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Abstract

Keyphrase extraction (KPE) automatically ex-001
tracts phrases in a document that provide a002
concise summary of the core content, which003
benefits downstream information retrieval and004
NLP tasks. Previous state-of-the-art methods005
select candidate keyphrases based on the sim-006
ilarity between learned representations of the007
candidates and the document. They suffer008
performance degradation on long documents009
due to discrepancy between sequence lengths010
which causes mismatch between representa-011
tions of keyphrase candidates and the docu-012
ment. In this work, we propose a novel un-013
supervised embedding-based KPE approach,014
Masked Document Embedding Rank (MDER-015
ank), to address this problem by leverag-016
ing a mask strategy and ranking candidates017
by the similarity between embeddings of the018
source document and the masked document.019
We further develop a KPE-oriented BERT020
(KPEBERT) model by proposing a novel021
self-supervised contrastive learning method,022
which is more compatible to MDERank than023
vanilla BERT. Comprehensive evaluations on024
six KPE benchmarks demonstrate that the025
proposed MDERank outperforms state-of-the-026
art unsupervised KPE approach by average027
1.80 F1@15 improvement. MDERank fur-028
ther benefits from KPEBERT and overall029
achieves average 3.53 F1@15 improvement030
over SIFRank.031

1 Introduction032

Keyphrase extraction (KPE) automatically extracts033

a set of phrases in a document that provide a034

concise summary of the core content. KPE is035

highly beneficial for readers to quickly grasp the036

key information of a document and for numerous037

downstream tasks such as information retrieval038

and summarization. Previous KPE works include039

supervised (Liu et al., 2019; Yang et al., 2019; 040

Beltagy et al., 2020; Clark et al., 2020; Zaheer 041

et al., 2020) and unsupervised approaches. Su- 042

pervised approaches model KPE as sequence tag- 043

ging or sequence generation tasks and require large- 044

scale annotated data to perform well. Since KPE 045

annotations are expensive and large-scale KPE 046

annotated data is scarce, unsupervised KPE ap- 047

proaches, such as TextRank (Mihalcea and Ta- 048

rau, 2004), YAKE (Campos et al., 2018), Em- 049

bedRank (Bennani-Smires et al., 2018), are the 050

mainstay in industry deployment. 051

Among unsupervised KPE approaches, 052

embedding-based approaches including Em- 053

bedRank (Bennani-Smires et al., 2018) and 054

SIFRank (Sun et al., 2020) yield the state-of-the- 055

art (SOTA) performance. After selecting keyphrase 056

(KP) candidates from a document using rule-based 057

methods, embedding-based KPE approaches rank 058

the candidates in a descending order based on a 059

scoring function, which computes the similarity 060

between embeddings of candidates and the source 061

document. Then the top-K candidates are chosen 062

as the final KPs. We refer to these approaches as 063

Phrase-Document-based (PD) methods. 064

PD methods have two major drawbacks: (i) As 065

a document is typically significantly longer than 066

candidate KPs and usually contains multiple KPs, 067

it is challenging for PD methods to reliably mea- 068

sure their similarities in the latent semantic space. 069

Hence, PD methods are naturally biased towards 070

longer candidate KPs, as shown by the example in 071

Table 1. (ii) The embedding of candidate KPs in the 072

PD methods is computed without the contextual in- 073

formation, hence further limiting the effectiveness 074

of the subsequent similarity match. 075

In this paper, we propose a novel unsuper- 076

vised embedding-based KPE method, denoted by 077
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Document The paper presents a method for pruning frequent itemsets based on background knowl-
edge represented by a Bayesian network . The interestingness of an itemset is defined as
the absolute difference between its support estimated from data and from the Bayesian
network. Efficient algorithms are presented for finding interestingness of a collection of
frequent itemsets , and . . .

SIFRank (Best PD method) notation database attributes, research track paper dataset #attrs max, bayesian network bn
output, bayesian network computing, interactive network structure improvement process

MDERank (Proposed method) interestingness, pruning, frequent itemsets, pruning frequent itemsets, interestingness
measures

Table 1: An example shows the bias of Phrase-Document (PD) methods towards longer candidate keyphrases at
K = 5. Keyphrase extracted are shown in a ranked order and those matching the gold labels are marked in red.

Masked Document Embedding Rank (MDERank),078

to address above-mentioned drawbacks of PD meth-079

ods. The architecture of MDERank is shown in080

Figure 1. The basic idea of MDERank is that a081

keyphrase plays an important role in the semantics082

of a document, and its absence from the document083

should cause a significant change in the semantics084

of the document. Therefore, we propose to com-085

pare the embeddings of the original document and086

its variant where the occurrence(s) of some candi-087

date KPs are masked. This leads to a new ranking088

principle based on the increasing order of the re-089

sulting similarities, i.e., a lower semantic similarity090

between the original document and its masked vari-091

ant indicates a higher significance of the candidate.092

Our proposed method can be deemed as093

Document-Document method and it addresses the094

two weaknesses of the Phrase-Document meth-095

ods: (i) Since the sequence lengths of the origi-096

nal document and the masked document are the097

same, comparing their similarities in the semantic098

space is more meaningful and reliable. (ii) The099

embedding of the masked document is computed100

from sufficient amount of context information and101

hence can capture the semantics reliably using the102

SOTA contextualized representation models such103

as BERT. Inspired by (Lewis et al., 2019; Zhang104

et al., 2020; Han et al., 2021), where pre-trained lan-105

guage models (PLMs) trained on objectives close106

to final downstream tasks achieve enhanced repre-107

sentations and improve fine-tune performance, we108

further propose a novel self-supervised contrastive109

learning method on top of BERT-based models110

(dubbed as KPEBERT).111

The main contributions of this work include:112

• We propose a novel embedding-based unsu-113

pervised KPE approach (MDERank) that im-114

proves the reliability of computing KP candi-115

date embeddings from contextualized repre-116

sentation models and improves robustness to117

Figure 1: The architecture of the proposed MDERank
approach.

different lengths of KPs and documents. 118

• We propose a novel self-supervised con- 119

trastive learning method and develop KPE- 120

BERT. 121

• We conduct extensive evaluations of MDER- 122

ank on six diverse KPE benchmarks and 123

demonstrate the robustness of MDERank to 124

different lengths of documents. MDERank 125

with BERT achieves 17.00, 21.99 and 23.85 126

for average F1@5, F1@10, F1@15 respec- 127

tively, as 1.69, 2.18 and 1.80 absolute gains 128

over the SOTA results from SIFRank (Sun 129

et al., 2020), and 4.44, 3.58, and 2.95 absolute 130

gains over EmbedRank with BERT. MDER- 131

ank with KPEBERT achieves further absolute 132

gains by 1.70, 2.18 and 1.73. Ablation analy- 133

sis further provides insights on the effects of 134

document lengths, encoder layers, and pool- 135

ing methods. 136

2



2 Related Work137

Unsupervised KPE Unsupervised KPE ap-138

proaches do not require annotated data and there139

has been much effort in this line of research, as140

summarized in (Papagiannopoulou and Tsoumakas,141

2020). Unsupervised KPE approaches can be cat-142

egorized into statistics-based, graph-based, and143

embedding-based methods. The statistics-based144

YAKE (Campos et al., 2018) method explores both145

conventional position and frequency features and146

new statistical features capturing context informa-147

tion. TextRank (Mihalcea and Tarau, 2004) is148

a representative graph-based method, which con-149

verts a document into a graph based on lexical150

unit co-occurrences and applies PageRank itera-151

tively. Many graph-based methods could be con-152

sidered as modifications to TextRank by introduc-153

ing extra features to compute weights for edges of154

the constructed graph, e.g., SingleRank (Wan and155

Xiao, 2008), PositionRank (Florescu and Caragea,156

2017), ExpandRank (Wan and Xiao, 2008). The157

graph-based TopicRank (Bougouin et al., 2013)158

and MultipartiteRank (Boudin, 2018) methods en-159

hance keyphrase diversity by constructing graphs160

based on clusters of candidate keyphrases. For161

embedding-based methods, EmbedRank (Bennani-162

Smires et al., 2018) measures the similarity be-163

tween phrase and document embeddings for rank-164

ing. SIFRank (Sun et al., 2020) improves the static165

embeddings in EmbedRank by a pre-trained lan-166

guage model ELMo and a sentence embedding167

model SIF (Arora et al., 2016). As analyzed in168

Section 1, for embedding-based methods, using169

contextualized embedding models to compute can-170

didate embeddings could be unreliable due to lack171

of context, and these methods lack robustness to172

different lengths of keyphrases and documents. Our173

proposed MDERank approach could effectively ad-174

dress these drawbacks.175

Contextual Embedding Models Early emebd-176

ding models include static word embeddings such177

as Word2Vec (Mikolov et al., 2013), GloVe (Pen-178

nington et al., 2014), and FastText (Bojanowski179

et al., 2017), and sentence embeddings such180

as Sent2Vec (Pagliardini et al., 2017) and181

Doc2Vec (Lau and Baldwin, 2016), which ren-182

der word or sentence representations that do not183

depend on their context. In contrast, pre-trained184

contextual embedding models, such as ELMo (Pe-185

ters et al., 2018), incorporate rich syntactic and186

semantic information from context for representa-187

tion learning and yield more expressive represen- 188

tations. BERT (Devlin et al., 2018) captures better 189

context information through a bidirectional trans- 190

former encoder than the Bi-LSTM based ELMo, 191

and has established SOTA in a wide variety of NLP 192

tasks. In one line of research, RoBERTa (Liu et al., 193

2019), XLNET (Yang et al., 2019) and many other 194

BERT variant PLMs have been proposed to fur- 195

ther improve the language representation capability. 196

In another line of research, Longformer (Beltagy 197

et al., 2020), BigBird (Zaheer et al., 2020) and other 198

efficient transformers are proposed to reduce the 199

quadratic complexity of transformer on sequence 200

length in order to model long-range dependencies. 201

In this paper, we mainly use BERT as the default 202

contextual embedding model. We also evaluate 203

the performance of MDERank with these efficient 204

transformers on long documents. 205

3 MDERank 206

In this section, we describe the proposed Masked 207

Document Embedding Rank (MDERank) approach. 208

Given a document d = {w1, w2, . . . , wn}, d ∈ D 209

where D denotes a dataset, and a set of selected 210

candidate KPs C = {c1, . . . , ci, . . . , cm}, where a 211

candidate ci consists of one or multiple tokens, as 212

ci = {c1i , . . . , cli}, and m ≤ n, KPE aims to select 213

K candidates from C, where K ≤ m. Follow- 214

ing the common practice (Bennani-Smires et al., 215

2018; Sun et al., 2020), after tokenization and POS 216

tagging, candidates are selected with regular ex- 217

pression <NN. *|JJ> * <NN.*>. 218

To address the mismatch between sequence 219

lengths of a document and a candidate phrase as 220

well as lack of contextual information in PD meth- 221

ods as mentioned in Section 1, we hypothesize 222

that it is more reasonable to conduct the similar- 223

ity comparison at the document-document level 224

rather than at the phrase-document level. Based 225

on this hypothesis, for each candidate KP ci for 226

a document d, given its occurrence positions in 227

d as [p1, p2, . . . , pt], MDERank replaces all oc- 228

currences of pti=1 by a special placeholder token 229

MASK and construct a masked variant of the origi- 230

nal document as dciM . We define the scoring func- 231

tion f(ci) for ranking the significance of candidates 232

as the cosine similarity between E(d) and E(dciM ), 233

where E(·) represents the embedding of a docu- 234

ment. Note that a higher f(ci) value indicates a 235

lower ranking for ci, which is opposite to the PD 236

methods. We use BERT (Devlin et al., 2018) as the 237
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default embedding model and investigate other con-238

textual embedding models in Section 5.4. BERT is239

pre-trained through self-supervised tasks of masked240

language modeling (MLM) and next sentence pre-241

diction (NSP), on large-scale unlabeled text of En-242

glish Wikipedia (2500M words) and Bookscorpus243

(800 words). A document d = {w1, w2, . . . , wn}244

is prepended with a special token [CLS] and then245

encoded by BERT to obtain the hidden represen-246

tations of tokens as {H1, H2, . . . ,Hn}. The docu-247

ment embedding E(d) is computed as follows:248

E(d) = MaxPool(H1, . . . ,Hn)249

We also investigate average pooling in Section 5.4250

and other masking methods in Appendix A.251

4 KPEBERT: KPE-oriented252

Self-supervised Learning253

BERT and many other BERT variant PLMs can254

effectively capture syntactic and semantic informa-255

tion in language representations for downstream256

NLP tasks, through self-supervised learning objec-257

tives such as MLM. However, these self-supervised258

learning objectives neither explicitly model the sig-259

nificance of KPs nor model ranking between KPs.260

In this paper, we propose a novel PLM KPEBERT261

trained with a novel self-supervised learning objec-262

tive to improve the capabilities of PLMs for ranking263

KPs. This new task is defined as minimizing the264

triplet loss between positive and negative examples265

(See Figure 2). After obtaining a set of pseudo-266

KPs for documents using another unsupervised267

KPE method θ, we define documents masking out268

pseudo-KPs as positive examples while those mask-269

ing out “non-pseudo-KPs” as negative examples.270

Following SimCSE (Gao et al., 2021), we encode271

the original document d (anchor), the positive ex-272

ample d+, and negative example d− through a PLM273

encoder, respectively, and obtain their hidden rep-274

resentations as Hd, Hd+ , and Hd− . Finally, we275

define the triplet loss as276

`CL = max (sim(Hd, Hd+)− sim(Hd, Hd−) +m, 0)277

where sim(Hx, Hy) denotes the similarity be-278

tween embeddings of the document x and y. We279

use cosine similarity (same as used for MDERank).280

m is a margin parameter.281

We initialize KPEBERT from BERT-base-282

uncased1 and then incorporate the standard MLM283

pre-training task as in BERT into the overall learn-284

ing objective to avoid forgetting the previously285

1https://huggingface.co/bert-base-uncased

learned general linguistic knowledge, as follows: 286

` = `CL + λ · `MLM 287

where λ is a hyper-parameter balancing the two 288

losses in the multi-task learning setting. KPEBERT 289

differs from SimSCE in two major aspects: (i) KPE- 290

BERT uses pseudo labeling and positive/negative 291

example sampling strategies (below), different 292

from standard dropout used by SimCSE to con- 293

struct pair examples; (ii) KPEBERT uses triplet 294

loss whereas SimCSE uses contrastive loss. 295

Datasets NKP LKP LDoc

Inspec 9.82 2.31 121.84
SemEval2010 15.07 2.11 189.90
SemEval2017 17.30 3.00 170.38

DUC2001 8.08 2.07 724.63
NUS 11.66 2.07 7702.00

Krapivin 5.74 2.03 8544.57

Table 2: Statistics of the datasets. NKP is the aver-
age number of gold keyphrases. LKP is the average
length of gold keyphrases. LDoc is the average number
of words per document.

Absolute Sampling For a document d, we first 296

select candidate keyphrases C using POS tags with 297

regular expressions as described in Section 3. Then 298

we obtain a set of keyphrases C ′ extracted by an- 299

other unsupervised KPE approach θ on d, as pseudo 300

labels. We define “keyphrases” as C ′ and “non- 301

keyphrases” as C \ C ′. We mask a “keyphrase” 302

from a document with a MASK to construct a posi- 303

tive example d+ for d. We select a “non-keyphrase” 304

and perform the same mask operation to construct 305

a negative example d−. 306

Relative Sampling In this approach, after ob- 307

taining a set of KP C ′ extracted by θ, we ran- 308

domly select a pair of KPs from C ′ and choose the 309

one ranked higher to construct a positive example 310

and the other one to construct a negative example 311

through the mask operation. On one hand, the de- 312

cisions of “keyphrases” and “non-keyphrases” are 313

fully based on the ranking predicted by θ, hence rel- 314

ative sampling may increase the impact from θ on 315

the inductive bias of KPEBERT. On the other hand, 316

relative sampling mines more hard negative sam- 317

ples which may improve performance of triplet loss 318

based learning. We study the efficacy of these two 319

sampling approaches on KPEBERT in Section 5.3. 320
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Figure 2: The multi-task pre-training for KPEBERT includes two tasks. One is teaching the encoder to distinguish
documents masked with keyphrases and non-keyphrases. The other is further pre-training the encoder with a MLM
task. The word in pink is an example to illustrate the random masking in MLM.

F1@K Method Dataset AVG AvgRank (STD)
Inspec SemEval2017 SemEval2010 DUC2001 Krapivin NUS

5

TextRank 21.58 16.43 7.42 11.02 6.04 1.80 10.72 9.33 (±1.60)
SingleRank 14.88 18.23 8.69 19.14 8.12 2.98 12.01 7.67 (±0.94)
TopicRank 12.20 17.10 9.93 19.97 8.94 4.54 12.11 7.17 (±1.77)

MultipartiteRank 13.41 17.39 10.13 21.70 9.29 6.17 13.02 6.17 (±1.77)
YAKE 8.02 11.84 6.82 11.99 8.09 7.85 9.10 9.00 (±2.52)

EmbedRank(Sent2Vec)+MMR 14.51 20.21 9.63 21.75 8.44 2.13 12.78 6.83 (±2.03)
SIFRank(ELMo) 29.38 22.38 11.16 24.30 1.62 3.01 15.31 4.50 (±3.77)

EmbedRank(BERT) 28.92 20.03 10.46 8.12 4.05 3.75 12.56 6.83 (±3.02)

MDERank(BERT) 26.17 22.81 12.95 13.05 11.78 15.24 17.00 3.33 (±2.49)
MDERank(KPEBERTab) 28.06 21.63 12.95 22.51 12.91 14.11 18.70 2.67 (±0.75)
MDERank(KPEBERTre) 27.85 20.37 13.05 23.31 12.35 14.39 18.55 2.50 (±1.12)

10

TextRank 27.53 25.83 11.27 17.45 9.43 3.02 15.76 8.00 (±1.63)
SingleRank 21.50 27.73 12.94 23.86 10.53 4.51 16.85 6.67 (±1.49)
TopicRank 17.24 22.62 12.52 21.73 9.01 7.93 15.18 8.50 (±1.50)

MultipartiteRank 18.18 23.73 12.91 24.10 9.35 8.57 16.14 7.17 (±1.67)
YAKE 11.47 18.14 11.01 14.18 9.35 11.05 12.53 9.17 (±2.54)

EmbedRank(Sent2Vec)+MMR 21.02 29.59 13.9 25.09 10.47 2.94 17.17 6.67 (±2.29)
SIFRank(ELMo) 39.12 32.60 16.03 27.60 2.52 5.34 20.54 4.50 (±3.91)

EmbedRank(BERT) 38.55 31.01 16.35 11.62 6.60 6.34 18.41 6.50 (±3.20)

MDERank(BERT) 33.81 32.51 17.07 17.31 12.93 18.33 21.99 4.00 (±2.45)
MDERank(KPEBERTab) 35.80 32.23 17.95 26.97 14.36 17.72 24.17 2.33 (±0.75)
MDERank(KPEBERTre) 34.36 31.21 18.27 26.65 14.31 18.46 23.88 2.50 (±1.26)

15

TextRank 27.62 30.50 13.47 18.84 9.95 3.53 17.32 8.00 (±1.73)
SingleRank 24.13 31.73 14.4 23.43 10.42 4.92 18.17 6.67 (±1.49)
TopicRank 19.33 24.87 12.26 20.97 8.30 9.37 15.85 8.83 (±1.77)

MultipartiteRank 20.52 26.87 13.24 23.62 9.16 10.82 17.37 7.33 (±1.80)
YAKE 13.65 20.55 12.55 14.28 9.12 13.09 13.87 9.00 (±2.45)

EmbedRank(Sent2Vec)+MMR 23.79 33.94 14.79 24.68 10.17 3.56 18.49 6.50 (±1.98)
SIFRank(ELMo) 39.82 37.25 18.42 27.96 3.00 5.86 22.05 4.67 (±3.77)

EmbedRank(BERT) 39.77 36.72 19.35 13.58 7.84 8.11 20.90 6.33 (±3.30)

MDERank(BERT) 36.17 37.18 20.09 19.13 12.58 17.95 23.85 4.00 (±2.00)
MDERank(KPEBERTab) 37.43 37.52 20.69 26.28 13.58 17.95 25.58 2.00 (±1.00)
MDERank(KPEBERTre) 36.40 36.63 20.35 26.42 13.31 19.41 25.42 2.67 (±1.37)

Table 3: KPE performance as F1@K,K ∈ {5, 10, 15} on the six benchmarks. For each K, the first group shows performance
of the baselines and the second group shows performance of our proposed MDERank using BERT for embedding and MDERank
using KPEBERT for embedding. EmbedRank(BERT) denotes the Phrase-Document based methods for a fair comparison.
The best results are both underlined and in bold. The second-best results are in bold. Ab and Re denote absolute and relative
sampling, respectively. AVG is the average F1@K on all six benchmarks. AvgRank(STD) is the mean and std of the rank of a
method among all methods on all six benchmarks (hence the lower the better).
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5 Experiments321

5.1 Datasets and Metrics322

The pre-training data for KPEBERT are the Wiki-323

Text language modeling dataset with 100+ million324

tokens extracted from a set of verified Good and325

Featured articles on Wikipedia2. We use six KPE326

benchmarks for evaluations. Four of them are scien-327

tific publications3, including Inspec (Hulth, 2003),328

Krapivin (Krapivin et al., 2009), NUS (Nguyen329

and Kan, 2007), and SemEval-2010 (Kim et al.,330

2010), all widely used for evaluations in previ-331

ous works (Meng et al., 2017; Chen et al., 2019;332

Sahrawat et al., 2019; Bennani-Smires et al., 2018;333

Meng et al., 2020). We also evaluate on the334

DUC2001 dataset (news articles) (Wan and Xiao,335

2008) and SemEval2017 dataset (science jour-336

nals) (Augenstein et al., 2017)4. Table 2 shows337

data statistics. Following previous works, predicted338

KPs are deduplicated and the KPE performance is339

evaluated as F1 at the top K KPs (K ∈ {5, 10, 15}).340

Stemming is applied for computing F1.341

5.2 Baselines and Training Details342

The first group for each K in Table 3 shows perfor-343

mance of the eight baseline unsupervised KPE ap-344

proaches. We evaluate TextRank, SingleRank, Top-345

icRank, MultipartiteRank, YAKE, EmbedRank us-346

ing their implementations in the widely used toolkit347

PKE5 with the default parameter settings. We eval-348

uate SIFRank using the codebase 6 and the same349

parameters suggested by the authors (Sun et al.,350

2020). The original EmbedRank (Bennani-Smires351

et al., 2018) uses Sent2Vec for embedding and in-352

troduces embedding-based maximal marginal rel-353

evance (MMR) for improving diversity among354

selected KPs. For a fair comparison between355

the Phrase-Document method and our Document-356

Document MDERank, we design a new baseline357

EmbedRank(BERT) by replacing Sent2Vec with358

BERT and removing MMR.359

We use YAKE (Campos et al., 2018) as θ to ex-360

tract “keyphrases” for a document for KPEBERT361

pre-training, due to its high efficiency and consis-362

2https://huggingface.co/datasets/
wikitext

3https://github.com/memray/
OpenNMT-kpg-release

4https://github.com/sunyilgdx/SIFRank/
tree/master/data

5https://github.com/boudinfl/pke
6https://github.com/sunyilgdx/SIFRank/

tree/master

tent performance. Effects of the choice of θ on 363

KPEBERT are analyzed in Appendix B where we 364

compare YAKE and TextRank as θ. The number of 365

pseudo labels for absolute and relative sampling for 366

KPEBERT pre-training are 10 and 20, respectively. 367

The λ is set to 0.1. The default parameter setting 368

is the same as (Gao et al., 2021) except that we set 369

the margin m for triplet loss to 0.2 and the learn- 370

ing rate to 3e-5. We use 4 NVIDIA V100 GPUs 371

for training, the batch size is 2 per device and the 372

gradient accumulation is 4. We train 10 epochs. 373

5.3 Performance Comparison 374

Table 3 shows F1 at the top 5, 10, and 15 pre- 375

dictions from the baselines in the first group for 376

each K and from our proposed MDERank(BERT) 377

(default using BERT for embedding) and MDER- 378

ank using KPEBERT for embedding, MDER- 379

ank(KPEBERT), in the second group for each K. 380

MDERank(BERT) and MDERank(KPEBERT) per- 381

form consistently well on all benchmarks. MDER- 382

ank(BERT) outperforms EmbedRank(BERT) by 383

2.95 average F1@15 and outperforms the previous 384

SOTA SIFRank by 1.80 average F1@15. MDER- 385

ank further benefits from KPEBERT and over- 386

all MDERank(KPEBERT) achieves 3.53 average 387

F1@15 gain over SIFRank, especially on long- 388

document datasets NUS and Krapivin. We also 389

compute the average recalls of KPs with different 390

phrase lengths (PL) in top-15 extracted KPs on 391

all 6 bechmarks, for both EmbedRank(BERT) and 392

MDERank(BERT), as shown in Table 4. We ob- 393

serve that EmbedRank has a strong bias for longer 394

phrases, and PLs of its extracted phrases are con- 395

centrated in [2,3]. In contrast, PLs of KPs ex- 396

tracted by MDERank are more evenly distributed 397

on diverse datasets. This analysis confirms that 398

MDERank indeed alleviates the bias towards longer 399

phrases from EmbedRank. 400

However, we observe that MDERank(BERT) has 401

a large gap to SIFRank on DUC2001 and performs 402

worse than EmbedRank(BERT) on Inspec. We in- 403

vestigate the reasons for these poorer performance. 404

For DUC2001, different from other datasets col- 405

lected from scientific publications, DUC2001 con- 406

sists of open-domain news articles. The previous 407

SOTA SIFRank introduces domain adaptation by 408

combining weights from common corpus and do- 409

main corpus in the weight function of words for 410

computing sentence embeddings, which may con- 411

tribute significantly to its superior performance on 412

6

https://huggingface.co/datasets/wikitext
https://huggingface.co/datasets/wikitext
https://github.com/memray/OpenNMT-kpg-release
https://github.com/memray/OpenNMT-kpg-release
https://github.com/sunyilgdx/SIFRank/tree/master/data
https://github.com/sunyilgdx/SIFRank/tree/master/data
https://github.com/boudinfl/pke
https://github.com/sunyilgdx/SIFRank/tree/master
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Method EmbedRank(BERT) MDERank(BERT)

Data
PL

1 2 3 >3 1 2 3 >3

Inspec 24.80 54.53 46.11 21.57 27.90 48.71 43.20 21.17
SemEval2017 24.91 53.68 48.05 9.84 37.28 47.07 43.99 9.76
SemEval2010 9.35 22.79 18.07 4.17 21.55 19.99 15.95 4.17

DUC2001 3.46 19.39 37.39 15.58 24.81 23.70 23.66 13.46
Krapivin 4.31 13.59 11.80 2.50 15.88 22.43 10.62 2.14

NUS 5.12 9.53 16.17 2.84 26.77 24.70 17.12 1.90

Table 4: The average recall of predicted KPs with dif-
ferent phrase lengths (PL) on all six benchmarks, from
EmbedRank(BERT) and MDERank(BERT).

DUC2001. As the default embedding model for413

MDERank, BERT is pre-trained on open-domain414

Wikipedia and Bookscorpus. However, as ex-415

plained in Section 4, BERT does not emphasize416

learning significance of KPs or ranking between417

KPs. KPEBERT is designed to tackle this prob-418

lem. Although the training data for KPEBERT, the419

open-domain WikiText language modeling dataset,420

is much smaller than English Wikipedia, with KPE-421

oriented representation learning in KPEBERT, the422

performance of MDERank(KPEBERT) improves423

remarkably and is comparable to SIFRank. For In-424

spec, the average PLs of gold labels of this dataset425

is relatively high (see Table 2). Also, on this dataset,426

when we move candidates with only 1 token to the427

end of ranking, MDERank(BERT) improves F1@5,428

F1@10, F1@15 to 29.71 ,38.15, 39.46, an improve-429

ment of 3.54, 4.34 and 3.29, respectively. These430

analyses demonstrate that gold labels for Inspec are431

biased towards long PL. Therefore, EmbedRank432

with inductive bias for long PL may benefit from433

this annotation bias and perform well.434

It is notable that MDERank particularly outper-435

forms baselines on long-document datasets, veri-436

fying that MDERank could mitigate the weakness437

of performance degradation on long documents438

from PD methods. We further investigate effects of439

document length in Section 5.4. Absolute and rela-440

tive sampling for KPEBERT achieve comparable441

performance on the 6 benchmarks with absolute442

sampling gaining a very small margin. Relative443

sampling performs better on NUS but is worse on444

Inspec and SemEval2017. We plan to continue445

exploring sampling approaches in future work, to446

reduce dependency on θ and improve KPEBERT.447

5.4 Analyses448

Effects of Document Length Section 5.3 demon-449

strates the superior performance of MDERank es-450

pecially on long documents. We conduct two ex-451

Method Doc Len F1@5 F1@10 F1@15

EmbedRank(BERT)
128 8.76 14.75 16.28
256 5.86 10.19 12.90
512 3.75 6.34 8.11

MDERank(BERT)
128 12.86 16.06 16.67
256 14.45 16.01 16.64
512 15.24 18.33 17.95

Table 5: Effects of document lengths (the first 128, 256,
512 words of a document) on the KPE performance on
the NUS dataset from EmbedRank(BERT) and MDER-
ank(BERT).

periments to further analyze effects of document 452

length on the performance of PD methods and 453

MDERank. We choose EmbedRank(BERT) to 454

represent PD methods. In the first experiment, 455

both approaches use BERT for embedding and 456

we truncate a document into the first 128, 256, 457

512 words. As shown in Table 5, F1 for Em- 458

bedRank(BERT) drops drastically as the document 459

length increases from 128 to 512, reflecting the 460

weakness of EmbedRank(BERT) that the increased 461

document length exacerbates discrepancy between 462

sequence lengths of the document and KP candi- 463

dates and mismatches between their embeddings, 464

which degrades the KPE performance. In contrast, 465

the performance of MDERank(BERT) improves 466

steadily with increased document lengths, demon- 467

strating the robustness of MDERank to document 468

lengths and its capability to benefit KPE from more 469

context in longer documents. 470

In the second experiment, we investigate ef- 471

fects of document length beyond 512 on Em- 472

bedRank and MDERank. To accommodate docu- 473

ments longer than 512, we choose BigBird (Zaheer 474

et al., 2020) as the embedding model. BigBird re- 475

places the full self-attention in Transformer with 476

sparse attentions of global, local, and random at- 477

tentions, reducing the quadratic complexity to se- 478

quence length from Transformer to linear. In order 479

to select valid datasets for evaluation, we count the 480

average percentage of gold label KPs appearing in 481

the firstmwords in a document on the three longest 482

datasets, DUC2001, NUS, and Krapivin. We ob- 483

serve that the first 500 words nearly cover 90% 484

gold KPs in DUC2001, whereas 50% gold KPs in 485

Krapivin are in the first 2500 words, and 50% gold 486

KPs in NUS are in the first 2000 words. Therefore, 487

we drop DUC2001 and use NUS and Krapivin for 488

the second experiment. We keep the first 2500 and 489

2000 words for documents in Krapivin and NUS, 490
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Method NUS (512) NUS (2000) Krapivin (512) Krapivin (2500)
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

EmbedRank(BERT) 3.75 6.34 8.11 − − − 4.05 6.60 7.84 − − −
EmbedRank(BigBird) 2.56 5.16 7.11 1.08 1.36 2.20 3.24 5.14 6.31 1.05 1.93 2.28

MDERank(BERT) 15.24 18.33 17.95 − − − 11.78 12.93 12.58 − − −
MDERank(BigBird) 15.42 17.68 17.81 15.36 19.56 20.33 11.62 11.99 11.70 11.33 12.71 12.70

Table 6: KPE performance from EmbedRank and MDERank using BERT for embedding (the first group) and the
two approaches using BigBird for embedding (the second group). 512, 2000, 2500 in the parentheses represent the
number of words kept for each document in datasets. The results for NUS(2000) and Krapivin (2500) are missing
for EmbedRank(BERT) and MDERank(BERT) due to limitation on input sequence length from BERT.

Method Pooling Layer DUC2001

F1@5 F1@10 F1@15

EmbedRank(BERT)

AvgPooling
3 16.19 21.21 22.12
6 10.76 15.33 17.63

12 10.41 15.15 17.69

MaxPooling
3 6.97 11.04 12.27
6 7.12 10.93 13.13

12 8.12 11.62 13.58

MDERank(BERT)

AvgPooling
3 12.00 16.45 19.08
6 12.40 17.07 19.02

12 13.00 17.93 19.45

MaxPooling
3 11.06 16.16 18.01
6 11.06 15.91 17.98

12 13.05 17.31 19.13

Table 7: KPE performance on DUC2001 from Em-
bedRank and MDERank using different BERT layers
for embedding and pooling methods. AvgPooling and
MaxPooling are employed on the output of a specific
layer to produce document embeddings.

respectively. Table 6 demonstrates that on NUS,491

when increasing the document length from 512492

to 2000, MDERank(BigBird) outperforms MDER-493

ank(BERT) by 2.52 F1@15. On Krapivin, when494

increase the document length from 512 to 2500,495

MDERank also improves by 1.0 F1@15. In con-496

trast, the performance of EmbedRank degrades dra-497

matically with longer context, since more context498

introduces more candidates into ranking and also499

worsens the discrepancy between lengths of doc-500

ument and phrases, which in turn greatly reduces501

the accuracy of similarity comparison.502

Effects of Encoder Layers and Pooling Methods503

The findings in (Jawahar et al., 2019; Kim et al.,504

2020; Rogers et al., 2020) show that BERT captures505

a rich hierarchy of linguistic information, with sur-506

face features in lower layers, syntactic features in507

middle layers and semantic features in higher lay-508

ers. We conduct experiments to understand the509

effects on MDERank and EmbedRank when us-510

ing different BERT layers for embedding. We511

choose the third, the sixth, and the last layer from512

BERT-Base. We study the interactions between en-513

coder layers and Max Pooling and Average Pooling514

methods. As shown in Table 7, for both AvgPool- 515

ing and MaxPooling, F1 from MDERank(BERT) 516

shows a steady incline to the increase of layers. 517

On the contrary, with AvgPooling, F1 from Em- 518

bedRank(BERT) drastically drops as the layers 519

rises from 3 to 12, probably due to that the lower 520

BERT layer provides more rough and generic rep- 521

resentations, which may alleviate mismatch in sim- 522

ilarity comparison in Phrase-Document methods7. 523

Compared to AvgPooling, MaxPooling produces 524

weaker document embedding, which severely de- 525

grades the performance of EmbedRank and slightly 526

degrades the performance of MDERank. On the 527

other hand, MaxPooling probably reduces differ- 528

ences in embeddings across layers, hence perfor- 529

mance of EmbedRank becomes stable across lay- 530

ers with MaxPooling. For both pooling methods, 531

MDERank using the last BERT layer achieves the 532

best results, which demonstrates that MDERank 533

can fully benefit from stronger contextualized se- 534

mantic representations. 535

6 Conclusion 536

We propose a novel embedding-based unsupervised 537

KPE approach, MDERank, to improve reliability of 538

similarity match compared to previous embedding- 539

based methods. We also propose a novel self- 540

supervised learning method and develop a KPE- 541

oriented PLM, KPEBERT. Experiments demon- 542

strate MDERank outperforms SOTA on diverse 543

datasets and further benefits from KPEBERT. Anal- 544

yses further verify the robustness of MDERank to 545

different lengths of keyphrases and documents, and 546

that MDERank benefits from longer context and 547

stronger embedding models. Future work includes 548

improving KPEBERT for MDERank by optimizing 549

sampling strategies and pre-training methods. 550

7We also test the average F1@5, F1@10, F1@15 for Em-
bedRank(BERT) with AvgPooling and layer 3 on 6 datasets,
which are 3.7, 1.8 and 1.6 absolute lower than MDER-
ank(BERT).
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Appendices718

A Effects of Masking Methods on719

MDERank720

Given occurrences of a candidate KP ci in a docu-721

ment d as [p1, p2, . . . , pt], we study several meth-722

ods to mask these occurrences and generate the723

masked document dciM , considering the potential724

bias e.g., frequency, sequence length, and nested725

phrases.726

Mask Once The Mask Once method only masks727

the first occurrence of a candidate. This strategy728

eliminates the bias towards high frequency candi-729

date KPs. However, it may prefer longer candidate730

KPs (i.e., candidate KPs that consist of more sub-731

words) with the same argument shown in Section 1.732

MDERank may benefit from this masking strat-733

egy on datasets with annotation bias towards long734

keyphrases.735

Mask Highest The Mask Highest method con-736

siders the collection of dciM s obtained by masking737

each occurrence of a candidate phrase ci once in the738

document, and select the one that has the smallest739

cosine similarity with the embeddings of d. This740

method considers a balance of impacts from se-741

quence length and frequency of candidate phrases.742

Mask Subset One issue in KPE is that there may743

be heavy nesting among candidate KPs. For exam-744

ple, “support vector machine” may result in nested745

candidates such as “support vector machine”, “sup-746

port vector”, “vector machine”, and even “ma-747

chine”. Neither Mask All nor Mask Once strat-748

egy addresses this issue and hence the nested KPs749

may take up a large proportion in the final results,750

drastically damaging the diversity. We design the751

Mask Subset method to alleviate impact of nested752

candidate KPs. Firstly, all candidates are ranked753

by their phrase length in a descending order. Sec-754

ondly, when generating a masked document for755

each candidate in order, Mask Subset records the756

positions of masked words and requires that each757

candidate could only be masked with words not in758

the recorded positions.759

The KPE results from MDERank(BERT) using760

these masking strategies are shown in Table 8. The761

masking variants do not bring remarkable improve-762

ment compared with the results from Mask All,763

and Mask Once and Mask Highest perform even764

worse on the long-document datasets. This is be-765

cause masking only one occurrence of a candidate766

will not emphasize the change of semantics sig-767

nificantly, especially on long documents. Mask 768

subset could partially address the diversity prob- 769

lem by reducing the number of nested candidates 770

selected by MDERank. Figure 3 shows a compar- 771

ison on diversity between Mask Subset and other 772

methods, where the evaluation metric for diversity 773

is defined in Equation 1. The Phrase-Document 774

method refers to EmbedRank(BERT). We could 775

see from Figure 3 that MDERank with Mask Sub- 776

set indeed boosts the diversity over Mask All and 777

even exceeds gold labels on several datasets. 778

Diveristy(d) =
tu
tn
∗ 100 (1) 779

Figure 3: Diversity scores from different methods on
various datasets. A higher bar indicates a better diver-
sity. The diversity of gold keyphrases are in blue and
on the right.

B Effects of the Choice of θ on 780

KPEBERT 781

We also investigate the effects of the choice of θ on 782

KPEBERT. We explore alternative unsupervised 783

KPE methods as θ for generating pseudo labels for 784

KPEBERT pre-training. Besides YAKE, when bal- 785

ancing the extraction speed and KPE quality, Tex- 786

tRank is another choice for θ. As shown in Table 3, 787

YAKE performs better than TextRank on long- 788

document datasets but worse on short-document 789

datasets. After replacing YAKE with TextRank as 790

θ for producing pseudo labels and training KPE- 791

BERT, the KPE results of the respective MDER- 792

ank(KPEBERT) are shown in Table 9. We observe 793

that MDERank(KPEBERT) using YAKE as θ sig- 794

nificantly outperforms MDERank(KPEBERT) us- 795

ing TextRank as θ, on both short-document datasets 796
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F1@K Method Dataset
Inspec SemEval2017 SemEval2010 DUC2001 Krapivin NUS AVG

5

Mask All 26.17 22.81 12.95 13.05 11.78 15.24 17.00
Mask Once 27.93 20.56 10.16 9.11 4.61 3.92 12.72

Mask Highest 27.93 20.56 10.16 9.11 4.65 3.92 12.72
Mask Subset 29.25 21.50 10.26 12.05 8.50 9.61 15.20

10

Mask All 33.81 32.51 17.07 17.31 12.93 18.33 21.99
Mask Once 37.38 30.95 15.40 13.49 7.21 6.52 18.49

Mask Highest 37.42 30.97 15.32 13.46 7.24 6.56 18.50
Mask Subset 36.55 31.30 15.88 16.73 9.99 13.43 20.65

15

Mask All 36.17 37.18 20.09 19.13 12.58 17.95 23.85
Mask Once 39.11 36.07 17.69 16.47 8.15 8.85 21.06

Mask Highest 39.36 36.10 17.76 16.45 8.20 8.85 21.12
Mask Subset 38.08 36.67 17.83 19.19 10.48 14.65 22.82

Table 8: F1@K (K ∈ {5, 10, 15}) from MDERank(BERT) using different masking methods, where Mask All
refers to the masking method described in Section 3.

F1@K θ
Dataset

Inspec SemEval2017 SemEval2010 DUC2001 Krapivin NUS AVG

5
TextRank 28.93 21.34 11.46 13.30 7.85 7.57 15.08

YAKE 28.06 21.63 12.95 22.51 12.91 14.11 18.70

10
TextRank 38.13 32.71 17.23 19.15 10.47 10.59 21.38

YAKE 35.80 32.23 17.95 26.97 14.36 17.72 24.17

15
TextRank 39.49 37.95 19.89 22.11 11.40 12.83 23.95

YAKE 37.43 37.52 20.69 26.28 13.58 17.95 25.58

Table 9: The KPE performance (F1@K) from MDERank(KPEBERT) with KPEBERT pre-trained using YAKE
and TextRank as θ for producing pseudo labels, respectively. AVG is the average F1@K on all six benchmarks

Method F1@K Dataset

Inspec SemEval2017 SemEval2010 DUC2001 Krapivin NUS AVG

EmbedRank(Cos)
5 28.92 20.03 10.46 8.12 4.05 3.75 12.56

10 38.55 31.01 16.35 11.62 6.60 6.34 18.41
15 39.77 36.72 19.35 13.58 7.84 8.11 20.90

EmbedRank(Euc)
5 29.28 19.77 9.47 7.92 4.13 4.04 12.44

10 38.23 30.58 16.35 11.61 6.66 6.52 18.33
15 39.80 36.14 19.02 13.49 7.71 8.18 20.72

MDERank(Cos)
5 26.17 22.81 12.95 13.05 11.78 15.07 16.97

10 33.81 32.51 17.07 17.31 12.93 19.20 22.14
15 36.17 37.18 19.02 19.13 12.58 19.62 23.95

MDERank(Euc)
5 26.25 22.83 12.76 13.10 11.29 15.24 16.91

10 33.83 32.59 17.15 17.45 12.15 18.29 21.91
15 36.25 37.24 20.22 19.33 11.82 18.02 23.81

Table 10: The KPE performance from MDERank and EmbedRank using Cosine and Euclidean as similarity mea-
sure, where EmbedRank is EmbedRank(BERT) as in Section 5.2 and MDERank is MDERank(BERT).

and long-document datasets (except on Inspec). Al-797

though on average YAKE performs worse than798

TextRank on the six benchmarks, the better per-799

formance from YAKE on long documents cou-800

pled with its consistent performance may be a801

crucial factor when choosing θ for pre-training802

KPEBERT. Results in Table 3 shows that MDER-803

ank(KPEBERT) yields superior performance on804

both short and long documents. In other words,805

KPEBERT benefits from the stable performance 806

from YAKE on long documents for pseudo labeling, 807

and KPEBERT also exhibits robustness to the rela- 808

tively low performance on short documents from 809

YAKE. 810

Impact of Similarity Measure The common 811

similarity measures include Cosine and Euclidean 812

distance. However, the choice of similarity mea- 813

sure does not matter for MDERank performance. 814
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We conduct experiments to investigate the impact815

of the similarity measure on the performance of816

MDERank, and the results are shown in Table 10.817

We observe that Cosine and Euclidean similarity818

measure are not a salient factor for the ranking819

results for both EmbedRank(BERT) and MDER-820

ank(BERT).821
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