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ABSTRACT

Deep neural networks (DNNs) struggle to generalize to out-of-distribution do-
mains that are different from those in training despite their impressive perfor-
mance. In practical applications, it is important for DNNs to have both high stan-
dard accuracy and robustness against out-of-distribution domains. One technique
that achieves both of these improvements is disentangled learning with mixture
distribution via auxiliary batch normalization layers (ABNs). This technique treats
clean and transformed samples as different domains, allowing a DNN to learn bet-
ter features from mixed domains. However, if we distinguish the domains of the
samples based on entropy, we find that some transformed samples are drawn from
the same domain as clean samples, and these samples are not completely different
domains. To generate samples drawn from a completely different domain than
clean samples, we hypothesize that transforming clean high-entropy samples to
further increase the entropy generates out-of-distribution samples that are much
further away from the in-distribution domain. On the basis of the hypothesis, we
propose high entropy propagation (EntProp), which feeds high-entropy samples
to the network that uses ABNs. We introduce two techniques, data augmentation
and free adversarial training, that increase entropy and bring the sample further
away from the in-distribution domain. These techniques do not require additional
training costs. Our experimental results show that EntProp achieves higher stan-
dard accuracy and robustness with a lower training cost than existing methods. In
particular, EntProp is highly effective at training on small datasets.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved impressive performance in a variety of fields, such as
computer vision, natural language processing, and speech recognition. However, DNNs are suscep-
tible to accuracy degradation when presented with data distributions that deviate from the training
distribution. This is a common occurrence in outdoor environments, such as autonomous driving and
surveillance cameras, due to variations in weather and brightness (Diamond et al., 2021; Hendrycks
& Dietterich, 2019; Zendel et al., 2018). As a result, while standard accuracy is essential for DNNs,
robustness against distribution shifts is equally important.

Various techniques have been proposed to improve the robustness against out-of-distribution do-
mains (e.g., domain adaptation (Saenko et al., 2010; Ganin & Lempitsky, 2015; Tzeng et al., 2015)),
many of which usually decrease the standard accuracy. One technique to improve both standard
accuracy and robustness is disentangled learning with mixture distribution using a dual batch nor-
malization (BN) layer (Xie et al., 2020; Mei et al., 2022; Zhang et al.; Wang et al., 2021). This
technique prepares an auxiliary BN layers (ABNs) in addition to the main BN layers (MBNs). It
feeds the clean samples and the samples transformed by adversarial attacks or data augmentation to
the same network but applied with different BNs, i.e., use the MBNs for the clean samples and use
the ABNs for the transformed samples. The distinction of the BNs used to train samples of different
domains prevents mixing of the BN layer statistics and the affine parameters (Zhang et al., 2023), al-
lowing the MBN-applied network to learn better from the features of both the out-of-distribution and
in-distribution domains (Xie et al., 2020). Furthermore, since only MBNs are used during inference,
there is no increase in computational cost in test-time.
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Figure 1: Entropy per epoch when ResNet-18 is trained with MixProp (Zhang et al.) (left) and
AdvProp (Xie et al., 2020) (right) on the CIFAR-100 dataset. Error bars indicate one standard
deviation, and lines indicate average.

Existing studies treat clean and transformed samples as different domains; however, it is not clear
whether these samples are entirely different domains. It is clear that clean samples are in-distribution
domain. The transformed samples can be divided into two groups: those that are highly transformed
and those that are less transformed. Therefore, we have the following research questions: Do
transformed samples include samples drawn from both the in-distribution and out-of-distribution
domains?

As a first step in answering this question, we consider distinguishing between the in-distribution and
out-of-distribution samples. Since adversarial attacks and data augmentation are transformations
that increase the diversity and hardness of samples (Wang et al., 2021), we verify the distinction
of domains using an uncertainty metric, entropy. Figure 1 shows the entropy of clean and trans-
formed samples when training the network with existing methods. The results show that some of the
clean samples with high entropy overlap with the entropy of the transformed samples. Since clean
high-entropy samples are already similar to out-of-distribution samples, we hypothesize that apply-
ing entropy-increasing transformations to clean high-entropy samples generates out-of-distribution
samples that are much further away from the in-distribution samples. From this hypothesis, we
propose high entropy propagation (EntProp), which trains ABN-applied network with high-entropy
samples. First, a network trains clean samples using MBNs and calculates entropy. Then, for the
high-entropy samples in the clean samples, a network trains using ABNs. At this time, to further
increase the entropy of the samples and bring them further away from the in-distribution domain,
we introduce two techniques, data augmentation and free adversarial training (Shafahi et al., 2019).
These techniques have no additional training cost and allow for further accuracy gains.

We evaluated EntProp on two image classification datasets, CIFAR-100 (Krizhevsky et al., 2009)
and CUB-200-2011 (Welinder et al., 2010), with several DNN architectures. We show that training
ABN-applied networks on clean high-entropy samples improves both standard accuracy and robust-
ness even though it does not use adversarial attacks or data augmentation. EntProp, which includes
two entropy-increasing techniques, shows higher accuracy at a lower training cost than comparison
methods. Furthermore, we show that on the small dataset, the use of adversarial training on all sam-
ples leads to overfitting and accuracy degradation, which can be resolved by undersampling, such as
EntProp.

The contributions of this paper are as follows:

• We propose EntProp, a novel disentangled learning method via ABNs. We treat high-
entropy samples as out-of-distribution domain, and introduce two techniques to further
separate them from the in-distribution domain.

• Our experiments show that EntProp achieves better standard and robustness than existing
methods, despite its lower training cost.

• We demonstrate that using all samples for adversarial training on small datasets leads to
overfitting and lower accuracy than vanilla training. Undersampling methods such as Ent-
Prop prevent overfitting, benefit from adversarial training, and improve accuracy.
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2 RELATED WORK

Adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018) cause DNNs to make wrong predic-
tions by adding human imperceptible perturbations to input sample. To defend against such attacks,
a variety of methods (Kannan et al., 2018; Zhang et al., 2019; Wang et al., 2020) have been proposed
to train DNNs with adversarial samples, also known as adversarial training. However, adversarial
training has a trade-off (Tsipras et al., 2018; Ilyas et al., 2019) between accuracy on clean samples
and robustness to adversarial attacks, compromising accuracy on clean samples in order to achieve
high robustness. The reason for this trade-off was thought to be that the two domains are learned
simultaneously by a single DNN, motivated by the two-domain hypothesis (Xie & Yuille, 2019) that
clean and adversarial samples are drawn from different domains. Based on this hypothesis, Xie &
Yuille (2019) showed that using MBNs for clean samples and ABNs for adversarial samples avoids
mixing the statistics and affine parameters of BN layers (Zhang et al., 2023) by two different domains
and achieves high accuracy for the domain for which each BN layer is trained. AdvProp (Xie et al.,
2020) showed that disentangled learning for a mixture of distributions via ABNs allows DNNs with
MBNs to learn more effectively from both adversarial and clean samples, improving the standard ac-
curacy and the accuracy for the out-of-distribution domain. AdvProp is simple and highly practical,
and has since been developed in various ways. Fast AdvProp (Mei et al., 2022) reduced the number
of samples and iterations required for adversarial attacks, resulting in the same computational cost
as vanilla training, with higher accuracy. Disentangled learning via ABNs showed effectiveness not
only using adversarial attacked samples, but also using data augmented samples (Merchant et al.,
2020; Zhang et al.; Wang et al., 2021) and style transferred samples (Li et al., 2020). Furthermore,
AdvProp was proposed for various applications, including object detection tasks (Chen et al., 2021),
contrastive learning (Jiang et al., 2020; Ho & Nvasconcelos, 2020), and training vision transform-
ers (Herrmann et al., 2022).

Although these studies treat clean and transformed samples as different domains, we argue that
some of these samples overlap in domain. We train the MBN-applied network with clean samples
as the in-distribution domain and the ABN-applied network with high-entropy samples as the out-
distribution domain.

3 PROPOSED METHOD

In this section, we describe our method, high entropy propagation (EntProp), for effective disentan-
gled learning with mixture distribution via ABNs.

3.1 MOTIVATION

Existing methods treat clean samples as the in-distribution domain and samples transformed by ad-
versarial attacks (Xie et al., 2020; Mei et al., 2022; Xie & Yuille, 2019) or data augmentation (Zhang
et al.; Merchant et al., 2020) as the out-of-distribution domain, and distinguish the BNs used for
these samples. Although it is clear that clean samples are the in-distribution domain, we question
that transformed samples are the out-distribution domain. In the transformed samples, some samples
are significantly affected by the transformation and are further away from the in-distribution domain,
while some samples are less affected and are closer to the in-distribution domain. If the distribution
is distinguished by entropy as shown in Figure 1, some samples in the clean and transformed samples
have overlapping domain, which may prevent effective disentangled learning via ABNs. Since clean
high-entropy samples are in the same domain as the transformed out-of-distribution samples, we hy-
pothesize that transforming these samples to increase entropy generates out-of-distribution samples
that are significantly different from the in-distribution samples. On the basis of the hypothesis, we
propose EntProp, which trains the ABN-applied network on high-entropy samples.

3.2 METHODOLOGY

Here, we describe the process of one iteration of EntProp training. We assume a network with
ABNs in addition to the MBNs. Figure 2 shows the overview of EntProp and existing methods, and
Algorithm 1 shows the pseudo-code of EntProp.
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Table 1: Training costs for each method. padv is the Fast AdvProp hyperparameter that determines
the sample percentage used for adversarial attack.

Vanilla AdvProp Fast AdvProp MixProp EntProp

Training Cost N (2 + n)N (1 + padv)N 2N (1 + kn)N

Sample Selection. First, the MBN-applied network outputs predictions from clean samples. From
the predictions, we compute loss and entropy. Next, we feed the top k|B| samples of high-entropy
samples to the ABN-applied network to compute the loss, where k ∈ [0, 1] is a hyperparameter and
|B| is the batch size. Finally, we update the network parameters from the gradient to minimize total
loss. Furthermore, based on our hypothesis, we introduce two techniques that increase entropy of
samples without additional training cost: data augmentation and free adversarial training.

Data Augmentation. Data augmentation is the most common technique widely used when train-
ing DNNs that improves the accuracy of the DNN by transforming samples and increasing diversity
and hardness. Since most data augmentations use simple transformations, the computational cost is
negligible compared to training DNNs. We use MixUp (Pang et al., 2019), the most typical data aug-
mentation. MixUp linearly combines two samples in a mini-batch and increase entropy because the
combined sample has two labels. Unlike MixProp (Zhang et al.), we treat augmented samples as in-
distribution domain and train MBN-applied network from the augmented samples for the calculation
of loss and entropy. Since MixUp is a method for improving standard accuracy, samples transformed
by MixUp retain sufficient information about the in-distribution domain. Furthermore, MixUp elim-
inates the high-entropy sample selection bias in each iteration, allowing the ABN-applied network
to train a diversity of samples (see Appendix for details). The MixUp loss function is defined as:

Lm = λLc(θ,xm, ya) + (1− λ)Lc(θ,xm, yb), (1)
where Lc is the cross-entropy loss, θ is the network parameter, λ is the mixing coefficient, xm is the
mixed sample, and ya and yb are the labels of the sample before mixing. If EntProp does not use
MixUp, the MBN-applied network trains Lc for clean samples.

Free Adversarial Training. Shafahi et al. (2019) generates adversarial examples by reusing the
gradients used for training in the previous iteration. We use this technique to generate adversarial
examples xa for high-entropy samples. EntProp first calculates the loss to clean or augmented
samples with MBN-applied network, allowing the generation of free adversarial examples from
the gradient at this time. Note that it is not optimal to use the MBN-applied network gradient to
generate an adversarial attack on the ABN-applied network. When we use augmented samples,
we use the gradient obtained from the augmentation loss to generate an adversarial example. In
the case of multiple iterations for the attacker, as in a Projected Gradient Descent (PGD) (Madry
et al., 2018) attack, the first one has no computational cost, but the subsequent ones have the same
computational cost as a standard adversarial attack and are generated from the gradient of the ABN-
applied network. For the PGD attack, we set perturbation size ϵ to n+ 1 and attack step size α to 1,
where n is the number of iterations for the attacker. If the number of iterations is 1, then ϵ is set to 1.

3.3 TRAINING COST

Here, we consider the training cost of one epoch. We denote the cost of a single forward and
backward pass for a single sample as 1 and the size of the dataset as N . The cost of vanilla training
for one epoch is N . EntProp first uses the clean mini-batch, then k|B| samples of the mini-batch, thus
the cost is (1+k)N . The computational cost of data augmentation and free adversarial training (n =
1) is negligible compared to the computational cost of forward and backward passes, thus using them
does not change the overall training cost. If we increase the iteration number n of the adversarial
attack by more than 1, it cost us an additional k(n−1)N . Consequently, the training cost of EntProp
is (1 + kn)N . Table 1 shows the training cost per epoch for existing methods and EntProp.

4 EXPERIMENTS

In this section, we experimented on two image classification datasets: CIFAR-100 (Krizhevsky et al.,
2009) and CUB-200-2011 (Welinder et al., 2010), and show the effectiveness of EntProp.
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Algorithm 1: Pseudo code of EntProp
Data: A set of clean samples with labels;
Result: Network parameter θ;
for each training step do

Sample a clean mini-batch x with label y;
Generate the corresponding augmented mini-batch xm and labels ya and yb;
Compute loss Lm and entropy on augmented mini-batch using the MBNs;
Obtain the gradient ∇ ← ∇xm ;
Get the topk|B| samples xa with the highest entropy from augmented mini-batch;
δ ← 0;
for i = 1, . . . , n do

δ ← δ + ϵ · sign(∇);
xa = xa + clip(δ,−ϵ, ϵ);
Compute loss Lc(θ,xa, y) on adversarial sample using the ABNs;
Obtain the gradient∇ ← ∇xa ;

end
Minimize the total loss w.r.t. network parameter argmin

θ
Lm + Lc(θ,xa, y).

end
return θ

Clean sample Transformed sample High entropy sample

MBN

Conv

ReLU

ABN MBN

Conv
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Figure 2: Overview of existing methods (left) and EntProp (right). The existing methods feed
clean samples to MBN and transformed samples to ABN. EntProp feeds clean samples to MBN and
transforms clean high-entropy samples and feeds them to ABN.

4.1 EXPERIMENTS SETUP

4.1.1 DATASETS AND ARCHITECTURES

CIFAR-100. CIFAR-100 dataset consists of 50000 training images and 10000 test images, with
100 classes. We used ResNet (He et al., 2016), Wide ResNet (Zagoruyko & Komodakis, 2016), and
ResNeXt (Xie et al., 2017) as DNN architectures, and SGD with momentum 0.9 as optimizer. We
trained DNNs with batch size of 128 for 200 epochs with weight decay of 0.0005. The learning rate
started with 0.1 and decreased by cosine scheduler.

CUB-200-2011. CUB-200-2011 dataset consists of 5994 training images and 5794 test images,
with 200 classes. We used the ResNet (He et al., 2016) and the EfficientNet (Tan & Le, 2019)
family pretrained (maintainers & contributors, 2016) by ImageNet dataset (Russakovsky et al., 2015)
as DNN architectures, and Adam (Kingma & Ba, 2015) as optimizer. Since the pretrained networks
do not have ABNs, we set the initial weights of the ABNs to be the same as those of the MBNs. We
fine-tuned networks with batch size of 64 for 100 epochs with weight decay of 0.0005. The learning
rate started with 0.0001 and decreased by the factor of 0.1 at every 10 epochs.
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4.1.2 EVALUATION.

To evaluate the balance between standard accuracy (SA), which is the accuracy of a standard
test set, and robust accuracy (RA), which is the average accuracy of an artificially corrupted test
set (Hendrycks & Dietterich, 2019), we define the harmonic mean as our evaluation metric.

Hscore =
2SA · RA
SA + RA

. (2)

The corrupted test set consists of 15 types of corruption1 with five severity levels, and we use the
average accuracy of all of them as RA. Hscore is high only when both SA and RA are high. All
experiments were performed three times and we report the average values.

4.1.3 COMPARISON METHODS.

We compared the four methods with EntProp.

• Vanilla. Vanilla training for network without ABNs.
• AdvProp. AdvProp feeds the clean samples and the adversarial samples to the same net-

work but applied with different BNs. We used PGD as the attacker to generate adversarial
samples. We set the perturbation size ϵ to 4. The number of iterations for the attacker is
n = 5 and the attack step size is α = 1.

• Fast AdvProp. Fast AdvProp speeds up AdvProp by reducing the number of iterations
for PGD attacker and the percentage of training samples used as adversarial examples. We
set the percentages of training samples used as adversarial examples to padv = 0.2, the
perturbation size ϵ to 1, the number of iterations for the attacker to n = 1, and the attack
step size to α = 1.

• MixProp. MixProp feed the clean samples and the augmented samples with MixUp to the
same network but applied with different BNs. The parameter of the beta distribution used
for MixUp is set to 1.

4.2 MAIN EXPERIMENTS

In this section, we show the effectiveness of EntProp. For fair comparison, all methods used MixUp
during training. All methods except MixProp trained the MBN-applied network on the augmented
samples. Fast AdvProp and AdvProp generated adversarial examples from clean samples following
the Fast AdvProp setting. We describe more detailed experimental results in the Appendix.

4.2.1 EXPERIMENTS ON THE CIFAR-100 DATASET

First, we confirmed the effect of feeding clean high-entropy samples to the ABN-applied network.
Figure 3 shows the results of sample selection with high entropy versus random selection. There is
little difference when k is small and large, and entropy shows higher Hscore than random when k =
0.2 to k = 0.7. Furthermore, k ≥ 0.1 shows a higher Hscore than vanilla training (k = 0), meaning
that the use of ABN is effective. The use of ABN increases the number of network parameters
during training and allows the network to achieve good generalization performance.

Next, we verified each component of EntProp to confirm the effect of increasing entropy. We set
k = 0.2 and n = 1. Table 2 shows the results. Training clean high-entropy samples with the
ABN-applied network improves both SA and RA from vanilla training even though no additional
processing, such as adversarial attacks, is performed. MixUp further improves both SA and RA,
while free adversarial training further improves RA but slightly decreases SA. EntProp which uses
all components achieves the highest Hscore. Increasing entropy brings the sample further away
from the in-distribution domain, allowing effective disentangled learning with mixture distribution.
Moreover, Figure 4 shows the entropy of the clean and transformed samples when training the
network with EntProp. The results show that EntProp (k = 0.2, n = 5) completely distinguishes
between the domains of clean and transformed samples, as we hypothesize.

1Gaussian noise, Shot noise, Impulse noise, Defocus blur, Glass blur, Motion blur, Zoom blur, Snow, Frost,
Fog, Brightness, Contrast, Elastic transform, Pixelate, JPEG.
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Figure 3: Comparison of high-entropy sample selection to random selection using ResNet-18 on
the CIFAR-100 dataset. Error bars indicate one standard error, and lines indicate the average. k = 0
is the same as vanilla training, and k = 1 feeds all samples to the ABN-applied network.

Table 2: Ablation study with ResNet-18 on the CIFAR-100 dataset. The best and second results are
bolded and underlined. The numbers in parentheses indicate the differences from vanilla training.

Sample Selection MixUp Free (n = 1) SA(%) RA(%) Hscore

✓ 79.24(0.79) 51.17(1.21) 62.18(1.14)
✓ ✓ 79.66(1.21) 54.53(4.57) 64.74(3.70)
✓ ✓ 78.55(0.10) 52.99(3.03) 63.29(2.25)
✓ ✓ ✓ 79.41(0.96) 55.24(5.28) 65.15(4.11)

Then, we compared our method to comparison methods using four network architectures on the
CIFAR-100 dataset. Table 3 shows the Hscore and training cost of the network when trained from
scratch by each method. The comparison methods consistently improve Hscore by adding MixUp to
the training. The results show that bringing the samples further away from the in-distribution domain
by increasing entropy is highly effective for disentangled learning. EntProp (k = 0.2, n = 1) has
the same training cost as Fast AdvProp and higher average Hscore. EntProp (k = 0.4, n = 1)
has a significantly lower training cost than AdvProp and higher average Hscore, and EntProp (k =
0.6, n = 5) has a lower training cost than AdvProp + MixUp and the highest average Hscore. These
results indicate that EntProp allows for more efficient training by bringing the samples fed to the
ABN-applied network further away from the in-distribution domain.

4.2.2 EXPERIMENTS ON THE CUB-200-2011 DATASET

We fine-tuned the pre-trained models by each method on the CUB-200-2011 dataset. Table 4 show
the results for the ResNet and EfficientNet families, respectively. EntProp (k = 0.2, n = 5) has
the best results for ResNet-18 and AdvProp for the rest of the ResNet family. The average results
of ResNet family show that EntProp (k = 0.2, n = 1) outperforms comparison methods with sim-
ilar training costs, and EntProp (k = 0.2, n = 5) has the best results. The experiments with the
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Figure 4: Entropy per epoch when ResNet-18 is trained with EntProp (k = 0.2, n = 1) (left)
and EntProp (k = 0.2, n = 5) (right) on the CIFAR-100 dataset. Error bars indicate one standard
deviation, and lines indicate average.
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Table 3: Hscore and training cost for the four network architectures on the CIFAR-100 dataset. Avg.
indicates the average of the four networks.

Method Cost ResNet-18 ResNet-50 WRN-50 ResNeXt-50 Avg.

Vanilla N 61.04 62.08 62.56 63.99 62.42
Fast AdvProp 1.2N 63.63 64.45 65.25 65.17 64.63
AdvProp 7N 64.69 67.17 67.17 67.37 66.60

Vanilla + MixUp N 64.11 64.19 66.61 67.93 65.71
MixProp 2N 64.73 66.18 66.87 67.36 66.29
Fast AdvProp + MixUp 1.2N 64.59 66.83 66.74 67.39 66.39
AdvProp + MixUp 7N 65.08 69.21 69.60 69.90 68.45
EntProp (k = 0.2, n = 1) 1.2N 65.15 65.93 67.00 68.08 66.54
EntProp (k = 0.4, n = 1) 1.4N 65.37 66.11 68.14 67.44 66.77
EntProp (k = 0.6, n = 1) 1.6N 65.40 66.95 68.34 68.72 67.36
EntProp (k = 0.2, n = 5) 2N 64.58 66.12 67.64 68.31 66.66
EntProp (k = 0.4, n = 5) 3N 66.46 67.95 69.58 69.03 68.26
EntProp (k = 0.6, n = 5) 4N 66.30 69.12 69.52 69.96 68.73

Table 4: Hscore for the ResNet family (top table) and the EfficientNet family (bottom table) on the
CUB-200-2011 dataset.

Method ResNet-18 ResNet-50 ResNet-101 ResNet-152 Avg.

Vanilla + MixUp 62.11 68.66 71.54 72.36 68.67
MixProp 62.24 67.70 70.14 71.37 67.86
Fast AdvProp + MixUp 63.26 69.75 72.81 72.95 69.69
AdvProp + MixUp 62.69 70.66 73.12 73.77 70.06
EntProp (k = 0.2, n = 1) 63.58 69.74 72.67 73.46 69.86
EntProp (k = 0.2, n = 5) 64.21 70.17 72.59 73.59 70.14

Method B0 B1 B2 B3 B4 B5 B6 B7 Avg.

Vanilla + MixUp 68.44 72.14 72.08 72.05 73.18 74.18 75.12 74.64 72.75
MixProp 67.89 71.27 71.74 73.32 74.4 74.28 75.23 75.06 72.92
Fast AdvProp + MixUp 68.85 71.85 72.26 72.56 72.75 73.97 74.96 75.01 72.79
AdvProp + MixUp 66.63 68.10 68.4 68.77 70.36 70.55 71.54 71.67 69.51
EntProp (k = 0.2, n = 1) 69.24 71.98 72.64 72.60 74.28 74.54 75.42 74.97 73.22
EntProp (k = 0.2, n = 5) 69.41 72.06 72.34 72.23 73.52 74.46 75.22 76.32 73.21

EfficientNet family show that EntProp (k = 0.2, n = 1) has the best average results. PGD attack
does not show consistent improvement as in other experiments. AdvProp consistently shows signif-
icantly lower results than vanilla training. Although adversarial training requires a large amount of
dataset (Schmidt et al., 2018), the CUB-200-2011 dataset is small, and training using PGD attack
leads to overfitting (Rice et al., 2020). EntProp and Fast AdvProp prevent overfitting by undersam-
pling, while EntProp outperforms Fast AdvProp due to efficient sampling based on entropy.

4.2.3 UNCERTAINTY METRIC

We use entropy as a metric to select the samples that EntProp feeds to the ABN-applied network.
We evaluated EntProp (k = 0.2, n = 1) when using the following metrics, other than entropy, to
distinguish between samples in the in-distribution and out-of-distribution domains.

• Cross-Entropy is the distance between the true probability distribution and the predicted
probability distribution.

• Confidence is the maximum class probability.

• Logit Margin is the difference between the maximum non-true class probability and the
true class probability.
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Table 5: Hscore for different uncertainty metrics on the CIFAR-100 dataset.
Metrics ResNet-18 ResNet-50 WRN-50 ResNeXt-50 Avg.

Entropy 65.15 65.93 67.00 68.08 66.54
Cross-Entropy 64.81 64.76 67.12 68.34 66.26
Confidence 65.48 66.47 67.36 67.23 66.63
Logit Margin 64.84 66.18 65.71 68.53 66.31

Table 6: Adversarial robustness of ResNet-18 on the CIFAR-100 dataset.
Sample Selection MixUp Free (n = 1) Metric PGD-20

6.14
✓ Entropy 6.44
✓ ✓ Entropy 4.14
✓ ✓ Entropy 10.51
✓ ✓ ✓ Entropy 4.71
✓ ✓ ✓ Cross-Entropy 4.45
✓ ✓ ✓ Confidence 4.59
✓ ✓ ✓ Logit Margin 4.42
✓ ✓ ✓ Random 5.24

Because we use MixUp during training, the true label used by these metrics is the original true label
of the sample. Table 5 shows the results. All metrics show no significant differences. The results
show that different architectures have different effective metrics.

5 LIMITATION

In this paper we focus on improving both standard accuracy and robustness against out-of-
distribution domains. We additionally evaluated the robustness against the adversarial attack. We
evaluated the accuracy of EntProp variants and vanilla training against PGD-20 attack. Table 6
shows the results. Feeding clean high-entropy samples to the ABN-applied network shows higher
adversarial robustness than vanilla training, even though adversarial attacks are not used for train-
ing. Free adversarial training significantly improves adversarial robustness, but MixUp significantly
decreases it. In the comparison of sample selection metrics, random shows the best results rather
than using uncertainty metrics. These results indicate that each component of EntProp designed on
entropy is effective in improving standard accuracy and out-of-distribution robustness; however, it
is not effective in improving adversarial robustness. If the objective is a different evaluation metric
than ours, it is necessary to design an appropriate metric that is different from the entropy.

6 CONCLUSION

The existing disentangled learning methods train from mixture distribution by treating clean and
transformed samples as different domains, and feeding the former to the MBN-applied network and
the latter to the ABN-applied network. However, it is not appropriate to treat the clean and trans-
formed samples as different domains. We found that when we verified the domains of the samples
based on entropy, the clean and transformed samples had overlapping regions of domains. We hy-
pothesize that further increasing the entropy of clean high-entropy samples generates samples that
are further away from the in-distribution domain. On the basis of the hypothesis, we propose a
novel method, EntProp, which feeds high-entropy samples to the ABN-applied network. Our exper-
iments show that EntProp has high accuracy even though its training cost is less than that of existing
methods. In particular, experiments on small dataset show that Entprop prevents overfitting against
adversarial training and outperforms comparison methods. Our method improves standard accuracy
and out-of-distribution robustness, but has limitations with respect to adversarial robustness. This
limitation suggests the need to design an optimal domain selection metric for each task.
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A SAMPLE SELECTION BIAS

We verified the bias of the high-entropy sample selection during training. Figure 5 shows the results.
At k = 0.2, the bias is large and most samples are not selected as high-entropy samples. MixUp
eliminates high-entropy sample selection bias.
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Figure 5: Histogram of the number of times a sample was selected as a high-entropy sample. (a)
k = 0.2. (b) k = 0.2 w/MixUp. (c) k = 0.4. (d) k = 0.4 w/MixUp. (e) k = 0.6. (f) k = 0.6
w/MixUp.
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B CIFAR-100 EXPERIMENTS DETAIL

Figure 6 shows the entropy of the clean and transformed samples when training the network with
EntProp variant. Two techniques show that they increase the entropy of the sample.
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Figure 6: Entropy per epoch when ResNet-18 is trained with EntProp (w/o MixUp, w/o Free
adversarial training) (left), EntProp (w/o Free adversarial training) (center), and EntProp (w/o
MixUp) (right) on the CIFAR-100 dataset. Error bars indicate one standard deviation, and lines
indicate average.

Table 7 shows the results of standard accuracy and robust accuracy in the CIFAR-100 experiments.
MixProp consistently shows the highest SA, but it decreases the RA of WRN-50 and ResNeXt-50.
AdvProp shows the highest RA, but decreases SA in many networks. EntProp shows improvement
in SA and RA in many cases.

C CUB-200-2011 EXPERIMENTS DETAIL

Table 8 shows the results of standard accuracy and robust accuracy for the ResNet family in the
CUB-200-2011 experiments. Average results show MixProp with the highest SA and AdvProp with
the highest RA. However, MixProp has lower RA and AdvProp has lower SA than vanilla training.
EntProp and Fast AdvProp show balanced results that improve both SA and RA.

Table 9 shows the results of standard accuracy and robust accuracy for the EfficientNet family in
the CUB-200-2011 experiments. MixProp consistently shows the highest SA, but it decreases the
RA in many case. All methods except MixProp show a decrease in SA compared to vanilla train-
ing. This result implies that networks trained by adversarial training-based methods are overfitting
to adversarial attacks. In particular, AdvProp is more likely to lead to overfitting, with both SA
and RA showing lower results than vanilla training. EntProp and Fast AdvProp prevent overfitting
and improve RA by reducing the number of samples of adversarial attacks through undersampling.
Entropy-based undersampling of EntProp outperforms random sampling of Fast AdvProp.

D DATA AUGMENTATION

We compared MixUp and CutMix (Yun et al., 2019) as data augmentations that increase entropy at
no additional training cost. Table 10 shows the results. The results show that CutMix outperforms
for SA, but MixUp significantly outperforms for RA and Hscore. MixUp, which transforms the entire
image, is more likely to increase entropy than CutMix, which transforms a portion of the image, and
contributes to improving Hscore.
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Table 7: Standard accuracy (top table) and robust accuracy (bottom table) for the four network
architectures on the CIFAR-100 dataset. The best and second results are bolded and underlined.
Avg. indicates the average of the four networks.

Method ResNet-18 ResNet-50 WRN-50 ResNeXt-50 Avg.

Vanilla 78.45 79.30 79.35 80.86 79.49
Fast AdvProp 78.89 79.43 79.69 79.30 79.33
AdvProp 75.15 78.05 77.50 78.36 77.27

Vanilla + MixUp 79.23 79.04 80.75 81.39 80.10
MixProp 80.86 81.84 82.17 82.37 81.81
Fast AdvProp + MixUp 78.94 80.68 80.19 80.74 80.14
AdvProp + MixUp 77.04 79.87 80.22 80.91 79.51
EntProp (k = 0.2, n = 1) 79.41 79.99 80.66 81.46 80.38
EntProp (k = 0.4, n = 1) 78.99 79.69 81.14 81.46 80.32
EntProp (k = 0.6, n = 1) 78.89 80.31 81.30 81.75 80.56
EntProp (k = 0.2, n = 5) 79.19 78.21 81.13 81.20 79.93
EntProp (k = 0.4, n = 5) 79.81 80.59 81.51 81.64 80.89
EntProp (k = 0.6, n = 5) 78.92 80.62 80.77 81.38 80.42

Method ResNet-18 ResNet-50 WRN-50 ResNeXt-50 Avg.

Vanilla 49.96 51.01 51.64 52.95 51.39
Fast AdvProp 53.31 54.23 55.25 55.31 54.52
AdvProp 56.78 58.94 59.28 59.08 58.52
Vanilla + MixUp 53.84 54.03 56.68 58.29 55.71
MixProp 53.97 55.55 56.38 56.97 55.72
Fast AdvProp + MixUp 54.65 57.04 57.16 57.83 56.67
AdvProp + MixUp 56.34 61.06 61.46 61.53 60.10
EntProp (k = 0.2, n = 1) 55.24 56.07 57.30 58.47 56.77
EntProp (k = 0.4, n = 1) 55.75 56.48 58.74 57.53 57.13
EntProp (k = 0.6, n = 1) 55.86 57.41 58.95 59.28 57.87
EntProp (k = 0.2, n = 5) 54.52 57.27 58.00 58.95 57.19
EntProp (k = 0.4, n = 5) 56.94 58.75 60.70 59.79 59.04
EntProp (k = 0.6, n = 5) 57.16 60.50 61.02 61.35 60.01

Table 8: Standard accuracy (top table) and robust accuracy (bottom table) for the ResNet family on
the CUB-200-2011 dataset.

Method ResNet-18 ResNet-50 ResNet-101 ResNet-152 Avg.

Vanilla + MixUp 77.30 83.04 83.45 84.15 81.99
MixProp 79.08 83.77 83.71 84.25 82.70
Fast AdvProp + MixUp 77.88 82.69 84.05 84.34 82.24
AdvProp + MixUp 74.56 81.11 82.43 82.71 80.20
EntProp (k = 0.2, n = 1) 77.64 82.92 83.85 84.11 82.13
EntProp (k = 0.2, n = 5) 77.95 83.10 83.68 84.06 82.20

Method ResNet-18 ResNet-50 ResNet-101 ResNet-152 Avg.

Vanilla + MixUp 51.90 58.52 62.60 63.46 59.12
MixProp 51.32 56.80 60.36 61.90 57.59
Fast AdvProp + MixUp 53.27 60.32 64.23 64.27 60.52
AdvProp + MixUp 54.08 62.59 65.71 66.57 62.24
EntProp (k = 0.2, n = 1) 53.84 60.18 64.12 65.20 60.83
EntProp (k = 0.2, n = 5) 54.58 60.71 64.09 65.44 61.21
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Table 9: Standard accuracy (top table) and robust accuracy (bottom table) for the EfficientNet
family on the CUB-200-2011 dataset.

Method B0 B1 B2 B3 B4 B5 B6 B7 Avg.

Vanilla + MixUp 82.09 83.75 83.54 84.38 84.61 84.25 84.93 84.61 84.02
MixProp 82.86 84.16 84.61 85.16 85.73 85.40 85.53 85.71 84.90
Fast AdvProp + MixUp 81.99 83.12 83.67 84.57 84.36 84.02 84.70 84.58 83.88
AdvProp + MixUp 78.88 79.43 79.89 80.65 81.25 80.82 81.40 81.39 80.47
EntProp (k = 0.2, n = 1) 81.97 83.01 83.44 84.04 84.42 83.99 84.40 84.41 83.71
EntProp (k = 0.2, n = 5) 82.14 83.03 83.30 84.06 84.49 83.83 84.21 84.87 83.74

Method B0 B1 B2 B3 B4 B5 B6 B7 Avg.

Vanilla + MixUp 58.68 63.36 63.38 62.86 64.47 66.25 67.34 66.76 64.14
MixProp 57.50 61.80 62.26 64.37 65.72 65.72 67.14 66.77 63.91
Fast AdvProp + MixUp 59.34 63.27 63.58 63.53 63.95 66.06 67.22 67.39 64.29
AdvProp + MixUp 57.68 59.59 59.79 59.93 62.05 62.60 63.81 64.03 61.19
EntProp (k = 0.2, n = 1) 59.93 63.54 64.32 63.90 66.31 66.99 68.16 67.43 65.07
EntProp (k = 0.2, n = 5) 60.10 63.64 63.92 63.31 65.07 66.97 67.96 68.45 64.93

Table 10: Hscore for different data augmentations with ResNet-18 trained by EntProp (k = 0.2, n =
1) on the CIFAR-100 dataset.

Data Augmentation SA(%) RA(%) Hscore

MixUp 79.41 55.24 65.15
CutMix 81.39 50.78 62.54
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