
Under review as a conference paper at ICLR 2021

ON THE IMPORTANCE OF DISTRACTION-ROBUST
REPRESENTATIONS FOR ROBOT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Representation Learning methods can allow the application of Reinforcement
Learning algorithms when a high dimensionality in a robot’s perceptions would
otherwise prove prohibitive. Consequently, unsupervised Representation Learn-
ing components often feature in robot control algorithms that assume high-
dimensional camera images as the principal source of information. In their design
and performance, these algorithms often benefit from the controlled nature of the
simulation or the laboratory conditions they are evaluated in. However, these set-
tings fail to acknowledge the stochasticity of most real-world environments. In
this work, we introduce the concept of Distraction-Robust Representation Learn-
ing. We argue that environment noise and other distractions require learned rep-
resentations to encode the robot’s expected perceptions rather than the observed
ones. Our experimental evaluations demonstrate that representations learned with
a traditional dimensionality reduction algorithm are strongly susceptible to dis-
tractions in a robot’s environment. We propose an Encoder-Decoder architecture
that produces representations that allow the learning outcomes of robot control
tasks to remain unaffected by these distractions.

1 INTRODUCTION

Representation Learning techniques form an integral part in many Reinforcement Learning (RL)
robot control applications (Lesort et al., 2018). Utilising low-dimensional representations can allow
for a faster and more efficient learning of tasks than when using high-dimensional sensor informa-
tion (Munk et al., 2016). This is particularly useful in vision-based learning when high-dimensional
images of the robot’s environment are the principal source of information available to the learning
algorithm (Zhu et al., 2020). Most commonly, representations are learned by applying dimensional-
ity reduction techniques such as Autoencoders (AEs) (Hinton & Salakhutdinov, 2006) or Variational
Autoencoders (VAEs) (Kingma & Welling, 2014) to the robot’s sensory data (Lange et al., 2012; Zhu
et al., 2020). Generally, an AE consists of two Neural Networks, an Encoder E and a Decoder D.
The Encoder attempts to condense all available information in the input data x into a latent repre-
sentation z from which a reconstruction of the inputs D(E(x)) is generated by the Decoder. When
the dimensionality of the representation is smaller than that of the input data, some information is
lost when creating the representations. An AE is typically trained to shrink the magnitude of this
information loss by minimising a reconstruction error. This error is commonly given by the squared
norm of differences,

LAE = ||x−D(E(x))||22. (1)

However, the optimisation of the reconstruction error in Eq. 1 does not necessarily result in the gen-
eration of representations that are optimal for the use in robot learning algorithms. For example, an
accurate reconstruction of the decorative patterns on a dinner plate is less important than the plate’s
dimensions to a robot learning to place it into a cabinet. It can therefore be desirable to control which
aspects of the information contained in the inputs are most critical to be preserved in the represen-
tations. For instance, Pathak et al. (2017) design a Neural Network that learns representations from
visual inputs by using them to predict the action taken by the RL agent in its state transition. By ask-
ing the network to predict the action, the authors eliminate the requirement for the representations
to retain any state information that is unrelated to the agent’s behaviour.

1

Under review as a conference paper at ICLR 2021

A focus on the learned representations’ preservation of task-relevant information becomes even
more crucial in the presence of distracting influences (DIs) in the environment. These DIs can
materialise in the presence of additional environment objects which exhibit dynamics that are not
only uncorrelated with the robot’s behaviour but additionally misleading. For instance, a robot that
is learning to move objects to different positions in a room can find the observation of a moving
autonomous vacuum cleaner misleading. Alternatively, DIs can impact the dynamics of existing
objects in the room. For instance, after the robot has moved a box to a certain position in the room,
further movements of the box due to external forces can be distracting to the robot’s learning process.

In this paper, we introduce the concept of Distraction-Robust Representation Learning. We investi-
gate the learning outcomes of robot control tasks when DIs are present in the environment. We show
that in the presence of DIs, representations learned exclusively from environment observations can
mislead the robot’s perceptions of its control over the environment. This finding demonstrates that
Distraction-Robust Representation Learning needs to be afforded increased attention. In particular,
works in the strand of research that aim to make RL algorithms more applicable to real-world sce-
narios largely concentrate on improving algorithm attributes such as the data efficiency (Zhu et al.,
2020). However, few works acknowledge the challenges posed by the inherently stochastic nature of
real-world environments and the presence of DIs (Forestier et al., 2017). Furthermore, we introduce
a Robot Action Encoder-Decoder architecture (RAED) which successfully produces representations
that are robust to DIs in the environment. RAED follows the simple but effective approach of us-
ing only the values that parameterise the robot’s actions as the input to the Encoder. Such a set of
parameters defines a robot controller for instance. The representations produced by the Encoder are
used by RAED’s Decoder to generate predictions of the environment observations. RAED’s design
allows for static environment elements to be learned by the Decoder while concentrating the infor-
mation in the representations on the observable consequences of the robot’s behaviour. Moreover,
when environment observations are distorted by the presence of DIs, RAED produces representa-
tions that capture the expected consequences of the robot’s environment interactions. This is not the
case when training representation learning methods such as AEs to reconstruct the full content of
the robot’s visual perceptions. We can therefore draw some parallels between RAED’s design and
the concept of a forward model (Jordan & Rumelhart, 1992). Given the simplicity of the approach,
we expect the applicability of RAED to generalise to various different learning algorithms.

2 RELATED WORK

Several works have investigated mechanisms to preserve only task-relevant information in learned
representations. Pathak et al. (2017) propose a Neural Network architecture that learns represen-
tations of visual inputs by predicting the action taken by the RL agent in its state transition. This
design allows the representations to dedicate their information capacity to the observable conse-
quences of the robot’s actions. Finn et al. (2016) propose a spatial AE to learn representations that
aim to preserve only the configuration of objects in the environment rather than all aspects of the
information contained in the camera images. However, in both approaches, the representations are
learned from visual inputs which will be distorted if DIs are present in the environment. Without an
explicit correction mechanism, these representation learning techniques therefore remain suscepti-
ble to distractions. The concept of affordance learning formulates a similar goal in discovering the
consequences of the robot’s actions on its environment (Cakmak et al., 2007; Şahin et al., 2007).
However, the works in this strand of research rarely consider the problem of DIs in the environment.
Instead, they mainly concentrate on the robot’s ability to infer how an object in the environment
would behave in response to its actions when no prior interaction experience with that particular
object is available (Dehban et al., 2016; Mar et al., 2015).

A work that uses learned representations and investigates robot interactions in the presence of DIs
is presented in the Intrinsically Motivated Goal Exploration Processes (IMGEP, Laversanne-Finot
et al. (2018)). IMGEP aims to enable robots to explore the possible interactions with various tools in
an environment that also features distractor objects. These objects either cannot be interacted with
or move independently of the robot. The authors show that a variant of their proposed algorithm re-
mains unaffected by the presence of these distractors. This robustness is demonstrated by the robot’s
lack of interaction with the distractor objects. However, the DIs we consider in this paper pose an
arguably larger challenge for two main reasons. First, we evaluate distractor objects which exhibit
dynamics that are not only independent of the robot’s behaviour but also misleading to the robot’s

2

Under review as a conference paper at ICLR 2021

perceptions of its interactions with the actual objects of interest. For instance, a distractor object can
collide with one of the objects manipulated by the robot. Second, we consider the case of mislead-
ing external DIs on the interesting objects themselves. In this case, the object interaction cannot be
avoided. Furthermore, in IMGEP the distractor robustness is not learned by the VAE that generates
the representations. Instead, the algorithm identifies the components in the representations that cor-
respond to the distractors during the robot’s interaction phase. Indeed, the learned representations
remain static in this phase as the VAE is pre-trained on a manually generated dataset that covers
all possible environment observations by spawning the various environment objects, including the
distractors, in different positions.

Alternative exploration-based approaches have been proposed recently (Forestier et al., 2017; Pathak
et al., 2017; Eysenbach et al., 2019; Sharma et al., 2019). A particularly interesting framework is
presented in AURORA (Cully, 2019), which we use in our experimental evaluations. Instead of
decoupling the representation learning phase from the interaction phase as done in IMGEP, AU-
RORA proposes a joint approach to discover a diverse set of behaviours of any robot in any given
environment without the need to specify a task objective or reward function. More precisely, AU-
RORA applies a dimensionality reduction algorithm such as an AE to the robot’s sensory data that
are collected during the execution of the discovered controllers. The learned latent representation
associated to a controller’s collected sensory data defines the Behavioural Descriptor (BD) for this
controller. By measuring the distance between different controllers’ BDs, the novelty of a given
behaviour can be determined. The BD can therefore be used to build a collection of controllers
that each exhibit different behaviours. AURORA uses this collection to further explore the space
of possible behaviours via stochastic mutations, and continuously adds additional novel controllers
to the collection. Periodically, the AE is trained using the sensory data that are extracted from all
controllers in the collection.

The AURORA framework is well-suited to judge the impact of DIs on the learned representations.
Indeed, AURORA’s decision to accept newly generated controllers into the collection is exclusively
based on the distance between their BDs. We can therefore analyse the influence of DIs using metrics
that are formulated directly in the latent representation space. These metrics are more sensitive to the
impact of DIs than measures of the overall learning outcomes. This is because the learning outcomes
are typically also influenced by components of the learning algorithm other than the representations.
Furthermore, AURORA’s training of the dimensionality reduction technique provides a particularly
challenging setting for RAED. The training dataset composition is continually evolving as the data
is collected online. Additionally, AURORA rejects controllers that generate behaviours very similar
to that of existing controllers. This complexifies the task of learning the expected consequences of
the robot’s actions when the collected environment observations are distorted by DIs.

3 METHOD

In this work, we use a single vector a to parameterise the set of actions taken by the robot from the
beginning until the end of the simulation. This vector of the robot’s actions can store the parameter
values of a controller for instance. We use a vector x to parameterise the single environment ob-
servation that is returned by each simulation. This vector can store the pixel values of an image for
example.

RAED consists of an Encoder-Decoder structure that uses a and x to produce a representation z that
is distraction-robust. More precisely, the latent representation z is generated from RAED’s Encoder
networkE which takes the robot’s actions a as its inputs. This conditioning of the representations on
the robot’s actions is the crucial element in RAED’s design. The Decoder uses the representations to
produce a prediction of the environment observation D(E(a)). The actual environment observation
x is used as the prediction target in the training of RAED. This yields the prediction error given in
Eq. 2. Note, the difference in the Encoder input compared to an AE’s reconstruction error in Eq. 1.

C = ||x−D(E(a))||22. (2)

Depending on the specifics of the robot design and the task, a set of controllers with different pa-
rameters can yield the same observed behaviour. For instance, when steering a robot arm with
redundancies in its joints, different controllers can achieve the same position in a gripper connected

3

Under review as a conference paper at ICLR 2021

to the arm. For such a set of controllers, it is possible that the differences in their parameters lead
to the generation of different representations when using RAED, even if the observation predictions
are exactly the same. This is less likely to occur in a dimensionality reduction technique that takes
the visual perceptions as its inputs. For these methods, the principal sources of variation in the rep-
resentations are the differences in the observations rather than the differences in the robot’s actions.
To reduce RAED’s freedom to disperse the representations of similar observed behaviours, we in-
vestigate the addition of a penalty term P . The overall training loss is then given by LRAED = C+P.

One possible instantiation of P is the Kullback-Leibler divergence (KL) term used in a VAE
(Kingma & Welling, 2014). This KL term implicitly imposes a penalty on the magnitude of the
means produced by the VAE’s Encoder network. The consequence is a crowding of the representa-
tions into a smaller latent subspace. This can have the desired effect of reducing RAED’s freedom
to produce dissimilar representations for similar observed behaviours. However, the practical im-
plementation of the KL term also imposes a penalty on any Encoder variance magnitudes different
than 1. Large Encoder variances result in an increased dispersion of representations when these are
sampled from the Encoder. The presence of these variances can therefore be interpreted as a fur-
ther source of stochasticity when learning representations. Our experimental results in Section 4.4
demonstrate that the application of the KL term benefits from leaving the Encoder variance outputs
unused. The derived penalty can be summarised in a simple linear term given by Plinear = ||z||22.

Figure 1: AURORA algorithm with a modular integration of RAED.

In the AURORA framework, RAED can be used as a modular representation learning component
to produce the BDs for the discovered controllers. We present an illustration of AURORA in Fig. 1
and a pseudo-code in Algorithm 1 in Appendix B.1. AURORA largely follows a standard Quality-
Diversity algorithm (Cully & Demiris, 2018a). At the start of each iteration, a predefined number
of controllers is selected from the collection. This group of controllers forms the set of parent con-
trollers. Each pair of parents undergoes cross-over and mutation operations. Cross-over operations
produce new controllers that bear similarities to both parents. Mutation operations introduce some
stochastic changes to these new controllers. If the collection is empty at the start of the iteration, we
instead generate new controllers by randomly sampling in the controller space.

Each controller is executed in the simulated environment and the associated observations are cap-
tured. These observations are used to produce the BD of each controller. When using an AE in
AURORA, each BD is the latent representation generated using the environment observation x as
input. In RAED, the robot’s actions a are the inputs instead. AURORA, therefore, stores for each
controller a vector of robot action parameters, an environment observation and a BD.

In the decision to accept a given new controller into the collection, AURORA considers the distance
between its BD to the descriptor of the nearest controller contained in the collection. If this distance
exceeds a minimum distance threshold d, the controller is deemed sufficiently novel to be added to
the collection (Cully & Demiris, 2018b). Otherwise, it is discarded. d is initialised at the start of the
algorithm using the BDs of the initial set of controllers contained in the collection. AURORA then
updates the value of d after each iteration to steer the size of the collection towards the target size.

Every N iterations, AURORA extracts the environment observations and robot actions from all con-
trollers contained in the collection to train the AE or RAED respectively. Once the training of the
network concludes, all controllers are removed from the collection and assigned new BDs. This set
of controllers is finally re-added to the collection using the acceptance mechanism described in the
previous paragraph. This concludes one iteration of the AURORA algorithm. The hyperparameters
used in AURORA are given in Appendix B.1.

4

Under review as a conference paper at ICLR 2021

4 EXPERIMENTS

In our experimental evaluations, we study the impact of DIs on RAED and on an AE that uses visual
perceptions as its inputs. The learned representations are two-dimensional and used by AURORA to
generate a diverse set of robot behaviours. We consider an experiment setup of a planar robot arm
with four degrees of freedom mounted in the center of a table. The arm interacts with environment
objects in two different scenarios: 1) an object arrangement scenario, and 2) an air-hockey scenario.
Each scenario evaluates a different type of DI which we detail in the following paragraphs. Fig. 2
presents the simulated environment and an illustrative environment observation for each scenario.
The configuration and hyperparameters of the simulations are given in Appendix C.

Figure 2: Environment simulations and observations. From left to right: (a) Object arrangement
scenario initial simulation state without any distracting influences (DIs). (b) Air-hockey scenario
initial simulation state without DIs. (c) Robot arm pushing an object in the environment. (d) Object
arrangement environment observation with DIs. (e) Air-hockey environment observation with DIs.

4.1 SCENARIO 1: OBJECT ARRANGEMENT

The object arrangement scenario features two objects positioned on the table as shown in Fig. 2a.
The robot arm can push these objects as shown in Fig. 2c but they do not move easily due to their
large weight. Each controller is two-staged and consists of 8 parameter values. The first 4 parameters
dictate the angles in the 4 joints of the arm to be reached by the end of the first half of the simulation.
The latter 4 dictate the angles to be reached by the end of the second half. The robot’s environment
interactions are simulated for 10 seconds. The environment observation consists of a 40 x 40 image
that captures the objects’ positions at the end of the simulation. The robot arm itself does not feature
in the observations. The DIs materialise in an external force that pushes one of the two objects
in a random direction at the start of the simulation. This DI simulates the presence of a meddling
human while our household robot is learning to arrange objects in the environment. We simulate
several DI frequency levels which we refer to as the environment stochasticity. At 0.5 environment
stochasticity, there is a 50% probability that the external force is applied in any given simulation.
The object to be pushed is selected randomly. Fig. 2d presents an environment observation after a
DI has shifted the lower object from its starting position.

4.2 SCENARIO 2: AIR-HOCKEY

This scenario features an air-hockey puck that spawns in the same starting location at the beginning
of each simulation as shown in Fig. 2b. The robot arm can strike the puck as illustrated in Fig. 2c.
The puck glides on the table surface and can bounce off the walls. A controller now consists only
of 4 parameters which dictate the angles in the joints of the arm to be reached by the end of the
simulation. The environment observation consists of a 40 x 40 long-exposure image that traces out
the trajectory of the puck. The robot arm does not feature in the observations. DIs are simulated by
the addition of a second puck. This puck appears in a random position at the start of the simulation
and moves in a random direction at a random velocity. This “random” puck is also captured in
the environment observation. At 0.5 environment stochasticity, the random puck appears in any
given simulation with 50% probability. This DI simulates the presence of an additional player with
their own puck while the robot is perfecting its air-hockey game. Fig. 2e shows an environment
observation of the random puck’s trajectory in the bottom right of the image and the non-random
puck’s trajectory to its left.

5

Under review as a conference paper at ICLR 2021

4.3 PERFORMANCE METRICS

We calculate two performance metrics: 1) the behavioural diversity, and 2) the proportion of no-
move controllers. We perform 5 repetitions of each evaluation to obtain robustness in the results.

The behavioural diversity is a common way to evaluate the quality of AURORA’s learning out-
come (Cully, 2019). It measures the diversity of the behaviours that are generated by all controllers
in the collection. We quantify this diversity as the variance in the positions of the objects of interest.
In the arrangement scenario, we extract both environment objects’ positions at the end of the sim-
ulation. We calculate the variance in each object’s position across all controllers in the collection
and average these two scores to obtain our metric. In the air-hockey scenario, we extract for each
controller the non-random puck’s trajectory coordinates. For each trajectory element, we calculate
the average variances in the x and y-coordinates across all controllers in the collection to obtain
a score. The overall diversity in the behaviours is measured as the average of the scores over all
trajectory elements. In both scenarios, a larger variance score therefore shows an improved learning
outcome. If DIs affect the learned representations, controllers can be misdescribed by their BDs.
Very similar controllers can then be accepted repeatedly into the collection. A susceptibility to DIs
would therefore show in decreasing variance scores as the environment stochasticity increases.

In both scenarios, some arm movements do not produce any change in the objects’ positions. Since
the robot arm itself is not captured in the environment observation, such “no-move” controllers
produce the same observation when no DIs are present in the environment. Their BDs are therefore
identical and AURORA allows at most one such no-move controller to be present in the collection at
any given time. However, controllers that do not move any objects in a distraction-free environment
do not appear as such whenever DIs are present. If the DIs distort these controllers’ BDs, AURORA
considers them different from other no-move controllers. Consequently, a presence of DIs can fool
AURORA into accepting multiple no-move controllers into the collection. We therefore use the
proportion of no-move controllers in the collection as a second metric to quantify the impact of
the DIs on the learned representations. If this metric increases in the environment stochasticity, we
conclude that the generation of representations is susceptible to DIs in the environment.

4.4 EXPERIMENTAL RESULTS

Figure 3: The variance in the environment ob-
jects’ positions. Left (a): Object arrangement
task. Right: (b) Air-hockey task. The lines rep-
resent the median scores while the shaded areas
extend to the first and third quartile of the data
distribution obtained over 5 repetitions.

Figure 4: Positions of the two objects in the ar-
rangement task after the execution of all con-
trollers in two collections generated at 100% en-
vironment stochasticity. AURORA achieves a
larger exploration in the object configurations
when using RAED.

Fig. 3 shows the behavioural diversity achieved in both scenarios when using the AE, RAED and
two additional variants of RAED in which we add the KL term and the linear penalty term Plinear
from Section 3 respectively. Note, that the AE and RAED’s variants have a larger network capacity
in the air-hockey scenario than in the arrangement task. This is to account for the more complex
observation type of a long-exposure image in the air-hockey task, compared to the snapshot of the
environment objects’ positions in the arrangement scenario (see Fig. 2). In both scenarios, the use
of RAED’s learned representations leads to stable variance scores in Figs. 3a and 3b across all

6

Under review as a conference paper at ICLR 2021

evaluated DI frequency levels. This stability demonstrates that RAED’s representations are robust
to distractions and encode the expected consequences of the robot’s actions rather than the observed
ones. Conversely, the use of an AE leads to decreasing trends in the variance scores in Figs. 3a
and 3b. These negative trends indicate that the robot’s perceptions of its behaviour are distorted in
the AE’s learned representations due to the DIs in the environment. As a result of this distortion,
controllers that produce very similar object configurations in the arrangement task, and very similar
puck trajectories in the hockey task, are assigned BDs that make them appear different from each
other. Consequently, when using the AE, AURORA repeatedly accepts similar controllers into the
collection. This susceptibility to distractions leads to decreasing variance scores for the AE as
DIs grow more frequent. At 100% environment stochasticity, the use of an AE leads to median
variance scores of 0.31 and 0.78 in the arrangement and air-hockey task respectively. These are
significantly lower than the scores of 0.55 and 1.08 when using RAED. In both scenarios, the two
methods’ differences in the learning outcomes can be seen in visualisations of the exploration in
the achievable behaviours. At 100% environment stochasticity, the use of RAED leads to a wider
exploration in the possible object configurations in the arrangement task in Fig. 4. Fig. 5 shows a
substantially larger spread in the trajectories of the non-random air-hockey puck when using RAED.
Similarly, large differences can be observed between the AE and RAED methods in their network
outputs. We provide some illustrative examples in Appendix A.

Figure 5: Puck trajectories
generated by controllers in the
collection at 100% environment
stochasticity. RAED achieves a
larger spread in the trajectories.

Figure 6: From left to right: Proportion of controllers failing to
move (a) any object of interest in the object arrangement task,
(b) both Object 1 and 2 in the object arrangement task, (c) the
non-random puck in the air-hockey task. The lines and shaded
areas are obtained as described in Fig. 3.

Fig. 6 shows the proportion of controllers in the collection that fail to move the objects of interest in
the two scenarios. As explained previously, an increasing trend in this metric indicates the learned
representations’ sensitivity to the presence of DIs. In the arrangement task, RAED produces a stable
score across all environment stochasticities in Fig. 6a. This affirms the distraction-robustness of
RAED’s learned representations. In the air-hockey task, there is only one object that the robot
needs to learn to control. Compared to the arrangement scenario, this increases the proportion of
all controllers that lead to no movement in the object of interest. This increases the complexity of
the task and leads to a slightly positive trend in Fig. 6c when using RAED. Nevertheless, RAED’s
learned representations are sufficiently distraction-robust for AURORA to maintain a stable diversity
in the generated collections as we saw in Fig. 3b. As expected, the AE’s scores are more strongly
affected by the DIs in the environment. In the air-hockey task, Fig. 6c shows a rapidly increasing
proportion of no-move controllers. Similarly, Fig. 6b shows a rising proportion of controllers failing
to move both objects in the arrangement task. However, the proportion of controllers failing to
move any object in this task when using the AE provides an interesting result. Fig. 6a shows that
at 0% environment stochasticity, the use of the AE’s learned representations leads to a minimal
proportion of no-move controllers. This is expected, as such a distraction-free environment does
not provide any challenges to the AE. Surprisingly, however, even as the environment stochasticity
grows larger, the use of the AE’s representations persistently leads to low proportions of no-move
controllers. This stability appears to indicate that the learned representations are insusceptible to the
DIs in the environment. However, the AE variant’s sharply decreasing variance scores in Fig. 3a
show a strong sensitivity to the environment distractions in this task. The reconciliation of these
two contradicting observations can be found in the setup of the arrangement scenario. In this task,
the likelihood for any given controller to produce a movement in at least one of the objects is very
large for two reasons. First, both objects are placed in close proximity to the robot arm. This can

7

Under review as a conference paper at ICLR 2021

be seen in the depiction of the initial simulation state in Fig. 2a. Second, the robot executes a two-
staged controller. Consequently, even when DIs distort the perception of the robot’s behaviour, most
discovered controllers will still produce a movement in at least one of the objects. This explains the
AE variant’s minimal proportion of no-move controllers across environment stochasticities.

Fig. 6c further shows that at 0% environment stochasticity the use of RAED in the air-hockey task re-
sults in the same minimal proportion of no-move controllers as the use of the AE. However, RAED’s
score in the arrangement task is slightly larger in Fig. 6a. In this scenario, the AE and RAED vari-
ants produce scores of 0.01 and 2.53 percentage points respectively. This disparity is explained by
the larger number of parameters in the controllers used in the arrangement task. In a distraction-free
environment, all no-move controllers generate the same observed behaviour. However, each con-
troller has different parameters which serve as the inputs to RAED’s Encoder. These differences can
therefore allow RAED to produce a different BD for each of these no-move controllers. In this case,
AURORA would believe these controllers to generate different behaviours. As a result, a larger pro-
portion of no-move controllers is accepted into the collection. In the air-hockey task, the controllers
only have 4 parameter values. The variability in RAED’s inputs is therefore much more limited than
in the arrangement task, where controllers consist of 8 parameter values which makes a dispersion in
the BDs more likely. However, one can note that RAED’s marginally larger proportion of no-move
controllers in the arrangement scenario does not affect the overall learning outcome of AURORA.
The AE and RAED achieve the same variance scores at 0% environment stochasticity in Fig. 3a.

One approach to reducing RAED’s freedom to disperse the representations lies in the use of a penalty
term. In RAED-KLPENALTY, we evaluate a VAE that takes the robot’s actions as its inputs. The
Encoder network now produces the mean and variance of a normal distribution. As discussed in
Section 3, we can interpret the KL divergence of this produced distribution and a standard Gaussian
distribution as a penalty term on the size of the latent space. However, the results in Figs. 3a and 6a
show that the application of this penalty in the object arrangement scenario results in a rapid deterio-
ration in both metrics as the environment stochasticity increases. This is explained by the KL term’s
pressure on the network to increase Encoder variances up to a magnitude of 1. Large variance values
lead to a greater dispersion in the learned representations when these are sampled from the Encoder.
The Encoder variance term can therefore be interpreted as a further source of stochasticity in the
generation of the learned representations. We therefore omit the RAED-KLPENALTY variant from
our evaluation in the air-hockey task. Instead, we create the RAED-LINPENALTY configuration
by removing the Encoder variances. This simplifies the KL term to the penalty term Plinear that we
introduced in Section 3. In the air-hockey task, the introduction of this linear penalty term leads to
a lower proportion of no-move controllers in Fig. 6c and a larger variance score in Fig. 3c. In the
arrangement scenario, on the other hand, the use of RAED and RAED-LINPENALTY produces ap-
proximately the same scores in both performance metrics in Figs. 3a and 6a. This suggests that the
efficacy of this penalty term depends on the specifics of the task and the observation type. We can
introduce a weight to control the effective cost of the penalty in order to adapt it to the task at hand.
However, any result shown here on the optimality of a given magnitude in this weight would be
specific to our experiments. We therefore omit any further evaluations of different weight values, as
we want to avoid any such task-specificity in this work in order to preserve RAED’s more generally
applicable concept of using the robot’s actions to learn a representation.

5 CONCLUSION

In this paper, we introduced the concept of Distraction-Robust Representation Learning. We demon-
strated the necessity of this approach in two experimental scenarios. The use of an Autoencoder led
to a large distortion in the robot’s perceived behaviour when distracting influences were present in
the environment. The susceptibility to environment distractions led to poor learning outcomes when
using the Autoencoder’s learned representations. We introduced RAED, an Encoder-Decoder archi-
tecture which learns representations that allowed the generation of controller collections to become
robust to the distracting influences considered in both scenarios. Finally, we also show that the num-
ber of controllers that do not interact with the objects in the environment can be reduced with the
introduction of a linear penalty term in the loss function.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Maya Cakmak, Mehmet R Dogar, Emre Ugur, and Erol Sahin. Affordances as a Framework for
Robot Control. In Proceedings of the Seventh International Conference on Epigenetic Robotics,
2007.

Antoine Cully. Autonomous skill discovery with quality-diversity and unsupervised descriptors.
GECCO 2019 - Proceedings of the 2019 Genetic and Evolutionary Computation Conference, 9:
81–89, 2019. doi: 10.1145/3321707.3321804.

Antoine Cully and Yiannis Demiris. Hierarchical behavioral repertoires with unsupervised descrip-
tors. GECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference,
pp. 69–76, 2018a. doi: 10.1145/3205455.3205571.

Antoine Cully and Yiannis Demiris. Quality and Diversity Optimization: A Unifying Modular
Framework. IEEE Transactions on Evolutionary Computation, 22(2):245–259, may 2018b. ISSN
1089778X. doi: 10.1109/TEVC.2017.2704781. URL http://arxiv.org/abs/1708.
09251.

Kalyanmoy Deb and Ram Bhushan Agrawal. Simulated Binary Crossover for Continuous
Search Space. Complex Systems, 9(2):1–34, 1994. ISSN 08912513. doi: 10.1.1.26.
8485Cached. URL citeulike-article-id:2815748%5Cnhttp://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.26.8485.

Atabak Dehban, Lorenzo Jamone, Adam R. Kampff, and Jose Santos-Victor. Denoising auto-
encoders for learning of objects and tools affordances in continuous space. In Proceedings -
IEEE International Conference on Robotics and Automation, volume 2016-June, pp. 4866–4871.
Institute of Electrical and Electronics Engineers Inc., jun 2016. ISBN 9781467380263. doi:
10.1109/ICRA.2016.7487691.

Andrej Dobnikar, Nigel C. Steele, David W. Pearson, Rudolf F. Albrecht, Kalyanmoy Deb, and
Samir Agrawal. A Niched-Penalty Approach for Constraint Handling in Genetic Algorithms.
In Artificial Neural Nets and Genetic Algorithms, pp. 235–243. Springer Vienna, 1999. doi:
10.1007/978-3-7091-6384-9 40. URL https://link.springer.com/chapter/10.
1007/978-3-7091-6384-9_40.

Benjamin Eysenbach, Julian Ibarz, Abhishek Gupta, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In 7th International Conference on Learning Repre-
sentations, ICLR 2019. International Conference on Learning Representations, ICLR, feb 2019.
URL https://sites.google.com/view/diayn/.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep
spatial autoencoders for visuomotor learning. In Proceedings - IEEE International Conference on
Robotics and Automation, volume 2016-June, pp. 512–519. Institute of Electrical and Electronics
Engineers Inc., jun 2016. ISBN 9781467380263. doi: 10.1109/ICRA.2016.7487173.

Sébastien Forestier, Rémy Portelas, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically Moti-
vated Goal Exploration Processes with Automatic Curriculum Learning. 2017. URL http:
//arxiv.org/abs/1708.02190.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507, jul 2006. ISSN 00368075. doi: 10.1126/science.1127647.

Michael I. Jordan and David E. Rumelhart. Forward Models: Supervised Learn-
ing with a Distal Teacher. Cognitive Science, 16(3):307–354, jul 1992. ISSN
03640213. doi: 10.1207/s15516709cog1603 1. URL http://doi.wiley.com/10.1207/
s15516709cog1603_1.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015 - Conference Track Proceed-
ings. International Conference on Learning Representations, ICLR, dec 2015. URL https:
//arxiv.org/abs/1412.6980v9.

9

http://arxiv.org/abs/1708.09251
http://arxiv.org/abs/1708.09251
citeulike-article-id:2815748%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.8485
citeulike-article-id:2815748%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.8485
https://link.springer.com/chapter/10.1007/978-3-7091-6384-9_40
https://link.springer.com/chapter/10.1007/978-3-7091-6384-9_40
https://sites.google.com/view/diayn/
http://arxiv.org/abs/1708.02190
http://arxiv.org/abs/1708.02190
http://doi.wiley.com/10.1207/s15516709cog1603_1
http://doi.wiley.com/10.1207/s15516709cog1603_1
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1412.6980v9

Under review as a conference paper at ICLR 2021

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International Con-
ference on Learning Representations, ICLR 2014 - Conference Track Proceedings. International
Conference on Learning Representations, ICLR, dec 2014.

Sascha Lange, Martin Riedmiller, and Arne Voigtländer. Autonomous reinforcement learning on raw
visual input data in a real world application. In Proceedings of the International Joint Conference
on Neural Networks, 2012. ISBN 9781467314909. doi: 10.1109/IJCNN.2012.6252823.

Adrien Laversanne-Finot, Alexandre Péré, and Pierre-Yves Oudeyer. Curiosity driven exploration
of learned disentangled goal spaces. arXiv preprint arXiv:1807.01521, 2018.

Timothée Lesort, Natalia Dı́az-Rodrı́guez, Jean Franois Goudou, and David Filliat. State repre-
sentation learning for control: An overview. Neural Networks, 108:379–392, dec 2018. ISSN
18792782. doi: 10.1016/j.neunet.2018.07.006.

Tanis Mar, Vadim Tikhanoff, Giorgio Metta, and Lorenzo Natale. Self-supervised learning of grasp
dependent tool affordances on the iCub Humanoid robot. In Proceedings - IEEE International
Conference on Robotics and Automation, volume 2015-June, pp. 3200–3206. Institute of Electri-
cal and Electronics Engineers Inc., jun 2015. doi: 10.1109/ICRA.2015.7139640.

Jean-Baptiste Mouret and Stéphane Doncieux. Sferes v2 : Evolvin’ in the Multi-Core World. In
Proc. of Congress on Evolutionary Computation (CEC), 2010. URL http://beagle.gel.
ulaval.ca/.

Jelle Munk, Jens Kober, and Robert Babuska. Learning state representation for deep actor-critic
control. In 2016 IEEE 55th Conference on Decision and Control, CDC 2016, pp. 4667–4673.
Institute of Electrical and Electronics Engineers Inc., dec 2016. ISBN 9781509018376. doi:
10.1109/CDC.2016.7798980.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In 34th International Conference on Machine Learning, ICML
2017, volume 6, pp. 4261–4270. International Machine Learning Society (IMLS), may 2017.
ISBN 9781510855144. URL http://arxiv.org/abs/1705.05363.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-Aware
Unsupervised Discovery of Skills. 8th International Conference on Learning Representations,
ICLR 2020, 2019. URL http://arxiv.org/abs/1907.01657.

Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash Ku-
mar, and Sergey Levine. The Ingredients of Real-World Robotic Reinforcement Learning. In
8th International Conference on Learning Representations, ICLR 2020 - Conference Track Pro-
ceedings, 2020. URL https://sites.google.com/view/realworld-rl/.http:
//arxiv.org/abs/2004.12570.

Erol Şahin, Maya Çakmak, Mehmet R. Doǧar, Emre Uǧur, and Gktrk Üçoluk. To afford or not
to afford: A new formalization of affordances toward affordance-based robot control. Adaptive
Behavior, 15(4):447–472, dec 2007. ISSN 10597123. doi: 10.1177/1059712307084689. URL
http://journals.sagepub.com/doi/10.1177/1059712307084689.

10

http://beagle.gel.ulaval.ca/
http://beagle.gel.ulaval.ca/
http://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1907.01657
https://sites.google.com/view/realworld-rl/. http://arxiv.org/abs/2004.12570
https://sites.google.com/view/realworld-rl/. http://arxiv.org/abs/2004.12570
http://journals.sagepub.com/doi/10.1177/1059712307084689

Under review as a conference paper at ICLR 2021

A NETWORK PREDICTIONS

We can inspect the networks’ predictions to obtain a qualitative assessment of the learned representa-
tions’ distraction-robustness. In the following visualisations, we show the networks’ predictions and
the corresponding environment observations in the air-hockey task at 100% environment stochastic-
ity. In this task, the presence of DIs materialises in an additional object in the environment. This
allows a clear distinction of the observation elements that are present due to the DIs. In the object
arrangement task, the DIs are more difficult to distinguish in the observations. We therefore do not
show any visualisations from that experiment scenario here.

Figure 7: Air-hockey scenario at 100% environ-
ment stochasticity. Left: Prediction made by
RAED. Right: Corresponding environment ob-
servation showing a particularly misleading en-
vironment observation. The distinction between
the “actual” puck and the random puck is made
for analysis purposes and not available to the net-
work. Pixel activations range from 0 to 1 and are
thresholded at a value of 0.5 for the illustration.

Figure 8: Air-hockey scenario at 100% environ-
ment stochasticity. Left: Prediction made by
RAED. Right: Corresponding environment ob-
servation showing a collision between the two
pucks. Pixel activations are thresholded as in
Fig. 7.

Fig. 7 shows the environment observation and associated prediction made by RAED. The distinction
between the actual non-random puck and the random puck in the observation is made only for
analysis purposes and is not available to the network. All pixels take values in the range of [0, 1].
The prediction visualisation is thresholded at a value of 0.5. The environment observation shows
that the two pucks’ trajectories connect to form a longer trajectory. This type of physically plausible
observation is one of the most difficult types of observations for RAED to predict. However, we can
see that RAED’s prediction accurately traces out the non-random puck’s trajectory, while ignoring
the random puck entirely. Furthermore, by encoding the expected perceived consequences of the
robot’s actions, RAED is able to impact of collisions between the two pucks. Fig. 8 shows a collision
between the two pucks at the table coordinates (1, 3). Nevertheless, RAED’s prediction accurately
traces out the expected trajectory instead.

Figure 9: Air-hockey scenario at 100% environment stochasticity. Left: Prediction made by RAED.
Right: Corresponding environment observation showing the non-random puck colliding with the
robot arm. Pixel activations are thresholded as in Fig. 7.

Another challenging situation for RAED is posed by the puck colliding with the robot arm. Small
changes in the controller can lead to large differences in the shape of the arm and therefore the
trajectory of the puck after impact. For these cases, we observe in the worst case that RAED’s un-

11

Under review as a conference paper at ICLR 2021

certainty results in a truncated trajectory prediction. We show an example in Fig. 9. Note, however,
that RAED successfully excludes the trajectory of the non-random puck from the prediction.

Figure 10: Air-hockey scenario at 100% envi-
ronment stochasticity. Left: Prediction made by
AE. Right: Corresponding environment observa-
tion showing two unconnected puck trajectories.
Pixel activations are thresholded as in Fig. 7.

Figure 11: Air-hockey scenario at 100% envi-
ronment stochasticity. Left: Prediction made by
AE. Right: Corresponding environment observa-
tion showing two unconnected puck trajectories.
Pixel activations are thresholded as in Fig. 7.

The AE method’s predictions are strongly affected by the presence of DIs. Every prediction we
inspected, features elements of the non-random puck’s trajectory. In the best case, the two trajecto-
ries are not connected and the non-random puck trajectory is not reconstructed with full certainty.
Fig. 10 shows an example of this. This is due to the limited variability in the achievable trajectories
of the non-random puck. Certain areas of the table are frequented largely or even exclusively by the
random puck only. The low frequency of observations that feature activated pixels in these areas,
allows the AE to ignore the reconstruction of some of these observation elements. However, in the
worst case, the non-random puck transverses areas of the table that are frequently activated in the
environment observations. Fig. 11 shows that in these situations, the AE accurately reconstructs
the full trajectory of the non-random puck. This demonstrates the strong susceptibility of the AE’s
learned representations to the DIs in the environment.

B IMPLEMENTATION DETAILS

B.1 AURORA

We provide a pseudo-code of AURORA in Algorithm 1. Tab. 1 presents the hyperparameters used in
the configuration of AURORA. Our AURORA implementation is built using the Sferes2 framework
(Mouret & Doncieux, 2010).

12

Under review as a conference paper at ICLR 2021

Algorithm 1 Pseudocode of the AURORA algorithm (Cully, 2019).
1: procedure AURORA(num iterations, training frequency, collection target size)
2: collection← random controllers . Initialise collection with set of random controllers
3: L← initialise L(collection) . Initialise distance threshold L
4: for iteration in num iterations do
5: parents← select(collection) . Select set of parent controllers
6: new controllers← mutate(cross over(parents))
7: generate BD(new controllers) . Use AE or RAED to generate BDs
8: ADD(collection, new controllers)
9: if iteration% training frequency == 0 then

10: train network(collection)
11: all controllers← extract all(collection)
12: generate BD(all controllers)
13: ADD(collection, all controllers)
14: L← update distance threshold(L, collection, collection target size)

15:
16: procedure ADD(collection, controllers) . Attempt to add controllers to collection
17: for controller in controllers do
18: distance← get BD distance to nearest controller(controller, collection)
19: if distance > L then . Add controller if sufficiently novel
20: add to collection(controller)

Parameter Value
Behavioural Descriptor Dimensionality 2
Mutation Rate 0.1
Cross-Over Rate 0.1
Mutation Operator Polynomial (Dobnikar et al., 1999)
Cross-Over Operator SBX (Deb & Agrawal, 1994)
ηm (Mutation Parameter) 15
ηc (Cross-Over Parameter) 15
Collection Target Size 8000
AURORA controller Range of Possible Values [0, 1]
Behavioural Descriptor Size 2
Number of Newly Generated controllers each Iteration 256
First AE / RAED Training iteration 10th Iteration
Frequency of AE / RAED Training Every 10 Iterations
Number of Iterations (Object Arrangement Task) 4000
Number of Iterations (Air-Hockey Task) 15000

Table 1: Hyperparameters for the AURORA implementation.

13

Under review as a conference paper at ICLR 2021

B.2 AE AND RAED HYPERPARAMETERS

In the object arrangement scenario, the AE is made up of 4 convolutional layers including the output
layer in both the Encoder and Decoder network. RAED’s Encoder consists of 3 fully connected lay-
ers. The Decoder in RAED consists of 6 transposed convolutional layers. The network architecture
details are given in Tab. 2.

Layer Number of Filters / Neurons Kernel Size Stride
AE Encoder #1 2 9 x 9 1
AE Encoder #2 4 8 x 8 2
AE Encoder #3 6 7 x 7 1
AE Encoder Output Layer 2 7 x 7 1
AE Decoder #1 6 7 x 7 1
AE Decoder #2 4 7 x 7 1
AE Decoder #3 2 8 x 8 2
AE Decoder Output Layer 1 9 x 9 1
RAED Encoder #1 10 / /
RAED Encoder #2 20 / /
RAED Encoder Output Layer 2 / /
RAED Decoder #1 10 3 x 3 1
RAED Decoder #2 10 3 x 3 1
RAED Decoder #3 20 4 x 4 2
RAED Decoder #4 20 5 x 5 1
RAED Decoder #5 40 5 x 5 2
RAED Decoder Output Layer 1 6 x 6 1

Table 2: AE and RAED architecture details.

In the air-hockey scenario, the AE Encoder consists of 6 convolutional layers The AE Decoder
features 6 transposed convolutional layers. RAED’s Encoder is made up of 7 fully connected layers
and its Decoder contains 9 transposed convolutional layers. The architecture details used in the
air-hockey task are given in Tab. 3.

Layer Number of Filters / Neurons Kernel Size Stride
AE Encoder #1 10 6 x 6 1
AE Encoder #2 10 5 x 5 2
AE Encoder #3 20 5 x 5 1
AE Encoder #4 20 4 x 4 2
AE Encoder #5 30 3 x 3 1
AE Encoder Output Layer 2 3 x 3 1
RAED Encoder #1 20 / /
RAED Encoder #2 30 / /
RAED Encoder #3 40 / /
RAED Encoder #4 40 / /
RAED Encoder #5 30 / /
RAED Encoder #6 20 / /
RAED Encoder Output Layer 2 / /
RAED Decoder #1 10 2 x 2 1
RAED Decoder #2 10 3 x 3 1
RAED Decoder #3 20 3 x 3 1
RAED Decoder #4 20 3 x 3 1
RAED Decoder #5 30 3 x 3 1
RAED Decoder #6 40 3 x 3 1
RAED Decoder #7 60 5 x 5 1
RAED Decoder #8 60 5 x 5 2
RAED Decoder Output Layer 1 6 x 6 1

Table 3: AE-SMALL and RAED-LARGE architecture details.

14

Under review as a conference paper at ICLR 2021

Both networks are trained with the same training parameters given in Tab. 4. The networks are
implemented using the PyTorch library1.

Parameter Value / Definition
Batch Size 256
Learning Rate 0.0001
Optimisation Algo-
rithm

Adam (Kingma & Ba, 2015)

Adam Betas (0.9, 0.999)
Validation Set Size
(% of total dataset)

80%

Maximum Number
of Training Epochs

5000

Early Stopping Crite-
rion

Validation error larger than running mean of validation errors over 5
epochs AND most recent training loss smaller than at start of training

Table 4: Network training details.

C SIMULATION DETAILS

Our simulated environments utilise the Box2D2 physics simulation engine to model a robot arm
mounted in the center of a table. The arm is controlled with servos setting the motor speed at
each joint to reduce the angle error. We specify the Box2D specific simulation parameters in
Tab. 5. The Box2D source files were modified to change a #define macro, to allow for simulated
pucks to bounce instead of gliding along any walls after impact. The change was made in file
box2d/include/box2d/b2 settings.h to update the value of #define b2 velocityThreshold from 1.0f to
0.0f.

Configuration Element Dimensions (half sizes per Box2D convention) / Value
Gravity (0, 0)
Robot Base 0.0375 x 0.0375
Arm Segment 0.1875 x 0.015
Arm Segment #1 Density 1
Arm Segment #2 Density 0.666666
Arm Segment #3 Density 0.444444
Arm Segment #4 Density 0.296296
Arm Friction (All components) 0.8
Servo Maximum Motor Torque 1
Table Dimensions 5 x 5
Table Wall Friction 0.8
Simulation Duration 10 seconds
Environment Object Radius 0.25
Environment Object Friction 0.8
Environment Object Restitution 0.8
Scenario 1 Puck Density 0.2
Scenario 1 Maximum Random Force 5
Scenario 1 Non-Random Puck Start Position (3.55, 3)
Scenario 2 Object Density 0.8
Scenario 2 Maximum Force 70
Scenario 2 Linear Damping 1.8
Scenario 2 Object 1 Start Position (3.55, 3)
Scenario 2 Object 2 Start Position (2.55, 1.7)

Table 5: Box2D configuration parameters.

1https://pytorch.org/cppdocs/frontend.html
2https://box2d.org/documentation/index.html

15

https://pytorch.org/cppdocs/frontend.html
https://box2d.org/documentation/index.html

	Introduction
	Related Work
	Method
	Experiments
	Scenario 1: Object Arrangement
	Scenario 2: Air-Hockey
	Performance Metrics
	Experimental Results

	Conclusion
	Network Predictions
	Implementation Details
	AURORA
	AE and RAED hyperparameters

	Simulation Details

