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Abstract

Keyphrase extraction (KPE) automatically ex-
tracts phrases in a document that provide a
concise summary of the core content, which
benefits downstream information retrieval and
NLP tasks. Previous state-of-the-art methods
select candidate keyphrases based on the sim-
ilarity between learned representations of the
candidates and the document. They suffer
performance degradation on long documents
due to discrepancy between sequence lengths
which causes mismatch between representa-
tions of keyphrase candidates and the docu-
ment. In this work, we propose a novel un-
supervised embedding-based KPE approach,
Masked Document Embedding Rank (MDER-
ank), to address this problem by leverag-
ing a mask strategy and ranking candidates
by the similarity between embeddings of the
source document and the masked document.
We further develop a KPE-oriented BERT
(KPEBERT) model by proposing a novel
self-supervised contrastive learning method,
which is more compatible to MDERank than
vanilla BERT. Comprehensive evaluations on
six KPE benchmarks demonstrate that the
proposed MDERank outperforms state-of-the-
art unsupervised KPE approach by average
1.80 F1@15 improvement. MDERank fur-
ther benefits from KPEBERT and overall
achieves average 3.53 F'1@15 improvement
over SIFRank.

1 Introduction

Keyphrase extraction (KPE) automatically extracts
a set of phrases in a document that provide a
concise summary of the core content. KPE is
highly beneficial for readers to quickly grasp the
key information of a document and for numerous
downstream tasks such as information retrieval
and summarization. Previous KPE works include

supervised (Liu et al., 2019; Yang et al., 2019;
Beltagy et al., 2020; Clark et al., 2020; Zaheer
et al., 2020) and unsupervised approaches. Su-
pervised approaches model KPE as sequence tag-
ging or sequence generation tasks and require large-
scale annotated data to perform well. Since KPE
annotations are expensive and large-scale KPE
annotated data is scarce, unsupervised KPE ap-
proaches, such as TextRank (Mihalcea and Ta-
rau, 2004), YAKE (Campos et al., 2018), Em-
bedRank (Bennani-Smires et al., 2018), are the
mainstay in industry deployment.

Among unsupervised KPE approaches,
embedding-based approaches including Em-
bedRank (Bennani-Smires et al.,, 2018) and
SIFRank (Sun et al., 2020) yield the state-of-the-
art (SOTA) performance. After selecting keyphrase
(KP) candidates from a document using rule-based
methods, embedding-based KPE approaches rank
the candidates in a descending order based on a
scoring function, which computes the similarity
between embeddings of candidates and the source
document. Then the top-K candidates are chosen
as the final KPs. We refer to these approaches as
Phrase-Document-based (PD) methods.

PD methods have two major drawbacks: (i) As
a document is typically significantly longer than
candidate KPs and usually contains multiple KPs,
it is challenging for PD methods to reliably mea-
sure their similarities in the latent semantic space.
Hence, PD methods are naturally biased towards
longer candidate KPs, as shown by the example in
Table 1. (ii) The embedding of candidate KPs in the
PD methods is computed without the contextual in-
formation, hence further limiting the effectiveness
of the subsequent similarity match.

In this paper, we propose a novel unsuper-
vised embedding-based KPE method, denoted by
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Table 1: An example shows the bias of Phrase-Document (PD) methods towards longer candidate keyphrases at
K = 5. Keyphrase extracted are shown in a ranked order and those matching the gold labels are marked in red.

Masked Document Embedding Rank (MDERank),
to address above-mentioned drawbacks of PD meth-
ods. The architecture of MDERank is shown in
Figure 1. The basic idea of MDERank is that a
keyphrase plays an important role in the semantics
of a document, and its absence from the document
should cause a significant change in the semantics
of the document. Therefore, we propose to com-
pare the embeddings of the original document and
its variant where the occurrence(s) of some candi-
date KPs are masked. This leads to a new ranking
principle based on the increasing order of the re-
sulting similarities, i.e., a lower semantic similarity
between the original document and its masked vari-
ant indicates a higher significance of the candidate.

Our proposed method can be deemed as
Document-Document method and it addresses the
two weaknesses of the Phrase-Document meth-
ods: (i) Since the sequence lengths of the origi-
nal document and the masked document are the
same, comparing their similarities in the semantic
space is more meaningful and reliable. (ii) The
embedding of the masked document is computed
from sufficient amount of context information and
hence can capture the semantics reliably using the
SOTA contextualized representation models such
as BERT. Inspired by (Lewis et al., 2019; Zhang
etal., 2020; Han et al., 2021), where pre-trained lan-
guage models (PLMs) trained on objectives close
to final downstream tasks achieve enhanced repre-
sentations and improve fine-tune performance, we
further propose a novel self-supervised contrastive
learning method on top of BERT-based models
(dubbed as KPEBERT).

The main contributions of this work include:

* We propose a novel embedding-based unsu-
pervised KPE approach (MDERank) that im-
proves the reliability of computing KP candi-
date embeddings from contextualized repre-
sentation models and improves robustness to
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Figure 1: The architecture of the proposed MDERank
approach.

different lengths of KPs and documents.

* We propose a novel self-supervised con-
trastive learning method and develop KPE-
BERT.

* We conduct extensive evaluations of MDER-
ank on six diverse KPE benchmarks and
demonstrate the robustness of MDERank to
different lengths of documents. MDERank
with BERT achieves 17.00, 21.99 and 23.85
for average F1@5, F1@10, F1@15 respec-
tively, as 1.69, 2.18 and 1.80 absolute gains
over the SOTA results from SIFRank (Sun
et al., 2020), and 4.44, 3.58, and 2.95 absolute
gains over EmbedRank with BERT. MDER-
ank with KPEBERT achieves further absolute
gains by 1.70, 2.18 and 1.73. Ablation analy-
sis further provides insights on the effects of
document lengths, encoder layers, and pool-
ing methods.



2 Related Work

Unsupervised KPE Unsupervised KPE ap-
proaches do not require annotated data and there
has been much effort in this line of research, as
summarized in (Papagiannopoulou and Tsoumakas,
2020). Unsupervised KPE approaches can be cat-
egorized into statistics-based, graph-based, and
embedding-based methods. The statistics-based
YAKE (Campos et al., 2018) method explores both
conventional position and frequency features and
new statistical features capturing context informa-
tion. TextRank (Mihalcea and Tarau, 2004) is
a representative graph-based method, which con-
verts a document into a graph based on lexical
unit co-occurrences and applies PageRank itera-
tively. Many graph-based methods could be con-
sidered as modifications to TextRank by introduc-
ing extra features to compute weights for edges of
the constructed graph, e.g., SingleRank (Wan and
Xiao, 2008), PositionRank (Florescu and Caragea,
2017), ExpandRank (Wan and Xiao, 2008). The
graph-based TopicRank (Bougouin et al., 2013)
and MultipartiteRank (Boudin, 2018) methods en-
hance keyphrase diversity by constructing graphs
based on clusters of candidate keyphrases. For
embedding-based methods, EmbedRank (Bennani-
Smires et al., 2018) measures the similarity be-
tween phrase and document embeddings for rank-
ing. SIFRank (Sun et al., 2020) improves the static
embeddings in EmbedRank by a pre-trained lan-
guage model ELMo and a sentence embedding
model SIF (Arora et al., 2016). As analyzed in
Section 1, for embedding-based methods, using
contextualized embedding models to compute can-
didate embeddings could be unreliable due to lack
of context, and these methods lack robustness to
different lengths of keyphrases and documents. Our
proposed MDERank approach could effectively ad-
dress these drawbacks.

Contextual Embedding Models Early emebd-
ding models include static word embeddings such
as Word2Vec (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014), and FastText (Bojanowski
et al.,, 2017), and sentence embeddings such
as Sent2Vec (Pagliardini et al., 2017) and
Doc2Vec (Lau and Baldwin, 2016), which ren-
der word or sentence representations that do not
depend on their context. In contrast, pre-trained
contextual embedding models, such as ELMo (Pe-
ters et al., 2018), incorporate rich syntactic and
semantic information from context for representa-

tion learning and yield more expressive represen-
tations. BERT (Devlin et al., 2018) captures better
context information through a bidirectional trans-
former encoder than the Bi-LSTM based ELMo,
and has established SOTA in a wide variety of NLP
tasks. In one line of research, RoOBERTa (Liu et al.,
2019), XLNET (Yang et al., 2019) and many other
BERT variant PLMs have been proposed to fur-
ther improve the language representation capability.
In another line of research, Longformer (Beltagy
et al., 2020), BigBird (Zaheer et al., 2020) and other
efficient transformers are proposed to reduce the
quadratic complexity of transformer on sequence
length in order to model long-range dependencies.
In this paper, we mainly use BERT as the default
contextual embedding model. We also evaluate
the performance of MDERank with these efficient
transformers on long documents.

3 MDERank

In this section, we describe the proposed Masked
Document Embedding Rank (MDERank) approach.
Given a document d = {wy,ws,...,wy},d € D
where D denotes a dataset, and a set of selected
candidate KPs C' = {cy,...,¢,...,cn}, where a
candidate c; consists of one or multiple tokens, as
ci ={c},...,cl}, and m < n, KPE aims to select
K candidates from C, where K < m. Follow-
ing the common practice (Bennani-Smires et al.,
2018; Sun et al., 2020), after tokenization and POS
tagging, candidates are selected with regular ex-
pression <NN. =« |[JJ> % <NN.x*>,

To address the mismatch between sequence
lengths of a document and a candidate phrase as
well as lack of contextual information in PD meth-
ods as mentioned in Section 1, we hypothesize
that it is more reasonable to conduct the similar-
ity comparison at the document-document level
rather than at the phrase-document level. Based
on this hypothesis, for each candidate KP c¢; for
a document d, given its occurrence positions in
d as [p1,p2,...,pt], MDERank replaces all oc-
currences of p!_; by a special placeholder token
MASK and construct a masked variant of the origi-
nal document as df;. We define the scoring func-
tion f(c;) for ranking the significance of candidates
as the cosine similarity between E(d) and E(dY),
where E(-) represents the embedding of a docu-
ment. Note that a higher f(c;) value indicates a
lower ranking for c;, which is opposite to the PD
methods. We use BERT (Devlin et al., 2018) as the



default embedding model and investigate other con-
textual embedding models in Section 5.4. BERT is
pre-trained through self-supervised tasks of masked
language modeling (MLM) and next sentence pre-
diction (NSP), on large-scale unlabeled text of En-
glish Wikipedia (2500M words) and Bookscorpus
(800 words). A document d = {wq,wa, ..., wy}
is prepended with a special token [CLS] and then
encoded by BERT to obtain the hidden represen-
tations of tokens as { Hy, Ho, ..., H,, }. The docu-
ment embedding E'(d) is computed as follows:

E(d) = MaxPool(H1, ..., Hy,)

We also investigate average pooling in Section 5.4
and other masking methods in Appendix A.

4 KPEBERT: KPE-oriented
Self-supervised Learning

BERT and many other BERT variant PLMs can
effectively capture syntactic and semantic informa-
tion in language representations for downstream
NLP tasks, through self-supervised learning objec-
tives such as MLM. However, these self-supervised
learning objectives neither explicitly model the sig-
nificance of KPs nor model ranking between KPs.
In this paper, we propose a novel PLM KPEBERT
trained with a novel self-supervised learning objec-
tive to improve the capabilities of PLMs for ranking
KPs. This new task is defined as minimizing the
triplet loss between positive and negative examples
(See Figure 2). After obtaining a set of pseudo-
KPs for documents using another unsupervised
KPE method 6, we define documents masking out
pseudo-KPs as positive examples while those mask-
ing out “non-pseudo-KPs” as negative examples.
Following SimCSE (Gao et al., 2021), we encode
the original document d (anchor), the positive ex-
ample d, and negative example d~ through a PLM
encoder, respectively, and obtain their hidden rep-
resentations as H,4, Hy+, and Hy—. Finally, we
define the triplet loss as

Lor, = max (sim(Hg, Hy+) — sim(Hg, Hy-) +m, 0)
where sim(H,, H,) denotes the similarity be-
tween embeddings of the document x and y. We
use cosine similarity (same as used for MDERank).
m is a margin parameter.

We initialize KPEBERT from BERT-base-
uncased' and then incorporate the standard MLM
pre-training task as in BERT into the overall learn-
ing objective to avoid forgetting the previously

"https://huggingface.co/bert-base-uncased

learned general linguistic knowledge, as follows:
(=tlop+ X Lyrm

where )\ is a hyper-parameter balancing the two
losses in the multi-task learning setting. KPEBERT
differs from SimSCE in two major aspects: (i) KPE-
BERT uses pseudo labeling and positive/negative
example sampling strategies (below), different
from standard dropout used by SimCSE to con-
struct pair examples; (ii)) KPEBERT uses triplet
loss whereas SimCSE uses contrastive loss.

Datasets ‘ NKP LKP LDoc
Inspec 9.82 231 121.84
SemEval2010 | 15.07 2.11 189.90
SemEval2017 | 17.30 3.00 170.38
DUC2001 8.08 2.07 724.63
NUS 11.66 2.07 7702.00
Krapivin 574 2.03 8544.57

Table 2: Statistics of the datasets. Ny p is the aver-
age number of gold keyphrases. Ly p is the average
length of gold keyphrases. Lp,. is the average number
of words per document.

Absolute Sampling For a document d, we first
select candidate keyphrases C using POS tags with
regular expressions as described in Section 3. Then
we obtain a set of keyphrases C’ extracted by an-
other unsupervised KPE approach 6 on d, as pseudo
labels. We define “keyphrases” as C’ and “non-
keyphrases™ as C' '\ C’. We mask a “keyphrase”
from a document with a MASK to construct a posi-
tive example d for d. We select a “non-keyphrase”
and perform the same mask operation to construct
a negative example d .

Relative Sampling In this approach, after ob-
taining a set of KP C’ extracted by 6, we ran-
domly select a pair of KPs from C” and choose the
one ranked higher to construct a positive example
and the other one to construct a negative example
through the mask operation. On one hand, the de-
cisions of “keyphrases” and “non-keyphrases” are
fully based on the ranking predicted by 6, hence rel-
ative sampling may increase the impact from ¢ on
the inductive bias of KPEBERT. On the other hand,
relative sampling mines more hard negative sam-
ples which may improve performance of triplet loss
based learning. We study the efficacy of these two
sampling approaches on KPEBERT in Section 5.3.
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Figure 2: The multi-task pre-training for KPEBERT includes two tasks. One is teaching the encoder to distinguish
documents masked with keyphrases and non-keyphrases. The other is further pre-training the encoder with a MLM
task. The word in pink is an example to illustrate the random masking in MLM.

FQK | Method | Dataset | ave | AvgRank (STD)
| | Inspec  SemEval2017 SemEval2010 DUC2001 Krapivin NUS | |

TextRank 21.58 16.43 742 11.02 604 180 | 1072 | 9.33 (£1.60)
SingleRank 14.88 1823 8.69 19.14 812 298 | 1201 | 7.67 (£0.94)
TopicRank 12.20 17.10 9.93 19.97 894 454 | 1211 | 7.7 (£1.77)
MultipartiteRank 1341 17.39 10.13 21.70 929 617 | 13.02 | 6.17 (£1.77)
YAKE 8.02 11.84 6.82 11.99 809 785 | 9.10 | 9.00(+2.52)
EmbedRank(Sent2Vec)+MMR | 14.51 2021 9.63 21.75 844 213 | 1278 | 6.83 (£2.03)
5 SIFRank(ELMo) 29.38 22.38 11.16 24.30 162 301 | 1531 | 4.50 (£3.77)
EmbedRank(BERT) 28.92 20.03 10.46 8.12 405 375 | 1256 | 6.83 (£3.02)
MDERank(BERT) 26.17 22.81 12.95 13.05 1178 1524 | 17.00 | 3.33 (2.49)
MDERank(KPEBERT,;) | 28.06 21.63 12.95 2251 1291 1411 | 1870 | 2.67 (£0.75)
MDERank(KPEBERT,.) | 27.85 20.37 13.05 23.31 1235 1439 | 1855 | 2.50 (£1.12)
TextRank 27.53 25.83 11.27 1745 943 3.02 | 1576 | 8.00 (£1.63)
SingleRank 21.50 27.73 12.94 23.86 1053 451 | 1685 | 6.67 (£1.49)
TopicRank 17.24 22.62 12.52 21.73 901 793 | 1518 | 8.50 (£1.50)
MultipartiteRank 18.18 23.73 1291 24.10 935 857 | 1614 | 7.17 (£1.67)
YAKE 11.47 18.14 11.01 14.18 935 1105 | 1253 | 9.17 (£2.54)
EmbedRank(Sent2Vec)+MMR | 21.02 29.59 13.9 25.09 1047 294 | 17.17 | 6.67 (£2.29)
10 SIFRank(ELMo) 39.12 32.60 16.03 27.60 252 534 2054 | 450 (£3.91)
EmbedRank(BERT) 38.55 31.01 1635 11.62 6.60 634 | 1841 | 6.50 (£3.20)
MDERank(BERT) 33.81 3251 17.07 1731 1293 18.33 [ 21.99 | 4.00 (+2.45)
MDERank(KPEBERT,;) | 35.80 32.23 17.95 26.97 1436 17.72 | 2417 | 2.33 (£0.75)
MDERank(KPEBERT,.) | 34.36 31.21 18.27 26.65 1431 1846 | 23.88 | 2.50 (+1.26)
TextRank 27.62 30.50 13.47 18.84 995 353 | 1732 | 8.00 (+1.73)
SingleRank 24.13 3173 144 2343 1042 492 | 1817 | 6.67 (£1.49)
TopicRank 19.33 24.87 12.26 20.97 830 937 | 1585 | 8.83 (£1.77)
MultipartiteRank 20.52 26.87 1324 23.62 9.16  10.82 | 17.37 | 7.33 (£1.80)
YAKE 13.65 20.55 12.55 1428 9.12  13.09 | 13.87 | 9.00 (+2.45)
EmbedRank(Sent2Vec)+MMR | 23.79 33.94 1479 24.68 1017 3.56 | 1849 | 6.50 (£1.98)
15 SIFRank(ELMo) 39.82 37.25 18.42 27.96 300 586 | 2205 | 4.67 (£3.77)
EmbedRank(BERT) 39.77 36.72 19.35 13.58 784 811 | 2090 | 6.33 (£3.30)
MDERank(BERT) 36.17 37.18 20.09 19.13 1258 17.95 | 23.85 | 4.00 (+2.00)
MDERank(KPEBERT,;) | 37.43 37.52 20.69 26.28 13.58  17.95 | 25.58 | 2.00 (+1.00)
MDERank(KPEBERT,.) | 36.40 36.63 20.35 26.42 1331 1941 | 2542 | 2.67 (£1.37)

Table 3: KPE performance as F1QK, K € {5, 10,15} on the six benchmarks. For each K, the first group shows performance
of the baselines and the second group shows performance of our proposed MDERank using BERT for embedding and MDERank
using KPEBERT for embedding. EmbedRank(BERT) denotes the Phrase-Document based methods for a fair comparison.
The best results are both underlined and in bold. The second-best results are in bold. Ab and Re denote absolute and relative
sampling, respectively. AVG is the average F1 QK on all six benchmarks. AvgRank(STD) is the mean and std of the rank of a
method among all methods on all six benchmarks (hence the lower the better).



S Experiments

5.1 Datasets and Metrics

The pre-training data for KPEBERT are the Wiki-
Text language modeling dataset with 100+ million
tokens extracted from a set of verified Good and
Featured articles on Wikipedia®. We use six KPE
benchmarks for evaluations. Four of them are scien-
tific publications?, including Inspec (Hulth, 2003),
Krapivin (Krapivin et al., 2009), NUS (Nguyen
and Kan, 2007), and SemEval-2010 (Kim et al.,
2010), all widely used for evaluations in previ-
ous works (Meng et al., 2017; Chen et al., 2019;
Sahrawat et al., 2019; Bennani-Smires et al., 2018;
Meng et al., 2020). We also evaluate on the
DUC2001 dataset (news articles) (Wan and Xiao,
2008) and SemEval2017 dataset (science jour-
nals) (Augenstein et al., 2017)*. Table 2 shows
data statistics. Following previous works, predicted
KPs are deduplicated and the KPE performance is
evaluated as F; at the top K KPs (K € {5,10, 15}).
Stemming is applied for computing F;.

5.2 Baselines and Training Details

The first group for each K in Table 3 shows perfor-
mance of the eight baseline unsupervised KPE ap-
proaches. We evaluate TextRank, SingleRank, Top-
icRank, MultipartiteRank, YAKE, EmbedRank us-
ing their implementations in the widely used toolkit
PKE? with the default parameter settings. We eval-
uate SIFRank using the codebase ¢ and the same
parameters suggested by the authors (Sun et al.,
2020). The original EmbedRank (Bennani-Smires
et al., 2018) uses Sent2Vec for embedding and in-
troduces embedding-based maximal marginal rel-
evance (MMR) for improving diversity among
selected KPs. For a fair comparison between
the Phrase-Document method and our Document-
Document MDERank, we design a new baseline
EmbedRank(BERT) by replacing Sent2Vec with
BERT and removing MMR.

We use YAKE (Campos et al., 2018) as 6 to ex-
tract “keyphrases” for a document for KPEBERT
pre-training, due to its high efficiency and consis-

https://huggingface.co/datasets/
wikitext

*https://github.com/memray/
OpenNMT-kpg-release

*https://github.com/sunyilgdx/SIFRank/
tree/master/data

5https://github.com/boudinfl/pke

®https://github.com/sunyilgdx/SIFRank/
tree/master

tent performance. Effects of the choice of 6 on
KPEBERT are analyzed in Appendix B where we
compare YAKE and TextRank as 6. The number of
pseudo labels for absolute and relative sampling for
KPEBERT pre-training are 10 and 20, respectively.
The ) is set to 0.1. The default parameter setting
is the same as (Gao et al., 2021) except that we set
the margin m for triplet loss to 0.2 and the learn-
ing rate to 3e-5. We use 4 NVIDIA V100 GPUs
for training, the batch size is 2 per device and the
gradient accumulation is 4. We train 10 epochs.

5.3 Performance Comparison

Table 3 shows F; at the top 5, 10, and 15 pre-
dictions from the baselines in the first group for
each K and from our proposed MDERank(BERT)
(default using BERT for embedding) and MDER-
ank using KPEBERT for embedding, MDER-
ank(KPEBERT), in the second group for each K.
MDERank(BERT) and MDERank(KPEBERT) per-
form consistently well on all benchmarks. MDER-
ank(BERT) outperforms EmbedRank(BERT) by
2.95 average F1 @15 and outperforms the previous
SOTA SIFRank by 1.80 average F;@15. MDER-
ank further benefits from KPEBERT and over-
all MDERank(KPEBERT) achieves 3.53 average
F1@15 gain over SIFRank, especially on long-
document datasets NUS and Krapivin. We also
compute the average recalls of KPs with different
phrase lengths (PL) in top-15 extracted KPs on
all 6 bechmarks, for both EmbedRank(BERT) and
MDERank(BERT), as shown in Table 4. We ob-
serve that EmbedRank has a strong bias for longer
phrases, and PLs of its extracted phrases are con-
centrated in [2,3]. In contrast, PLs of KPs ex-
tracted by MDERank are more evenly distributed
on diverse datasets. This analysis confirms that
MDERank indeed alleviates the bias towards longer
phrases from EmbedRank.

However, we observe that MDERank(BERT) has
a large gap to SIFRank on DUC2001 and performs
worse than EmbedRank(BERT) on Inspec. We in-
vestigate the reasons for these poorer performance.
For DUC2001, different from other datasets col-
lected from scientific publications, DUC2001 con-
sists of open-domain news articles. The previous
SOTA SIFRank introduces domain adaptation by
combining weights from common corpus and do-
main corpus in the weight function of words for
computing sentence embeddings, which may con-
tribute significantly to its superior performance on


https://huggingface.co/datasets/wikitext
https://huggingface.co/datasets/wikitext
https://github.com/memray/OpenNMT-kpg-release
https://github.com/memray/OpenNMT-kpg-release
https://github.com/sunyilgdx/SIFRank/tree/master/data
https://github.com/sunyilgdx/SIFRank/tree/master/data
https://github.com/boudinfl/pke
https://github.com/sunyilgdx/SIFRank/tree/master
https://github.com/sunyilgdx/SIFRank/tree/master

Method |  EmbedRank(BERT) |  MDERank(BERT)

y ‘ 1 2 3 >3 1 2 3 >3
Data

Inspec 2480 54.53 46.11 21.57 | 27.90 48.71 4320 21.17
SemEval2017 | 2491 53.68 48.05 9.84 | 3728 47.07 43.99 9.76
SemEval2010 | 9.35 22.79 18.07 4.17 | 21.55 19.99 1595 4.17

DUC2001 346 1939 3739 15.58 | 2481 2370 23.66 13.46
Krapivin 431 1359 11.80 250 | 15.88 2243 1062 2.14
NUS 512 953 1617 284 |26.77 2470 17.12 1.90

Table 4: The average recall of predicted KPs with dif-
ferent phrase lengths (PL) on all six benchmarks, from
EmbedRank(BERT) and MDERank(BERT).

DUC2001. As the default embedding model for
MDERank, BERT is pre-trained on open-domain
Wikipedia and Bookscorpus. However, as ex-
plained in Section 4, BERT does not emphasize
learning significance of KPs or ranking between
KPs. KPEBERT is designed to tackle this prob-
lem. Although the training data for KPEBERT, the
open-domain WikiText language modeling dataset,
is much smaller than English Wikipedia, with KPE-
oriented representation learning in KPEBERT, the
performance of MDERank(KPEBERT) improves
remarkably and is comparable to SIFRank. For In-
spec, the average PLs of gold labels of this dataset
is relatively high (see Table 2). Also, on this dataset,
when we move candidates with only 1 token to the
end of ranking, MDERank(BERT) improves F; @5,
F, @10, F,@15t029.71 ,38.15, 39.46, an improve-
ment of 3.54, 4.34 and 3.29, respectively. These
analyses demonstrate that gold labels for Inspec are
biased towards long PL. Therefore, EmbedRank
with inductive bias for long PL. may benefit from
this annotation bias and perform well.

It is notable that MDERank particularly outper-
forms baselines on long-document datasets, veri-
fying that MDERank could mitigate the weakness
of performance degradation on long documents
from PD methods. We further investigate effects of
document length in Section 5.4. Absolute and rela-
tive sampling for KPEBERT achieve comparable
performance on the 6 benchmarks with absolute
sampling gaining a very small margin. Relative
sampling performs better on NUS but is worse on
Inspec and SemEval2017. We plan to continue
exploring sampling approaches in future work, to
reduce dependency on ¢ and improve KPEBERT.

5.4 Analyses

Effects of Document Length Section 5.3 demon-
strates the superior performance of MDERank es-
pecially on long documents. We conduct two ex-

Method | DocLen | F;@5 F;@10 F,@15

128 876 1475 1628

EmbedRank(BERT) | 256 | 586  10.19  12.90
512 | 375 634 8.l

128 | 1286 1606  16.67

MDERank(BERT) | 256 | 1445 1601  16.64
512 | 1524 1833 17.95

Table 5: Effects of document lengths (the first 128, 256,
512 words of a document) on the KPE performance on
the NUS dataset from EmbedRank(BERT) and MDER-
ank(BERT).

periments to further analyze effects of document
length on the performance of PD methods and
MDERank. We choose EmbedRank(BERT) to
represent PD methods. In the first experiment,
both approaches use BERT for embedding and
we truncate a document into the first 128, 256,
512 words. As shown in Table 5, F; for Em-
bedRank(BERT) drops drastically as the document
length increases from 128 to 512, reflecting the
weakness of EmbedRank(BERT) that the increased
document length exacerbates discrepancy between
sequence lengths of the document and KP candi-
dates and mismatches between their embeddings,
which degrades the KPE performance. In contrast,
the performance of MDERank(BERT) improves
steadily with increased document lengths, demon-
strating the robustness of MDERank to document
lengths and its capability to benefit KPE from more
context in longer documents.

In the second experiment, we investigate ef-
fects of document length beyond 512 on Em-
bedRank and MDERank. To accommodate docu-
ments longer than 512, we choose BigBird (Zaheer
et al., 2020) as the embedding model. BigBird re-
places the full self-attention in Transformer with
sparse attentions of global, local, and random at-
tentions, reducing the quadratic complexity to se-
quence length from Transformer to linear. In order
to select valid datasets for evaluation, we count the
average percentage of gold label KPs appearing in
the first m words in a document on the three longest
datasets, DUC2001, NUS, and Krapivin. We ob-
serve that the first 500 words nearly cover 90%
gold KPs in DUC2001, whereas 50% gold KPs in
Krapivin are in the first 2500 words, and 50% gold
KPs in NUS are in the first 2000 words. Therefore,
we drop DUC2001 and use NUS and Krapivin for
the second experiment. We keep the first 2500 and
2000 words for documents in Krapivin and NUS,



Method NUS (512) NUS (2000) Krapivin (512) Krapivin (2500)
F,@5 F,@l0 F,@l5 | F,@5 F,@l0 F,@l5 | F @5 F,@l10 F,@l5|F @5 F@l0 F,@l5
EmbedRank(BERT) 3.75 6.34 8.11 - — — 4.05 6.60 7.84 — — -
EmbedRank(BigBird) | 2.56 5.16 7.11 1.08 1.36 2.20 3.24 5.14 6.31 1.05 1.93 2.28
MDERank(BERT) 1524  18.33 17.95 — - - 11.78  12.93 12.58 — - -
MDERank(BigBird) | 1542  17.68 17.81 1536 1956 2033 | 11.62 11.99 11.70 | 11.33  12.71 12.70

Table 6: KPE performance from EmbedRank and MDERank using BERT for embedding (the first group) and the
two approaches using BigBird for embedding (the second group). 512, 2000, 2500 in the parentheses represent the
number of words kept for each document in datasets. The results for NUS(2000) and Krapivin (2500) are missing
for EmbedRank(BERT) and MDERank(BERT) due to limitation on input sequence length from BERT.

Method ‘ Pooling ‘ Layer ‘ bucz001
| | Fl@s Fle@10 Fl@ls
3 16.19 2121 22.12
AvgPooling 6 1076 1533 17.63
EmbedRank(BERT) 12 1041  15.15 17.69
3 6.97 11.04 12.27
MaxPooling 6 7.12 10.93 13.13
12 8.12 11.62 13.58
3 1200 1645 19.08
AvgPooling 6 1240  17.07 19.02
MDERank(BERT) 12 13.00 17.93 19.45
3 11.06  16.16 18.01
MaxPooling 6 11.06 1591 17.98
12 13.05 1731 19.13

Table 7: KPE performance on DUC2001 from Em-
bedRank and MDERank using different BERT layers
for embedding and pooling methods. AvgPooling and
MaxPooling are employed on the output of a specific
layer to produce document embeddings.

respectively. Table 6 demonstrates that on NUS,
when increasing the document length from 512
to 2000, MDERank(BigBird) outperforms MDER-
ank(BERT) by 2.52 F; @15. On Krapivin, when
increase the document length from 512 to 2500,
MDERank also improves by 1.0 F; @15. In con-
trast, the performance of EmbedRank degrades dra-
matically with longer context, since more context
introduces more candidates into ranking and also
worsens the discrepancy between lengths of doc-
ument and phrases, which in turn greatly reduces
the accuracy of similarity comparison.

Effects of Encoder Layers and Pooling Methods
The findings in (Jawahar et al., 2019; Kim et al.,
2020; Rogers et al., 2020) show that BERT captures
a rich hierarchy of linguistic information, with sur-
face features in lower layers, syntactic features in
middle layers and semantic features in higher lay-
ers. We conduct experiments to understand the
effects on MDERank and EmbedRank when us-
ing different BERT layers for embedding. We
choose the third, the sixth, and the last layer from
BERT-Base. We study the interactions between en-
coder layers and Max Pooling and Average Pooling

methods. As shown in Table 7, for both AvgPool-
ing and MaxPooling, F; from MDERank(BERT)
shows a steady incline to the increase of layers.
On the contrary, with AvgPooling, F; from Em-
bedRank(BERT) drastically drops as the layers
rises from 3 to 12, probably due to that the lower
BERT layer provides more rough and generic rep-
resentations, which may alleviate mismatch in sim-
ilarity comparison in Phrase-Document methods’.
Compared to AvgPooling, MaxPooling produces
weaker document embedding, which severely de-
grades the performance of EmbedRank and slightly
degrades the performance of MDERank. On the
other hand, MaxPooling probably reduces differ-
ences in embeddings across layers, hence perfor-
mance of EmbedRank becomes stable across lay-
ers with MaxPooling. For both pooling methods,
MDERank using the last BERT layer achieves the
best results, which demonstrates that MDERank
can fully benefit from stronger contextualized se-
mantic representations.

6 Conclusion

We propose a novel embedding-based unsupervised
KPE approach, MDERank, to improve reliability of
similarity match compared to previous embedding-
based methods. We also propose a novel self-
supervised learning method and develop a KPE-
oriented PLM, KPEBERT. Experiments demon-
strate MDERank outperforms SOTA on diverse
datasets and further benefits from KPEBERT. Anal-
yses further verify the robustness of MDERank to
different lengths of keyphrases and documents, and
that MDERank benefits from longer context and
stronger embedding models. Future work includes
improving KPEBERT for MDERank by optimizing
sampling strategies and pre-training methods.

"We also test the average F1@5,F1@10, F1@15 for Em-
bedRank(BERT) with AvgPooling and layer 3 on 6 datasets,
which are 3.7, 1.8 and 1.6 absolute lower than MDER-
ank(BERT).
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Appendices

A Effects of Masking Methods on
MDERank

Given occurrences of a candidate KP ¢; in a docu-
ment d as [p1,p2, ..., pt|, we study several meth-
ods to mask these occurrences and generate the
masked document dj,, considering the potential
bias e.g., frequency, sequence length, and nested
phrases.

Mask Once The Mask Once method only masks
the first occurrence of a candidate. This strategy
eliminates the bias towards high frequency candi-
date KPs. However, it may prefer longer candidate
KPs (i.e., candidate KPs that consist of more sub-
words) with the same argument shown in Section 1.
MDERank may benefit from this masking strat-
egy on datasets with annotation bias towards long
keyphrases.

Mask Highest The Mask Highest method con-
siders the collection of d},s obtained by masking
each occurrence of a candidate phrase c; once in the
document, and select the one that has the smallest
cosine similarity with the embeddings of d. This
method considers a balance of impacts from se-
quence length and frequency of candidate phrases.

Mask Subset One issue in KPE is that there may
be heavy nesting among candidate KPs. For exam-
ple, “support vector machine” may result in nested
candidates such as “support vector machine”, “sup-
port vector”, “vector machine”, and even “ma-
chine”. Neither Mask All nor Mask Once strat-
egy addresses this issue and hence the nested KPs
may take up a large proportion in the final results,
drastically damaging the diversity. We design the
Mask Subset method to alleviate impact of nested
candidate KPs. Firstly, all candidates are ranked
by their phrase length in a descending order. Sec-
ondly, when generating a masked document for
each candidate in order, Mask Subset records the
positions of masked words and requires that each
candidate could only be masked with words not in
the recorded positions.

The KPE results from MDERank(BERT) using
these masking strategies are shown in Table 8. The
masking variants do not bring remarkable improve-
ment compared with the results from Mask All,
and Mask Once and Mask Highest perform even
worse on the long-document datasets. This is be-
cause masking only one occurrence of a candidate
will not emphasize the change of semantics sig-
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nificantly, especially on long documents. Mask
subset could partially address the diversity prob-
lem by reducing the number of nested candidates
selected by MDERank. Figure 3 shows a compar-
ison on diversity between Mask Subset and other
methods, where the evaluation metric for diversity
is defined in Equation 1. The Phrase-Document
method refers to EmbedRank(BERT). We could
see from Figure 3 that MDERank with Mask Sub-
set indeed boosts the diversity over Mask All and
even exceeds gold labels on several datasets.

t
Diveristy(d) = tl * 100 (1)

n

SemEval2017 SemEval2010 DUC2001
Datasets

100

Fhrase-Document
SiFrank
Mask All

= Mask Subset
Gold Label

‘
Inspec

Figure 3: Diversity scores from different methods on
various datasets. A higher bar indicates a better diver-
sity. The diversity of gold keyphrases are in blue and
on the right.
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B Effects of the Choice of 0 on
KPEBERT

We also investigate the effects of the choice of 6 on
KPEBERT. We explore alternative unsupervised
KPE methods as 6 for generating pseudo labels for
KPEBERT pre-training. Besides YAKE, when bal-
ancing the extraction speed and KPE quality, Tex-
tRank is another choice for 6. As shown in Table 3,
YAKE performs better than TextRank on long-
document datasets but worse on short-document
datasets. After replacing YAKE with TextRank as
0 for producing pseudo labels and training KPE-
BERT, the KPE results of the respective MDER-
ank(KPEBERT) are shown in Table 9. We observe
that MDERank(KPEBERT) using YAKE as 6 sig-
nificantly outperforms MDERank(KPEBERT) us-
ing TextRank as 6, on both short-document datasets



Dataset
FieK Method Inspec SemEval2017 SemEval2010 DUC2001 Krapivin NUS | AVG
Mask All 26.17 22.81 12.95 13.05 11.78 15.24 | 17.00
5 Mask Once 27.93 20.56 10.16 9.11 4.61 392 | 12.72
Mask Highest | 27.93 20.56 10.16 9.11 4.65 392 | 12.72
Mask Subset | 29.25 21.50 10.26 12.05 8.50 9.61 | 15.20
Mask All 33.81 32.51 17.07 17.31 12.93 18.33 | 21.99
10 Mask Once 37.38 30.95 15.40 13.49 7.21 6.52 | 18.49
Mask Highest | 37.42 30.97 15.32 13.46 7.24 6.56 | 18.50
Mask Subset | 36.55 31.30 15.88 16.73 9.99 13.43 | 20.65
Mask All 36.17 37.18 20.09 19.13 12.58 17.95 | 23.85
15 Mask Once 39.11 36.07 17.69 16.47 8.15 8.85 | 21.06
Mask Highest | 39.36 36.10 17.76 16.45 8.20 8.85 | 21.12
Mask Subset | 38.08 36.67 17.83 19.19 10.48 14.65 | 22.82

Table 8: F; @K (K € {5,10,15}) from MDERank(BERT) using different masking methods, where Mask All

refers to the masking method described in Section 3.

F,@K 0 Dataset

Inspec SemEval2017 SemEval2010 DUC2001 Krapivin NUS | AVG

5 TextRank | 28.93 21.34 11.46 13.30 7.85 7.57 | 15.08
YAKE 28.06 21.63 12.95 22.51 1291 14.11 | 18.70

10 TextRank | 38.13 32.71 17.23 19.15 10.47 10.59 | 21.38
YAKE 35.80 32.23 17.95 26.97 14.36 17.72 | 24.17

15 TextRank | 39.49 37.95 19.89 22.11 11.40 12.83 | 23.95
YAKE 37.43 37.52 20.69 26.28 13.58 17.95 | 25.58

Table 9: The KPE performance (F; @K) from MDERank(KPEBERT) with KPEBERT pre-trained using YAKE
and TextRank as 6 for producing pseudo labels, respectively. AVG is the average F1 @K on all six benchmarks

Method | F1@K | Dataset

‘ ‘ Inspec SemEval2017 SemEval2010 DUC2001 Krapivin NUS AVG

5 28.92 20.03 10.46 8.12 4.05 375  12.56

EmbedRank(Cos) 10 38.55 31.01 16.35 11.62 6.60 6.34 1841
15 39.77 36.72 19.35 13.58 7.84 8.11  20.90

5 29.28 19.77 9.47 7.92 4.13 4.04 1244

EmbedRank(Euc) 10 38.23 30.58 16.35 11.61 6.66 6.52 18.33
15 39.80 36.14 19.02 13.49 7.71 8.18 20.72

5 26.17 22.81 12.95 13.05 11.78 15.07 1697

MDERank(Cos) 10 33.81 32.51 17.07 17.31 12.93 19.20 22.14
15 36.17 37.18 19.02 19.13 12.58 19.62 23.95

5 26.25 22.83 12.76 13.10 11.29 1524 1691

MDERank(Euc) 10 33.83 32.59 17.15 17.45 12.15 1829 2191
15 36.25 37.24 20.22 19.33 11.82 18.02 23.81

Table 10: The KPE performance from MDERank and EmbedRank using Cosine and Euclidean as similarity mea-
sure, where EmbedRank is EmbedRank(BERT) as in Section 5.2 and MDERank is MDERank(BERT).

and long-document datasets (except on Inspec). Al-
though on average YAKE performs worse than
TextRank on the six benchmarks, the better per-
formance from YAKE on long documents cou-
pled with its consistent performance may be a
crucial factor when choosing 6 for pre-training
KPEBERT. Results in Table 3 shows that MDER-
ank(KPEBERT) yields superior performance on
both short and long documents. In other words,
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KPEBERT benefits from the stable performance
from YAKE on long documents for pseudo labeling,
and KPEBERT also exhibits robustness to the rela-
tively low performance on short documents from
YAKE.

Impact of Similarity Measure The common
similarity measures include Cosine and Euclidean
distance. However, the choice of similarity mea-
sure does not matter for MDERank performance.



We conduct experiments to investigate the impact
of the similarity measure on the performance of
MDERank, and the results are shown in Table 10.
We observe that Cosine and Euclidean similarity
measure are not a salient factor for the ranking
results for both EmbedRank(BERT) and MDER-
ank(BERT).
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