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Abstract
Neural ordinary differential equations (NODEs)
have demonstrated strong capabilities in model-
ing time series. However, existing NODE-based
methods often focus solely on the surface-level
dynamics derived from observed states, which
limits their ability to capture more complex un-
derlying behaviors. To overcome this challenge,
we propose KoNODE, a Koopman-driven NODE
framework that explicitly models the evolution of
ODE parameters over time to encode deep-level
information. KoNODE captures the essential yet
simple intrinsic linear dynamics that govern the
surface dynamics by employing Koopman opera-
tors. Our framework operates at three hierarchical
levels: the observed state dynamics, the parame-
ter dynamics, and the Koopman linear dynamics,
representing the fundamental driving rules of the
state dynamics. The proposed approach offers sig-
nificant improvements in two critical time series
tasks: long-term prediction (enabled by the simple
linear dynamics) and generalization to new data
(driven by the evolving ODE parameters). We
validate KoNODE through experiments on syn-
thetic data from complex dynamic systems and
real-world datasets, demonstrating its effective-
ness in practical scenarios. Our code is available
at https://github.com/Baitie00/KoNODE.

1. Introduction
Time-series data from various domains are typically sam-
pled from underlying continuous dynamic systems (Voss
et al., 2004). Conventional deep learning approaches, such
as Recurrent Neural Networks (RNNs) (Rumelhart et al.,
1986; Medsker & Jain, 1999), and Long Short-Term Mem-
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ory networks (LSTMs) (Hochreiter & Schmidhuber, 1997),
primarily focus on learning discrete-time transition patterns
from these observations. However, these methods do not
explicitly model the continuous dynamics that govern the
system. Since the available observations are often partial
and noisy representations of the true dynamics, overlook-
ing the intrinsic temporal continuity can lead to suboptimal
performance in time-series analysis (Abeliuk et al., 2020).

Ordinary Differential Equations (ODEs) provide a contin-
uous framework for modeling time-series data. When the
explicit form of the ODEs is unknown and only discrete
observations are available, Neural ODEs (NODEs) (Chen
et al., 2018), denoted by dx(t)

dt = f(x(t), t;θ), where f is
a neural network parameterized by θ, offer a data-driven al-
ternative to learn the continuous dynamics. Various NODE-
based methods, such as HBNODEs (Xia et al., 2021) and
MoNODEs (Auzina et al., 2024), have been proposed to im-
prove efficiency and predictive performance. However, most
existing NODE-based approaches assume a static parameter
θ, limiting their adapting ability to constantly changing envi-
ronments. To overcome this limitation, ANODEV2 (Zhang
et al., 2019) introduced time-evolving parameters, enabling
the model to adapt to different temporal evolution patterns
and enhance its generalization ability. However, ANODEV2
primarily focused on the improvement of model generaliza-
tion by evolving parameters, without fully exploring their
potential to model more complex dynamical behaviors.

In contrast, we argue that θ(t), which directly drives the
state dynamics, inherently encodes the underlying dynam-
ics of the evolution (namely deep-level information). By
explicitly modeling the evolution of θ(t), we not only en-
hance the model’s generalization ability but also capture the
intrinsic dynamics beneath the surface-level behaviors, of-
fering a more comprehensive understanding of the complex
dynamic system. This perspective is further supported by
the following observations. In systems like robotic arms,
internal physical properties such as frictional torque funda-
mentally shape the system’s evolution over time. As time
progresses, factors like joint lubrication changes and fric-
tional wear cause gradual variations in the frictional torque,
potentially leading to trajectory deviations, motion delays,
and other dynamic effects. These changes, in turn, modify
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the system’s underlying dynamical behavior and influence
its overall performance and adaptability. Thus, this point
of view expands the NODE models beyond the application
of data-driven state predictors, positioning them as a frame-
work for uncovering the fundamental principles that govern
system evolution.

Based on this insight, we further observe that the most fun-
damental evolution of the system is governed by simple
yet essential intrinsic linear dynamics. This is inspired
by observations in robotic arms, where complex robotic
trajectories are inherently driven by linear dynamics (see
App. B.1 for the theoretical analysis). This suggests that
although θ, the neural network parameters, may exhibit
nonlinear dynamical behavior, its true underlying dynamics
can be fundamentally linear. In other words, the apparent
nonlinearity in parameter dynamics arises from observation
limitations, which is consistent with the principles of the
Koopman theory (Kurdila & Bobade, 2018). The Koopman
operators transform complex nonlinear dynamics into lin-
ear representations by expanding the system dimensions.
To this end, we use the Koopman operators as the dom-
inating parameters for the dynamics of θ, capturing the
intrinsic linear space and revealing dynamics beneath the
surface. In summary, we conceptualize complex dynamics
as a three-level hierarchical structure as illustrated in Fig. 1:
the trajectory from the observed state dynamics, influenced
by the parameter dynamics, and ultimately governed by the
underlying Koopman linear dynamics.

Specifically, we introduce KoNODE, a Koopman-driven
NODE framework that captures the intrinsic linear dynam-
ics by applying the Koopman model to the time-evolving
ODE parameters. Our framework enhances two key tasks in
time series analysis: generalization to new data, by explic-
itly modeling parameter evolution, and long-term prediction,
which is guaranteed by effectively learning global structures
through capturing the underlying simple linear dynamics.
Notably, our approach diverges from ANODEV2 (Zhang
et al., 2019) in several ways. While ANODEV2 treats pa-
rameter dynamics as an ODE and uses Green’s functions
for time convolution, primarily focusing on image data, we
model parameter dynamics as nonlinear observations of
intrinsic linear dynamics that uncover the deeper driving
rules of the system, providing a richer understanding of
the dynamic systems beneath time series data. Our main
contributions are as follows:

(1) We introduce a novel approach to encoding deep-
level, time-dependent information from θ(t), transforming
NODEs from simple data-driven state predictors into a pow-
erful framework that enables uncovering the fundamental
principles driving system evolution.

(2) Applying Koopman theory on θ(t), we capture the in-
trinsic linear dynamics that underlie complex systems. We

Figure 1. The roadmap for the proposed framework and its com-
parison to NODE.

thus propose a three-level hierarchical structure—spanning
the observed state dynamics, ODE parameter evolution,
and Koopman linear dynamics. The Koopman operators,
which govern the deepest dynamics, could help identify
the system’s dominant driving modes and frequencies and
offer insights into stability, periodicity, or other inherent
characteristics, thus gaining a mathematically interpretable
understanding of the system’s evolution and governing laws.

(3) Our framework excels in two critical time series tasks:
long-term prediction and generalization to new data. Experi-
ments on two synthetic datasets from complex dynamic sys-
tems demonstrated its superior performance. Additionally,
we evaluated the framework’s applicability in real-world sce-
narios through robot motion prediction across three datasets
and multivariate forecasting on six datasets.

2. Preliminaries
2.1. Neural ODEs

Neural ODEs (NODEs) (Chen et al., 2018) extend discrete
traditional neural network architectures by modeling hidden
states as continuous trajectories governed by an ODE

dx(t)
dt = f(x(t), t;θ), (1)

where f is a neural network parameterized by θ, and
x(t) ∈ Rn is the system state at t ∈ [t0, t1]. Given the
initial state x(t0), the solution at any time t ∈ (t0, t1] is
obtained by integrating the differential equation: x(t) =

x(t0) +
∫ t

t0
f(x(t), t;θ) dt, rather than propagating acti-

vations through discrete layers as in recurrent or deep net-
works. Neural ODEs employ numerical solvers, such as
the Euler method (Gear & Petzold, 1984), Runge-Kutta
methods (Runge, 1895; Kutta, 1901), or solvers with adap-
tive step size such as Dormand-Prince (Prince & Dormand,
1981), to calculate this integration efficiently.

Since the trajectory of x(t) is governed by a neural network
parameterized by θ, learning the system dynamics requires
optimizing these parameters. This is formulated as an ODE-
constrained optimization problem:

minθ L(x), s.t. dx
dt = f(x(t), t;θ), x(t0) = x0, (2)

where L(x) ≜ 1
|T |
∑

t∈T E [x(t)] is the average loss func-
tion over the sampled time points and E is the error term at
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a specific time that quantifies the discrepancy between the
predicted and the actual system states.

To optimize the parameters, the adjoint method (Chen et al.,
2018) is commonly used to compute ∇θL in NODE for-
mulation. It efficiently computes gradients by solving a
backward ODE, avoiding storing intermediate states during
the forward pass. This memory-efficient approach makes
NODEs particularly attractive for long-time-series modeling.
Please refer to App. A.3 for the details about the adjoint
method utilized in NODEs. Related work about Neural
ODEs can be found in App. A.1.

2.2. Koopman Operator

The Koopman theory is a powerful tool for nonlinear dy-
namical system analysis. It acts on the observable functions
of the system state, which evolve linearly, rather than the
nonlinear ones in the state space itself (Koopman, 1931).

Definition 2.1 (Koopman Operator, (Mezić, 2005)). For a
finite-dimensional state space X ⊆ Rn in which the state
evolves according to xt+∆t = Φ(xt), t ∈ [t0, t1] where Φ :
X → X is the operator from the state to the next time.
The Koopman operator K is a linear operator that reveals
such evolution by acting on an infinite-dimensional function
space of observable functions g : Rn → R such that

(Kg)(x) = g(Φ(x)).

In numerical practice, the infinite-dimensional Koop-
man space is commonly approximated by modeling the
observable function space through a finite number of
bases u = [u1, u2, · · · , um]⊤ (Brunton et al., 2021).
The Koopman operators are estimated by u(Φ(x)) =
[Ku1,Ku2, · · · ,Kum]⊤ ≈ Ku(x) where K ∈ Rm×m

is an approximated Koopman matrix. Hence, for an observ-
able function g, let ξ ≜ [⟨g, u1⟩, ⟨g, u2⟩, · · · , ⟨g, um⟩]⊤
then g(Φ(x)) ≈ ξ⊤Ku(x) for the m-dimensional sub-
space. Specifically, for a vector of linearly uncorrelated
observable functions g ≈ Pu and P is a nonsingular ma-
trix, we have g(Φ(x)) ≈ PKP−1g(x) for the evolution
of the observables. Related work about Koopman Operators
can be found in App. A.1.

3. KoNODE Framework
In this section, we present the theoretical framework of
KoNODE. We begin by formalizing the proposed model
(Sec. 3.1) into an optimization problem and solving it using
the Lagrangian approach. The succeeding adjoint method
is used to perform backpropagation (Sec. 3.2). Finally,
we provide theoretical results to present both the guidance
for choosing the Koopman space dimension and the analy-
sis of the error introduced by approximating the Koopman
operators (Sec. 3.3).

3.1. Problem Formulation

Our framework, KoNODE, is proposed within the NODE
setups. As outlined in the introduction, the core idea of
KoNODE is to uncover the simple intrinsic linear dynam-
ics underlying the complex observed systems. We denote
the observed system as dx(t)

dt = f(x(t), t;θ(t)), where
x(t) ∈ Rn is the trajectory of the system, and θ(t) are the
parameters of the neural network f . We let the intrinsic
linear dynamics be represented as w(t). They reveal the
underlying driving rules of x(t). Next, we proceed with the
detailed formulation of KoNODE.

We start by refining the structure of KoNODE, which is built
on three hierarchical levels:

(1) The observed dynamics: The trajectory x(t) evolves
according to dx(t)

dt = f(x(t), t;θ(t)), where θ(t) encodes
the deep-level driving rules of the observed dynamic.

(2) The parameter dynamics: The parameter θ(t), mod-
eled by Koopman operators, evolves as an observation of
the trajectory w(t) of an intrinsic linear system.

(3) The Koopman linear dynamics: At the deepest level,
the dynamics ofw(t), which underlies θ(t), is simplified to
a linear form, i.e., dw(t)

dt = Aw(t), where A is a linear op-
erator representing the essential structure of the system. In
Koopman Theory, w(t) is inherently defined in an infinite-
dimensional space. For practical implementation, we ap-
proximate w(t) in a finite-dimensional subspace, assuming
w(t) ∈ Rm. Under this approximation, the dynamics of
w(t) become dw(t)

dt = Aw(t), where A ∈ Rm×m is a
finite-dimensional matrix. Thm. 3.2 in Sec. 3.3 provides
theoretical bounds for this approximation to confirm its
validity.

Together, these three levels form the basic model of our
KoNODE framework, which is expressed as the following
formulation:

min
A,w0,ψ

L(x) (3a)

s.t. dx(t)
dt = f(x(t), t;θ(t)),x(t0) = x0, (3b)
θ(t) = h(w(t);ψ), (3c)
dw(t)
dt = Aw(t),w(t0) = w0, t ∈ [t0, t1]. (3d)

Here, h : Rm → Θ is a neural network parameterized by ψ
to estimate the inverse mapping of the observable function
vector g, where Θ is the parameter space with θ(t) in. We
model h using a neural network due to its flexibility.

Next, we give further modeling of A. Numerically,
we perform an eigen-decomposition on A, i.e., A =
PDP−1 to a product of a non-singular matrix P
and a block diagonal matrix D in a format of D =
diag {λ1, λ2, · · · , λp,Λ1,Λ2, · · · ,Λq} , where p + 2q =
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m and {λi}pi=1 are real eigenvalues of A and the matrix

blocks Λi =

[
αi βi
−βi αi

]
, i = 1, · · · , q are real matrices

that represent the imaginary eigenvalues ofA. To simplify
the problem, we unify the treatment of all eigenvalues by al-
lowing redundancy in the dimensions of w(t). Specifically,
we assume that all eigenvalues are conjugate complex eigen-
values, that is, D = diag

{
Λ1,Λ2, · · · ,Λm/2

}
, where m

is even. Let g̃(θ) ≜ P · g(θ) be a vector of alternative ob-
servable functions, the resulting trajectoryw(t) also follows
a linear dynamic driven by another approximated Koopman
operator K̃ = e∆t·D. Hence, without loss of generality,
we assume A ≡ D using the observable function g̃. See
App. B.2 for the rigorous theoretical analysis of the above
formulation of matrixA.

3.2. Adjoint Model for the Optimization Problem

In this part, we apply the Lagrangian method to solve the
constrained optimization problem defined in Eq. (3). Sub-
sequently, the Karush-Kuhn-Tucker (KKT) conditions ob-
tained from the Lagrangian function in Eq. (4) imply the
restrictions in the gradient descent method. The resulting
adjoint method was used to perform backpropagation.

3.2.1. LAGRANGIAN FUNCTION

The Lagrangian function of Eq. (3) is

L =L(x)−α⊤
0

(
x(t0)− x0

)
− β⊤

0

(
w(t0)−w0

)
−
∫ t1
t0
α(t)⊤ ·

(
dx(t)
dt − f(x(t), t;θ(t))

)
dt

−
∫ t1
t0
β(t)⊤ ·

(
dw(t)
dt −Aw(t)

)
dt

−
∫ t1
t0
γ(t)⊤ ·

(
θ(t)− h(w(t);ψ)

)
dt,

(4)

where α(t), β(t), and γ(t) are the corresponding adjoint
variables for the constraints in Eq. (3). We give the KKT
conditions of Eq. (4) below.

3.2.2. OPTIMALITY CONDITIONS

The KKT conditions consist of (1) the given conditions
in (3b), (3c) and (3d); (2) the gradients of L regarding A,
ψ, and w0 equaling to zeros; and (3) the variants of L
concerning x(t), θ(t), w(t) being zeros, which result in
relations for the three adjointsα(t), β(t), γ(t). Specifically,
taking the variants of L with respect to x(t), θ(t) and w(t)
yield Eq. (5), Eq. (6), and Eq. (7) as follows (where the
argument t is omitted for simplicity),

dα
dt + ∂f(x,t;θ)

∂x

⊤
α+∇tL = 0,∇t1L −α(t1) = 0, (5)

∂f(x,t;θ)
∂θ

⊤
α− γ = 0, (6)

dβ
dt +A⊤β + ∂h(w;ψ)

∂w

⊤
γ = 0,β(t1) = 0, (7)

where ∇tL ≜ ∂
∂x(t)L({x(t)}t∈T ) is the direct partial

derivative of L. Among them, Eq. (5) is a backward-in-
time ODE for the adjoint function α(t), Eq. (6) reveals the
algebratic relation betweenα(t) and γ(t), and Eq. (7) is the
backward-in-time ODE for the adjoint function β(t) with
our unknown parametersA and ψ.

The gradients of L regarding ψ,A, and w0 are,

∂L
∂ψ =

∫ t1
t0

∂h(w;ψ)⊤

∂ψ · ∂f(x,t;θ)⊤

∂θ ·α dt, (8)

∂L
∂A =

∫ t1
t0
β ·w⊤ dt, ∂L

∂w0
= β0. (9)

Note that if optimality conditions are achieved with respect
to ψ, A, and w0, then ∂L

∂ψ = 0, ∂L
∂A = 0, ∂L

∂w0
= 0. The

detailed derivation of conditions is provided in App. B.3.

However, the unknown parametersA only appear in Eq. (7),
which represents an ODE for the adjoint function β(t), mak-
ing them unable to solve directly through the KKT condi-
tions. Consequently, we turn to gradient-based optimization
approaches to iteratively update these parameters.

Theorem 3.1 (Equivalence of Gradient and Adjoint Trajec-
tories). If the partial Jacobian matrices are Lipschitz contin-
uous. The gradient trajectories of x(t) and w(t) are α(t)
and β(t) respectively, i.e., ∂L

∂x(t) = α(t),
∂L

∂w(t) = β(t).

Thm. 3.1 proves that the adjoint trajectories α(t) and β(t)
are actually continuous equivalents of the gradient trajec-
tory during backpropagation through the KoNODE model.
Consequently, the adjoint trajectory substitutes the back-
propagation process for network training. This conclusion
hence aligns with the adjoint method in NODE-based meth-
ods. Therefore, we utilize the adjoint method to compute
the derivatives of the loss function L with respect to ψ,A,
andw0 to perform optimization. The overall adjoint model
is summarized in App. B.4, while the algorithm is detailed
in Alg. 1, App. B.4.

By leveraging Koopman operators, our framework can use
spectral tools for system analysis. Fundamental evolution
principles are revealed by the spectrum of the Koopman
operators, which correspond element-wise to matrixA and
are given by λj(K) = eαj∆t(cosβj∆t ± i sinβj∆t) in
our framework. Specifically, the real part of the eigenvalues
indicates the evolution speed, while the imaginary part cor-
responds to intrinsic frequencies for the periodicity. Analyz-
ing the elements ofA helps identify the system’s dominant
driving modes and frequencies, thus offering insights into
stability and periodicity, respectively. Furthermore, KoN-
ODE enables possible physics-informed constraints over θ
via regularization on A, ψ, or w0. We derive the adjoint
results for stable systems by constrainingA’s eigenvalues
(Mezic & Banaszuk, 2000). See App. B.5 for details on
these constraints and the corresponding adjoint results.
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3.3. Theoritical Results

This section presents a theoretical analysis of the error
caused by the proposed framework. Sec. 3.3.1 aims at
guiding the choice of dimension m, and Sec. 3.3.2 proves
that the additional Koopman module causes only minor er-
ror compared to conventional ODE models, apart from the
potential improvement due to the advanced fitting ability.

3.3.1. THE FINITE-RANK APPROXIMATION OF THE
KOOPMAN MODEL

We first provide the theoretical upper bound of the approxi-
mation error of the Koopman model regardingw(t) with di-
mension m under the guidance of Kurdila & Bobade (2018).
g(θ) = ξ⊤u(θ) is the vector of observable functions and
K ≜ eA ∈ Rm×m is the order-m Koopman matrix.
Theorem 3.2 (Regression Error for the Order-m Koop-
man Operator). The estimation of the Koopman space
by m-dimensional observables has a relative error of,∫
Θ

[
ξ⊤Ku(θ)−Kg(θ)

]2
dθ
/∫

Θ
[Kg(θ)]2dθ ≲ m−r

where ξ ≜
[
⟨g, u1⟩ ⟨g, u2⟩ · · · ⟨g, um⟩

]
and r ≜

1
2 [−maxm<i≤N logi⟨g, ui⟩ − 1] where N is the number
of data and {ui}∞i=1 are the bases of true Koopman space.

The conclusion ensures that the relative error of the regres-
sion results is inversely bounded by the approximated di-
mension of the Koopman space.
Proposition 3.3. If the data trajectories are in a space of
rank s and function f satisfies the Lipschitz condition and
is differentiable, we have ⌈ D

D−s⌉ ≤ m ≤ s.

If we take the data rank into account, we can further provide
the possible range of the Koopman dimension m. Prop. 3.3
provides the result, as a reference for the choice of hidden
dimension. The ideal dimension in practice can be various
due to (1) the auxiliary dimension design of the Koopman
matrix, (2) the multiple choice of dynamics for θ(t), and (3)
more accurate dynamic regression by multiple frontier sets.
In subsequent sections, we further address the error caused
by the proposed method with respect to the chosen m.

3.3.2. THE ESTIMATION ACCURACY OF THE
DATA-DRIVEN METHOD

Noted that the error bound regarding w(t) is better con-
trolled by the number of data N , we further refer to the
influence of data amount in the accuracy of estimation. In
the data-driven scenario, we provide bounds for the errors
in the estimation of the Koopman operator and Koopman
regression method (Bevanda et al., 2024) regarding N ran-
domly drawn data. If the dataset was drawn independently
and identically, the theorem for the error bound of the ap-
proximated Koopman operator, as a corollary of Thm. 12,
Nüske et al. (2023) claims as follows.

Theorem 3.4 (Probabilistic Error for Data-Driven Koop-
man Operator). For N data drawn independently and
identically from a Hilbert space at a single time
point and any probabilistic tolerance δ ∈ (0, 1) we
have P(∥K − K̂N∥F ≤ ε) ≥ 1 − δ, s.t. ε =
2
√
3 σm2∥K∥/(min {1, ∥K∥} ·

√
δN −

√
3 σm2) where

K ≜ eA is the theoretical Koopman matrix, K̂N is the
matrix estimated by N data and σ is the isotropic standard
deviation in the space of w(t).

The result of Thm. 3.4 shows that the error bound ε ∼
O(1/

√
N) as N → ∞. Thm. C.15 in App. C.4 shows that

the regression error is also controlled by O(1/
√
N) which

ensures the feasibility of the batch loss. Furthermore, Thms.
3.2 and 3.4 together reveal the theoretical error bound of the
proposed model in real-world data, as shown in Thm. 3.5.

Theorem 3.5. For N data drawn independently and iden-
tically from a Hilbert space at a single time point and any
observable function g and its corresponding ξ, with any
probabilistic tolerance δ ∈ (0, 1) we have

P
(

|ξ⊤K̂Nw(t)−Kg(θ(t))|
∥ξ∥·∥w(t)∥ ≤ 2r(K)

p·min{1,r(K)}−1 + ε
)
≥ 1− δ,

where K̂N is the order-m Koopman matrix estimated by
the N data, p =

√
N(δ − 2m− r

3 )/(
√
3 σm2) for the data

standard deviation σ, ε = o(m− r
3 ), and r(K) is the spectral

radius of operator K.

The presented error provides guidance for the choice of di-
mension m, and a proof for the minority of errors caused
by the additional Koopman module compared to conven-
tional ODE models, apart from the potential improvement
due to the advanced fitting ability. Thm. C.22, App. C.6
further presents the conclusion by comparing the proposed
and ODE models. The proofs of all theorems can be found
in App. C.

4. Practical Implementation
This section outlines the practical implementation of our
framework, which consists of three levels marked as x,θ,
andw in Fig. 2. The forward propagation in Fig. 2 requires
the given input states {x(t)}t∈Tinput shown by the red line
in Fig. 2 and the initial Koopman observables obtained
by random initialization (if given initial point) or IKOE (if
given sequence). Then we deduce the trajectorywt by the
trainable matrixA. The observablesw(t) are then passed
through the neural network h to obtain the parameters θ(t).
Subsequently, we utilize the ODE solver to predict x(t) at
any time after Tinput shown by the green dashed line in Fig.
2. Using the true trajectory and the predicted trajectory, we
can calculate the loss. For the backward propagation, we use
the adjoint model results in Sec. 3.2 to update the trainable
parameters, including ψ in h,A, and network parameters
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Figure 2. Our proposed framework of system estimation. The overall structure is separated into three levels, i.e., the Koopman linear
dynamics, the parameter dynamics, and the observed state dynamics, which directly leads to observations. The initial Koopman observable
w(t0) serves as an encoding of the system over N time points which is either obtained randomly for simple systems (method I) or
predicted by the Initial Koopman Observable Estimator (IKOE) module from the first Ninput time points (method II).

in IKOE. Our framework is trained in an end-to-end manner,
allowing for simultaneous optimization of all the levels in
the model.

We now discuss the design of w0. w0 is an encoding of a
specific system as it identifies the trajectory of w(t) under
a determined matrix A and thus influences the estimated
ODE. There are two settings for the initial observables. (I)
Learnable setting when given a sequence as input: We
estimate w0 in a data-driven fashion using the Initial Koop-
man Observable Estimator (IKOE) Ξ, which is based on
an RNN architecture (Hochreiter & Schmidhuber, 1997;
Paszke et al., 2017), i.e., w0 = Ξ[{x(t)}t∈Tinput ]. (II) Ran-
dom setting when given initial point as input: We draw
w0 ∼ N (0, σ2I) from a centered normal distribution. In
the latter part of the article, we experimentally demonstrate
that when the initial point is provided as input, the random
initialization setting remains effective.

5. Experiments
We set up the experiments to answer the following problems
regarding our proposed framework:

(1) Global Structure Representation: Does our method effec-
tively capture the global structure, thereby ensuring robust
long-term prediction performance? (Sec. 5.1)

(2) Validation of Major Capability: Does our method im-

prove the ability to model complex systems, particularly in
terms of long-term prediction and generalization (Sec. 5.2),
and what empirical insights into the governing rules of sys-
tem evolution does our framework reveal through spectral
analysis? (Sec. 5.3)

(3) Real-World Applications: How does the model perform
in real-world applications? (Sec. 5.4 and Sec. 5.5)

(4) Ablation Study: What is the contribution of each com-
ponent in the framework, specifically regarding parameter
evolution and Koopman operators (App. D.1.1)?

5.1. Spiral Curve Fitting: Validating the Global
Representation Capacity of KoNODE

In this experiment, we adapted the single trajectory
fitting task proposed in Chen et al. (2018) to vali-
date the global representation capacity of KoNODE. We
added a time dependency to the matrix A using sines
and cosines to produce the new time-dependent matrix

A(t) =

[
−0.1 + 0.5sin(t) 2.0 + cos(t)
−2.0 + 0.5cos(2t) −0.1− 0.5sin(t)

]
. The tra-

jectory data were then generated from ODE
[
dx
dt ,

dy
dt

]⊤
=

A(t)
[
x3, y3

]⊤
, [x0, y0]

⊤
= [2, 0]⊤. We extend the matrix

A from Chen et al. (2018) by making it time-dependent, us-
ing sine and cosine functions to define its temporal variation.
The results of the KoNODE framework were compared with
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Table 1. Test MSEs for the Oscillator and Robot Motion datasets in Secs. 5.2 and 5.4. The experiments for the Oscillator dataset
include the Non-linear Oscillator and Damped Oscillator Family. The experiments for the robot motion dataset include Imitation C,
Imitation cube pick, and Imitation S. Note that the MSE values for the Damped Oscillator Family are rescaled by a factor of 102. Results
are presented as mean±std across 5 runs with different seeds. The best-performing results are highlighted in bold, while the second-best
results are underlined.

(SEC. 5.2) OSCILLATOR (SEC. 5.4) ROBOT MOTION

METHOD NON-LINEAR
OSCILLATOR

DAMPED OSCILLATOR
FAMILY (×10−2) IMITATION C IMITATION

CUBE PICK
IMITATION S

LATENT ODE 0.711±0.098 12.522±1.533 0.134±0.028 0.156±0.047 0.204±0.075
NEURAL PROCESS 0.460±0.013 13.844±0.007 0.094±0.004 0.087±0.006 0.142±0.062
NODE 0.497±0.039 14.906±0.204 0.136±0.056 0.084±0.035 0.171±0.055
HYPERNET 0.381±0.104 2.252±1.505 0.031±0.007 0.041±0.009 0.063±0.023
ANODEV2 0.419±0.109 0.895±0.126 0.046±0.008 0.071±0.058 0.035±0.045
HBNODE 0.447±0.019 0.912±0.004 0.021±0.003 0.030±0.012 0.015±0.009
LEADS 0.120±0.049 0.907±0.073 0.050±0.010 0.060±0.017 0.018±0.002
CODA 0.123±0.017 0.914±0.036 0.039±0.004 0.069±0.016 0.010±0.000
OINNS 0.558±0.026 23.512±6.428 0.022±0.010 0.042±0.017 0.016±0.015
MONODE 0.449±0.039 0.936±0.019 0.166±0.052 0.039±0.022 0.127±0.049
KONODE 0.085±0.031 0.810±0.009 0.017±0.003 0.022±0.001 0.005±0.002

the standard Neural ODE approach (Chen et al., 2018). App.
D.2 details the implementation, architecture, and hyperpa-
rameters in the experiment.

In Fig. 3, KoNODE effectively fits the dynamic systems,
whereas NODE fails due to the complexity of the dynam-
ics. The results demonstrate that the proposed framework
effectively captures the underlying global structure of com-
plex dynamics by leveraging the linear dynamics modeled
through the Koopman operator. The NODE model, only
focusing on local non-linearities, struggles to represent this
global pattern. The presented superiority suggests that KoN-
ODE allows for improved long-term prediction on complex
trajectories.

Figure 3. The test MAE and the phase portrait of the test tra-
jectory obtained from NODE and KoNODE, respectively. The
green lines represent the ground truth (GT) trajectories and the
blue dashed lines represent the predicted trajectories (PT).

5.2. Dynamics Systems Learning: Validating Benefits
for Long-Term Prediction and Generalization

In this section, we conducted two experiments on different
dynamic systems: (I) System modeling, where all trajecto-
ries share the same differential equation parameterization

to evaluate the model generalization from one to another
(Sec. 5.2.1); (II) System family modeling, where trajecto-
ries have different parameterizations to assess generalization
to unseen systems (Sec. 5.2.2). As the training data cov-
ers a shorter period than the test data, both experiments
simultaneously evaluate the long-term prediction capability.

Dynamics systems. The two chosen dynamic systems are
both governed by the Duffing oscillator (Kovacic & Bren-
nan, 2011), a generalized framework for oscillatory systems.
The Duffing equation is dq

dt = p, dp
dt = −αq− βq3 − γp,

where α, β, and γ are scalar parameters that determine the
linear stiffness, non-linear stiffness, and damping, respec-
tively. The characteristics of the Duffing oscillator can be
changed by adjusting parameters. Complete implementation
details on the training setup, model architecture, and hyper-
parameters can be found in App. D.3.3 and App. D.3.4.

Comparison methods. We compared our framework with
the following models: (1) baselines: vanilla NODE (Chen
et al., 2018), Latent ODE (ODE enc) (Rubanova et al.,
2019), and Neural Process (Garnelo et al., 2018), (2) Hy-
pernet (Ha et al., 2016), (3) ANODEV2 (Zhang et al.,
2019), (4) HBNODE (Xia et al., 2021), (5) LEADS (Yin
et al., 2021), (6) CoDA (Kirchmeyer et al., 2022), (7)
OINNs (Zhi et al., 2022), and (8) MoNODE (Auzina et al.,
2024). Among these methods, the ODE parameters in Hy-
pernet and ANODEV2 vary over time. The other methods
are achieved by their pubic codes. Refer to App. D.3.1 for
details of these comparison methods.

Performance metric. Following prior work, such as Auzina
et al. (2024), we evaluated model performance using the
mean squared error (MSE) between the predicted phase
space trajectories and the ground truth from the test set.
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Table 2. Test MSEs for long-term prediction. Results are presented as mean±std across 5 runs with different seeds. The best-performing
results are highlighted in bold, while the second-best results are underlined.

METHOD CUP WEATHER ETTH1 ETTH2 ETTM1 ETTM2

NODE 0.993±0.008 0.553±0.017 1.064±0.067 0.597±0.035 1.084±0.036 0.545±0.023
HBNODE 0.879±0.069 0.513±0.031 0.905±0.039 0.592±0.041 0.914±0.017 0.493±0.068
DEEPVAR 0.962±0.000 0.561±0.011 0.947±0.223 0.592±0.032 0.905±0.017 0.398±0.056
AUTOFORMER 1.163±0.005 0.449±0.016 0.868±0.034 0.375±0.003 1.071±0.028 0.227±0.002
PATCHTST 1.066±0.000 0.421±0.001 0.722±0.007 0.366±0.000 1.008±0.002 0.238±0.000
KOOPA 1.139±0.007 0.427±0.004 0.605±0.009 0.357±0.002 0.759±0.007 0.229±0.001
SST 1.085±0.001 0.417±0.000 0.759±0.018 0.370±0.001 0.960±0.002 0.239±0.000
KONODE 0.864±0.009 0.386±0.009 0.678±0.005 0.289±0.001 0.664±0.015 0.211±0.007

5.2.1. SYSTEM MODELING: NON-LINEAR OSCILLATOR

We first performed system modeling on the nonlinear os-
cillator system, setting α = −1, β = 1, γ = 0, to test the
ability of long-term prediction and generalization to new tra-
jectories. The training set includes 600 trajectories with 30
time steps and was perturbed by Gaussian noise, while the
test set consists of 200 trajectories with 300 time steps from
the same system. See App. D.3.3 for more details about data
generation. Note that in this part,w0 is randomly initialized
to evaluate the effectiveness of our random initialization
strategy.

The results in the Non-linear oscillator column, Tab. 1 show
that our framework improves the test accuracy across all
comparison methods. Notably, Hypernet and ANODEV2,
which allow time-evolving parameters, perform better than
baseline methods, highlighting the importance of model-
ing parameters evolving over time for complex systems.
However, they still lag behind ours, highlighting the advan-
tage of using the Koopman model for parameter dynamics,
which thereby enhances long-term prediction accuracy. We
showed the predicted results of our method in Fig. 4 (a).

w dimension. We also presented the test MSE across dif-
ferent w dimensions in Fig. 4 (c). Fig. 4 (c) shows the
corresponding test MSE when w dimension increases from
10 to 50. Fig. 4 (c) shows a curve dropping in [2, 10]
and rising if m > 10 with a tolerable relative perturbation.
Experimentally, more weights are introduced in networks,
which may add extra uncertainty and instability during train-
ing when m is large. Theoretically, the error bound in Thm.
3.5 is majorly dominated by two terms, one with a factor of
m2
√
N

in the coefficient p and the other with the order ofm− r
3 ,

which does indicate the instability when m is too large and
may infer overfits. Additionally, we reported the results of
our method using other ODE solvers in Tab. 4, App. D.1.2.

Time and memory analysis. We analyze the running time
and memory assumption in this experiment. During the
experiment, KoNODE converges in 109.19 seconds using
10 epochs, while NODE spends 215.50 seconds using 48

Figure 4. Visual results of KoNODE predictions. (a) Non-linear
oscillator trajectories, where different initial conditions produce
four distinct patterns, shown in different colors. (b) Damped os-
cillator family, where different parameters result in varying tra-
jectories, with predictions shown in purple and red. Gray lines
represent ground truth (GT) trajectories in (a) and (b). (c) Test
MSE across different w dimensions, where the blue polygonal
line corresponds to the blue scale at the top, and the green line
corresponds to the green scale at the bottom.

epochs. This concludes that the proposed method converges
faster, though it spends longer for each iteration. Regard-
ing the memory assumption, the proposed method uses
O(max{n,m, h} ·D) while NODE uses O(nD) where n,
m, h are the dimensions of x(t), θ(t), and the hidden layer.
D is the model size for the differential function f . The the-
oretical conclusion indicates that the memory assumption
of the proposed method is comparable to the ODE-based
models, which are superior to other methods. In practice,
the auxiliary memory assumption would further narrow the
gap between them. See Tab. 5, App. D.1.2 for more results.

5.2.2. SYSTEM FAMILY MODELING: DAMPED
OSCILLATOR

In this section, we focus on system family modeling on
the damped oscillator family, setting α ∈ [0.9, 1.1], γ ∈
[0.99, 1.01], β = 0, to test the ability of long-term predic-
tion and generalization to unseen systems. See App. D.3.4
for details on data generation and implementation. The re-
sults in the Damped oscillator family column, Tab. 1, and
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Fig. 4 (b) demonstrate the effectiveness of our framework
in generalizing to new systems.

5.3. Koopman Spectral Analysis: Showing How to
Uncover the System’s Evolution Laws Empirically

In this section, we provide a more detailed analysis and
interpretation of the learned dynamics in Sec. 5.2 by visual-
izing the spectrum of the approximated Koopman operator
for the Oscillator dataset. The results are shown in Fig. 5.
First, the magnitudes of the spectrum are approximately
one for two dynamic systems, indicating boundary stability,
where the state remains on a stable trajectory without diverg-
ing or converging. Second, the dominant spectrum of the
nonlinear oscillator (on the left) has similar imaginary parts
(i.e., the frequency components are the same), indicating
that the system exhibits clear periodicity. Modes with the
same imaginary part have the same periodic components.

Figure 5. Spectral Analysis of the Approximated Koopman Op-
erator for Oscillatory Systems. The plots illustrate the eigenvalue
spectra of the approximated Koopman operator for two classes of
oscillators: the nonlinear oscillator (left) and the damped oscillator
family (right). The real and imaginary parts of the eigenvalues are
plotted along the horizontal and vertical axes, respectively. The
green unit circle serves as a reference for spectral stability, where
eigenvalues inside the circle indicate dissipative behavior. Blue
dots represent the computed spectrum from the approximation of
our framework.

5.4. Application on Robot Motion Prediction:
Validating Generalization in Real-World Scenarios

We evaluated our framework’s generalization in real-world
scenarios through robot motion prediction on three datasets.
Unlike synthetic data from precise dynamics, real-world
data comes from unstable systems in complex environments.
The experiment demonstrates the method’s ability to gen-
eralize from training to unseen test data. We compared the
results with the same models as in Sec. 5.2, with implemen-
tation details in App. D.4.2.

Data setup. The trajectory datasets were obtained under
three different robot tasks proposed by Khansari-Zadeh &
Billard (2011), i.e., drawing “S” shapes (Imitation S), plac-
ing a cube on a shelf (Imitation cube pick), and drawing out
large “C” shapes (Imitation C). See App. D.4.1 for more

details about data description and generation.

The results in the Robot Motion column of Tab. 1 highlight
our method’s superiority in accuracy and generalization
for real-world applications. This demonstrates its effec-
tiveness in modeling complex robot dynamics, with poten-
tial for robotic control and trajectory prediction. Addition-
ally, HBNODE, which captures high-order information, and
OINNs, which enhance linearity, ranked second and third,
showcasing their ability to extract underlying dynamics
from real-world data.

5.5. Application on Multivariate Forecasting: Validating
Long-term Prediction Ability in Real-world
Scenarios

In this experiment, we evaluated the long-term prediction
capability of our framework on six real-world datasets: CUP,
WEATHER, ETTH1, ETTH2, ETTM1, and ETTM2. We
followed the preprocessing methods of datasets outlined in
Liu et al. (2023) and split the datasets into training, vali-
dation, and test sets with a ratio of 7 : 1 : 2. For further
details on the datasets and implementation, please refer to
App. D.5.1 and App. D.5.2 respectively.

Comparison methods. In this experiment, we com-
pared the proposed method with (1) NODE-based methods:
NODE and HBNODE (performs well in Sec. 5.4); (2)
Statistical-based method: DeepVAR (Salinas et al., 2019);
(3) Transformer-based methods: Autoformer (Wu et al.,
2021) and PatchTST (Nie et al., 2022); (4) Koopman-based
method: Koopa (Liu et al., 2023); and (5) SSM-based
method: SST (Xu et al., 2024). See App. D.5.3 for more
details about these comparison methods.

As shown in Tab. 2, KoNODE achieved the best perfor-
mance on five out of six datasets, demonstrating its strong
capability in long-term prediction in real-world applications.
While Koopa performed best on ETTh1, KoNODE remained
competitive. Both methods leveraged Koopman operators
to capture global system dynamics, making them particu-
larly effective for datasets with periodic or quasi-periodic
structures such as ETT datasets.

The ablation study can be found in App. D.1.1 whose
results confirm the effectiveness of parameter evolvement
and the Koopman modeling.

6. Conclusions and Future Work
We propose a Koopman-driven hierarchical NODE frame-
work, with theoretical and experimental results demonstrat-
ing its ability to provide a deep understanding of time series.
In the future, we will explore accelerating the KoNODE
algorithm to improve the overall modeling efficiency and
adapting the model for irregularly sampled data.
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Appendix Overview
The following lists the structure of the appendix, with links to the respective sections.

A Background Knowledge Supplement:

A.1 Related Work
A.2 Notation Convention For Gradients
A.3 Adjoint model for NODE

B Framework Supplement:

B.1 The Inspiration of KoNODE
B.2 Analysis for the Formulation of MatrixA
B.3 The Derivation of Optimality Conditions
B.4 The Overall Adjoint Model and the Detailed Algorithm
B.5 Details about Our Framework on Regularization Term Regarding Physical-informed Constraints

C Theoretical Supplement:

C.1 The Proof of Equivalence Between Gradient and Adjoint Trajectories
C.2 The Proof of Error Bound in the Finite-Rank Koopman Model
C.4 The Proof for Estimation Accuracy of the Data-Driven Method
C.5 The Error Caused by Both Finite-Order Koopman Under Data-Driven Scenario

D Experimental Supplement:

D.1 Additional Experimental Results
D.2 Details about Experiment in Sec. 5.1
D.3 Details about Experiment in Sec. 5.2
D.4 Details about Experiment in Sec. 5.4
D.5 Details about Experiment in Sec. 5.5
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A. Background Knowledge Supplement
A.1. Related Work

A.1.1. NEURAL ODES

Neural ODEs (Chen et al., 2018) have been widely studied for modeling continuous-time dynamics, with various extensions
improving their expressiveness and adaptability. Since their introduction, various NODE-based methods have been
extensively developed to enhance efficiency, stability, and predictive performance in modeling continuous-time dynamics. To
address stability and long-term prediction, HBNODEs (Xia et al., 2021) use second-order heavy ball dynamics, mitigating
numerical instabilities and improving trajectory accuracy over extended time horizons. Modulated Neural ODEs (MoNODEs)
(Auzina et al., 2024) enhance predictive adaptability by decoupling dynamic and static factors. ODEs via Invertible Neural
Networks (Zhi et al., 2022) transform the dynamics to promote linearity, improving learning speed and robustness. However,
the aforementioned methods assume that the ODE parameters remain static, which limits the generalization ability of the
NODE framework. ANODEV2 (Zhang et al., 2019) was the first to propose modeling parameters to evolve over time
and introduced a coupled neural ODE framework. Subsequently, ODEtoODE (Choromanski et al., 2020) proposed a
nested NODE framework, where the parameter weights are constrained to be orthogonal, primarily focusing on the stability
benefits of this approach. Our framework continues to focus on modeling the parameter evolution to encode the deep-level
information that reveals the driving rules of the systems.

A.1.2. KOOPMAN OPERATORS

Over the past two decades, Koopman operator theory has gained significant attention, facilitating advancements in various
domains, including system analysis (Lusch et al., 2018; Azencot et al., 2019), control (Narasingam et al., 2023), optimization
(Redman et al., 2021), and forecasting (Liu et al., 2023; Zheng et al.). These approaches leverage Koopman-based
representations to extract linearizable global structures from nonlinear dynamics, enhancing interpretability and control.

Our method builds upon Koopman-driven frameworks, capturing underlying linear dynamical properties. Unlike traditional
Koopman approaches that rely on predefined observables, our framework uses neural networks to improve its flexibility.

A.1.3. NON-AUTONOMOUS DYNAMICAL SYSTEMS AND TIME-VARYING MODELS

In addition to Neural ODE-based paradigms, which have provided powerful tools for modeling continuous-time dynamics,
another well-established line of work addresses non-stationarity by explicitly modeling time-dependent parameters. This
approach is closely related to the theory of non-autonomous dynamical systems, where the evolution rules themselves
vary over time (Carvalho et al., 2015). Such models have been applied to diverse domains, including climate modeling,
neuroscience, and economics, where the assumption of stationarity is often violated. More recently, in machine learning and
statistics, various time-varying parameter models have been proposed, such as time-varying autoregressive models (Haslbeck
et al., 2021) and time-varying state-space models (Tong et al., 2023). In deep learning, architectures like recurrent neural
networks with dynamic weights (Krauss et al., 2019). In addition, there has been a growing body of recent work exploring
hierarchical latent variable models with time-varying structure, particularly in the context of learning representations that
generalize across domains and tasks, such as Guo et al. (2018), Brenner et al. (2024). These approaches illustrate the
importance of incorporating temporal variability directly into the model structure, aligning with our approach.

A.2. Notation Convention For Gradients

We first define the notations for the derivatives in the appendices as follows.

Definition A.1 (Notation Convention For Gradients). We denote the loss gradient w.r.t. a parameter (or activation) tensor x
as dL

dx which has the same shape, i.e.,
[
dL
dx

]
i
= ∂L

∂xi
for any index i in the index set.

Definition A.2 (Notation Convention For The Jacobian Matrix). We denote the Jacobian matrix of a vector y ∈ Rn w.r.t.
another x ∈ Rm as dy

dx ∈ Rn×m.

The differentiations in the above conventions can be replaced by partial derivatives in certain occasions where the response
is also considered a function of other fixed parameters.

Note that under conventions A.1 and A.2, a scalar-to-vector gradient w.r.t. x ∈ Rm results in a vector dL
dx ∈ Rm while the

vector-to-vector Jacobian matrix is dL
dx ∈ Rn×m even for 1-dimensional response (n = 1).
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A.3. Additional Preliminaries on Neural ODEs: Ajoint Method

For the adjoint method of the Neural ODE structure, an auxiliary variable, λ(t) = ∂L
∂x(t) , is introduced to help compute ∂L

∂θ .
The evolution of λ(t) is governed by

dλ(t)

dt
= −∂f(x(t), t;θ)

∂x(t)

⊤
λ(t), (10)

with the terminal condition
λ(t1) =

∂L
∂x(t1)

. (11)

Once the adjoint variable λ(t) is computed, the gradient of the loss with respect to θ can be efficiently obtained by

∂L
∂θ

=

∫ t1

t0

∂f(x(t), t;θ)

∂θ

⊤
λ(t)dt. (12)

This approach avoids storing intermediate states, reducing memory requirements and enabling efficient training of Neural
ODEs in large-scale applications.

B. Framework Supplement
B.1. The Inspiration of KoNODE

If we refer to a simple mechanism in robotics that consists of two nodes, A and B, connected by a rod where both nodes
have motors to control the mechanism. Assume the motor at node A is fastened to the basement. Let x∗, n∗ and θ∗ be the
location, the axis of rotation, and the phase of rotation of the motor at the node ∗ respectively. If the two motors rotate at
angular velocities ωA and ωB , we have the evolution formula,


xA

nA

θA
xB

nB

θB

 (t+∆t) =


I

I
1
R(∆t)

R(∆t)
1




xA

nA

θA
xB

nB

θB

 (t) +


0
0

ωA∆t
xA −R(∆t)xA

0
ωB∆t

 , (13)

whereR(∆t) is the rotation matrix caused by motor A which is,

R(∆t) = PA

 cos ωA∆t sin ωA∆t 0
− sin ωA∆t cos ωA∆t 0

0 0 1

P⊤
A ≈ PA

 1 ωA 0
−ωA 1 0
0 0 1

P⊤
A ∆t, (14)

where PA is a unit orthogonal matrix with the last column being nA. Consequently,

d
dt


xA

nA

θA
xB

nB

θB

 = P



I
I

1
1 ωA

−ωA 1
1

1 ωA

−ωA 1
1

1


P⊤


xA

nA

θA
xB

nB

θB

+


0
0
ωA

WxA

0
ωB

 , (15)

where P = diag {I, I, 1,PA,PA, 1} andW =

 0 −ωA 0
ωA 1 0
0 0 0

.
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B.2. Analysis for the Formulation of MatrixA

We formulate the real matrixA ∈ Rn×n asA = lim
ε→0+

P εDεP
−1
ε − εΣ where P εDεP

−1
ε is the real eigen decomposition

of the matrixA+ εΣ to the product of a non-singular matrix P ε and a block diagonal matrixDε in a format of,

Dε = diag {λ1, λ2, · · · , λp,Λ1,Λ2, · · · ,Λq} ,

where p + 2q = n; the matrix blocks Λi =

[
αi βi
−βi αi

]
, i = 1, 2, · · · , q are real matrices in replace of the conjugated

imaginary eigenvalues. The perturbation εΣ is a diagonal matrix that ensures the uniqueness of the eigenvalues of the matrix
A+ εΣ.

Note that we can select the perturbation as Σ = diag {1, 2, · · · , n} so that the matrix A + εΣ has no eigenvalue whose

order is greater than 1 when ε <
1

n
min

1≤i,j≤nρi ̸=ρj

|ρi − ρj | for the n eigenvalues {ρi}ni=1 for matrixA.

Under this formulation, we assume D = limε→0+ Dε and define the parameter vector for the matrix A as a ≜
[λ1, λ2, · · · , λp, α1, · · · , αq, β1, · · · , βq]⊤.

Note that the eigenvalues of Λi are αi ± βi · i, thus Λi = Q diag {αi + βi · i, αi − βi · i}Q−1. As a result, eΛi =
eαiQQ−1 = eαiI which leads to,

K = eA∆t = lim
ε→0+

P εe∆t·DεP−1
ε − Γε(A,Σ,∆t)

⋆
= lim

ε→0+
P ε e∆t·DP−1

ε ,

where e∆t·D = diag
{

eλ1∆t, · · · , eλp∆t, eα1∆tI2, · · · , eαq∆tI2
}

and Γε ∼ o(1), ε → 0+. The equality ⋆
= holds as the

limitK is known to exist.

Let g̃(θ) ≜ P̃ · g(θ) be an alternative observable function, the resulting sequence w(t) follows a linear dynamic with an
finite-order operator K̃ = e∆t·D. Here, P̃ is an approximation of limε→0+ P

−1
ε . Hence, without loss of generality, we

assumeA ≡D. That is to say, in our formulation, the matrixA takes the following form:

A ≜



α1 β1
−β1 α1

α2 β2
−β2 α2

. . .
αm/2 βm/2

−βm/2 αm/2


.

B.3. The Derivation of Optimality Conditions

To start with, we define the one-order variations as a tool so that applying it to the Lagrangian function shown in Eq. 4,
manuscript results in the KKT conditions.

Definition B.1 (One-order variations). Consider a functional L(x) : F → R where F is the set for functions. For a function
x(t), denoted as x and its variation δx, the one-order variation δL(x) is

δL(x) =
∂L

∂x

⊤
δx,

due to the Taylor’s expansion L(x+ δx) = L(x) + ∂L
∂x

⊤
δx+O(||δx||2).

Some arguments of the functions are omitted for simplicity under the assumption of being time t when they are not specified.

Variations with respect to x(t)

In order to satisfy the first optimality condition on z, we have δL(x) = ∂L
∂x

⊤
δx = 0 for any variation δx in space and time,
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hence

∂L

∂x

⊤
δx

=
∑
t∈T

∇⊤
t L δx(t)− δ

[∫ t1

t0

α⊤ dx

]
+

∫ t1

t0

(
∂f(x, t;θ)

∂x

⊤
α

)⊤

δx dt−α⊤
0 δx(t0),

=
∑
t∈T

∇⊤
t L δx(t)− δ

[
α(t1)

⊤x(t1)−α(t0)⊤x(t0)−
∫ t1

t0

x⊤ dα

]
+

∫ t1

t0

(
∂f(x, t;θ)

∂x

⊤
α

)⊤

δx dt−α⊤
0 δx(t0),

=
∑
t∈T
t ̸=t1

∇⊤
t L δx(t) +

∫ t1

t0

[
dα

dt
+
∂f(x, t;θ)

∂x

⊤
α

]⊤
δx dt+ [∇t1L −α(t1)]⊤ δx(t1) + [α(t0)−α0]

⊤
δx(t0),

=

∫ t1

t0

[
dα

dt
+
∂f(x, t;θ)

∂x

⊤
α+∇tL

]⊤
δx dt+ [∇t1L −α(t1)]⊤ δx(t1) + [α(t0)−α0]

⊤
δx(t0) = 0,

holds for any variations δx. Therefore, the first set of adjoint equations are as follows,

dα

dt
+
∂f(x, t;θ)

∂x

⊤
α+∇tL = 0,∇t1L −α(t1) = 0. (16)

Note that simultaneously, we have α0 = α(t0) for the solution of α0.

Variations with respect to θ(t)

With ∂L
∂θ

⊤
δθ = 0 we have

∂L

∂θ

⊤
δθ =

∫ t1

t0

(
∂f(x, t;θ)

∂θ

⊤
α

)⊤

δθ dt+

∫ t1

t0

γ⊤δθ dt =

∫ t1

t0

[
γ +

∂f(x, t;θ)

∂θ

⊤
α

]⊤
δθ dt = 0. (17)

Gradient with respect to w0

The gradient w.r.t. w0 shows that
∂L

∂w0
= β0 = 0. (18)

Variations with respect to w(t)

With ∂L
∂w

⊤
δw = 0 we have

∂L

∂w

⊤
δw =

∫ t1

t0

[
dβ

dt
+A⊤β

]⊤
δw dt− β(t1)⊤δw(t1) + β(t0)

⊤δw(t0) +

∫ t1

t0

γ⊤ ∂h(w;ψ)

∂w
δw dt− β⊤

0 δw(t0),

=

∫ t1

t0

[
dβ

dt
+A⊤β +

∂h(w;ψ)

∂w

⊤
γ

]⊤
δw dt− β(t1)⊤δw(t1) + [β(t0)− β0]

⊤δw(t0) = 0,

(19)
holds for any variation δw. Together with Eqs. (17) and (18), we obtain the second set of adjoint equations.

dβ

dt
+A⊤β +

∂h(w;ψ)

∂w

⊤
· ∂f(x, t;θ)

∂θ

⊤
α = 0,β(t1) = 0.

Simultaneously, we have β(t0) = β0 = 0 which provides a second boundary condition for the ODE β satisfies which adds
up to the complications of directly solving the KKT conditions. In practice, we omit the condition that β0 = 0 to use the
gradient-based methods.

16



KoNODE: Koopman-Driven Neural ODEs with Evolving Parameters for Time Series Analysis

Algorithm 1 Training of the KoNODE Model
Input: trajectory x(t), start time t0, stop time t1, network parameters ψ, matrixA, IKSE Ξ
InitializeA = I by setting αi = 1 and βi = 0.
Estimate w(t0) = Ξ({x(t)}t∈Tinput))
OR Draw w(t0) ∼ N (0, σ2I)
repeat
{Forward process}
init aug state = [x(t0),w(t0)]
def aug dynamic([x,w], t,ψ,A) :

return [f(x;h(w;ψ)),Aw]
[x(t), ·] = ODESolver(init aug state, aug dynamic, t0, t, [ψ,A])

{Backward process}
Compute L(x) and retrieve ∇tL,∀t ∈ [t0, t1]
init aug state = [x(t1),w(t1),∇t1L,0w,0ψ,0A]
def aug dynamic([x,w,α,β, ·, ·], t,ψ,A) :

return [f(x;h(w;ψ)), Aw,−∂f
∂x

⊤
α−∇tL,− ∂h

∂w

⊤ ∂f
∂θ

⊤
α−A⊤β,− ∂h

∂ψ

⊤ ∂f
∂θ

⊤
α, β ·w⊤]

[·, ·, ∂L
∂x(t0)

, ∂L
∂w(t0)

, ∂L
∂ψ ,

∂L
∂A ] = ODESolver(init aug state, aug dynamic, t1, t0, [ψ,A])

Backpropagate from x(t0) by ∂L
∂x(t0)

Backpropagate from w(t0) by ∂L
∂w(t0)

Update ψ andA by ∂L
∂ψ and ∂L

∂A respectively
until Convergence

Gradient with respect toA

The gradient w.r.t. A shows that

∂L

∂A
=

∫ t1

t0

β ·w⊤ dt. (20)

B.4. The Overall Adjoint Model and the Detailed Algorithm

The summarization of the formulas from App. B.3 leads to the overall model for the adjoint method which is expressed as
integrations in Eq. (21) and algorithm in Alg. 1.

The integration is formulated as



x(t)

w(t)

α(t)

β(t)

∂L
∂ψ

∂L
∂A


=



x(t1)

w(t1)

∇t1L

0w(t1)

0ψ

0A


+

∫ t

t1



f(x(s), s;θ(s))

Aw(s)

−∂f(x(s), s;θ(s))
∂x(s)

⊤
·α(s)− δT (s) · ∇sL

−∂h(w(s);ψ)

∂w(s)

⊤
· ∂f(x(s), s;θ(s))

∂θ(s)

⊤
·α(s)−A⊤ · β(s)

−∂h(w(s);ψ)

∂ψ

⊤
· ∂f

⊤(z(s), s;θ(s))

∂θ(s)
·α(s)

−β(s) ·w⊤(s)



ds, (21)

where 0x represents a zero vector with the same shape of tensor x and δT (s) =
∑

t∈T
t ̸=t1

δ(s− t) is a comb function based

on the Dirac function δ. The detailed algorithm is listed in Alg. 1.

17



KoNODE: Koopman-Driven Neural ODEs with Evolving Parameters for Time Series Analysis

B.5. Details about Our Framework on Regularization Term Regarding Physical-informed Constraints

By modeling the intrinsic simple system, our framework not only improves the accuracy and the generality of the prediction
tasks but also allows leveraging spectral tools to analyze system behavior. Furthermore, physics-informed constraints
can be imposed by adding regularization terms in the objective function in Eq. (3), manuscript. In our formulation, the
regularization to θ can transform toA, w0 or ψ. So, we reformulate Eq. (3) as,

min
a,w0,ψ

L(x) +R(a,w0,ψ), (22)

subject to (3b), (3c), and (3d), where a is the vector composed of all the non-zero elements of the matrixA ∈ Rm×m, i.e.,
a =

[
α1, · · · , αm/2, β1, · · · , βm/2

]⊤
.

In this part, we derive the regularization inherited from the spectral method to constrain the eigenvalues ofA as example
(Mezic & Banaszuk, 2000). Especially, stable dynamic systems require the Koopman operator K to have r eigenvalues
on a unit circle, which leads to the r diagonal elements for matrix A being 0. We utilize a quadratic loss function
to penalize for the constraint, i.e., R(a) = λ⊤Srλ where Sr = diag

∑r
i=1 eki

is the selector of eigenvalues and
λ ≜ [A11, · · · ,Amm]⊤ = [α1, α1, · · · , αm/2, αm/2]

⊤ are the diagonal elements of the matrixA.

Theorem B.2. The gradient of R(a) w.r.t. the vector a is,

∂R(a)

∂a
= 2 vec (diag [Sr · λ]) ,

where vec : Rm×m → Rm is a mapping that maps matrixA 7→ [a⊤
α ,a

⊤
β ]

⊤ where aα = [A1,1 +A2,2, · · · ,Am−1,m−1 +

Am,m]⊤, and aβ = [A1,2 −A2,1, · · · ,An−1,n −An,n−1]
⊤. Note that under such definition, we have

∂L
∂a

= vec
[
∂L
∂A

]
.

According to Thm. B.2, the gradient w.r.t. A in Eq. (9) is converted into the gradients regarding a as

∂L

∂a
= vec

(
diag [2Sr · λ] +

∫ t1

t0

β(t) ·w⊤(t) dt
)
. (23)

C. Theoretical Supplement
C.1. The Proof of Equivalence Between Gradient and Adjoint Trajectories

We prove the two conclusions in Thm. 3.1 in the manuscript separately by Prop. C.1 and Thm. C.2 respectively.

Proposition C.1. If the partial Jacobian matrix
∂f(x(t), t;θ(t))

∂x(t)
is Lipschitz continuous, the gradient trajectory for x(t)

equals α(t), that is
∂L
∂x(t)

= α(t).

Proof. As L(x) = 1
|T |
∑

t∈T E [x(t)] is auto independent regarding time, we denote Lts:te(x) ≜
1
|T |
∑

t∈T∩[ts,te)
E [x(t)].
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Subsequently, the gradient trajectory
∂L
∂x(t)

follows

d

dt

∂L
∂x(t)

= lim
∆t→0+

1

∆t

[
∂L

∂x(t+∆t)
− ∂L
∂x(t)

]
,

= lim
∆t→0+

1

∆t

[
∂

∂x(t+∆t)
Lt+∆t:∞ − ∂

∂x(t)
Lt:∞

]
,

= lim
∆t→0+

1

∆t

[
∂

∂x(t+∆t)
Lt+∆t:∞ − dx(t+∆t)

dx(t)

⊤
· ∂

∂x(t+∆t)
Lt+∆t:∞ − ∂

∂x(t)
Lt:t+∆t

]
,

(T∩(t,t+∆t)=∅) ⋆
= lim

∆t→0+

1

∆t
·

I −
[

∂

∂x(t)

(
x(t) +

∫ t+∆t

t

f(x(s), s;θ(s)) ds

)]⊤ · ∂L
∂x(t+∆t)

− ∂E [x(t)]
∂x(t)

,

∗
= lim

∆t→0+

1

∆t
·

{
−
∫ t+∆t

t

[
∂f(x(t), t;θ(t))

∂x(t)
+ o(|s− t|)

]
ds

}⊤

· ∂L
∂x(t+∆t)

−∇tL,

=− lim
∆t→0+

[
∂f(x(t), t;θ(t))

∂x(t)
+

1

∆t
· o(∆t2)

]⊤
· ∂L
∂x(t+∆t)

−∇tL,

=− ∂f(x(t), t;θ(t))

∂x(t)

⊤
· ∂L
∂x(t)

−∇tL,

where the differentiation is converted into partial derivatives in ⋆
= because θ(s) is irrelevant to x(t) for s ≥ t and the

infinitesimal quantity in ∗
= is ensured by the finite values of Jacobian and Hessian matrices due to the Lipschitz continuity of

partial Jacobian matrices.

Note that, α(t) satisfies
dα(t)

dt
+
∂f(x(t), t;θ(t))

∂x(t)

⊤
α(t) +∇tL = 0 and α(t1) = ∇t1L, which has the same differential

equation and the boundary condition as the gradient trajectory ∂L/∂x(t). As ∂f(x(t), t;θ(t))/∂x(t) is finite due to the
existence of the derivate, the differential function of the ODE for α(t) is Lipschitz continuous. Due to the Picard-Lindelöf
Theorem, we have α(t) = ∂L/∂x(t).

We then prove the latter part of Thm. 3.1.

Theorem C.2 (Thm. 3.1, manuscript). If the partial Jacobian matrices
∂f(x(t), t;θ(t))

∂x(t)
and

∂f(x(t), t;θ(t))

∂θ(t)
are

Lipschitz continuous, the gradient trajectories of sequence x(t) and w(t) are α(t) and β(t) respectively, i.e.,

∂L
∂x(t)

= α(t),
∂L

∂w(t)
= β(t).
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Proof. According to Prop. C.1, the first conclusion is proven. On the other hand, we have

d

dt

∂L
∂w(t)

= lim
∆t→0+

1

∆t

[
∂L

∂w(t+∆t)
− ∂L
∂w(t)

]
,

= lim
∆t→0+

1

∆t

[
∂L

∂w(t+∆t)
− dx(t+∆t)

dw(t)

⊤
· ∂L
∂x(t+∆t)

− dw(t+∆t)

dw(t)

⊤
· ∂L
∂w(t+∆t)

]
,

= lim
∆t→0+

1

∆t
·

{[
I − dw(t+∆t)

dw(t)

]⊤
· ∂L
∂w(t+∆t)

−
∫ t+∆t

t

A⊤ ds · ∂L
∂w(t+∆t)

−
∫ t+∆t

t

[
∂f(x(t), t;θ(t))

∂θ(t)

dθ(t)

dw(t)
+ o(|s− t|)

]⊤
ds · ∂L

∂x(t+∆t)

}
,

= lim
∆t→0+

1

∆t
·

{
∆t

[
∂f(x(t), t;θ(t))

∂θ(t)
· dh(w(t);ψ)

dw(t)

]⊤
∂L

∂x(t+∆t)
−∆tA⊤ ∂L

∂w(t+∆t)

}
,

=− dh(w(t);ψ)

dw(t)

⊤
· ∂f(x(t), t;θ(t))

∂θ(t)

⊤
· ∂L
∂x(t)

−A⊤ · ∂L
∂w(t)

,

⋆
=− dh(w(t);ψ)

dw(t)

⊤
· γ(t)−A⊤ · ∂L

∂w(t)
,

where ⋆
= holds due to the other condition γ(t) =

∂f(x(t), t;θ(t))

∂θ(t)
· α(t) and Prop. C.1. As, on the other hand,

dβ(t)

dt
+A⊤β(t) +

∂h(w(t);ψ)

∂w(t)

⊤
γ(t) = 0 and β(t1) = 0, which has the same differential equation and the boundary

condition as the gradient trajectory ∂L/∂w(t). Using the Picard-Lindelöf Theorem again allows us to obtain β(t) =
∂L/∂w(t).

C.2. The Proof of Error Bound in the Finite-Rank Koopman Model

This section proves Thm. 3.2 in the manuscript under the guidence of Kurdila & Bobade (2018). The major conclusions in
the article starts from a definition of spectral approximation space.
Definition C.3 (Spectral Approximation Space). A spectral approximation space Ar,p[H] is defined for a Hilbert space H
as

Ar,p[H] =

f ∈ H

∣∣∣∣∣∣∃ bases {ψi}i∈N , s.t.

[ ∞∑
i=1

(ir⟨f, ψi⟩)p
] 1

p

<∞

 .

Kurdila & Bobade (2018) estimated the bound of low-rank estimations in Example 17 which leads to our result. The major
conclusion of Example 17 is summarized as follows.
Proposition C.4 (Example 17, Kurdila & Bobade (2018)). For any observable function f ∈ Ar,q[Lp

µ(Ω)] where Ar,q is the
spectral approximation space of the Lp

µ space where µ is the measure on space Ω. If Uj represents the projection of the
Koopman operator U to the j-dimensional subspace we have

∥(U − Uj)f∥Lp
µ(Ω) ≲ n−r

j · ∥f ◦ w∥Ar,q [Lp
µ(Ω)] = n−r

j · ∥Uf∥Ar,q [Lp
µ(Ω)].

where nj is the dimension of the subspace spanned by the j basis functions which are closely related to the approximation
method, w is the evolving function for the argument x of function f , and r is the approximation rate that reveals the
smoothness of the Koopman operator.

Then we prove Thm. 3.2.
Theorem C.5 (Thm. 3.2, manuscript). The estimation of Koopman space by m-dimensional observables results in a relative
error of

∥ξ⊤Ku−Kg∥L2(Θ)

∥Kg∥L2(Θ)
≲ m−r,
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where r ≜ − max
m<i≤N

logi⟨g, ui⟩ −
1

2
and ξ ≜

[
⟨g, u1⟩ ⟨g, u2⟩ · · · ⟨g, um⟩

]
with N being the number of data.

Proof. Note that the argument of the observable function is θ(t) in the proposed setting. If the parameters are
in a manifold Θ of order m, the observable function should be estimated by g(θ) ≈

∑m
i=1 ξi ui(θ). As u =[

u1(θ) u2(θ) · · · um(θ)
]⊤

and the order-m Koopman matrix is K ≜ eA. The dimension of the spanned space
nm = m for a common optimization method. Therefore, we can reformulate the error bound in Prop. C.4 under our
formulation of KoNODE, to Thm. 3.2 in the manuscript.

Note that according to Def. C.3, g ∈ Ar,p[H] ⇐⇒ ⟨g, ui⟩ < i−
1
p−r,∀i = m + 1, · · · , N which leads to the result

when p = 2. Note that we only consider i = m+ 1, · · · , N because the first m (finitely many) bases do not influence the
convergence of the progression and the order is less than the number of training data.

C.3. The Guidance of the Koopman Dimension

In this section, we refer to the rank of the data s to provide guidance for the choice of hyper-dimension m, which is the
Koopman dimension. Prop. 3.3 of the manuscript exhibits theoretical upper and lower bounds for the number of dimensions.
As discussed in the manuscript, the best dimension is larger in practice, and we chose 10 for simple systems and 100 for
complex ones in experiments. The proof of the proposition is provided as follows using Def. C.6 and Lms. C.7 and C.8.

Definition C.6 (Frontier Manifold). For a dynamic in Euclidean space, a fixed time t0 and origin θ∗, the frontier manifold
Ft is the quotient space of the equivalent class decided by the trajectories, i.e., F0 satisfies (1) θ∗ ∈ F0, and (2) the normal
vector at θ ∈ F0 is ϕ(θ, t0). Then, we define Ft as the set of evolved θ(t) with θ(t0) ∈ F0.

Lemma C.7 (The Theoretical Upper-Bound of m). Inequality m ≤ s holds if: (1) The data trajectories are approximately
in an s-dimensional manifold M. (2) The function f satisfies the Lipschitz condition and is differentiable.

Proof. Since M, being an s-dimensional manifold, admits a bijective chart ψ : M → Rs. For the projection x⊥ ≜
argmin
y∈M

∥y − x∥, the mapping

ϕt : Θ → Rs,

θ(t) 7→ dψ(x⊥(t))

dx⊥(t)
· f(x⊥(t), t;θ(t))

is bijective. This, together with the uniqueness of x(t) (by Picard–Lindelöf theorem), implies that θ(t) lies on an s-
dimensional manifold. Hence, m ≤ s.

Lemma C.8 (The Theoretical Observable Function). For θ0 ∈ Fs, if the trajectory θ(t) follows the dynamic

dθ(t)

dt
= ϕ(θ(t), t),θ(t0) = θ0,

a scalar observable function g(θ) ≜ C · exp( λ
D

∫
inv[ϕ(θ, ts(θ))]⊤dθ) maps it into a Koopman space.

Proof. Note that for θ(t0) = θ0 ∈ Fs, θ(t) is uniquely identified by the Picard-Lindelöf Theorem. Moreover, all elements
in a frontier manifold Fs are on different trajectories, which creates a bijection between (θ0, t) and θ(t). Let ts(θ) be the
mapping from θ to time under the condition that θ0 ∈ Fs.

Then, let g(θ) be a scalar observable function,

g(θ) ≜ C · σ−1 where σ = exp

(
− λ

D

∫
inv[ϕ(θ, ts(θ))]⊤dθ

)
,
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where λ and C are constants and inv[·] is the element-wise inverse of a vector. Therefore,

dg(θ)

dt
− k · g(θ) =∇θg(θ)⊤ϕ(θ, t)− k · g(θ) · ϕ⊤(θ, t) · inv[ϕ(θ, t)]/D,

=ϕ⊤(θ, t) · [∇θg(θ)− λ/D · g(θ) · inv[ϕ(θ, t)]],

=
1

σ
∇θ[g(θ) · σ] = 0.

Hence, g(θ) lies in the Koopman space.

Proposition C.9 (Prop. 3.3, manuscript). If the data trajectories are in a space of rank s and function f satisfies the
Lipschitz condition and is differentiable, we have ⌈ D

D−s⌉ ≤ m ≤ s.

Proof. Under the assumption of differentiability of f , the θ dynamic dθ(t)
dt = φ(θ(t), t) best models the trajectory x(t)

where

φ(θ(t), t) ≜

[
∂f

∂θ(t)

]† [
d2x(t)

dt2
− ∂f

∂t
− ∂f

∂x(t)
f(x(t), t;θ(t))

]
, (24)

andA† being the pseudo-inverse of matrixA which is the Jacobian matrix in the formula.

Lm. C.8 infers that for θ0 ∈ Ft∗ ,∀t∗, only one dimension of w is needed. Lm. C.7 indicates that the gradient φ(θ(t), t)
lies in a space with the highest rank of s, thus the frontier manifold Ft∗ covers a dimension of at least D − s. To ensure a
full cover of Θ-space in the initialization, the lowest dimension of w is ⌈ D

D−s⌉. Together with Lm. C.7, we may obtain the
result.

Please pay attention that, without loss of generality, we choose the function bases u as the observable functions g in
the following part of App. C for simplicity.

C.4. The Proof for Estimation Accuracy of the Data-Driven Method

We prove Thm. 3.4 of the manuscript and propose additionally C.15 in this section. Nüske et al. (2023) proposed an error
bound for the operator in Thm. 12. The major results were summarized by Def. C.10 and Thm. C.11.

Definition C.10. For N bases {ψi}Ni=1 in the Koopman space, define the matricesA,C ∈ RN×N to satisfy

Cij ≜ ⟨ψi, ψj⟩,Aij ≜ ⟨ψi,Lψj⟩.

Consequently, the Koopman operator in the full Koopman space is

LV ≜ C−1A,where V = span
{
{ψi}Ni=1

}
.

Theorem C.11 (Thm. 12, Nüske et al. (2023)). Assume that the observable functions are drawn independently and
identically from L2

µ(X) with the variance matrix of samples ΣΦ where X is a compact and forward invariant space and µ is
the normalized Lebesgue measure. For any error bound ε̃ and probabilistic tolerance δ̃ ∈ (0, 1) we hav

P(∥LV − L̃m∥F ≤ ε̃) ≥ 1− δ̃,

for any amount m ∈ N of data points such that

m ≥ N2

δε2
∥ΣΦ∥2F , where ε = min

{
1,

1

∥A∥∥C−1∥

}
· ∥A∥ε̃
2∥A∥∥C−1∥+ ε̃

and δ =
δ̃

3
.

We can obtain a corollary of the theorem which is Thm. 3.4 in the manuscript where we need to highlight that the notations
m and N are switched in places. The proof is given below.
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Theorem C.12 (Thm. 3.4, manuscript). For N data drawn independently and identically from a Hilbert space at a single
time point and any probabilistic tolerance δ ∈ (0, 1), we have

P(∥K − K̂N∥F ≤ ε) ≥ 1− δ,

s.t. ε =
2
√
3 σm2∥K∥

min {1, ∥K∥} ·
√
δN −

√
3 σm2

,

whereK is the theoretical Koopman matrix, K̂N is the matrix estimated by N data and σ is the isotropic standard deviation
in the space of w(t).

Proof. Note that C = I in Thm. C.11 for orthonormal bases hence

∥K∥ =max
ζ

∥Kζ∥
∥ζ∥

= max
ζ

∥C−1Aζ∥
∥Aζ∥

∥Aζ∥
∥ζ∥

= max
ζ

∥Aζ∥
∥ζ∥

= ∥A∥.

Therefore ε = min

{
1,

1

∥K∥

}
· ∥K∥ε̃
2∥K∥+ ε̃

. We assume on the other hand, that the data is sampled isotropically with

standard deviation σ, and the variance matrix satisfies ∥ΣΦ∥F = σm. For the number of data points N we thus have

ε ≥
√
m2

δN
· σ2m2 =

σm2

√
δN

.

Consequently,

ε̃ ≥ 2
√
3 σm2∥K∥

min {1, ∥K∥}
√
δ̃N −

√
3 σm2

.

Removing the tilde notations leads to the final expression.

On the other hand, the bound estimation of w(t) is obtained in a KKR model proposed in Def. C.13.

Definition C.13 (Koopman Kernel Regression (KKR)). Consider a discrete-time dataset DN = {x(i)
T , y

(i)
T }Ni=1 modeled by

a linear time-invariant (LTI) predictor such that

ŷ = 1⊤zT , zt+1 = Λzt, z0 = ϕ̂(x0),

which is trained by the optimization problem,

M̂ ≜ argmin
M∈H

N∑
i=1

∥y(i)T −M(x
(i)
T )∥2YT

+ γ∥M∥2H,

where γ ∈ R+ and ∥ · ∥H is the reproducing kernel Hilbert space (RKHS) norm.

On the other hand, Thm. 3, Bevanda et al. (2024) finds the gap between the regression error of the true model and that by N

data R̂N (M̂) ≜
1

N

N∑
i=1

∥y(i)T − M̂(x
(i)
T )∥2YT

. The conclusion is summarized as in Thm. C.15.

Theorem C.14 (Thm. 3, Bevanda et al. (2024)). Let DN = {x(i)
T , y

(i)
T }Ni=1 be a dataset consistent with a Lipschitz system

on a non-recurrent domain. Then the generalization gap of a KKR model M̂ is, with probability 1− δ, upper bounded by

|R(M̂)− R̂N (M̂)| ≤ 4RB

√
κT 2

N
+

√
8 log 2

δ

N
,

where R is an upper bound on the loss in the domain, B ∈ R+ is the upper bound of model M such that ∥M∥H ≤ B and κ
the supremum of the base kernel.
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Formulating w(t) by the KKR model and applying the theorem lead to Thm. C.15.

Theorem C.15 (Probabilistic Gap in Regression Error for Data-Driven Koopman Model). For N data trajectories, the
theoretical difference between the mean residual and true residual satisfies,

P
(
|R− R̂N | ≤ ε

)
= 1− δ,

s.t. ε = 4RBT

√
κ

N
+

√
8 log 2

δ

N
,

where T is the number of time points, R is an upper bound on the loss in the domain, B is the bound of model parameters
∥M∥, and κ the supremum of the base kernel. Here,

R0 ≜
1

|T |
∑
t∈T

Eθ0(t) ∥w0(t)− g[θ0(t)]∥2 ,

R̂N ≜
1

N · |T |
∑
t∈T

N∑
i=1

∥wi(t)− g[θi(t)]∥2 ,

where wi(t+ 1) = K̂Nwi(t), wi(0) = g(θi(0)) holds for any i ∈ {0, 1, 2, · · · }.

Notably, Thm. C.15 shows the fact that the error bound of the regression errors in the Koopman model also follows
O(1/

√
N) as N → ∞. The theorems in this section conclude that the errors of data-driven estimations are inversely

controlled by the square root of data amount N .

C.5. The Error Caused by Both Finite-Order Koopman Under Data-Driven Scenario

We further combine Thm. C.5 and Thm. C.11 into Thm. C.19 to obtain the error caused by both the finite-order estimation
of the Koopman operator and the finite-data-driven model. We first introduce two lemmas.

Lemma C.16 (Probabilistic Error of L2 Norm). Let f ∈ L2(Θ) where Θ has a metric defined by the normal density. If
∥f∥L2(Θ) < ε2δ, then P(|f(x)| ≤ ε) ≥ 1− δ.

Proof. We prove the lemma by contradiction. We provide the hypothesis that P(|f(x)| > ε) > δ, then∫
x

f2(x)ϕ(x) >

∫
A

f2(x)ϕ(x) >

∫
A

ε2ϕ(x) = ε2P(x ∈ A) > ε2δ,

where A ≜
{
x
∣∣∣|f(x)| > ε

}
. The result contradicts with the condition ∥f∥L2(Θ) < ε2δ, hence the hypothesis is incorrect,

i.e., P(|f(x)| > ε) ≤ δ, which leads directly to the conclusion.

Corollary C.17 (Probabilistic Error of Relative L2 Error). If the relative L2 error of function ∆f, f ∈ L2(Θ) satisfies

∥∆f∥L2(Θ) < ε∥f∥L2(Θ),

we have
P
(
|∆f | ≤ ε

1
3 · ∥f∥

1
2

L2(Θ)

)
≥ 1− ε

1
3 .

Proof. Setting f = ∆f/∥f∥L2(Θ) in Lm. C.16 would lead to the result.

Lemma C.18 (Probabilistic Error of Koopman Estimation). For the Koopman operator K and its order-m approximation
matrixK ∈ Rm×m, we have for any ε > 0,

P
(∣∣∣∥K∥ − r(K)

∣∣∣ ≤ ε
)
≥ 1− 2m− r

3 − 2δ,

where ε = 2m
r
6 (mr − 1)−

1
2 ·
√

τ ·r(K)
min{1,r(K)} with τ being the bound satisfying P

(
∥ĝ∥ < τ · |ĝ(θ)|

)
≥ 1− δ, and r is the

convergence rate characterizing the finiteness of the Koopman space.
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Proof. If r(K) denotes the spectral radius of the operator K, ∃g∗, s.t.Kg∗ = r(K)g∗ since K− r(K)I is not invertible. Let
ξ∗ ≜

[
⟨g∗, g1⟩ ⟨g∗, g2⟩ · · · ⟨g∗, gm⟩

]
and ĝ ≜ ξ∗⊤g the m-dimensional estimation of function g∗ and g̃ = g∗ − ĝ the

residual.

Note that asK is the estimation of K, the vector ξ∗, representing the projection of the eigenfunction corresponding to the
spectral radius, is the same forK, i.e., ξ∗⊤K = ∥K∥ · ξ∗⊤.

Thm. C.5 implies that P
(
|ξ⊤Kg(θ)−Kg(θ)| > m− r

3 · ∥Kg∥
1
2

L2(Θ)

)
< m− r

3 for random θ’s. The conclusion satisfies

for any g ∈ L2(Θ) and ξ ≜
[
⟨g, g1⟩ ⟨g, g2⟩ · · · ⟨g, gm⟩

]
. We can then obtain by setting g = g∗,

P
(∣∣∣∥K∥− r(K)

∣∣∣ · |ĝ(θ)| > ε∗+ r(K) · |g̃(θ)|
)
≤ P

(∣∣∣∥K∥ · ξ∗⊤g(θ)− r(K) · ξ∗⊤g(θ)− r(K) · g̃(θ)
∣∣∣ > ε∗

)
< m− r

3 ,

where ε∗ = m− r
3 · ∥Kg∥

1
2

L2(Θ) hence

P
(∣∣∣∥K∥ − r(K)

∣∣∣ ≤ 1

|ĝ(θ)|
·
[
m− r

3 · ∥Kg∗∥
1
2

L2(Θ) + r(K)(mr − 1)−
1
3 · ∥ĝ∥

1
2

L2(Θ)

])
,

≥P
(∣∣∣∥K∥ − r(K)

∣∣∣ ≤ 1

|ĝ(θ)|
·
[
m− r

3 · ∥Kg∗∥
1
2

L2(Θ) + r(K) · |g̃(θ)|
])

· P
(
|g̃| ≤ (mr − 1)−

1
3 · ∥ĝ∥

1
2

L2(Θ)

)
,

1⃝
≥(1−m− r

3 ) · [1− (mr − 1)−
1
3 ]

2⃝
≥ 1− 2m− r

3 ,

where
2⃝
≥ is because (mr − 1)−

1
3 −m− r

3 · (mr − 1)−
1
3 ≤ m− r

3 and
1⃝
≥ holds due to the fact that

∥g̃∥
∥ĝ∥

3⃝
≤ ∥g̃∥/∥g∗∥

(∥g∗∥ − ∥g̃∥)/∥g∗∥
4⃝
≤ m−r

1−m−r
=

1

mr − 1
, for the L2(Θ) norm∥ · ∥,

where
3⃝
≤ holds due to the triangle inequality in the denominator and

4⃝
≤ holds because of Prop. C.4.

Under L2(Θ) norm, if ∥ĝ∥ < τ2 · ĝ2(θ), we have ∥Kg∗∥ ≤ ∥K∥ · ∥g∗∥ = r(K) · ∥ĝ + g̃∥ ≤ r(K) · (∥ĝ∥ + ∥g̃∥) <
r(K)

1−m−r · τ2 · ĝ2(θ). As a result, for τ satisfying P(∥ĝ∥ < τ2 · ĝ2(θ)) ≥ 1− δ, P(∥Kg∗∥ < r(K)
1−m−r · τ2 · ĝ2(θ)) ≥ 1− δ.

Consequently,

P

(∣∣∣∥K∥ − r(K)
∣∣∣ ≤ 2m

r
6 (mr − 1)−

1
2 ·

√
τ · r(K)

min{1, r(K)}

)
,

≥P
(∣∣∣∥K∥ − r(K)

∣∣∣ ≤ m− r
3 · r 1

2 (K) ·
√
τ ·m r

2 · (mr − 1)−
1
2 + r(K) · (mr − 1)−

1
3 ·

√
τ
)
,

≥(1− 2m− r
3 ) · (1− δ)2 > 1− 2m− r

3 − 2δ.

The result directly leads to the conclusion.

Theorem C.19. For N data drawn independently and identically from a Hilbert space at a single time point and any
observable function g and its corresponding ξ, with any probabilistic tolerance δ ∈ (0, 1) we have

P

(
|ξ⊤K̂Nw(t)−Kg(θ(t))|

∥ξ∥ · ∥w(t)∥
≤ ε

)
≥ 1− δ,

s.t. ε = 2∥ξ∥ · ∥w(t)∥ ·
√
3 σm2 · r(K)√

N(δ − 2m− r
3 ) ·min {1, r(K)} −

√
3 σm2

+ o(m− r
3 ),

where K̂N is the order-m Koopman matrix estimated by the N data.

Proof. We find the following inequality of the mapped observable functions at argument θ(t).

|ξ⊤K̂Nw(t)−Kg(θ(t))| ≤|ξ⊤K̂Nw(t)− ξ⊤Kw(t)|+ |ξ⊤Kw(t)−Kg(θ(t))|,
⋆
≤∥ξ∥ · ∥K̂N −K∥F · ∥w(t)∥+ |ξ⊤Kw(t)−Kg(θ(t))|,
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where
⋆
≤ is true due to the Cauchy-Schwartz inequality indicating that ∥Ax∥ ≤ ∥A∥F · ∥x∥.

Note that Cor. C.17 indicates P
(
|ξ⊤Kg(θ)−Kg(θ)| ≤ m− r

3 · ∥Kg∥
1
2

L2(Θ)

)
≥ 1−m− r

3 for random θ’s. Consequently,

P(|ξ⊤K̂Nw(t)−Kg(θ(t))| ≤ ε̃),

≥P
(
∥ξ∥ · ∥K̂N −K∥F · ∥w(t)∥ ≤ ε̃−m− r

3 · ∥Kg∥
1
2

L2(Θ)

)
· P
(
|ξ⊤Kw(t)−Kg(θ(t))| ≤ m− r

3 · ∥Kg∥
1
2

L2(Θ)

)
,

≥(1−m− r
3 ) · P

∥K̂N −K∥F ≤
ε̃−m− r

3 · ∥Kg∥
1
2

L2(Θ)

∥ξ∥ · ∥w(t)∥

 .

Letting P

(
∥K̂N −K∥F ≤

ε̃−m− r
3 ·∥Kg∥

1
2
L2(Θ)

∥ξ∥·∥w(t)∥

)
be 1− δ̃ and applying Thm. C.11 obtains

ε̃ = ∥ξ∥ · ∥w(t)∥ · 2
√
3 σm2∥K∥

min {1, ∥K∥} ·
√
Nδ̃ −

√
3 σm2

+m− r
3 · ∥Kg∥

1
2

L2(Θ).

Let B(k) ≜ 2∥ξ∥ · ∥w(t)∥ ·max
{

k
p−1 ,

k
pk−1

}
+m− r

3 · ∥Kg∥
1
2

L2(Θ) for p = 1
σm2

√
Nδ̃
3 , then ε̃ = B(∥K∥).

Note that Lm. C.18 shows that
P
(∣∣∣∥K∥ − r(K)

∣∣∣ ≤ ε∗
)
≥ 1− 2m−r − 2δ∗,

where ε∗ = 2m
r
6 (mr − 1)−

1
2

√
τ ·r(K)

min{1,r(K)} .

Let I be the interval [r(K)− ε∗, r(K) + ε∗] we have

P
(∣∣∣B(∥K∥)− B(r(K))

∣∣∣ ≤ ∆B
)
≥ P

( ∣∣∣∥K∥ − r(K)
∣∣∣ ≤ ε∗

)
≥ 1− 2m− r

3 − 2δ∗,

where ∆B ≜ ε∗ · sup
k∈I

|B′(k)| and
supk∈I |B′(k)|
2∥ξ∥ · ∥w(t)∥

=

{
1/(pImin − 1)2, if Imin = r(K)− ε∗ <

√
p−1+1
p ,

1/(p− 1), otherwise.

Consequently,

P
(
|ξ⊤K̂Nw(t)−Kg(θ(t))| ≤ B(r(K)) + ∆B

)
,

≥P
(
|ξ⊤K̂Nw(t)−Kg(θ(t))| ≤ B(∥K∥)

)
· P (|B(∥K∥)− B(r(K))| ≤ ∆B) ,

≥(1− δ̃) · (1− 2m− r
3 − 2δ) > 1− 2m− r

3 − 2δ∗ − δ̃,

where B(r(K)) = 2∥ξ∥ · ∥w(t)∥ · r(K)

pmin {1, r(K)} − 1
+m− r

3 · ∥Kg∥
1
2

L2(Θ).

Note that ĝ(θ(t)) = ξ⊤w(t) we have

B(r(K)) + ∆B =2∥ξ∥ · ∥w(t)∥ · r(K)

pmin {1, r(K)} − 1
+m− r

3 ·
√

r(K)

1−m−r
· τd

+ 4∥ξ∥ · ∥w(t)∥ ·m r
6 (mr − 1)−

1
2 ·

√
τ · r(K)

min{1, r(K)}
·max

{
1

(p(r(K)− ε∗)− 1)2
,

1

p− 1

}
,

where d is the bound of the observable function. Let the RHS be 1 − δ, then δ̃ = δ − 2m− r
3 − 3δ∗ and p =√

N(δ − 2m− r
3 − 3δ∗)/(

√
3 σm2) which leads directly to the conclusion by converting the last two terms into the

infinitesimal term and omitting δ∗.
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C.6. The Tightness of the Overall Estimation Compared to the ODE Models

For the overall error of the proposed model, we dig deeper to find the theoretical reasoning for its superiority. Thm. C.22
provides the theoretical advantage of the proposed method in estimating complex systems compared to conventional ones.
The theorem will not be included in the manuscript for three reasons, i.e., (1) the inequality of theory is not significantly
tight, (2) the numerical experiment better proves the effectiveness of the proposed method, and (3) better estimations of the
error may require methods similar to those for Neural ODE evaluation such as boundings by the eigenvalues of the feedback
gain matrix.

We propose two definitions for the theorem.

Definition C.20 (The Static Dynamic Model Condition). The dynamic satisfies the condition if and only if for the function
g and any ε̃, ∃δ̃ > 0,

P(|g(θ∗)− g[θ̃(t)]| < ε̃) ≥ 1− δ̃,

where θ∗ ≜ argmin
θ

∫
t

∥∥∥f(x(t), t;θ)− f(x(t), t; θ̃(t))∥∥∥ is the LSE estimation of a static θ and θ̃(t) is randomly drawn

from the ideal trajectory defined in Eq. (24). The condition holds when the true dynamic behind the trajectory is static,
which ensures a good fit of the NODE.

Definition C.21 (Estimation Bound of Trajectory). We define an upper bound for the trajectory estimation as,

B[θ̂(t)] ≜ sup
θ

∥∥∥∥∂f(x(t), t;θ)∂θ

∥∥∥∥ · ∥θ̂(t)− θ̃(t)∥, (25)

where θ̃(t) is the ideal trajectory in Eq. (24). It is clear that the overall estimation error of the trajectory using θ̂(t) can be
bounded by B[θ̂(t)].

Consequently, We prove the theorem as Thm. C.22.

Theorem C.22 (The Superiority of the Proposed Model). During the modeling of trajectory x(t), the estimation error
upper bound of the proposed model is smaller than that of a conventional ODE method if the observable function g does
NOT satisfy the static dynamic model condition, i.e.,

P(B[θ†(t)] ≤ B[θ∗]) ≥ 1− δ∗,

where θ†(t) is the trajectory predicted by the proposed method while θ∗ consists of the static parameters in the conventional
ODE method.

Proof. We use the notations θ∗, θ̃(t), δ̃ and ε̃ defined in Def. C.20. Apparently, Eq. (25) gives a bound of the estimation
error where the ”sup” exists as f is Lipschitz continuous, and the bound is reached for a linear mapping f .

Note that θ̂(t) = θ∗ in NODE and θ̂(t) = θ†(t) ≜ h(ŵ(t);ψ) ≈ g−1(ξ⊤ŵ(t)) in the proposed Koopman model where
ŵ(t) satisfies the Koopman model of matrix K̂N . Thm. 3.4, Manuscript shows that

P(|ξ⊤ŵ(t+∆t)− g[θ̃(t+∆t)]| < ε∗ · ∥ξ∥ · ∥ŵ(t)∥) ≥ 1− δ,

with ε∗ representing the RHS. As the base ui(t) ∈ L2(Θ) for observables ŵ, Lemma C.12, Appendices implies P(|ŵi(t)| ≤
1√
δ
) ≥ 1− δ if ∥ui(t)∥L2(Θ) = 1 and max |ξi| ≤ r(K),

P(∥ξ∥ · ∥ŵ(t)∥ ≤ m
√
m · r(K)√
δ

) ≥ 1− δ.

Consequently, if we let

ε̃ =
2
√
3σm

7
2 r2(K)√

Nδ(δ − 2m− r
3 ) ·min {1, r(K)} −

√
3δσm2

+ o(m− r
3 ),

then P(|ξ⊤ŵ(t+∆t)− g[θ̃(t+∆t)]| < ε̃) ≥ 1− 2δ.
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Table 3. Test MSEs of ablation study across Hypernet, CONDE, OURS, and OURSSPARSE on NON-LINEAR OSCILLATOR (01) and
DAMPED OSCILLATOR FAMILY (02). Results are mean across 5 runs with different seeds. The best results are highlighted in bold,
while the second-best is underlined.

DATA HYPERNET CNODE OURSSPARSE OURS

01 0.381 0.614 0.114 0.085
02 0.023 0.446 0.009 0.008

Table 4. Results of different ODE solvers on non-linear oscillator dataset.

METHODS EULER RK4 DOPRI5

NODE 0.333 0.361 0.366
KONODE 0.053 0.098 0.099

On the other hand, for g failed to satisfy the static dynamic model condition at error ε̃ we have

P(∥θ†(t)− θ̃(t)∥ ≤ ∥θ∗ − θ̃(t)∥),
=P(|g[θ†(t)]− g[θ̃(t)]| ≤ |g(θ∗)− g[θ̃(t)]|)
− P(|g[θ†(t)]− g[θ̃(t)]| ≤ |g(θ∗)− g[θ̃(t)]| and θ̃(t) ∈ Q),

≥P(|g[θ†(t)]− g[θ̃(t)]| ≤ |g(θ∗)− g[θ̃(t)]|)− P(θ̃(t) ∈ Q) ≥ 1− δ∗,

where Q ≜ {θ | |g(θ∗)− g(θ)| < ε̃} and δ∗ ≜ 2δ + δ̃ + P(θ̃(t) ∈ Q).

As a result, with a probability of 1 − δ∗, the error bound in Eq. (25) for the proposed method is lower than that of the
conventional method.

D. Experimental Supplement
D.1. Additional Experimental Results

D.1.1. THE ABLATION STUDY

To analyze the impact of each part in our framework, we conduct an ablation study on the non-linear oscillator and damped
oscillator family data comparing four framework settings: (1) θ are modeled as θ(t), as in Hypernet; (2) θ are further
constrained as the solution of another ODE parameterized by a neural network, i.e., dθ(t)

dt = q(θ(t), t;Φ), as in a normal
coupled neural ODE framework (we refer this framework as CNODE); and (3) ours, which further models parameter
dynamics using the Koopman model. To further highlight the advantage of intrinsic linear modeling, we also impose sparsity
by setting 80% of the parameters in h to zero. This ensures that the model’s behavior is predominantly driven by the intrinsic
linear modeling component.

From Tab. 3, the poor performance of CNODE compared to Hypernet suggests that strictly constraining θ(t) as an ODE
process may be overly restrictive and increase the training burden of the network, limiting flexibility and making the network
more challenging to train. In contrast, using the Koopman model for θ(t) enables the excellent performance, even with a
sparse h, demonstrating the effectiveness of our approach in capturing underlying dynamics efficiently.

D.1.2. ADDITIONAL RESULTS ABOUT NON-LINEAR OSCILLATOR

Tab. 4 presents the performance of various ODE solvers—euler, rk4, and dopri5—on the non-linear oscillator dataset,
comparing our method with NODE. As is well known, RK4 and dopri5 are higher-order solvers, with dopri5 using
adaptive step sizes. Our approach demonstrates strong performance even with the simplest euler method.

We compare the computational efficiency of our framework and NODE by reporting both the average forward and backward
propagation times over 200 training epochs in Tab. 5. Additionally, we report the total cumulative time spent on forward
and backward propagation for each method from the beginning of training until convergence. The convergence criterion is
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Table 5. Results of running time regarding average forward propagation time (01), average backward propagation time (02), total forward
propagation time from the beginning of training until convergence (03), total backward propagation time from the beginning of training
until convergence (04), and convergence epoch between KoNODE(ours) and NODE on the non-linear oscillator dataset.

METHODS 01(S) 02(S) 03(S) 04(S) CONVERGENCE EPOCH

NODE 0.0147±0.0027 0.0588±0.0073 43.5089 171.9932 48
KONODE 0.0382±0.0053 0.1656±0.0190 20.6565 88.5394 10

based on monitoring the stability of the training loss over consecutive batches. Specifically, after each batch, the absolute
difference between the current loss and the previous loss is computed. If this difference remains below a predefined threshold
(5× 10−4) for 3 consecutive batches, the training is considered converged. The training loss curves for our framework and
NODE are also presented in Fig. 6, showing that our method converges faster than NODE.

From Tab. 5, we observe that although our method requires more time per iteration for both forward and backward
propagation compared to NODE, its superior expressive power enables it to converge faster. As a result, the total forward
and backward propagation times at convergence are lower for our method than for NODE. In addition, we note that in our
formulation, w(t) has an explicit solution, has an explicit solution, which is also one of its advantages.

Figure 6. Comparison of smoothed training loss curves between KoNODE and NODE.

In Fig. 7, we visualize trajectory results on the nonlinear oscillator data, comparing with the top-performing Hypernet and
ANODEV2.
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Figure 7. Trajectories on nonlinear oscillator data across Hypernet, ANODEV2, and KoNODE (ours).

D.2. Details About Experiment in Sec. 5.1

D.2.1. IMPLEMENTATION DETAILS

All the experiments throughout the article were trained on a single GPU of model GTX 3090 Ti.

Data Generation. The dataset is created by solving an ODE[
dx
dt
dy
dt

]
= A(t)

[
x3

y3

]
,

[
x0
y0

]
=

[
2
0

]
, (26)

whereA(t) =

[
−0.1 + 0.5sin(t) 2.0 + cos(t)
−2.0 + 0.5cos(2t) −0.1− 0.5sin(t)

]
.

Following (Chen et al., 2018), the initial state x0 = [2, 0]
⊤ is used as the starting condition. The time range for trajectory

generation is set as t ∈ [0, 25], and the sampling resolution is set to 1000 time steps. The reference trajectory is computed
using dopri5 from torchdiffeq.

Training Procedure. In this experiment, we aim to single trajectory fitting task. During training, each training batch
consists of a randomly sampled set of initial conditions from the reference trajectory. A batch contains 10 consecutive time
steps, that is, the model predicts the remaining 9 time points regarding initial points during training. We set the batch size to
5. The optimizer is Adam, with an initial learning rate of 0.01. Learning rate scheduling following an exponential decay.
Decay occurs at iterations 500, 4000, with scaling factors 1.0, 0.1, and 0.01. We train runs for 5000 iterations. The loss
function is MAE (Mean Absolute Error) between predicted and ground-truth trajectories. After training, the trained model is
evaluated on the full test trajectory to measure the trajectory modeling performance.

D.2.2. ARCHITECTURE AND HYPERPARAMETER DETAILS

We adopt dopri5 as ODE solver, with atol=10−7,rtol=10−9 in this experiment to learn the ODE system. Gradient
computation is performed using the adjoint sensitivity method. The network architecture for h is MLP. The dimension
ofw is 2. w0 is randomly sampled from Gaussian distribution. The differential function network f architecture is MLP,
consisting of three layers with 300 neurons. We adopt the same architecture, training procedure, hyperparameters, and ODE
solver for KoNODE and NODE.

D.3. Details about Experiment in Sec. 5.2

D.3.1. COMPARISION METHODS

To evaluate the effectiveness of our framework, we compare it against several existing neural ODE-based models, each
representing different design choices and extensions of the standard neural ODE (NODE). Below, we provide a brief
overview of each comparison model.

Vanilla NODE (Chen et al., 2018). Standard Neural ODE dx(t)
dt = f(x(t), t;θ), where f is chosen to be a feedforward
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fully connected network with four hidden layers of size 80 just as our framework.

Hypernet (Ha et al., 2016). Hypernet extends the vanilla NODE by allowing the parameters of the ODE function to evolve
over time, introducing additional flexibility in modeling complex dynamics. Instead of using a static parameter set θ, the
model employs a hyper network that generates time-dependent parameters:

dx(t)

dt
= f(x(t), t;θ(t)), (27)

where θ(t) is dynamically generated based on an auxiliary network, namely, hypernetwork, which is implemented as a
multilayer perceptron (MLP). The function f governing the ODE is chosen to be a fully connected feedforward network,
consistent with our framework.

ANODEV2 (Zhang et al., 2019). ANODEV2 introduces a novel coupled neural ODE framework in which the parameters of
the ODE function, θ(t), are not fixed but instead evolve over time. This makes ANODEV2 the first method to integrate
parameter dynamics directly into the Neural ODE formulation. Additionally, ANODEV2 employs the Gershgorin function
to model θ(t) further to ensure numerical stability and interpretability. In our experiments, the function f governing the
ODE is chosen to be a fully connected feedforward network as our framework.

Heavy Ball Neural ODE (HBNODE) (Xia et al., 2021). HBNODE incorporates second-order dynamics inspired by
momentum-based optimization. Instead of modeling first-order differential equations, HBNODE considers a second-order
formulation:

d2x(t)

dt2
+ γ

dx(t)

dt
+∇xf(x(t)) = 0, (28)

where γ represents a damping term. This design mimics heavy-ball acceleration techniques in optimization and enhances
the stability and efficiency of learning in NODE-based systems.

LEADS (Yin et al., 2021). LEADS is a framework for learning dynamical systems that generalize across different
environments by capturing both shared and environment-specific dynamics. Instead of training a single global model or
separate models per environment, LEADS learns a common model for shared dynamics and augments it with components
tailored to each environment. This approach reduces sample complexity and improves generalization to both seen and
unseen environments, with theoretical guarantees and strong empirical performance on linear and nonlinear systems.

CoDA (Kirchmeyer et al., 2022). CoDA is a framework designed to enable fast and efficient generalization of dynamical
system models to new, unseen environments. It addresses distributional shifts by conditioning a shared dynamics model on
environment-specific context vectors, inferred from data using a hypernetwork. This approach constrains the hypothesis
space, allowing rapid adaptation and improved generalization with limited data. CoDA is theoretically grounded and achieves
state-of-the-art results across diverse nonlinear dynamical systems, with the ability to infer system-specific parameters from
context with minimal supervision.

ODE via Invertible Neural Networks (OINNs) (Zhi et al., 2022). OINNs leverage the invertibility property of normalizing
flows to construct a NODE formulation that preserves bijective mappings between states. The system is governed by:

dx(t)

dt
= g(f(x(t))), (29)

where g(·) is an invertible transformation. This approach allows for more stable training and enables efficient computation
of the inverse mapping.

Modulated Neural ODE (MoNODE) (Auzina et al., 2024). MoNODE introduces external control mechanisms into the
NODE framework, allowing for dynamic modulation of the ODE function. This design is particularly useful in scenarios
where external factors influence system dynamics. The governing equation takes the form:

dx(t)

dt
= f(x(t), u(t)), (30)

where u(t) is an external modulation signal.

As described above, Hypernet and ANODEV2 explicitly incorporate time-dependent ODE parameters, enhancing adaptability
in dynamic environments. We implement NODE, Hypernet, and ANODEV2 using the torchdiffeq library, with their
detailed architectures described above. For HBNODE, OINNs, and MoNODE, we leverage publicly available code to
implement them.
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D.3.2. TRAINING SETUP

The following reports the training setup of two experiments in Sec. 5.2. All models are implemented using PyTorch. We
employ the Adam optimizer for training with an initial learning rate of 1 × 10−4 , which follows an exponential decay
schedule with a decay rate of 0.95. The batch size is set to 10, and the model is trained for 200 epochs. For solving
the ordinary differential equation (ODE), we utilize the euler solver with atol = 10−7, and rtol = 10−9. Gradient
computation is performed using the adjoint sensitivity method, which allows for memory-efficient backpropagation through
ODE solvers. The loss function during training is MSE between the predicted trajectory and the ground truth.

D.3.3. IMPLEMENTATION DETAILS ABOUT NON-LINEAR OSCILLATOR

System details. In this section, we consider an undamped and unforced nonlinear oscillator. We set α = −1, β = 1, γ = 0.
The system equations are as follows:

dq

dt
= p,

dp

dt
= q − q3,

where q is the position, p is the momentum, and the parameters are α = −1, β = 1, and γ = 0. We give the characteristics
analysis of this system in the following.

(1) No Damping Term (γ = 0): The damping term typically causes the system’s energy to dissipate gradually, leading to a
decrease in oscillation amplitude over time. However, in this system, due to the absence of a damping term, the system will
continue to oscillate without any energy dissipation.

(2) Nonlinear Restoring Force: In this system, the restoring force consists of two parts: a linear term −αq and a nonlinear
term −βq3.

• Linear Term (q): This is the standard spring restoring force term, describing the basic elastic behavior of the system.

• Nonlinear Term (−q3): This is the key term in the Duffing equation, reflecting the nonlinear characteristics of the
system. Typically, this term causes the restoring force to depend not only on the linear displacement but also on the
cubic power of the displacement.

(3) System’s Motion Behavior: Due to the nonlinear restoring force, the system’s motion can exhibit various complex
behaviors, such as periodic motion, chaotic motion, or quasiperiodic oscillations. The nonlinear term usually causes the
system to deviate from a simple stable trajectory and may lead to different phase trajectories and periods. In particular, when
β = 1 > 0, the system exhibits sensitivity to initial conditions.

Data generation. We first consider an undamped and unforced nonlinear oscillator, setting the parameters as α = −1, β =
1, γ = 0. The training set includes 600 trajectories, each starting from an initial state uniformly sampled from an annular
region in [0.2, 1]. Each trajectory spans 30 time steps with a fixed step size of 0.1, and Gaussian noise 0.01n, n ∼ N (0, 1)
is added to simulate real-world data. The test set consists of 200 trajectories from the same system, with identical initial
state sampling but extending to 300 time steps. This setup enables us to assess both the ability of long-term prediction
and generalization. All trajectories are generated using dopri5. We visualize the trajectory data of four types under our
parameter settings as shown in Fig. 8.

Model architecture and hyperparameter. The neural ODE function is parameterized as a fully connected network with
four hidden layers, each containing 80 neurons with ReLU activation. w0 is randomly sampled from Gaussian distribution.
The dimension of w is 10.

D.3.4. IMPLEMENTATION DETAILS ABOUT THE DUFFING OSCILLATORS

System details. The system family represents a weakly damped linear oscillator, governed by the equations:

dq

dt
= p,

dp

dt
= −αq− γp (31)

which can be rewritten as a second-order differential equation:
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Figure 8. Four types trajectory data generated from non-linear oscillator system.

d2q

dt2
+ γ

dq

dt
+ αq = 0. (32)

Key characteristics:

• Underdamped oscillation: The system exhibits oscillatory motion with gradual amplitude decay due to small damping.

• Frequency dependence on α: The oscillation frequency is approximately in the range [0.7, 1.0].

• Exponential decay controlled by γ: Weak damping leads to slow energy dissipation.

• Parameter sensitivity: Small variations in α and γ induce minor shifts in oscillation frequency and decay rate, making
the system useful for studying stability under small perturbations.

Data generation. We consider a weakly damped linear oscillator, setting the parameters as α ∈ [0.9, 1.1], β = 0, and
γ ∈ [0.09, 0.11]. The training set consists of 300 trajectories, each initialized from a random state uniformly sampled within
an annular region r ∈ [0.5, 1]. Each trajectory spans 100 time steps with a fixed step size of 0.1, and Gaussian noise of
magnitude 0.01n, n ∼ N (0, 1) is added to simulate real-world variability. The test sets contain 100 trajectories, following
the same initial state sampling process as the training set but extending to 200 time steps, allowing for the evaluation
of long-term predictive capabilities. All trajectories are numerically integrated using the Dopri5 solver (a fourth-order
Runge-Kutta adaptive method). To visualize the system’s behavior, we randomly sample and plot several trajectory examples
in the phase space (momentum p vs. position q), as shown in Fig. 9. This dataset serves as a benchmark for evaluating the
ability of learning models to capture damped oscillatory dynamics and generalize across different time horizons.

Figure 9. Several trajectory examples in the phase space of duffing oscillators family data.

Model architecture and hyperparameter. The Neural ODE function is parameterized as a fully connected network with
four hidden layers, each containing 500 neurons with ReLU activation. w0 is initialized using method II, that is, using a
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Table 6. Datails about robot motion datasets regarding ”S”, ”CUBE”, and ”C”.

DATA NUMBER OF TRAJECTORIES TIME POINTS DATA DIMENSION

”C” 12 1000 3
”CUBE” 14 1000 3

”S” 7 1000 2

RNN, which processed the first 5 observed trajectory points to infer an initial latent state. Note that all of the comparison
methods in this experiment use five observed trajectory points as inputs. The dimension of the w is set to 100. h is also the
fully connected network.

D.4. Details about Experiment in Sec. 5.4

Training setup. The training setup of Experiment IV is the same to Experiment II in App. D.3.2.

D.4.1. DATASET

Dataset Description The dataset, proposed by Khansari-Zadeh & Billard (2011), consists of three types of trajectory data,
all derived from real-world motion demonstrations, including:

(1) Drawing ”S” shapes. This trajectory represents an object or a robot executing an ”S”-shaped motion, which may be
used for handwritten character recognition, path planning, or robot trajectory imitation learning.

(2) Placing a cube on a shelf. This task involves manipulating objects (e.g., a robotic arm grasping and placing an object),
which is commonly used in robotic grasping and placement tasks to evaluate the precision and stability of robotic operations.

(3) Drawing out a large ”C”. This trajectory involves performing a large-scale ”C”-shaped motion, which may be used for
handwritten character recognition or path planning. It can also serve as a test case for trajectory generation models.

Data generation For preprocessing, we follow the approach of Zhi et al. (2022), where B-spline interpolation is applied to
smooth the trajectories and standardize the number of time points to 1000. Detailed information about these three datasets is
provided in Tab. 6 and the visual results are presented in Fig. 10.

Figure 10. Trajectory example of robot motion datasets.

For the ”S” dataset, 4 trajectories are used for training, while 1 trajectory is allocated for validation and 1 for testing. For
the ”CUBE” dataset, 10 trajectories are selected for training, with 1 trajectory for validation and 3 for testing. For the ”C”
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Table 7. Datails about datasets in Experiment V regarding Type and Data Characteristics.

DATASET TYPE DATA CHARACTERISTICS

CUP AIR QUALITY LONG-TERM DEPENDENCIES, NONLINEAR POLLUTANT DIFFUSION
WEATHER WEATHER VARIABLE SHORT-TERM DYNAMICS DOMINANT, NON-PERIODIC FLUCTUATIONS

ETTH1 TRANSFORMER TEMPERATURE LONG-TERM DEPENDENCIES, PERIODIC TRENDS
ETTH2 TRANSFORMER TEMPERATURE LONG-TERM DEPENDENCIES, COMPLEX PERIODICITY
ETTM1 TRANSFORMER TEMPE. (MINUTE) STRONG SHORT-TERM DYNAMICS, HIGH-FREQUENCY DATA
ETTM2 TRANSFORMER TEMPE. (MINUTE) HIGH-FREQUENCY DYNAMICS, STRONG SHORT-TERM FLUCTUATIONS

Table 8. Datails about datasets in Experiment V regarding Frequency and Dimension.

DATASET FREQUENCY DIMENSION

CUP 1 HOUR 270
WEATHER 10 MIN 21

ETTH1 1 HOUR 7
ETTH2 1 HOUR 7
ETTM1 15 MIN 7
ETTM2 15 MIN 7

dataset, 10 trajectories are designated for training, while 1 trajectory is assigned for validation and 1 for testing. During
training, a random starting point is selected from the trajectories in the training set, and the subsequent 100 data points are
extracted as training samples. The model’s performance is then evaluated across the entire trajectory.

D.4.2. IMPLEMENTATION DETAILS ABOUT ROBOT MOTIONS: MODEL ARCHITECTURE AND HYPERPARAMETERS.

For dataset ”S” and dataset ”CUBE”, the Neural ODE function is parameterized as a fully connected network with four
hidden layers, each containing 200 neurons with ReLU activation, while for dataset ”C” it contains 350 neurons. The initial
observablew0 is initialized using method II, that is, using a RNN, which processed the first 50 observed trajectory points to
infer an initial latent state. Note that all of the comparison methods in this experiment use 50 observed trajectory points as
inputs. The dimension of the w is both set to 10. h is also the fully connected network.

D.5. Details about Experiment in Sec. 5.5

D.5.1. DATA DESCRIPTION

In this study, we use the following six datasets to evaluate the predictive performance of different models. These datasets
cover multiple application domains, including air quality forecasting, weather prediction, and electricity load forecasting,
each exhibiting distinct time series characteristics. The details of the datasets are summarized in Tabs. 7 and 8.

D.5.2. IMPLEMENTATION DETAILS

We give the details about model architecture and hyperparameters across different datasets in this experiment in Tab. 9.
Both our method and the baseline models take 10 time steps as input and predict the subsequent 100 time steps.

D.5.3. DETAILS ABOUT COMPARISION METHODS

All the results of the comparison methods we reproduced are implemented based on the original paper or official code.

DeepVAR: A deep vector autoregression (VAR) model with variational inference, suitable for multivariate time series
forecasting and probabilistic modeling.

Autoformer: Utilizes auto-correlation attention and trend-seasonality decomposition for improved long-term time series
forecasting.

PatchTST: A Transformer-based model with patching mechanisms, effectively capturing local patterns and long-range
dependencies.
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Table 9. Details about model architecture and hyperparameters.

MODEL SETTINGS CUP WEATHER ETTH1 ETTH2 ETTM1 ETTM2

ODE NETWORK

NETWORK TYPE MLP MLP MLP MLP MLP MLP
HIDDEN STATE DIMENSION 300 300 250 300 150 300
HIDDEN LAYER 4 4 5 4 4 5
ACTIVATION RELU RELU RELU RELU RELU RELU

W SETTINGS

w0 II(RNN) II(RNN) II(RNN) II(RNN) II(RNN) II(RNN)
DIMENSION 100 100 100 100 10 100

TRAINING SETTINGS

OPTIMIZER ADAM LEARNING RATE 1e−3

LR SCHEDULER EXP DECAY DECAY RATE 0.95
BATCH SIZE 32 EPOCH 10
NUMERICAL SOLVER EULER BACKPROPAGATION ADJOINT METHOD

Koopa: Employs Koopman operator theory for nonlinear dynamic system modeling, ideal for periodic and quasi-periodic
time series.

SST: Combines state-space modeling (SSM) with Transformer architecture, excelling at both short-term dynamics and
long-term dependencies.
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