsets, e.g., the
active clients of the communication round, which greatly re-
duces computational costs. However, this may lead to eval-
uation bias when the distributed client data are not indepen-
dent and identically distributed (non-IID).

3.3 Baselines
Before introducing the proposed algorithm (FedPop)
which addresses the challenges of HP-tuning in FL, we illus-
trate the adaptation of two widely adopted HP-tuning base-
lines for FL applications and the notations. For the FL setup,
we define the total communication budget and the maximum
resources per HP-configuration as Rt and Rc, respectively.
We devise two baseline methods for tuning α,β:

Method Number of
tried α

Number of
tried β

Optim.
of α

Optim.
of β

RS 5 5 ✗ ✗
SHA 27 27 ✗ ✗
FedEx 5 135 ✗ ✓
FedPop 45 >1000 ✓ ✓

(1) Random Search (RS) first initializes Nc(=
Rt

Rc
) HP-

configurations. Afterwards, an ML model and Nc tuning
processes will be initialized, where each tuning process ex-
ecutes Rc federated communication rounds to optimize the
model using one HP-configuration. Finally, the optimized
models from all tuning processes will be evaluated and the
HP-configuration with the best performance is saved.

(2) Successive Halving (SHA) is a variation of RS
which eliminates 1

η -quantile of the under-performing HP-
configurations after specific numbers of communication
rounds. Within the same tuning budget Rt, SHA is able to
experiment more HP-configurations compared with RS, in-
creasing the likelihood of achieving better results. The num-
ber of HP-configurations in SHA, Nc(>

Rt

Rc
), is based on

Rt, Rc and the number of elimination operations. However,
the elimination might also discard HP-configurations which
lead to promising results but perform poorly at early stages.

Limitations: These baseline methods exhibit two limita-
tions when adapted to FL applications: First, as shown in
Figure 3, their numbers of HP-configurations, as well as the
HP values, are pre-defined and remain fixed throughout the
tuning process. Second, these baseline methods are ”static”
and no active tuning is executed inside each tuning process.
Specifically, the model evaluation results are only obtained
and utilized after Rc communication rounds. Therefore, we
propose FedPop, a population-based tuning algorithm that
updates the HP-configurations via evolutionary update algo-
rithms. As a result of its high efficiency, it experiments the
largest number of HP-vectors among all methods (Table 1).
We introduce FedPop in the following section.

3.4 Proposed Method
The proposed method, Federated Population-Based Hyper-
parameter Tuning (FedPop), adopts the aforementioned
baselines to construct the populations. In the following,
we use RS for constructing the initial population of HP-
configurations. However, other methods such as SHA can
also be applied as a population constructor and we provide
detailed explanations in the Appendix.

As shown in Figure 4, we first randomly sample the HP-
vectors (α and β) for each tuning process in parallel and
execute federated optimization Fed-Opt (Figure 1). After-
wards, we conduct FedPop based on the validation scores
s returned from the active clients in each tuning process.

Figure 2: Schematic (left) and numeric (right) comparison between FedPop and other baselines.
(left) One blue cross represents one HP-configuration, while one yellow dot represents an additional
client HP-vector used in FedEx and FedPop. FedEx optimizes the sampling probabilities of β
based on validation performance. In contrast, our method supports the optimization of both server
(FedPop-G) and client (FedPop-G and -L) HP-vectors. (right) Number of HP-vectors tested
in different HP-tuning methods on CIFAR-10 benchmark. Detailed computation of the numbers is
provided in the Appendix. FedPop explores broader search space with the help of evolutionary
updates and experiments the largest number of HP-configurations among all methods.

3.3 BASELINES

Before introducing the proposed algorithm (FedPop) which addresses the challenges of HP-tuning
in FL, we illustrate the adaptation of two widely adopted HP-tuning baselines for FL applications
and the notations. For the FL setup, we define the total communication budget and the maximum
resources per HP-configuration as Rt and Rc, respectively. We devise two baseline methods for
tuning α,β:

(1) Random Search (RS) first initializes Nc(=
Rt

Rc
) HP-configurations. Afterwards, an ML model

and Nc tuning processes will be initialized, where each tuning process executes Rc federated com-
munication rounds to optimize the model using one HP-configuration. Finally, the optimized models
from all tuning processes will be evaluated and the HP-configuration with the best performance is
saved.

(2) Successive Halving (SHA) is a variation of RS which eliminates 1
η -quantile of the under-

performing HP-configurations after specific numbers of communication rounds. Within the same
tuning budget Rt, SHA is able to experiment more HP-configurations compared with RS, increasing
the likelihood of achieving better results. The number of HP-configurations in SHA, Nc(>

Rt

Rc
), is

based on Rt, Rc and the number of elimination operations. However, the elimination might also
discard HP-configurations which lead to promising results but perform poorly at early stages.

Limitations: These baseline methods exhibit two limitations when adapted to FL applications: First,
as shown in Figure 2 left, their numbers of HP-configurations, as well as the HP values, are pre-
defined and remain fixed throughout the tuning process. Second, these baseline methods are ”static”
and no active tuning is executed inside each tuning process. Specifically, the model evaluation results
are only obtained and utilized after Rc communication rounds. Therefore, we propose FedPop,
a population-based tuning algorithm that updates the HP-configurations via evolutionary update
algorithms. As a result of its high efficiency, it experiments the largest number of HP-vectors among
all methods (Figure 2 right). We introduce FedPop in the following section.

3.4 PROPOSED METHOD

The proposed method, Federated Population-Based Hyperparameter Tuning (FedPop), adopts the
aforementioned baselines to construct the populations. In the following, we use RS for constructing
the initial population of HP-configurations. However, other methods such as SHA can also be applied
as a population constructor and we provide detailed explanations in the Appendix.

As shown in Figure 3, we first randomly sample the HP-vectors (α and β) for each tuning process in
parallel and execute federated optimization Fed-Opt (Figure 1). Afterwards, we conduct FedPop
based on the validation scores s returned from the active clients in each tuning process. FedPop
can be divided into 2 sub-procedures: FedPop-L focuses on a fine-grained search of HP-vector
β inside each HP-configurations (intra-config), while FedPop-G aims at tuning both HP-vectors

4

Under review as a conference paper at ICLR 2024

𝐹𝑒𝑑𝑃𝑜𝑝 − 𝐿

Sampling

𝜶1~𝐻𝛼, 𝜷1~𝐻𝛽

HP-vector 𝜶𝑖

HP-vector {𝜷𝑖
𝟎, … , 𝜷𝑖

𝐾 }

Tuning Process 𝒊

Fed-Opt

Local Scores

{𝑠𝑖
1, … , 𝑠𝑖

𝐾}

Top-quantile 𝑃𝑡

Bottom-quantile 𝑃𝑏

𝐸𝑣𝑜

HP-vector 𝜶1

HP-vector {𝜷1
0, … , 𝜷1

𝐾 }

Tuning Process 𝟏

Fed-Opt

Local Scores

{𝑠1
1, … , 𝑠1

𝐾}

𝑆𝑜𝑟𝑡
 𝜷1

Top-quantile 𝑃𝑡

Bottom-quantile 𝑃𝑏

𝐸𝑣𝑜

Sampling

𝜶𝑖~𝐻𝛼, 𝜷𝑖~𝐻𝛽

𝐹𝑒𝑑𝑃𝑜𝑝 − 𝐿

𝑆𝑜𝑟𝑡
 𝜷𝑖

Update

Update

Model Weight 𝒘

Model Weight 𝒘

Optimized Weight

𝒘1

Optimized Weight

𝒘𝒊

𝐹𝑒𝑑𝑃𝑜𝑝 − 𝐺

Figure 3: Schematic illustration of FedPop, including FedPop-L for intra-configuration HP-
tuning and FedPop-G for inter-configuration HP-tuning. FedPop employs an online ”tuning-
while-training” schema for tuning both server (α) and clients (β) HP-vectors. All functions in
FedPop can be executed in a parallel and asynchronous manner.

α and β across all HP-configurations (inter-config). The pseudo codes of the proposed method are
given in Algorithm 1.

With RS as the population constructor, FedPop first randomly initializes Nc HP-configurations,
indicated by (αi,β

0
i), and copies the model weight vector w. Afterwards, we randomly sample

addition K HP-vectors, i.e., {βk
i |1 ≤ k ≤ K}, inside a small ∆-ball centered by β0

i . ∆ is selected
based on the distribution of the HP and more details are provided in the Appendix. This is because
we find that using too distinct HP-vectors for the active clients would lead to unstable performance,
which was also observed by Khodak et al. (2021). We also provide a schematic illustration in Figure
2, where the yellow dots ({βk

i |1 ≤ k ≤ K}) are enforced to lie near the blue crosses (β0
i). Note that

this resampling process of βk
i is also executed when β0

i is perturbed via Evo in FedPop-G. Finally,
Rc communication rounds are executed for each tuning process in parallel, where the validation
scores ski , of the kth active client in the ith tuning process is recorded.

3.4.1 EVOLUTION-BASED HYPERPARAMETER UPDATE (EVO)

Inspired by Population-based Training (Jaderberg et al., 2017), we design our evolution-based hy-
perparameter update function Evo as the following,

Evo(h) =

ĥj ∼ U(hj − δj , hj + δj) s.t. Hj = U(aj , bj),

ĥj ∼ U{xi±⌊δj⌉
j , xi

j} s.t.

{
Hj = U{x0

j , ..., x
n
j },

hj = xi
j ,

(3)

where h represents one HP-vector, i.e., α or β for our problem setting. We perturb the jth value
of h, hj , based on its original sampling distribution Hj : (1) If hj is sampled from a continuous
uniform distribution Hj = U(aj , bj) (e.g., log-space of learning-rate, dropout), then we perturb
hj by resampling it from U(hj − δj , hj + δj), where δj ← (bj − aj)ϵ and ϵ is the pre-defined
perturbation intensity. (2) If hj = xi

j is sampled from a discrete distribution Hj = U{x0
j , ..., x

n
j }

(e.g., batch-size, epochs), then we perturb hj by reselecting its value from {xi−⌊δj⌉
j , xi

j , x
i+⌊δj⌉
j }. To

further increase the diversity of the HP search space during tuning, we resample hj from its original
distribution Hj with the probability of pre. While the HPs are randomly initialized in the early
tuning stages, they become more informative as training progresses. To reflect this in FedPop,
we employ a cosine annealing schema to control the values of ϵ and pre based on the conducted
communication rounds. More details are provided in the Appendix.

3.4.2 FEDPOP-G FOR INTER-CONFIGURATION TUNING

In FedPop-G, we adopt the average validation loss of all active clients, i.e., si = 1
K

∑K
k=1 s

k
i , as

the performance score for ith HP-configuration. However, si may be a biased performance measure-
ment, i.e., the disparity in the difficulty of the validation sets between different clients may lead to
noisy si. To reduce the impact of the noise, FedPop-G is conducted after every Tg communication

5

Under review as a conference paper at ICLR 2024

rounds. Hereby, the list of scores si over Tg rounds
are recorded and their weighted sum with a power-law
weight decay is utilized as the measurement. The tun-
ing procedure starts by sorting the HP-configurations
according to their validation scores. Afterwards, 2 sub-
sets, i.e., Qb and Qt, are constructed, representing the
indices of the bottom and top 1

ρ -quantile of the HP-
configurations, respectively. Finally, the HP-configura-

(𝑠𝑖 ←
1

𝐾
σ𝑘=1
𝐾 𝑠𝑖

𝑘)}

Global Scores
{𝑠1, … , 𝑠𝑁c }

𝑆𝑜𝑟𝑡
(𝜶𝒊, 𝜷𝑖)

Bottom-quantile 𝑄𝑏
𝛼

Bottom-quantile 𝑄𝑏
𝛽

Top-quantile 𝑄𝑡
𝛼

Top-quantile 𝑄𝑡
𝛽

𝐸𝑣𝑜

𝐹𝑒𝑑𝑃𝑜𝑝 − 𝐺

𝒘𝑖𝑏 ← 𝒘𝑖𝑡

Figure 4: FedPop-G.

tions with indices in Qb will be replaced by the perturbed version of the HP-configurations with
indices in Qt. Specifically, αib ,β

0
ib

are replaced by the perturbed version of αit ,β
0
it

via Evo
(Equation 3), the model weight in ib-th HP-configuration (wib) are replaced by the it-th (wit).

3.4.3 FEDPOP-L FOR INTRA-CONFIGURATION TUNING

To further explore the local neighborhood of β0
i for client local update in a fine-grained manner,

we apply FedPop-L inside each tuning process. Hereby, we provide an informative assessment of
β0
i and its local neighborhood to enhance the robustness of HP-configuration. For simplicity, we

omit i in the following notations. We consider the base HP-vector β0 as the perturbation center
and restrict the perturbated HP-vector to lie inside a ∆-ball of it, i.e., ||βk − β0||2 ≤ ∆. At each
communication round, βk will be assigned to Loc of the kth active client, the validation loss of the
optimized model wk will be recorded as the score sk for HP-vector βk. Afterwards, {βk}Kk=1 will
be sorted according to the validation scores and separated into 2 subsets, containing the indices of
the bottom (Pb) and the top (Pt) 1

ρ -quantile of the β, respectively. Finally, the HP-vectors βkt with
indices in Pt will be perturbed to replace the HP-vectors βkb with indices in Pb via Evo.

Algorithm 1: Federated Population-Based Hyperparameter Tuning (FedPop).
Input: Number of active clients per round K, number of HP-configurations Nc, maximum

communication budget for each HP-configuration Rc, perturbation interval for FedPop-G Tg , model
weight w, Nc server HP-vectors α = {α1, ...,αNc}, Nc client HP-vectors β = {β0

1 , ...,β
0
Nc
}.

Copy the model weights wi ← w for all Nc tuning processes.
for comm. round r ← 1 to Rc do

for i← 1 to Nc do
// in parallel
if len(βi) == 1 then

Randomly sample {βk
i }Kk=1 inside

∆-ball of β0
i .

for Client k ← 1 to K do
// in parallel
wk

i ← Loc(βk
i ,wi, T

k)
ski ← Val(wk

i , V
k)

βi ← FedPop-L (βi, {ski }Kk=1,K)
wi ← Agg(αi,wi, {wk

i }Kk=1)

si ← 1
K

∑K
k=1 s

k
i

if r%Tg = 0 then
{αi,βi,wi}Nc

i=1 ← FedPop-G
({αi,βi,wi, si}Nc

i=1, Nc)

return {wi}Nc
i=1

Function FedPop-L(β, s,K)
Pb ← {k : sk ≥ ρ−1

ρ
-quantile({sk}Kk=1)}

Pt ← {k : sk ≤ 1
ρ

-quantile({sk}Kk=1)}
for kb ∈ Pb do

Sample kt from Pt.
Delete βkb .
βkb ← Evo(βkt)

return β

Function FedPop-G(α,β,w, s, Nc)
Qb ← {i : si ≥ ρ−1

ρ
-quantile({si}Nc

i=1)}
Qt ← {i : si ≤ 1

ρ
-quantile({si}Nc

i=1)}
for ib ∈ Qb do

Sample it from Qt.
Delete αib ,βib ,wib .
αib ,β

0
ib
← Evo(αit ,β

0
it)

wib ← wit

return α,β,w

3.4.4 SOLUTIONS TO CHALLENGES

(C1) FedPop does not require Bayesian Optimization (Zhou et al., 2021) or gradient-based hy-
perparameter optimization (Khodak et al., 2021), which saves the communication and computation
costs. Besides, FedPop utilizes an online evolutionary method (Evo) to update the hyperparam-
eters, i.e., not ”training-after-tuning” but ”tuning-while-training”, which eliminates the need for
”retraining” after finding a promising HP-configuration. Note that all procedures in FedPop can be
conducted in a parallel and asynchronous manner. (C2) FedPop-G is conducted every Tg commu-
nication rounds to mitigate the noise depicted in the validation scores of HP-configurations. Besides,

6

Under review as a conference paper at ICLR 2024

Table 1: Evaluation results of different hyperparameter tuning algorithms on three benchmark
datasets. We report the global and locally finetuned (in the brackets) model performance with format
mean±std from 5-trial runs using different seeds. The best results are marked in bold.

Pop.
Con.

Tuning
Algo.

CIFAR-10 FEMNIST Shakespeare

IID Non-IID
(Dir1.0)

Non-IID
(Dir0.5) IID Non-IID IID Non-IID

RS

None 53.26±8.37

(43.02±4.02)
48.92±2.75

(35.23±7.46)
47.46±10.38

(35.35±9.48)
82.86±1.24

(83.76±3.56)
79.06±5.59

(83.09±2.64)
33.76±11.27

(31.19±10.18)
32.67±12.27

(31.329.92)

FedEx 60.87±8.09

(62.48±11.68)
57.04±5.61

(56.93±13.36)
59.74±5.05

(58.61±9.22)
82.84±0.80

(82.57±3.25)
82.14±1.60

(84.03±2.48)
42.68±7.24

(41.22±6.34)
44.28±8.78

(46.69±7.39)

FedPop 66.00±3.97

(69.54±3.60)
62.25±5.03

(61.08±5.32)
61.27±5.52

(60.36±5.62)
84.33±1.41

(85.99±1.62)
83.21±2.08

(85.48±1.48)
44.30±3.37

(44.46±3.53)
47.28±3.47

(50.25±3.87)

SHA

None 72.08±2.52

(72.12±3.48)
54.68±6.25

(45.08±5.26)
48.99±8.91

(34.07±7.10)
83.81±0.45

(85.52±1.63)
80.62±2.88

(87.64±0.64)
52.23±2.54

(49.06±5.98)
51.68±0.95

(48.83±3.12)

FedEx 74.12±1.76

(72.58±3.10)
65.06±11.89

(57.27±14.88)
56.68±11.02

(45.13±17.24)
81.19±3.24

(85.69±1.91)
82.76±0.54

(86.79±2.89)
51.79±1.25

(51.89±1.30)
51.26±2.73

(51.01±3.36)

FedPop 76.69±1.02

(74.49±0.56)
73.50±2.31

(66.44±3.67)
69.99±1.98

(57.31±3.02)
84.33±0.57

(86.84±0.98)
83.26±0.86

(88.33±0.79)
53.48±0.57

(52.66±1.91)
53.07±0.97

(52.79±0.36)

FedPop-L dynamically searches and evaluates the local neighborhood of β0, providing a more in-
formative judgment of the HP-configuration.

4 EXPERIMENTS AND ANALYSES

We conduct an extensive empirical analysis to investigate the proposed method and its viability.
Firstly, we compare FedPop with the SOTA and other baseline methods on three common FL
benchmarks following Khodak et al. (2021). Subsequently, we validate our approach by tuning hy-
perparameters for complex real-world cross-silo FL settings. Besides, we conduct an ablation study
on FedPop to demonstrate the importance of its components. Moreover, we present convergence
analysis of FedPop and its promising scalability by training ResNets from scratch on full-sized
Non-IID ImageNet-1K via FL. Finally, we analyze FedPop under different tuning system designs.

4.1 BENCHMARK EXPERIMENTS

4.1.1 DATASETS DESCRIPTION

We conduct experiments on three benchmark datasets on both vision and language tasks: (1) CIFAR-
10 (Krizhevsky et al., 2009), which is an image classification dataset containing 10 categories of real-
world objects. (2) FEMNIST (Caldas et al., 2018), which includes gray-scale images of hand-written
digits and English letters, producing a 62-way classification task. (3) shakespeare (Caldas et al.,
2018) is a next-character prediction task and comprises sentences from Shakespeare’s Dialogues.

We investigate 2 different partitions of the datasets: (1) For i.i.d (IID) setting, we randomly shuffle
the dataset and evenly distribute the data to each client. (2) For non-i.i.d (Non-IID) settings, we fol-
low Khodak et al. (2021); Caldas et al. (2018) and assume each client contains data from a specific
writer in FEMNIST, or it represents an actor in Shakespeare. For CIFAR-10 dataset, we follow prior
arts (Zhu et al., 2021; Lin et al., 2020) to model Non-IID label distributions using Dirichlet distri-
bution Dirx, in which a smaller x indicates higher data heterogeneity. We set the communication
budget (Rt, Rc) to (4000, 800) for CIFAR-10 and shakespeare, while (2000, 200) for FEMNIST
following previous works (Khodak et al., 2021; Caldas et al., 2018). For the coefficients used in
FedPop, we set the initial perturbation intensity ϵ to 0.1, the initial resampling probability pre to
0.1, and the quantile coefficient ρ to 3. The perturbation interval Tg for FedPop-G is set to 0.05Rc.
Following Khodak et al. (2021), we define α ∈ R3 and β ∈ R7, i.e., we tune learning rate, sched-
uler, and momentum for server-side aggregation (Agg), and learning rate, scheduler, momentum,
weight-decay, the number of local epochs, batch-size, and dropout rate for local clients updates
(Loc), respectively. More details about the search space and the model architectures are provided
in Appendix.

7

Under review as a conference paper at ICLR 2024

4.1.2 RESULTS AND DISCUSSION

In Table 1, we report the testing accuracy achieved by the final model after performing hyperparame-
ter tuning with different algorithms on three benchmarks. Hereby, we report the results of the global
model, which is the server model w after the execution of the final communication round, and the
finetuned model, which is the final global model finetuned on clients local data via Loc(β0,w, T k).
We observe that FedPop, combined with either RS or SHA as a population constructor, outperforms
all the competitors on all benchmarks. For IID settings, the global model tuned on CIFAR-10 with
FedPop, with RS or SHA as a population constructor, outperforms FedEx by 5.13% and 2.57%,
respectively. Likewise, FedPop yields the highest average accuracy on FEMNIST and Shake-
speare. For Non-IID settings, FedPop achieves a significant improvement of around 3% and 10%
on average compared with FedEx in CIFAR-10, when combined with RS and SHA, respectively.
Moreover, we find that the performance improvement of the finetuned model (in the brackets) tuned
by FedPop surpasses the other baselines. Additionally, we observe that during the tuning proce-
dures, certain trials in the baselines and FedEx fail to converge. We attribute this to their pre-defined
and fixed hyperparameters search spaces and values, resulting in higher sensitivity to the hyperpa-
rameter initialization. This phenomenon is observed via their larger accuracy deviation compared
with FedPop, which further highlights the tuning stability of FedPop.

4.2 VALIDATION ON REAL-WORLD CROSS-SILO FEDERATED SYSTEMS

As described in Section 2, previous hyperparameter tuning algorithms focused on small-scale bench-
marks and simple model architectures. To indicate the effectiveness of FedPop on real-world FL
applications, we further conduct experiments on three large-scale benchmarks: (1) PACS (Li et al.,
2017), which includes images that belong to 7 classes from 4 domains Art-Painting, Cartoon, Photo,
and Sketch. (2) OfficeHome (Venkateswara et al., 2017), which contains 65 different real-world
objects in 4 styles: Art, Clipart, Product, and Real. (3) DomainNet (Peng et al., 2019), which is
collected under 6 different data sources: Clipart, Infograph, Painting, Quickdraw, Real, and Sketch.
All images are reshaped with larger sizes, i.e., 224x224. Following the setting proposed by Li et al.
(2021), we apply cross-silo (Li et al., 2020) FL settings and assume each client contains data from
one of the sources (domains), but there exist feature distributions shift across different clients. We
use a more complex network architecture, i.e., ResNet-18, as the backbone. We set the tuning budget
(Rt, Rc) to (1000, 200). More details about the settings are provided in Appendix.

In Table 2, we report the evaluation results of the target model after tuning by SHA or its com-
bination with FedEx or FedPop. We highlight the performance improvements achieved by the
proposed method compared with the competitors, where FedPop surpasses the others up to 2.72%
and indicates smaller accuracy deviations. These results indicate the effectiveness of FedPop on
real-world FL scenarios with a smaller number of clients, large-scale private datasets, and more
complex network architectures.

Table 2: Evaluation results of different hyper-
parameter tuning algorithms on three real-world
cross-silo FL benchmarks with feature distribu-
tion shifts.

Tuning
Algorithm PACS OfficeHome DomainNet

SHA 68.71±7.38

(76.53±12.54)
38.65±14.82

(57.64±12.21)
71.41±6.56

(79.41±11.81)

FedEx 73.47±3.06

(80.61±5.68)
42.99±8.72

(58.40±10.77)
71.68±6.13

(78.96±10.71)

FedPop 75.17±1.18

(85.37±2.12)
45.71±7.64

(62.76±7.38)
73.59±3.58

(81.78±3.14)

Table 3: Ablation study for different components
in FedPop on CIFAR-10 benchmark.

Tuning
Algorithm

CIFAR-10

IID Non-IID
(Dir1.0)

Non-IID
(Dir0.5)

SHA 72.08±2.52

(72.12 ±3.48)
52.41±12.47

(40.75±10.63)
53.47±8.53

(34.56±7.10)

FedPop-G 74.91±3.08

(72.74±2.99)
68.41±5.47

(62.37±7.62)
61.14±5.45

(51.13±14.07)

FedPop-L 74.24±2.52

(71.54±3.28)
71.50±1.87

(64.40±3.37)
64.43±2.86

(53.36±8.48)

FedPop 76.69±1.02

(74.49±0.56)
73.50±0.31

(66.44±2.67)
69.99±0.42

(57.31±3.02)

4.3 ABLATION STUDY

To illustrate the importance of different FedPop components, we conduct an ablation study on
CIFAR-10 benchmark considering IID and Non-IID settings. The results are shown in Table 3. We

8

Under review as a conference paper at ICLR 2024

first notice that applying only one population-based tuning algorithm, i.e., either FedPop-L or
FedPoP-G, already leads to distinct performance improvements on the baselines, especially when
the client’s data are Non-IID. Moreover, employing both functions together significantly improves
the tuning results, which demonstrates their complementarity.

4.4 CONVERGENCE ANALYSIS ON NON-IID IMAGENET-1K

To further demonstrate the scalability of
FedPop, we display the convergence anal-
ysis of FedPop on full-sized ImageNet-
1K, where we distribute the data among
100 clients in a Non-IID manner. Hereby,
we set (Rt, Rc) = (5000, 1000) and report
the average local testing results of the ac-
tive clients after communication round r.
We provide more details about the experi-
mental setup in Appendix.

Figure 5: Convergence analysis on Non-IID ImageNet.

As shown in Figure 5, we discover that FedPop already outperforms RS from the initial phase,
indicating its promising convergence rate. Besides, we also observe a reduced performance variation
in FedPop, which further substantiates the benefits of evolutionary updates in stabilizing the overall
tuning procedure. Most importantly, FedPop achieves comparable results with centralized training,
indicating its scalability for large-scale FL applications.

4.5 COMPARISON UNDER DIFFERENT SYSTEM DESIGNS

In this section, we analyze the tun-
ing methods under different system de-
signs. Hereby, we demonstrate the effec-
tiveness of FedPop with different tun-
ing budgets. To adapt the tuning pro-
cess according to different Rt, we con-
sider 2 possibilities of resource alloca-
tions: (1) Varying the number of tun-
ing processes Nc from {5, 10, 15, 20}
and fixing the per process tuning bud-
get Rc to 400 rounds (200 for FEM-
NIST). (2) Varying Rc and fixing Nc

to 5 (10 for FEMNIST). Here, we
select Rc from {200, 400, 800, 1600}
({100, 200, 300, 400} for FEMNIST).
We report the results in Figure 6. First,
we observe that FedPop outperforms
both FedEx and the baseline RS in all

Figure 6: Evaluation results with varying the commu-
nication budget for each configuration Rc (top), and
varying the number of tuning processes Nc (bottom).

experimental setups, indicating its robustness against different system designs. Also, we observe
that a larger communication budget per process Rc leads to better tuning results, while initializing
more tuning processes (larger Nc) does not lead to obvious performance improvement. This reveals
the importance of having a sufficient tuning budget for each configuration.

5 CONCLUSION AND OUTLOOKS

In this work, we present a novel population-based algorithm for tuning the hyperparameters used
in distributed federated systems. The proposed algorithm FedPop method performs evolution-
ary updates for the hyperparameters based on the member performance among the population. Its
global component FedPop-G, is applicable for tuning hyperparameters used in server aggregation
and client local updates, while for a fine-grained tuning of hyperparameters for clients updates, we
apply the fine-grained FedPop-L. FedPop achieves state-of-the-art results on three common FL
benchmarks involving IID or Non-IID data distributions. Moreover, its superb validation results
on real-world FL with feature distribution shifts, as well as on distributed Non-IID ImageNet-1K,
demonstrate its effectiveness and scalability of FL to more complex applications.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Zhongxiang Dai, Bryan Kian Hsiang Low, and Patrick Jaillet. Federated bayesian optimization via
thompson sampling. Advances in Neural Information Processing Systems, 33:9687–9699, 2020.

Zhongxiang Dai, Bryan Kian Hsiang Low, and Patrick Jaillet. Differentially private federated
bayesian optimization with distributed exploration. Advances in Neural Information Processing
Systems, 34:9125–9139, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Anubhav Garg, Amit Kumar Saha, and Debo Dutta. Direct federated neural architecture search.
arXiv preprint arXiv:2010.06223, 2020.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Towards non-iid and invisible data with
fednas: federated deep learning via neural architecture search. arXiv preprint arXiv:2004.08546,
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods, sys-
tems, challenges. Springer Nature, 2019.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based train-
ing of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Salabat Khan, Atif Rizwan, Anam Nawaz Khan, Murad Ali, Rashid Ahmed, and Do Hyuen Kim.
A multi-perspective revisit to the optimization methods of neural architecture search and hyper-
parameter optimization for non-federated and federated learning environments. Computers and
Electrical Engineering, 110:108867, 2023.

Mikhail Khodak, Tian Li, Liam Li, Maria-Florina Balcan, Virginia Smith, and Ameet Talwalkar.
Weight-sharing for hyperparameter optimization in federated learning. In Int. Workshop on Fed-
erated Learning for User Privacy and Data Confidentiality in Conjunction with ICML, volume
2020, 2020.

Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina F Balcan, Virginia Smith, and Ameet
Talwalkar. Federated hyperparameter tuning: Challenges, baselines, and connections to weight-
sharing. Advances in Neural Information Processing Systems, 34:19184–19197, 2021.

Antti Koskela and Antti Honkela. Learning rate adaptation for federated and differentially private
learning. arXiv preprint arXiv:1809.03832, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

10

Under review as a conference paper at ICLR 2024

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning
on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623, 2021.

Jason Liang, Elliot Meyerson, Babak Hodjat, Dan Fink, Karl Mutch, and Risto Miikkulainen. Evo-
lutionary neural automl for deep learning. In Proceedings of the Genetic and Evolutionary Com-
putation Conference, pp. 401–409, 2019.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363,
2020.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hier-
archical representations for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.

Tshifhiwa Maumela, Fulufhelo Nelwamondo, and Tshilidzi Marwala. Population based training and
federated learning frameworks for hyperparameter optimisation and ml unfairness using ulimisana
optimisation algorithm. Information Sciences, 612:132–150, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Bruno Mlodozeniec, Matthias Reisser, and Christos Louizos. Hyperparameter optimization through
neural network partitioning. arXiv preprint arXiv:2304.14766, 2023.

Hesham Mostafa. Robust federated learning through representation matching and adaptive hyper-
parameters. arXiv preprint arXiv:1912.13075, 2019.

Jack Parker-Holder, Vu Nguyen, and Stephen J Roberts. Provably efficient online hyperparameter
optimization with population-based bandits. Advances in Neural Information Processing Systems,
33:17200–17211, 2020.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1406–1415, 2019.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In International
Conference on Machine Learning, pp. 2902–2911. PMLR, 2017.

Esteban Real, Chen Liang, David So, and Quoc Le. Automl-zero: Evolving machine learning
algorithms from scratch. In International Conference on Machine Learning, pp. 8007–8019.
PMLR, 2020.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Jonas Seng, Pooja Prasad, Devendra Singh Dhami, and Kristian Kersting. Hanf: Hyperparameter
and neural architecture search in federated learning. arXiv preprint arXiv:2206.12342, 2022.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Davoud Ataee Tarzanagh, Mingchen Li, Christos Thrampoulidis, and Samet Oymak. Fednest: Fed-
erated bilevel, minimax, and compositional optimization. In International Conference on Machine
Learning, pp. 21146–21179. PMLR, 2022.

Akbar Telikani, Amirhessam Tahmassebi, Wolfgang Banzhaf, and Amir H Gandomi. Evolutionary
machine learning: A survey. ACM Computing Surveys (CSUR), 54(8):1–35, 2021.

11

Under review as a conference paper at ICLR 2024

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5018–5027, 2017.

Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya, Ting He, and
Kevin Chan. Adaptive federated learning in resource constrained edge computing systems. IEEE
journal on selected areas in communications, 37(6):1205–1221, 2019.

Mengwei Xu, Yuxin Zhao, Kaigui Bian, Gang Huang, Qiaozhu Mei, and Xuanzhe Liu. Federated
neural architecture search. arXiv preprint arXiv:2002.06352, 2020.

Huanle Zhang, Mi Zhang, Xin Liu, Prasant Mohapatra, and Michael DeLucia. Fedtune: Automatic
tuning of federated learning hyper-parameters from system perspective. In MILCOM 2022-2022
IEEE Military Communications Conference (MILCOM), pp. 478–483. IEEE, 2022.

Yi Zhou, Parikshit Ram, Theodoros Salonidis, Nathalie Baracaldo, Horst Samulowitz, and Heiko
Ludwig. Flora: Single-shot hyper-parameter optimization for federated learning. arXiv preprint
arXiv:2112.08524, 2021.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In International Conference on Machine Learning, pp. 12878–12889. PMLR,
2021.

12

	Introduction
	Related Work
	Federated Hyperparameter Tuning
	Problem Definition
	Challenges
	Baselines
	Proposed Method
	Evolution-based Hyperparameter Update (Evo)
	FedPop-G for Inter-configuration Tuning
	FedPop-L for Intra-configuration Tuning
	Solutions to Challenges

	Experiments and Analyses
	Benchmark Experiments
	Datasets Description
	Results and Discussion

	Validation on Real-World Cross-Silo Federated Systems
	Ablation Study
	Convergence Analysis on Non-IID ImageNet-1k
	Comparison under Different System Designs

	Conclusion and Outlooks

