
Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Shuo Xie 1 Tianhao Wang 1 Sashank Reddi 2 Sanjiv Kumar 2 Zhiyuan Li 1 2

Abstract
We present a novel unified analysis for a
broad class of adaptive optimization algorithms
with structured (e.g., layerwise, diagonal, and
kronecker-factored) preconditioners for both on-
line regret minimization and offline convex opti-
mization. Our analysis not only provides match-
ing rate to several important structured precondi-
tioned algorithms including diagonal AdaGrad,
full-matrix AdaGrad, and AdaGrad-Norm, but
also gives an improved convergence rate for a
one-sided variant of Shampoo over that of original
Shampoo. Interestingly, more structured precon-
ditioners (e.g., diagonal Adagrad, AdaGrad-Norm
which use less space and compute) are often pre-
sented as computationally efficient approxima-
tions to full-matrix Adagrad, aiming for improved
optimization performance through better approx-
imations. Our unified analysis challenges this
prevailing view and reveals, perhaps surprisingly,
that more structured preconditioners, despite us-
ing less space and computation per step, can out-
perform their less structured counterparts. To
demonstrate this, we show that one-sided Sham-
poo, which is relatively much cheaper than full-
matrix AdaGrad could outperform it both theoret-
ically and experimentally.

1. Introduction
Adaptive optimization algorithms (Streeter & McMahan,
2010; Duchi et al., 2011; Kingma & Ba, 2014) play a pivotal
role in modern machine learning, especially in the expensive
training of large foundation models. Within the machine
learning community, full-matrix AdaGrad is considered as
an ideal adaptive preconditioner for fast convergence in
terms of number of steps. The computation of full-matrix
AdaGrad precondtioner typically involves inverse square

1Toyota Technological Institute at Chicago 2Google Research.
Correspondence to: Shuo Xie <shuox@ttic.edu>, Zhiyuan Li
<zhiyuanli@ttic.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

root of a d × d matrix where d is the number of parame-
ters. Thus, for large-scale settings, the huge computation
and memory cost makes it prohibitively expensive. This
has inspired works on designing more efficient adaptive
optimizers by using a structured preconditioner, such as
coordinate-wise adaptivity employed by AdaGrad (Streeter
& McMahan, 2010; Duchi et al., 2011), Kronecker prod-
uct based preconditioner employed by Shampoo (Gupta
et al., 2018; Anil et al., 2020) and layerwise adaptivity em-
ployed by LARS (You et al., 2017) and LAMB (You et al.,
2019)), which all aim to provide a computational and mem-
ory efficient approximation of full-matrix AdaGrad. These
algorithms have been shown to be very effective for gen-
eral deep learning settings. It is often assumed that a better
approximation of full-matrix preconditioner usually results
in better optimization convergence, as seen with methods
like Shampoo (Gupta et al., 2018). In contrast, precondi-
tioners with more structure such as diagonal preconditioner
have inferior performance. In this paper, we challenge these
prevailing notions by providing theoretical and empirical
evidence against them.

Conceptually, one could equate the degree of structure in
a preconditioner to the ease of its computation and storage.
In this view, full-matrix AdaGrad can be considered as the
least structured and most expensive preconditioner while
AdaGrad-Norm (Ward et al., 2020), which only maintains a
scalar and uses the same preconditioning for every direction,
is the most structured and least expensive. The conventional
wisdom here is that using a less structured preconditioner,
which requires more space and compute per step, reduces
the number of steps needed for training. Thus, choosing the
right structure balances this trade-off between convergence
speed and training step cost.

Among these preconditioning methods, Shampoo (Gupta
et al., 2018) has gained notable attention for its Kronecker-
factored preconditioning approach, which promises im-
proved convergence in large-scale optimization tasks (Dahl
et al., 2023). Shampoo was originally proposed as a compu-
tationally efficient surrogate for full-matrix AdaGrad (Duchi
et al., 2011). Despite its popularity, existing analyses of
Shampoo (Gupta et al., 2018) are limited and do not pro-
vide a full justification for its effectiveness. In particular,
we argue that the best-known regret bounds for both Sham-
poo as well as full-matrix AdaGrad are consistently worse

1

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Algorithm Subalgebra K ∥x∥H |||g1:T |||H Regret Bound = ∥X∥H · |||g1:T |||H

AdaGrad-Norm c · Id for c ∈ R ∥x∥2√
d

√
d

√
T∑

t=1

∥gt∥22 ∥X∥2

√
T∑

t=1

∥gt∥22 (Streeter & McMahan, 2010)

AdaGrad Diagonal Matrices ∥x∥∞
d∑

i=1

√
T∑

t=1

g2t,i ∥X∥∞
d∑

i=1

√
T∑

t=1

g2t,i (Streeter & McMahan, 2010)

Full-matrix AdaGrad All Matrices ∥x∥2 Tr[(
T∑

t=1

gtg
⊤
t)

1
2] ∥X∥2 Tr

[(
T∑

t=1

gtg
⊤
t

) 1
2
]

(Duchi et al., 2011)

One-sided Shampoo RdL×dL ⊗ IdR
∥X∥op√

dR
Tr[

(
dR

T∑
t=1

GtG
⊤
t

) 1
2] ∥X∥op Tr

[(
T∑

t=1

GtG
⊤
t

) 1
2
]

(Theorem 4.2)

Table 1. Regret bound obtained by Theorem 3.4 for different algorithms. Theorem 4.2 proves the rate specifically for one-sided shampoo
and other rows match existing results in literature. H is chosen as K ∩ Sd

+. In the third column, x denotes the parameter in vector form
and X denotes the parameter in matrix form with x = vec(X). In the fourth column, gt denotes the gradient in vector form and Gt

denotes the gradient in matrix form with gt = vec(Gt). We omit O(·) in complexity measures and regret bound for convenience.

than a more memory- and computationally efficient vari-
ant of these methods like diagonal AdaGrad and AdaGrad-
Norm (Streeter & McMahan, 2010; Duchi et al., 2011; Ward
et al., 2020). This demonstrates that more structure on the
preconditioner may not necessarily restrict its optimization
performance. In fact, our unified analysis uncovers an inter-
esting finding: we show a simpler, more structured variant
of Shampoo, called one-sided Shampoo, actually has sub-
stantially better regret bound compared to original Shampoo
and full-matrix Adagrad (Section 3.3).

1.1. Main contributions

In light of the above discussion, we highlight the main
contributions of the paper.

• We present a comprehensive and unified theoretical
framework (Theorem 2.1) for adaptive optimization
with structured preconditioners, encompassing several
popular methods including diagonal AdaGrad, full-
matrix AdaGrad, AdaGrad-Norm, and layerwise adap-
tive methods for both online convex optimization and
stochastic smooth convex optimization. In particular,
our analysis integrates and extends key insights from
existing work (Gupta et al., 2017), which presents a
unified and elegant way (Algorithm 1) to derive the
aforementioned structured preconditioners, but only
allows analysis on a case-by-case basis. To our knowl-
edge, this is the first truly unified analysis of a large
family of adaptive optimization algorithms.

• To enable a unified analysis, we identify a novel suffi-
cient condition, well-structured preconditioners (Defi-
nition 3.1), which overcomes a key technical barrier in
Gupta et al. (2017); thereby, allowing a unified analy-
sis for several important adaptive algorithms. A more
detailed discussion is provided in Section 2 and a sum-
mary of our results is presented in Table 1.

• Our unified analysis provides a new regret bound (The-
orem 4.2) for a one-sided variant of Shampoo, which
is always better than the existing bound for two-sided
Shampoo (Gupta et al., 2018) and could be smaller by a
multiplicative factor of d, where we assume the matrix-
shaped parameter is of size

√
d-by-

√
d. This also leads

to a novel convergence rate of one-sided shampoo for
stochastic convex optimization (Theorem 4.4) via a
standard offline-to-online reduction (Levy et al., 2018).

• Conceptually, our findings challenge the conventional
wisdom that using a larger set of preconditioners which
require more memory and compute leads to better opti-
mization performance in terms of number of steps. In
particular, while using a larger set of preconditioners re-
duces the gradient term |||g1:t|||H in our regret bound, it
increases the other term involving the magnitude of the
optimal solution by increasing the norm metric; thus,
leading to a worse regret bound (Theorem 2.1 and Ta-
ble 1). For instance, we demonstrate that one-sided
Shampoo can outperform full-matrix AdaGrad both
theoretically (Section 4.3) and experimentally (Sec-
tion 5). This suggest that one-sided Shampoo is not
just a computational-efficient surrogate of full-matrix
AdaGrad, but could also be fundamentally better, de-
pending on the optimization problem.

1.2. Notations

LetMd be the set of all d-by-d matrices, and Sd ⊂Md be
the subset of all symmetric matrices. We use Sd+ to denote
the set of positive semi-definite matrices, and Sd++ to denote
the set of positive definite matrices. Dd is the set of all d-
dimensional diagonal matrices, and Dd

+ = Dd ∩ Sd+. We
denote by Id the d-by-d identity matrix. For matrices A,B,
we denote their inner product by ⟨A,B⟩ = Tr(A⊤B).

For any H ∈ Sd+ such that H ̸= 0, we denote H =

H/Tr(H). For H ∈ Sd+, ∥x∥H :=
√
x⊤Hx is the

2

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

(semi-)norm of x ∈ Rd with respect to H . For a convex set
H ⊆ Sd+, we define

∥x∥H := sup
H∈H,Tr(H)≤1

∥x∥H . (1)

For a convex set X ⊆ Rd and any norm ∥·∥, we define
∥X∥ := supx∈X ∥x∥ and ∥X∥H := supx∈X ∥x∥H. For
any H ≻ 0, the projection of x onto X with respect to
∥ · ∥H is defined as ΠH

X (x) := argminx′∈X ∥x− x′∥H .

Throughout the paper, we consider the factorization d =
dLdR, and denote the corresponding matrix form of x ∈ Rd

by X ∈ RdL×dR . We denote x = vec(X) and X =
vec−1(x) for conversion between the vector form and the
matrix form. Then for a function L(x) defined on x ∈ Rd,
we extend its definition to matrices by letting L(X) denote
L(vec(X)), and we will use L(x) and L(X) interchange-
ably when the context is clear. We define the gradient as
gt = ∇L(xt) in vector form and Gt = ∇L(Xt) in matrix
form, so gt = vec(Gt) and Gt = vec−1(gt).

For a matrix X ∈ RdL×dR , we denote its operator norm
as ∥X∥op and its Frobenious norm as ∥X∥F. For a vector
x ∈ Rd, we denotes its ℓ∞ norm by ∥x∥∞ = maxi∈[d] |xi|
and ℓ2 norm by ∥x∥2.

2. Background: Unified Adaptive
Regularization with Non-Unified Analysis

Seminal work Gupta et al. (2017) presented an adaptive reg-
ularization meta-algorithm, AdaReg (Algorithm 1), which
can be used to derive various adaptive optimization al-
gorithms known at that time in a unified approach. For
example, AdaReg becomes full-matrix AdaGrad (Duchi
et al., 2011), diagonal AdaGrad (Duchi et al., 2011), and
AdaGrad-Norm (Streeter & McMahan, 2010; Ward et al.,
2020) by choosing the set of preconditioners as the set of
all PSD matrices, diagonal PSD matrices, and mutipliers
of identity matrix respectively (see Table 1). The original
AdaReg also allows other choices of potential function Φ,
e.g., Φ(·) = log det(·) for Online Newton Step (Hazan
et al., 2007), while we are only interested in the case of
Φ(·) = η2 Tr(·) in this work.

In addition to the unified approach to deriving various adap-
tive optimization algorithms, Gupta et al. (2017) also at-
tempts to give a unified analysis for the convergence rate or
regret of these adaptive algorithms, which can be summa-
rized by the following theorem.
Theorem 2.1 (Gupta et al. (2017)). Let {xt}Tt=1 be the
iterates of Algorithm 1. Then for any x∗ ∈ X ,∑T

t=1
Lt(xt)−

∑T

t=1
Lt(x

∗) (2)

≤ 1

2

(〈
MT ,H

−1
T

〉
+ η2 Tr(HT)− η2 Tr(H0)

)
+

1

2

∑T

t=1

(
∥xt − x∗∥2Ht

− ∥xt+1 − x∗∥2Ht

)
.

Algorithm 1 Adaptive Regularization Meta-Algorithm
AdaReg (Gupta et al., 2017)

Hyperparam: ϵ > 0, convex set X ⊆ Rd, learning rate
η, preconditionersH ⊂ Sd+
Input: initialization x1, loss functions {Lt}Tt=1 :Rd→R
M0 ← ϵId
for t = 1, 2, . . . , T do
gt ← ∇Lt(xt)
Mt ←Mt−1 + gtg

⊤
t

Ht ← argminH∈H
〈
Mt,H

−1
〉
+ η2 Tr(H)

xt+1 ← ΠHt

X
(
xt −H−1

t gt
)

Return x1, . . . ,xT

The above bound is obtained by first applying a standard
bound for online mirror descent to get a bound in the form of∑T

t=1 ∥gt∥Ht
plus the second term on the RHS of (2). Then

the choice of Ht in Algorithm 1 enables the application of
FTL-BTL lemma (Kalai & Vempala, 2005) to further bound∑T

t=1 ∥gt∥Ht by the first term on the RHS of (2).

To proceed from Theorem 2.1, Gupta et al. (2017) relies on
a crucial assumption that Ht−1 ⪯Ht for each t. Or more
generally, for any M ≻ 0, define

PH(M) := argmin
H∈H

⟨M ,H−1⟩+ η2 Tr(H). (3)

Then we hope it holds that

PH(M) ⪯ PH(M ′) for any 0 ≺M ⪯M ′ (4)

In other words, we need PH : Sd++ → Sd++ to be operator
monotone under the semi-definite ordering. With this as-
sumption, a critical step in the derivation of the regret bound
in Gupta et al. (2017) is to further rewrite and upper bound
the second term on the RHS of Equation (2) by

∥x1 − x∗∥2H1
+
∑T

t=2
∥xt − x∗∥2Ht−Ht−1

≤ 4∥X∥2H1
+ 4

∑T

t=2
∥X∥2Ht−Ht−1

. (5)

Note that we need Ht−1 ⪯Ht to ensure that ∥ · ∥2Ht−Ht−1

is indeed a (pseudo) norm and that the last inequality holds.
Such analysis has been done for a few notable variants
of AdaGrad in Gupta et al. (2017), where the condition
Ht−1 ⪯ Ht is verified in a case-by-case way for specific
choice of H. However, the following question remains
unclear for optimizers described by generalH:

Question 1. For a cone H ⊆ Sd+, does PH(M) ⪯
PH(M ′) hold whenever 0 ≺M ⪯M ′?

Indeed, the answer is no for “ill-structured” H, and we
mention two negative examples here for illustration.

Example 2.2. Let H = {A ⊗B ⪰ 0 | A ∈ MdL ,B ∈
MdR} with dLdR = d, i.e., the set of preconditioners for

3

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

two-sided Shampoo (Algorithm 3). We show that in the
special case where dL = dR = 2, for M = diag(1, ϵ, ϵ, ϵ)
and M ′ = diag(1, ϵ, ϵ, 1), PH(M) ⪯ PH(M ′) does not
hold for sufficiently small ϵ > 0, although we have M ⪯
M ′. See Appendix A.4.1 for a detailed proof.

Example 2.3. The second example of ill-structured H in-
volves tridiagonal PSD matrices, i.e., matrices that only
have nonzero elements on the main diagonal, the first diag-
onal above the main diagonal, and the first diagonal below
the main diagonal. Specifically, for H containing all 3-
dimensional PSD matrices, we provide numerical evidence
demonstrating that the desired condition Equation (4) breaks
for very simple instances. See details in Appendix A.4.2.

These failure modes naturally lead to the second question:

Question 2. Is there a sufficient yet general condition
(which covers all existing examples) onH for the inequality
to hold?

As one of the main contributions of our work, we give an
affirmative answer to Question 2 in Section 3 by proposing
a notion of well-structured preconditioners (Definition 3.1)
and deriving a unified analysis correspondingly.

3. Unified Analysis for Well-Structured
Preconditioners

We establish a unified framework for adaptive optimization
with structured preconditioners. In Section 3.1, we propose
the notion of well-structured preconditioners and show that
they satisfy the desired condition Equation (4). Then in
Section 3.2, we present a unified analysis for adaptive opti-
mization with well-structured preconditioners. We discuss
several prominent examples in Section 3.3.

3.1. Well-structured preconditioners

For a set of d-by-d matrices K ⊆ Md, we say that K is a
subalgebra if it is closed under scalar multiplication, matrix
addition, and matrix multiplication. More concretely, we
require that for any α ∈ R and A,B ∈ K, it holds that
αA,AB,A + B ∈ K. Based on this, we propose the
following core concept of our paper.

Definition 3.1 (Well-structured preconditioner sets). H ⊆
Sd+ is said to be a well-structured preconditioner set ifH =
Sd+ ∩ K for some matrix subalgebra K ⊆Md with Id ∈ K.

As a positive response to Question 2, the following proposi-
tion shows that our notion of well-structured preconditioner
sets provides a sufficient condition for PH(·) to be operator
monotone. See Appendix A for a proof.

Proposition 3.2. LetH be a well-structured preconditioner
set under Definition 3.1. For any M ≻ 0, there exists a
unique solution PH(M) ≻ 0 to the optimization problem

in (3). Furthermore, for any M ≻ 0, PH(M) satisfies the
following properties:
(a) ⟨M , PH(M)−1⟩ = η2 Tr(PH(M)).

(b) PH(M) = argminH∈H,Tr(H)≤1⟨M ,H−1⟩, where
we recall that PH(M) = PH(M)/Tr(PH(M)).

Moreover, for any 0 ≺M ⪯M ′, PH(M ′)−PH(M) ∈ H
holds. In particular, it implies that PH(M) ⪯ PH(M ′).

The closure under both matrix addition and matrix multipli-
cation is crucial in the proof of Proposition 3.2. Violation
of any of the two properties could lead to problems: for the
preconditioner set of two-sided Shampoo in Example 2.2, it
is not closed under matrix addition; while for Example 2.3
regarding tridiagonal matrices, we note that the set of tridi-
agonal matrices is not closed under matrix multiplication.

3.2. Unified analysis for adaptive optimization

To proceed with the regret bound, recall from Proposi-
tion 3.2 that Ht = Ht/Tr(Ht) is a solution to the fol-
lowing constrained optimization problem

Ht = argmin
H∈H,Tr(H)≤1

⟨Mt,H
−1⟩. (6)

Also recall that Mt =
∑t

s=1 gsg
⊤
s (assuming ϵ = 0 for

illustration). We interpret the optimal value of this con-
strained optimization problem as the magnitude of the se-
quence of gradients g1:t = (g1, . . . , gt) with respect to the
best preconditioner in hindsight. Motivated by this, for any
sequence of gradients g1:t, we define their adaptive gradient
norm with respect toH to be

|||g1:t|||H := inf
H∈H,Tr(H)≤1

√√√√〈 t∑
s=1

gsg⊤
s ,H

−1

〉
. (7)

Indeed, this definition of adaptive gradient norm corre-
sponds to the dual norm of the norm ∥ · ∥H⊗It , denoted
as ∥ · ∥∗H⊗It

. Specifically, we define

∥ vec(g1:t)∥∗H⊗It = sup
w∈Rtd:∥w∥H⊗It≤1

vec(g1:t)
⊤w.

Then we have |||g1:t|||H = ∥ vec(g1:t)∥∗H⊗It
/
√
t by the fol-

lowing lemma, which is proved in Appendix A.3.

Lemma 3.3. LetH be a well-structured preconditioner set
under Definition 3.1. Then for any t ≥ 1 and g1, . . . , gt ∈
Rd, it holds that

inf
H∈H,Tr(H)≤1

√√√√〈 t∑
s=1

gsg⊤
s ,H

−1

〉
=

1√
t
∥ vec(g1:t)∥∗H⊗It .

Given this definition of adaptive gradient norm, combining
(6) and the fact that Tr(Ht) = η−2⟨Mt,H

−1
t ⟩ by Proposi-

tion 3.2, we obtain Tr(Ht) = η−1|||g1:t|||H.

4

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Now recall the upper bound in (5) for the second term in
the regret bound (2) from Theorem 2.1. Note that for each t,
Proposition 3.2 guarantees that Ht−Ht−1 ∈ H, so we can
further bound ∥X∥2Ht−Ht−1

≤ ∥X∥2H · Tr(Ht −Ht−1).
This allows us to telescope the sum in Equation (5) to get

∥X∥2H1
+

T∑
t=2

∥X∥2Ht−Ht−1
=
∥X∥2H

η
|||g1:T |||H (8)

Observe that the upper bound is factored into two parts:
1) ∥X∥H, the diameter of the domain under norm ∥ · ∥H;
and 2) |||g1:T |||H, the adaptive gradient norm with respect
to H. We pause here for an important remark. Note that
∥X∥2Ht−Ht−1

is defined by taking the supremum over x ∈
X , which precludes telescoping the sum over t ∈ [T] at first
glance. We address this issue by proposing the norm ∥X∥H,
which allows us to extract the factor Tr(Ht−Ht−1). Again,
this unified analysis is possible thanks to Proposition 3.2 for
well-structured preconditioner sets, in contrast to the case-
by-case analysis done by Gupta et al. (2017). Furthermore,
we remark that the above factored bound is crucial for us to
identify the correct norm metric for Shampoo, leading to an
improved analysis. See Section 4.1 for details.

Finally, combining (8) and the original regret bound in (2)
yields the final regret bound for Algorithm 1. This is sum-
marized in the following Theorem 3.4. The complete proof
can be found in Appendix D.

Theorem 3.4. Let H be a well-structured preconditioner
set under Definition 3.1. Then for any convex loss functions
L1, . . . , LT , the regret of Algorithm 1 compared to any
x∗ ∈ X can be bounded as

T∑
t=1

Lt(xt)−
T∑

t=1

Lt(x
∗) ≤

(
D2

2η
+ η

)(
G+ d

√
ϵ
)

where G = |||g1:T |||H, D = maxt∈[T] ∥xt − x∗∥H.

Corollary 3.5. Under the setting of Theorem 2.1, further
suppose that X is a bounded set in Rd. Then choosing
η =
√
2 ∥X∥H, the regret bound for Algorithm 1 becomes

T∑
t=1

Lt(xt)−
T∑

t=1

Lt(x
∗) ≤ 2

√
2 ∥X∥H

(
G+ d

√
ϵ
)
.

Ignoring ϵ, the bound reveals an intrinsic trade-off between
∥X∥H and |||g1:t|||H: as H gets larger, ∥X∥H increases
while |||g1:t|||H decreases. The previous common belief
that more adaptivity (larger H) helps optimization could
be largely due to the loose upper bound on ∥X∥H, i.e.,
always measuring the size of domain X by Frobenius norm
instead of potentially much smaller ∥·∥H. The fact that
Kroneckered-factored subalgebra induces smaller ∥·∥H than
the entire matrix subalgebra is the key reason behind our
surprising finding that one-sided Shampoo can outperform

full-matrix AdaGrad in terms of the number of steps. See a
more detailed analysis in Section 4.3.

Next, we present the convergence rate of Algorithm 1 for
stochastic convex smooth loss functions. We use Defini-
tion 3.6 to characterize the smoothness of a loss function. It
is an extension of Φ-smoothness in (Xie et al., 2025), which
only applies to block-diagonal preconditioners (correspond-
ing to blockwise Adam).

Definition 3.6 (H-smoothness). For a set H ⊆ Sd+ and
any loss function L : Rd → R, we define the H-
smoothness of L, denoted by H(L,H), as the smallest
number H ≥ 0 such that there exists a matrix H∗ ∈ H
satisfying H = Tr(H∗) and for any x ∈ Rd, it holds that
−H∗ ⪯ ∇2L(x) ⪯ H∗. In the case of convex L, this
requirement becomes ∇2L(x) ⪯H∗. Furthermore, we ex-
tend the notation to matrices A ∈Md by defining H(A,H)
as H(x 7→ 1

2x
⊤Ax,H).

We need the following assumption on the stochastic noise.

Assumption 3.7. For any t ∈ [T] and any x ∈ X ,
E[Lt(x)] = L(x) and there exists some Σ ∈ Sd+ such
that E[(∇Lt(x)−∇L(x)) (∇Lt(x)−∇L(x))⊤] ⪯ Σ.

Now we are ready to state our main results on the conver-
gence rate of Algorithm 1 for stochastic convex functions.

Theorem 3.8. LetH be a well-structured preconditioner set
under Definition 3.1. Consider any independent stochastic
convex loss functions L1, . . . , LT satisfying Assumption 3.7,
and let H(L,H) be theH-smoothness of their expectation
L. Suppose the global minimizer of L, denoted by x∗, is
in X . Then for the iterates x1, . . . ,xT of Algorithm 1,
denoting x̄1:T = 1

T

∑T
t=1 xt, it holds that

E [L(x̄1:T)− L(x∗)]

≤16

T
∥X∥2H H(L,H) + 4

√
2√
T
∥X∥H σ +

4
√
2d
√
ϵ

T
∥X∥H

where σ = infH∈H,Tr(H)≤1

√
⟨Σ,H−1⟩.

Our analysis naturally extends to Algorithm 4, which re-
places the direct sum of past gradient outer products in
Algorithm 1 with an exponential moving average (EMA).
This modification is widely used in adaptive optimizers, in-
cluding Adam (Kingma & Ba, 2014) and AdaSGD (Wang
& Wiens, 2020), which is an ema version of AdaGrad. The
detailed discussion is in Appendix C.

3.3. Examples of well-structured preconditioner sets

Next, we demonstrate that our Definition 3.1 is general
enough to cover existing examples, by discussing several
important matrix subalgebra K. For each associated well-
structured H = K ∩ Sd+, recall the optimization problem

5

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

over H defined in (3). We will show that every minimizer
PH(M) corresponds to the preconditioner used in a specific
adaptive optimization algorithm. We list the correspondence
relationship below and the results are summarized in Table 1.
The detailed derivation and calculation of the norms ∥x∥H
and |||g1:t|||H can be found in Appendix B.

Example 3.9 (AdaGrad-Norm: scalar matrices). For the
scalar matrix subalgebra K = {c · Id | c ∈ R}, we have
H = {c · Id | c ≥ 0}. Then solving (3) for Mt yields

Ht =
1

η

√
Tr(Mt)/d · Id =

1

η

√√√√ϵ+

t∑
s=1

∥gs∥22 /d · Id.

This is the preconditioner used in AdaGrad-Norm.

Example 3.10 (Diagonal AdaGrad: diagonal matrices). For
the diagonal matrix subalgebra K = Dd, we haveH = Dd

+.
Correspondingly,

Ht =
1

η
diag


√√√√ϵ+

t∑
s=1

∥gs,i∥22 : i ∈ [d]

 .

This is the preconditioner used in diagonal AdaGrad.

Example 3.11 (Full-matrix AdaGrad: all matrices). For
K = Md, we have H = Sd+. In this case, solving (3)

for Mt yields that Ht =
1
ηM

1
2
t , which corresponds to the

update rule of full-matrix AdaGrad.

Example 3.12 (One-sided Shampoo: factored matrices).
Let d be factored as d = dLdR. Then for the factored matrix
algebraK = RdL×dL⊗IdR

, we haveH = SdL
+ ⊗IdR

. Now
writing Gt ∈ RdL×dR as the matricized version of gt ∈ Rd,
solving the corresponding problem in (3) leads to

Ht =
1

η

(
ϵ · IdL

+
1

dR

t∑
s=1

GsG
⊤
s

) 1
2

⊗ IdR
,

which updates xt the same as one-sided Shampoo1 dis-
played in Algorithm 2, where we write the algorithm in
the matrix form for convenience. More specifically, note
that gt = vec(Gt) and Ht = L

1
2
t ⊗ IdR

. Moreover, Mt

corresponds to Lt by the fact that ⟨Mt, (HL ⊗ IdR
)−1⟩ =

⟨Lt,H
−1
L ⟩ for any HL ∈ SdL

++.

The detailed calculations of the norms ∥ · ∥H and |||·|||H for
the above examples can be found in Appendix B.

Generate new well-structured preconditioner sets. Be-
yond the previous examples, it is also possible to generate
new well-structured preconditioner sets based on existing
ones. We discuss in particular an example of layerwise com-
bination for parameters in a neural network. Specifically,

1We add a normalized factor 1
dR

compared to the Lt in Algo-
rithm 3 so that it can be exactly derived from Algorithm 1.

for d parameters of an N -layer neural network, decompose
Rd = Rd1 × · · · × RdN where d =

∑N
n=1 dn, and each

Rdn corresponds to the dn parameters in the n-th layer.
For each n ∈ [N], let Kn ⊆ Mdn be a matrix subalge-
bra. Then we define K = ⊕N

n=1Kn = {⊕N
n=1An | An ∈

Kn, n ∈ [N]}, and it is easy to verify that K is also a
subalgebra. Then the corresponding well-structured precon-
ditioner set H = ⊕N

n=1(Kn ∩ Sdn
+) = ⊕N

n=1Hn contains
preconditioners that apply individual types of transforms to
gradient of parameters in different layers2. Such H made
up by direct sum of smaller cones also has very composi-
tional property in its induced complexity metrics, namely,
∥·∥H = max1≤n≤N ∥·∥Hn

and |||·|||H =
∑N

n=1 |||·|||Hn
.

This operation provides a useful tool for designing layerwise
preconditioning methods (Bernstein & Newhouse, 2024a).

Other possible operations that can generate new matrix sub-
algebra K′ from the original subalgebra K include taking
Kronecker product with the identity matrix, i.e. K′ =
{A′ = A ⊗ Id′ | A ∈ K}, and rotation by an orthogo-
nal matrix, i.e. K′ = {A′ = U⊤AU | A ∈ K} where U
is an orthogonal matrix.

4. Improved Convergence Analysis for
One-sided Shampoo

We now turn to one-sided Shampoo (Algorithm 2), a special
example of Algorithm 1. In Section 4.1, we present our
main results on its regret bound and convergence rate, and
then compare to the previous results for two-sided Shampoo
in Section 4.2. In Section 4.3, we present a comprehensive
comparison between the regret bound of one-sided Shampoo
and those of the AdaGrad variants, which suggests why
Shampoo can outperform other adaptive algorithms on some
real tasks.

4.1. Our results for one-sided Shampoo

We first characterize the norm ∥·∥H for one-sided Shampoo.

Lemma 4.1 (∥ · ∥H for one-sided Shampoo). Recall from
Example 3.12 that for one-sided Shampoo (Algorithm 2),
H = SdL

+ ⊗ IdR
where dLdR = d. Then for any x ∈ Rd, it

holds that ∥x∥H = 1√
dR
∥X∥op with X = vec−1(x), and

thus ∥X∥H = 1√
dR
∥X∥op.

See Appendix B.4 for the proof.

With this, we can apply Theorem 3.4 to get the regret bound
for one-sided Shampoo, as summarized below in Theo-
rem 4.2. See Appendix E.2 for its proof.

Theorem 4.2 (Regret bound for one-sided Shampoo). For
convex functions L1, . . . , LT , the regret of one-sided Sham-

2This can be applied to any partition of the parameters, not only
for partition based on layers.

6

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Algorithm 2 One-sided Shampoo
Hyperparam: learning rate η > 0, convex set X ⊆
RdL×dR , L0 = ϵIdL

for ϵ ≥ 0
Input: initialization x0, stochastic loss functions
{Lt}Tt=1 : RdL×dR → R
for t = 1, 2, · · · , T do
Gt ← ∇Lt(Xt−1)
Lt ← Lt−1 +

1
dR

GtG
⊤
t

Xt ← Π
L

1
2
t ⊗IdR

X
(
Xt−1 − ηtL

− 1
2

t Gt

)
Return xT

Algorithm 3 Two-sided Shampoo (Gupta et al., 2018)
Hyperparam: learning rate η, convex set X ⊆ RdL×dR ,
L0 = ϵIdL

, R0 = ϵIdR
for ϵ ≥ 0

Input: initialization x0, stochastic loss functions
{Lt}Tt=1 : RdL×dR → R
for t = 1, 2, · · · , T do
Gt ← ∇Lt(Xt−1)
Lt ← Lt−1 +GtG

⊤
t

Rt ← Rt−1 +G⊤
t Gt

Xt ← Π
L

1
4
t ⊗R

1
4
t

X
(
Xt−1 − ηtL

− 1
4

t GtR
− 1

4
t

)
Return xT

poo (Algorithm 2) compared to any X∗ ∈ RdL×dR satisfies

T∑
t=1

Lt(Xt)−
T∑

t=1

Lt(X
∗) ≤

(
D2

op

2dRη
+ η

)(
G+ d

√
ϵ
)
,

where Dop = maxt∈[T] ∥Xt − X∗∥op and G =
√
dR Tr

[(∑T
t=1 GtG

⊤
t

) 1
2

]
. When the domain X is

bounded in operator norm, i.e., ∥X∥op <∞, further choos-
ing η =

√
2/dR∥X∥op, it holds

T∑
t=1

Lt(Xt)−
T∑

t=1

Lt(X
∗)

≤2
√
2∥X∥op

Tr

(T∑
t=1

GtG
⊤
t

) 1
2

+
d√
dR

√
ϵ

 .

Next, before presenting the convergence rate of one-sided
Shampoo, we first provide a more interpretable formulation
of theH-smoothness for one-sided Shampoo, which we call
left smoothness. See Appendix E.1 for a proof of Lemma 4.3.

Lemma 4.3 (Left smoothness for one-sided Shampoo). Let
H = SdL

+ ⊗ IdR
be the well-structured preconditioner set

for one-sided Shampoo. Then theH-smoothness H(L,H)
defined in Definition 3.6 is equal to the smallest number
H ≥ 0 such that there exists H∗

dL
∈ RdL×dL satisfying

that H = dR Tr(H∗
dL
) and that for any X,∆ ∈ RdL×dR ,∣∣∇2L(X)[∆,∆]

∣∣ ≤ 〈H∗
dL
,∆∆⊤〉 .

In this case, theH-smoothness is denoted by Hleft(L).

Then the convergence rate of one-sided Shampoo can be ob-
tained by specializing Theorem 3.8 to ∥X∥H = 1√

dR
∥X∥op

from Lemma 4.1 and the left smoothness from Lemma 4.3.

Theorem 4.4 (Convergence rate of one-sided Shampoo).
Let L1, . . . , LT be stochastic convex loss functions satisfy-
ing Assumption 3.7, and let x1, . . . ,xT be the correspond-
ing iterates of one-sided Shampoo (Algorithm 2) with learn-

ing rate η =
√
2∥X∥op. Then for x̄1:T = 1

T

∑T
t=1 xt,

E[L(x̄1:T)− L(x∗)]

≤ 16

TdR
∥X∥2op Hleft(L) +

4
√
2σ√

TdR
∥X∥op +

4
√
2d
√
ϵ

T
∥X∥op

where σ = infH∈H,Tr(H)≤1

√
⟨Σ,H−1⟩, and Hleft(L)

is the left smoothness of the expected loss L identified in
Lemma 4.3.

4.2. Comparison with previous results on Shampoo

We compare our main results for one-sided Shampoo with
the original results in Gupta et al. (2018). Here, we restate
their original regret bound for easier comparison.
Theorem 4.5 (Regret bound of two-sided Shampoo (Gupta
et al., 2018)). For convex functions {Lt}Tt=1, suppose their
gradients (Gt = ∇Lt(Xt))

T
t=1 are matrices of rank at most

r. Then the regret of two-sided Shampoo (Algorithm 33)
compared to any X∗ ∈ RdL×dR is bounded as
T∑

t=1

Lt(Xt)−
T∑

t=1

Lt(X
∗) ≤

(
D2

F

2η
+ rη

)
Tr(L

1
4

T) Tr(R
1
4

T),

where DF = maxt∈[T] ∥Xt −X∗∥F, LT = ϵIdL
+∑T

t=1 GtG
⊤
t , and RT = ϵIdR

+
∑T

t=1 G
⊤
t Gt. When

∥X∥F <∞, we further choose η =
√
2/r∥X∥F, then

T∑
t=1

Lt(Xt)−
T∑

t=1

Lt(X
∗) ≤

√
2r∥X∥F Tr(L

1
4

T) Tr(R
1
4

T).

We now compare our regret bound in Theorem 4.2 and
the original regret bound in Theorem 4.5 by Gupta et al.
(2018) when ϵ = 0, i.e., LT =

∑T
t=1 GtG

⊤
t and RT =∑T

t=1 G
⊤
t Gt. For a matrix M ∈ Sd+, it always holds that√

Tr(M) ≤ Tr(M
1
2). Therefore,

Tr(L
1
4

T) Tr(R
1
4

T) ≥ Tr(L
1
4

T) Tr (RT)
1
4 = Tr(L

1
4

T) Tr(LT)
1
4

≥ Tr(L
1
4

T) ∥LT ∥
1
4
op ≥ Tr(L

1
2

T).

3The original two-sided Shampoo analysis in (Gupta et al.,
2017) is without per step projection to the bounded domain. We
adapt their theorem into the projected version in a standard way.

7

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

This implies that regret bound in Theorem 4.5 is always no
smaller than the regret bound in Theorem 4.2 because r ≥ 1
and ∥X∥F ≥ ∥X∥op as ∥X∥F ≥ ∥X∥op for any X ∈ X .

Moreover, in the worst case, the Frobenius norm can be√
min(dL, dR) times larger than the operator norm. As a

concrete example, suppose Gt satisfies that Gt[i, j] = 1
only for (j − i) ≡ t (mod min(dL, dR)) and all other
elements are zero. Then each Gt has rank r = min(dL, dR).
At step T = dLdR, LT = dR ·min(dL, dR)·IdL

and RT =

dL ·min(dL, dR) · IdR
, and thus Tr(L

1
4

T) Tr(R
1
4

T) = d
5
4

Ld
5
4

R

while Tr(L
1
2

T) = dLd
1
2

R. In this case, the regret bound of

two-sided Shampoo is min(dL, dR)d
1
4

Ld
3
4

R times larger than
the our regret bound for one-sided Shampoo.

Duvvuri et al. (2024) introduced CASPR as an alternative
to Shampoo for approximating full-matrix AdaGrad and
achieved the same regret bound as Theorem 4.5. Our previ-
ous comparison thus applies to both Shampoo and CASPR.

4.3. Comparison with AdaGrad variants

Next we show one-sided Shampoo can achieve the best the-
oretical upper bound of the suboptimality gap for a specific
class of functions, where each loss function has the form

L(X) = ⟨H, (X −X∗)(X −X∗)⊤⟩ (9)

where X ∈ RdL×dR , H ∈ SdL
+ with Tr(H) ≤ 1, and

∥X∗∥op ≤ 1. For this function class, we compare the
largest possible value of convergence rate of different al-
gorithms given by Theorem 3.8, which is summarized in
Table 2.

For each algorithm defined by Algorithm 1 with specificH,
we will pick X = {x | ∥x∥H ≤ ∥x∗∥H} so that the global
minimizer x∗ is reachable. To get the convergence rate,
it boils down to calculate ∥X∥H = ∥x∗∥H and H(L,H)
associated with each algorithm. We have already derived the
explicit form of ∥X∥H for each algorithm in Section 3.3, as
shown in the third column of Table 2. For theH-smoothness,
note that ∇2L(X) = H ⊗ IdR

for the loss L in (9), and
then it is straightforward to calculate H(L,H) according to
Definition 3.6, as shown in the fourth column of Table 2.

Below we present the worst case of the convergence rate on
this problem class. We can see that one-sided Shampoo is
strictly better the other three adaptive algorithms.

One-sided Shampoo. The worst case of convergence rate
for one-sided Shampoo is 1

T .

AdaGrad-Norm. Since maxTr(H)≤1 λmax(H) = 1 and
max∥X∗∥op≤1 ∥vec (X∗)∥2 = max∥X∗∥op≤1 ∥(X∗)∥F =√

min {dL, dR}, the worst case of convergence rate is
min (dL, dR)/T .

AdaGrad. For psd matrix H ∈ RdL×dL with Tr(H) ≤ 1,

it holds that H ⪯ IdL
. Then we have

max
Tr(H)≤1

H(H,DdL
+) = max

Tr(H)≤1
min

diag(D)⪰H
Tr(D) ≤ dL.

On the other hand, if we choose H = 1dL
1⊤
dL
/dL,

for any diagonal D ⪰ H , it holds that Tr(D) =
1⊤
dL
D1dL

≥ 1⊤
dL
H1dL

= dL. So we prove that
maxTr(H)≤1 H(H,DdL

+) = dL.

We also know that max∥X∗∥op≤1 ∥vec (X∗)∥∞ ≤ 1 since
∥A∥∞ ≤ ∥A∥op. If the only nonzero entry of X∗ is
X∗

1,1 = 1, then ∥X∗∥∞ = ∥X∗∥op = 1. Overall, the
worst case of convergence rate is dLdR

T .

Full-matrix AdaGrad. We have seen in AdaGrad-Norm
that max∥X∗∥op≤1 ∥vec (X∗)∥2 =

√
min {dL, dR}, so the

worst case of convergence rate is min (dL,dR)dR

T .

To summarize, we have identified a class of optimization
problems, namely loss functions like Equation (9), with
Hessian of bounded trace and optimizer of bounded spectral
norm, for which one-sided Shampoo has much better worst
case convergence rate than any other adaptive algorithms
that could be derived from our unified analysis.

5. Experiments
In this section we empirically demonstrate the superior
performance of 1-sided shampoo over other variants of
AdaReg (Algorithm 1) on a simple but natural setting. More-
over, such superior performance is predicted by our theo-
retical analysis in Section 4.3, which in turn validates the
practical utility of our theory in guiding optimizer selection.

Setup. We consider a linear regression problem
∥AX − y∥22 where A is the data matrix and y = AX∗ is
the label vector generated by ground-truth X∗. Thus, the
loss function can be equivalently written as

f(X) =
〈
H, (X −X∗)(X −X∗)⊤

〉
,

which is the same function that we studied in Section 4.3
and show that 1-sided shampoo outperforms other adaptive
algorithms. We consider X ∈ Rd×d with d = 103. We
set the eigenvalues of H by σ1 = · · · = σ10 = 1 and
σi = 1

(i−10)2 for 11 ≤ i ≤ 103. Each element of the
solution X∗ is independently sampled from N (0, 1

d). We
run AdaGrad-Norm, AdaGrad, one-sided Shampoo and full-
matrix AdaGrad for 100 steps from initialization X0 = 0.
We also run the original Shampoo algorithm for comparison.
Full-matrix AdaGrad is run in a memory-efficient way and
the detail is in Appendix F.1. We will compare the last
iterate loss and the average iterate loss separately. The
learning rate is tuned over five seeds for last iterate loss and
average iterate loss respectfully, selecting the one with the

8

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Algorithm Subalgebra K ∥x∗∥H H(L,H) Convergence Rate

AdaGrad-Norm {cId | c ∈ R} 1√
d
∥x∗∥2 d · λmax(H) ∥X∥22 λmax(H)/T

AdaGrad Diagonal matrices, Dd(R) ∥x∗∥∞ dR ·H(H,DdL
+) ∥X∥2∞ dR ·H(H,DdL

+)/T

Full-Matrix AdaGrad All matrices, Rd×d ∥x∗∥2 dR Tr(H) ∥X∥22 dR Tr(H)/T

One-Sided Shampoo RdL×dL ⊗ IdR

1√
dR
∥X∗∥op dR Tr(H) ∥X∥2op Tr(H)/T

Table 2. Convergence rate for the loss function L(X) =
〈
H, (X −X∗)(X −X∗)⊤

〉
. The results can be obtained by Theorem 3.8

with σ = 0 and omitting ϵ. For each algorithm we pick the smallest domain which still ensures the minimizer lies in the domain. Here
recall that Dd is the set of all d-dimensional diagonal matrices, and Dd

+ = Dd ∩ Sd
+.

lowest average loss. We use precision float32 and set ϵ = 0
for all the experiments.

We also run the EMA version of the adaptive algorithms,
whose results are consistent as shown in Appendix F.2.

Results. The overall results are shown in Section 5. We
can see that one-sided Shampoo greatly outperforms other
algorithms, corroborating the theoretical analysis in Sec-
tion 4.3. Moreover, full-matrix AdaGrad is apparently the
worst, suggesting more or even full adaptivity does not al-
ways help optimization for fixed budget of training steps.
One-sided Shampoo is also better than the original Shampoo
algorithm.

0 20 40 60 80 100
Step

10 3

10 2

10 1

100

La
st

 It
er

at
e

Lo
ss

0 20 40 60 80 100
Step

10 3

10 2

10 1

100

Av
er

ag
e

Ite
ra

te
 L

os
s

AdaGrad-Norm
One-sided Shampoo

AdaGrad
Shampoo

Full-Matrix AdaGrad

Figure 1. For both the last iterate loss f(Xt) and the average
iterate training f(1

t

∑t
s=1 Xs), one-sided Shampoo performs

the best and Full-matrix AdaGrad performs the worst. Here
f(X) =

〈
H, (X −X∗)(X −X∗)⊤

〉
.

6. Related Work
Adaptive optimizers and structured preconditioners.
The extensive costs for training large-scale deep learning
models have motivated the development of efficient opti-
mization algorithms, among which adaptive optimizers have
been widely studied because of their ability to exploit the
rich geometry of the loss landscape (Pascanu & Bengio,
2013; Martens & Grosse, 2015; Dozat, 2016; Loshchilov &
Hutter, 2018; Shazeer & Stern, 2018; Reddi et al., 2019; You
et al., 2019; Zhuang et al., 2020; Liu et al., 2023; Yuan et al.,
2024). For the sake of memory and computational efficiency,
many works involve approximations to full-matrix precondi-

tioners (Ba et al., 2017; George et al., 2018; Martens et al.,
2018; Yao et al., 2021; Jahani et al., 2021; Zhang et al.,
2022; Duvvuri et al., 2024). Indeed, our results suggest that
such compromises might not harm the performance of adap-
tive optimizers in practice, because more adaptivity is not
always helpful, as discussed in Section 4.3 and Section 5.

Understanding Shampoo. There are also recent efforts
to understand the Shampoo optimizer from various perspec-
tives. Bernstein & Newhouse (2024b) interpret Shampoo
as the steepest descent with respect to the spectral norm of
the layerwise matrix-form parameters of the neural network.
Recognizing such structures of matrix-form parameters and
role of spectral-norm geometry in deep learning has led
to development of new optimizer such as Muon (Jordan
et al., 2024). In addition, the second-order perspective on
Shampoo (Anil et al., 2020) has also led to fruitful results:
Morwani et al. (2024) connect the preconditioner in Sham-
poo to the optimal Kronecker product approximation of
the Gauss-Newton component of the Hessian, and Vyas
et al. (2024) propose to view Shampoo as Adafactor in the
eigenbasis of the preconditioner of Shampoo.

7. Conclusion and Future Works
We present a unified analysis for a broad class of adaptive
optimization algorithms with well-structured precondition-
ers (Definition 3.1) for both online regret minimization and
smooth convex optimization. Our analysis not only provides
matching rate to several important algorithms including di-
agonal AdaGrad, full-matrix AdaGrad, and AdaGradNorm,
but also gives an improved convergence rate for a one-sided
variant of Shampoo over that of the original Shampoo. We
reveal a novel trade-off in final convergence rate between
domain metric and adaptive gradient norm (Equation (7)) for
regret minimization or adaptive smoothness (Definition 3.6)
for smooth convex optimization. We hope this insight could
be useful towards design of future adaptive optimizers. One
important future direction is to identify more subalgebras
or other structures that are useful for improving the perfor-
mance by better adapting to the domain or loss smoothness.

9

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Impact Statement
The goal of this paper is to advance the field of Machine
Learning by providing theoretical and experimental insights
for adaptive optimization algorithms. There are many po-
tential societal consequences of our work, none of which
we feel must be specifically highlighted here.

Acknowledgment
The authors sincerely thank Matt Streeter for his valuable
discussions and insightful comments throughout this work.

References
Anil, R., Gupta, V., Koren, T., Regan, K., and Singer, Y.

Scalable second order optimization for deep learning.
arXiv preprint arXiv:2002.09018, 2020. URL https:
//arxiv.org/pdf/2002.09018.

Ba, J., Grosse, R., and Martens, J. Distributed second-
order optimization using kronecker-factored approxima-
tions. In International Conference on Learning Represen-
tations, 2017. URL https://jimmylba.github.
io/papers/nsync.pdf.

Bernstein, J. and Newhouse, L. Modular duality in deep
learning. arXiv preprint arXiv:2410.21265, 2024a. URL
https://arxiv.org/pdf/2410.21265.

Bernstein, J. and Newhouse, L. Old optimizer, new norm:
An anthology. arXiv preprint arXiv:2409.20325, 2024b.
URL https://arxiv.org/pdf/2409.20325.

Dahl, G. E., Schneider, F., Nado, Z., Agarwal, N., Sastry,
C. S., Hennig, P., Medapati, S., Eschenhagen, R., Kasim-
beg, P., Suo, D., et al. Benchmarking neural network train-
ing algorithms. arXiv preprint arXiv:2306.07179, 2023.
URL https://arxiv.org/pdf/2306.07179.

Dozat, T. Incorporating nesterov momentum into adam.
2016. URL https://openreview.net/pdf?
id=OM0jvwB8jIp57ZJjtNEZ.

Duchi, J., Hazan, E., and Singer, Y. Adaptive sub-
gradient methods for online learning and stochastic
optimization. Journal of machine learning research,
2011. URL https://www.jmlr.org/papers/
volume12/duchi11a/duchi11a.pdf.

Duvvuri, S. S., Devvrit, F., Anil, R., Hsieh, C.-J., and
Dhillon, I. S. Combining axes preconditioners through
kronecker approximation for deep learning. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
pdf?id=8j9hz8DVi8.

George, T., Laurent, C., Bouthillier, X., Ballas, N., and
Vincent, P. Fast approximate natural gradient descent
in a kronecker factored eigenbasis. Advances in Neural
Information Processing Systems, 2018. URL https:
//arxiv.org/pdf/1806.03884.

Gupta, V., Koren, T., and Singer, Y. A unified approach
to adaptive regularization in online and stochastic opti-
mization. arXiv preprint arXiv:1706.06569, 2017. URL
https://arxiv.org/pdf/1706.06569.

Gupta, V., Koren, T., and Singer, Y. Shampoo: Pre-
conditioned stochastic tensor optimization. In Interna-
tional Conference on Machine Learning, 2018. URL
https://arxiv.org/pdf/1802.09568.

Hazan, E., Agarwal, A., and Kale, S. Logarithmic regret al-
gorithms for online convex optimization. Machine Learn-
ing, 2007. URL https://link.springer.com/
article/10.1007/s10994-007-5016-8.

Jahani, M., Rusakov, S., Shi, Z., Richtárik, P., Mahoney,
M. W., and Takáč, M. Doubly adaptive scaled algo-
rithm for machine learning using second-order informa-
tion. arXiv preprint arXiv:2109.05198, 2021. URL
https://arxiv.org/pdf/2109.05198.

Jordan, K., Jin, Y., Boza, V., You, J., Cesista, F., Newhouse,
L., and Bernstein, J. Muon: An optimizer for hidden
layers in neural networks, 2024. URL https://web.
archive.org/web/20250122060345/https:
//kellerjordan.github.io/posts/muon/.

Kalai, A. and Vempala, S. Efficient algo-
rithms for online decision problems. Jour-
nal of Computer and System Sciences, 2005.
URL https://www.sciencedirect.com/
science/article/pii/S0022000004001394.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. arXiv preprint arXiv:1412.6980, 2014. URL
https://arxiv.org/pdf/1412.6980.pdf.

Levy, K. Y., Yurtsever, A., and Cevher, V. Online adap-
tive methods, universality and acceleration. Advances
in neural information processing systems, 2018. URL
https://arxiv.org/pdf/1809.02864.

Liu, H., Li, Z., Hall, D. L. W., Liang, P., and Ma, T. Sophia:
A scalable stochastic second-order optimizer for lan-
guage model pre-training. In The Twelfth International
Conference on Learning Representations, 2023. URL
https://arxiv.org/pdf/2305.14342.pdf.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2018. URL https://arxiv.org/
pdf/1711.05101.pdf.

10

https://arxiv.org/pdf/2002.09018
https://arxiv.org/pdf/2002.09018
https://jimmylba.github.io/papers/nsync.pdf
https://jimmylba.github.io/papers/nsync.pdf
https://arxiv.org/pdf/2410.21265
https://arxiv.org/pdf/2409.20325
https://arxiv.org/pdf/2306.07179
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://openreview.net/pdf?id=8j9hz8DVi8
https://openreview.net/pdf?id=8j9hz8DVi8
https://arxiv.org/pdf/1806.03884
https://arxiv.org/pdf/1806.03884
https://arxiv.org/pdf/1706.06569
https://arxiv.org/pdf/1802.09568
https://link.springer.com/article/10.1007/s10994-007-5016-8
https://link.springer.com/article/10.1007/s10994-007-5016-8
https://arxiv.org/pdf/2109.05198
https://web.archive.org/web/20250122060345/https://kellerjordan.github.io/posts/muon/
https://web.archive.org/web/20250122060345/https://kellerjordan.github.io/posts/muon/
https://web.archive.org/web/20250122060345/https://kellerjordan.github.io/posts/muon/
https://www.sciencedirect.com/science/article/pii/S0022000004001394
https://www.sciencedirect.com/science/article/pii/S0022000004001394
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1809.02864
https://arxiv.org/pdf/2305.14342.pdf
https://arxiv.org/pdf/1711.05101.pdf
https://arxiv.org/pdf/1711.05101.pdf

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Martens, J. and Grosse, R. Optimizing neural networks
with kronecker-factored approximate curvature. In Inter-
national conference on machine learning, 2015. URL
http://arxiv.org/pdf/1503.05671.

Martens, J., Ba, J., and Johnson, M. Kronecker-factored
curvature approximations for recurrent neural networks.
In International Conference on Learning Representa-
tions, 2018. URL https://openreview.net/
pdf?id=HyMTkQZAb.

Morwani, D., Shapira, I., Vyas, N., Malach, E., Kakade,
S., and Janson, L. A new perspective on shampoo’s
preconditioner. arXiv preprint arXiv:2406.17748, 2024.
URL https://arxiv.org/pdf/2406.17748.

Pascanu, R. and Bengio, Y. Revisiting natural gradient for
deep networks. arXiv preprint arXiv:1301.3584, 2013.
URL https://arxiv.org/pdf/1301.3584.

Petersen, K. B., Pedersen, M. S., et al. The matrix
cookbook. Technical University of Denmark, 2008.
URL https://ece.uwaterloo.ca/˜ece602/
MISC/matrixcookbook.pdf.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of adam and beyond. arXiv preprint arXiv:1904.09237,
2019. URL https://arxiv.org/pdf/1904.
09237.

Shazeer, N. and Stern, M. Adafactor: Adaptive learn-
ing rates with sublinear memory cost. In International
Conference on Machine Learning, 2018. URL https:
//arxiv.org/pdf/1804.04235.

Streeter, M. and McMahan, H. B. Less regret via online con-
ditioning. arXiv preprint arXiv:1002.4862, 2010. URL
https://arxiv.org/pdf/1002.4862.

Vyas, N., Morwani, D., Zhao, R., Shapira, I., Brandfon-
brener, D., Janson, L., and Kakade, S. Soap: Im-
proving and stabilizing shampoo using adam. arXiv
preprint arXiv:2409.11321, 2024. URL https://
arxiv.org/pdf/2409.11321.

Wang, J. and Wiens, J. Adasgd: Bridging the gap between
sgd and adam. arXiv preprint arXiv:2006.16541, 2020.
URL https://arxiv.org/pdf/2006.16541.

Ward, R., Wu, X., and Bottou, L. Adagrad step-
sizes: Sharp convergence over nonconvex land-
scapes. Journal of Machine Learning Research,
2020. URL https://www.jmlr.org/papers/
volume21/18-352/18-352.pdf.

Xie, S., Mohamadi, M. A., and Li, Z. Adam exploits
$\ell \infty$-geometry of loss landscape via coordinate-
wise adaptivity. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https:
//openreview.net/forum?id=PUnD86UEK5.

Yao, Z., Gholami, A., Shen, S., Mustafa, M., Keutzer, K.,
and Mahoney, M. Adahessian: An adaptive second order
optimizer for machine learning. In proceedings of the
AAAI conference on artificial intelligence, 2021. URL
https://arxiv.org/pdf/2006.00719.

You, Y., Gitman, I., and Ginsburg, B. Large batch
training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017. URL https://arxiv.
org/pdf/1708.03888.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-J.
Large batch optimization for deep learning: Training bert
in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.
URL https://arxiv.org/pdf/1904.00962.

Yuan, H., Liu, Y., Wu, S., Zhou, X., and Gu, Q. Mars:
Unleashing the power of variance reduction for training
large models. arXiv preprint arXiv:2411.10438, 2024.
URL https://arxiv.org/pdf/2411.10438.

Zhang, L., Shi, S., and Li, B. Eva: Practical second-order
optimization with kronecker-vectorized approximation.
In The Eleventh International Conference on Learning
Representations, 2022. URL https://arxiv.org/
pdf/2308.02123.

Zhuang, J., Tang, T., Ding, Y., Tatikonda, S. C., Dvornek, N.,
Papademetris, X., and Duncan, J. Adabelief optimizer:
Adapting stepsizes by the belief in observed gradients.
Advances in neural information processing systems, 2020.
URL https://arxiv.org/pdf/2010.07468.

11

http://arxiv.org/pdf/1503.05671
https://openreview.net/pdf?id=HyMTkQZAb
https://openreview.net/pdf?id=HyMTkQZAb
https://arxiv.org/pdf/2406.17748
https://arxiv.org/pdf/1301.3584
https://ece.uwaterloo.ca/~ece602/MISC/matrixcookbook.pdf
https://ece.uwaterloo.ca/~ece602/MISC/matrixcookbook.pdf
https://arxiv.org/pdf/1904.09237
https://arxiv.org/pdf/1904.09237
https://arxiv.org/pdf/1804.04235
https://arxiv.org/pdf/1804.04235
https://arxiv.org/pdf/1002.4862
https://arxiv.org/pdf/2409.11321
https://arxiv.org/pdf/2409.11321
https://arxiv.org/pdf/2006.16541
https://www.jmlr.org/papers/volume21/18-352/18-352.pdf
https://www.jmlr.org/papers/volume21/18-352/18-352.pdf
https://openreview.net/forum?id=PUnD86UEK5
https://openreview.net/forum?id=PUnD86UEK5
https://arxiv.org/pdf/2006.00719
https://arxiv.org/pdf/1708.03888
https://arxiv.org/pdf/1708.03888
https://arxiv.org/pdf/1904.00962
https://arxiv.org/pdf/2411.10438
https://arxiv.org/pdf/2308.02123
https://arxiv.org/pdf/2308.02123
https://arxiv.org/pdf/2010.07468

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

A. Proof for Well-Structured Preconditioner Sets
A.1. Definition ofH and its properties

Recall that K is a subalgebra of d-by-d real-valued matrices, and the corresponding well-structured preconditioner set is
H = K ∩ Sd+.

Lemma A.1. For any A ∈ K and any polynomial p, p(A) ∈ K. Furthermore, for any invertible A ∈ K, its inverse
A−1 ∈ K. Also, for any symmetric A ∈ K, its pseudo inverse A† ∈ K.

Proof of Lemma A.1. The first statement follows from the fact that K is a subalgebra, and the second and third statement
are consequences of the Cayley-Hamilton theorem.

Lemma A.2. ForH = K ∩ Sd+ where K is a subalgebra of d-by-d real-valued matrices, define

H∗ = {A ∈ K : ⟨H,A⟩ ≥ 0,∀H ∈ H}. (10)

ThenH∗ = H. Consequently, for any H1,H2 ∈ H, if ⟨H1 −H2,H⟩ ≥ 0 for all H ∈ H, then H1 ⪰H2.

Proof of Lemma A.2. Suppose there exists A ∈ H∗ such that A has a negative eigenvalue. Let λ1(A), . . . , λd(A) be the
eigenvalues of A in the decreasing order. Consider the matrix B = (A−2max(λ1(A), 1)Id)

2 ≻ 0. The leading eigenspace
of B is the same as the eigenspace of A corresponding to its smallest eigenvalue, which is negative. Consequently, for
large enough integer n, Bn/∥Bn∥op is approximately the projection matrix onto the eigenspace of the smallest negative
eigenvalue of A. Therefore, for large enough integer n, ⟨Bn/∥Bn∥op,A⟩ < 0. However, since Bn/∥Bn∥op is a
polynomial of A, we know that Bn/∥Bn∥op ∈ H. This is a contradiction to the definition of H∗. Hence, we conclude
that for any A ∈ H∗, it holds that A ⪰ 0, and thusH∗ ⊆ H. Moreover, for any A ∈ H, it holds that ⟨H,A⟩ ≥ 0 for any
H ∈ H because both A and H are positive semi-definite. This shows thatH ⊆ H∗, and henceH∗ = H. This completes
the proof.

A.2. Properties of PH(·)

For any M ≻ 0, recall the regularized optimization problem in (3). Note that we can assume η = 1 without loss of
generality, because the original problem is equivalent to solve for M/η2 with regularizer Tr(H) in place of η2 Tr(H).
Therefore, in the rest of this section, we focus on the following optimization problem:

PH(M) := argmin
H∈H

⟨M ,H−1⟩+Tr(H). (11)

The results proved below applies to the original problem (3) after simple rescaling, and Proposition 3.2 follows from
Proposition A.3 below.

For notational convenience, given any M ≻ 0, we define

fM (H) := ⟨M ,H−1⟩+Tr(H). (12)

Proposition A.3. LetH be a well-structured preconditioner set under Definition 3.1. For any M ≻ 0, there exists a unique
solution PH(M) ≻ 0 to the optimization problem in (11). Furthermore, for any M ≻ 0, PH(M) satisfies the following
properties:

(a) ⟨M , PH(M)−1⟩ = Tr(PH(M)).

(b) PH(M) = argminH∈H,Tr(H)≤1⟨M ,H−1⟩ where we recall that PH(M) = Tr(PH(M))−1PH(M).

(c) For any H ∈ H, ⟨−PH(M)−1MPH(M)−1 + Id,H − PH(M)⟩ = 0.

Moreover, for any M1 ⪰M2 ≻ 0, it holds that PH(M1)− PH(M2) ∈ H, and in particular, PH(M1) ⪰ PH(M2).

12

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Proof of Proposition A.3. We first show that PH(M) exists and PH(M) ≻ 0. Note that for H = K ∩ Sd+, since K is a
linear subspace ofMd and Sd+ is a closed subset ofMd, we know thatH is also a closed subset ofMd. Moreover, for any
sequence {Hn}n≥1 such that Hn ≻ 0 and either the smallest eigenvalue of Hn converges to 0 or the largest eigenvalue of
Hn converges to∞, the objective value fM (Hn) goes to∞ because M ≻ 0. Therefore, there exists PH(M) ≻ 0 that
attains the minimum objective value. For the uniqueness of PH(M), it suffices to note that the objective function fM (H)
is strictly convex in H ≻ 0 for M ≻ 0.

Proof for property (a). Suppose otherwise that ⟨M , PH(M)−1⟩ ≠ Tr(PH(M)), and consider the following matrix:

H = PH(M) ·
√
⟨M , PH(M)−1⟩/Tr(PH(M)) ∈ H.

For this H , we have ⟨M ,H−1⟩ + Tr(H) = 2
√
⟨M , PH(M)−1⟩ · Tr(PH(M)) < ⟨M , PH(M)−1⟩ + Tr(PH(M)),

thus contradicting the optimality of PH(M). Therefore, it must be true that ⟨M , PH(M)−1⟩ = Tr(PH(M)).

Proof for property (b) Note that we can rewrite the original optimization problem as follows:

PH(M) = argmin
H∈H

⟨M ,H−1⟩+Tr(H)

= argmin
H∈H

〈
M ,

(
H

Tr(H)

)−1〉
· 1

Tr(H)
+ Tr(H).

Note that solving the above optimization problem is equivalent to first solving PH(M) = argminH∈H,Tr(H)≤1⟨M ,H−1⟩
and then setting PH(M) = Tr(PH(M)) · PH(M) where the value of Tr(PH(M)) ensures the previous property (a).
Hence, we see that PH(M) solves the constrained version of the original optimization problem.

Proof for property (c). Since ∇H Tr(H) = Id and ∇H Tr(M⊤H−1) = −H−1MH−1 (see e.g. Equation (124) in
Petersen et al. (2008)), we have

∇HfM (H) = −H−1MH−1 + Id. (13)

Then asH is a cone, by the optimality of PH(M), it holds for any H ∈ H that

0 = ⟨∇HfM (PH(M)),H − PH(M)⟩ = ⟨−PH(M)−1MPH(M)−1 + Id,H − PH(M)⟩

Proof for the operator monotonicity of PH(·). By property (c) of PH(·), we know that for any M ≻ 0, ⟨M −
PH(M)2, PH(M)−1HPH(M)−1 − PH(M)−1⟩ = 0. Note that H 7→ PH(M)−1HPH(M)−1 is a bijection fromH to
H by Lemma A.1, so we have ⟨M − PH(M)2,H − PH(M)−1⟩ = 0 for all H ∈ H. Applying this to both M1 and M2,
it follows that for any H ∈ H

⟨M1 − PH(M1)
2,H − PH(M1)

−1⟩ = ⟨M2 − PH(M2)
2,H − PH(M2)

−1⟩.

Rearranging the above equation, we obtain

⟨PH(M1)
2 − PH(M2)

2,H⟩ = ⟨M1 −M2,H⟩ − ⟨M1, PH(M1)
−1⟩+Tr(PH(M1))

+ ⟨M2, PH(M2)
−1⟩ − Tr(PH(M2))

= ⟨M1 −M2,H⟩

where the second equality follows from the first property of PH(M1) and PH(M2) from Proposition A.3. Since M1 ⪰M2,
this implies that ⟨PH(M1)

2−PH(M2)
2,H⟩ ≥ 0 for all H ∈ H. By Lemma A.1, we know that PH(M1)

2−PH(M2)
2 ∈

H, so it further follows from Lemma A.2 that PH(M1)
2 ⪰ PH(M2)

2. Since matrix square root is operator monotone,
it holds that PH(M1) ⪰ PH(M2). We also know that PH(M1) − PH(M2) ∈ K because K is a subalgebra. Then we
conclude that PH(M1)− PH(M2) ∈ H from the definition ofH. This completes the proof.

We can further extend the definition of PH(·) to all positive semi-definite matrices. Specifically, for any M ⪰ 0, we
have M + ϵId ≻ 0 for any ϵ > 0, so PH(M + ϵId) is well-defined. Also, by the operator monotonicity of PH(·) from

13

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Proposition A.3, PH(M + ϵId) ⪯ PH(M + ϵ′Id) for ϵ′ ≥ ϵ > 0. This implies that PH(M + ϵId) has a limit as ϵ→ 0.
Therefore, for any M ⪰ 0, we define

PH(M) = lim
ϵ↘0

PH(M + ϵId). (14)

Note that the above equality is also true for M ≻ 0. To see this, we apply the optimality of every PH(M + ϵId) to get

⟨M + ϵId, PH(M)−1⟩+Tr(PH(M)) > ⟨M + ϵId, PH(M + ϵId)
−1⟩+Tr(PH(M + ϵId)).

Also note that PH(M + ϵId) ≻ PH(M − δId) ≻ 0 for sufficiently small δ > 0 such that M − δId ≻ 0. Therefore, letting
ϵ → 0 on both sides of the previous inequality, we can exchange the order of taking the limit and taking the inverse of
PH(M + ϵId) to obtain

⟨M , PH(M)−1⟩+Tr(PH(M)) ≥
〈
M ,

(
lim
ϵ↘0

PH(M + ϵId)
)−1〉

+Tr
(
lim
ϵ↘0

PH(M + ϵId)
)
.

Then by the optimality of PH(M) and its uniqueness, we conclude that (14) is also valid for any M ≻ 0.

Indeed, the definition of PH(M) in (14) provides a continuous extension of PH to Sd+, as summarized in the following
proposition.

Proposition A.4. Let H be a well-structured preconditioner set under Definition 3.1. As a function on Sd++, PH can be
continuously extended to be a function on Sd+. Moreover, for any M ⪰ 0 such that M ̸= 0, PH(M) ⪰ 0 satisfies the
following properties:

(a) span(M) ⊆ span(PH(M)) and ⟨M , PH(M)†⟩+Tr(PH(M)) = infH∈H⟨M ,H−1⟩+Tr(H).

(b) ⟨M , PH(M)†⟩ = Tr(PH(M)).

(c) ⟨M , PH(M)†⟩ = infH∈H,Tr(H)≤1⟨M ,H−1⟩ where we recall that PH(M) = Tr(PH(M))−1PH(M).

(d) For any H ∈ H, ⟨PH(M)†MPH(M)† − ΠM ,H − PH(M)⟩ = 0, where ΠM is the projection matrix onto
span(PH(M)).

Moreover, for any M1 ⪰M2 ⪰ 0, it holds that PH(M1)− PH(M2) ∈ H, and in particular, PH(M1) ⪰ PH(M2).

Proof of Proposition A.4. We divide the proof into different parts for different properties of PH.

Proof for continuous extension of PH. We first show that PH can be continuously extended to Sd+, and we consider the
extension of PH as given in (14). We first show that for any M ⪰ 0 and any sequence {Mn}∞n=1 such that each Mn ≻ 0
and limn→∞ Mn = M , it holds that limn→∞ PH(Mn) = PH(M). Note that for any δ ∈ (0, 1), there exist ϵ̄n ≥ ϵn > 0
such that 0 ≺ (1−δ)(M+ϵnId) ⪯Mn ⪯M+ ϵ̄nId for all large enough n and moreover, limn→∞ ϵ̄n = limn→∞ ϵn = 0.
Then by the operator monotonicity of PH(·), we have PH((1 − δ)(M + ϵnId)) ⪯ PH(Mn) ⪯ PH(M + ϵ̄nId). Also
note that PH((1− δ)(M + ϵnId)) =

√
1− δPH(M + ϵnId). Letting n→∞, both PH(M + ϵnId) and PH(M + ϵ̄nId)

converge to PH(M), which then implies that
√
1− δPH(M) ⪯ limn→∞ PH(Mn) ⪯ PH(M). Since δ is arbitrary,

we conclude that limn→∞ PH(Mn) = PH(M). Next, consider any general sequence {Mn}∞n=1 such that Mn ⪰ 0
and limn→∞ Mn = M . For any ϵ > 0, there exists δ > 0 such that for all M ′ ≻ 0 with ∥M −M ′∥F ≤ δ, it
holds that ∥PH(M) − PH(M ′)∥F ≤ ϵ. For this δ, there exists N > 0 such that for all n > N , ∥M −Mn∥F ≤ δ/2.
Then since PH(Mn) = limm→∞ PH(Mn + δ

2dmId), where for every m ≥ 1 we have ∥M − (Mn + δ
2m

√
d
Id)∥F ≤

∥M −Mn∥F + ∥ δ
2m

√
d
Id∥F ≤ δ, so ∥PH(M) − PH(Mn + δ

2m
√
d
Id)∥F ≤ ϵ for all m ≥ 1, which implies that

∥PH(M)−PH(Mn)∥F ≤ ϵ for all n > N . Therefore, it follows that limn→∞ PH(Mn) = PH(M). In conclusion, PH(·)
can be extended to be a continuous function on Sd+.

Below, we fix any M ⪰ 0 such that M ̸= 0.

14

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Proof for span(M) ⊆ span(PH(M)). Let ΠM := PH(M)PH(M)† be the projection matrix onto span(PH(M)),
then ΠM ∈ H by Lemma A.1. It suffices to show that ⟨Id −ΠM ,M⟩ = 0. Using the fact that Tr(AB) ≤ Tr(A) Tr(B)
for any A,B ⪰ 0, we can get the following inequality for any ϵ > 0:

⟨Id −ΠM ,M⟩ = Tr((Id −ΠM)M) ≤ Tr((Id −ΠM)PH(M + ϵId)) · Tr(PH(M + ϵId)
−1M)

= ⟨Id −ΠM , PH(M + ϵId)⟩ · ⟨M ,PH(M + ϵId)
−1⟩ (15)

By Proposition A.3, we know that ⟨M , PH(M + ϵId)
−1⟩ = Tr(PH(M + ϵId))− ϵ⟨Id, PH(M + ϵId)

−1⟩ ≤ Tr(PH(M +
ϵId)), which is bounded by an absolute constant for all ϵ ∈ (0, 1). Therefore, letting ϵ → 0 on both sided of (15), since
⟨Id−ΠM , PH(M + ϵId)⟩ → ⟨Id−ΠM , PH(M)⟩ = 0 by the definition of ΠM , we conclude that ⟨Id−ΠM ,M⟩ = 0.
This implies that span(M) ⊆ span(PH(M)).

Proof for the optimality of PH(M). We still use ΠM to denote the projection matrix onto span(PH(M)). For any
ϵ > 0, by the optimality of PH(M + ϵId), it holds for any H ∈ H that

⟨M + ϵId, PH(M + ϵId)
−1⟩+Tr(PH(M + ϵId)) ≤ ⟨M + ϵId,H

−1⟩+Tr(H). (16)

Since span(M) ⊆ span(PH(M)), we know that ⟨M , PH(M + ϵId)
−1⟩ = ⟨M ,ΠMPH(M + ϵId)

−1ΠM ⟩. Then since
limϵ→0 PH(M + ϵId) = PH(M), it holds that ΠMPH(M + ϵId)

−1ΠM = (ΠMPH(M + ϵId)ΠM)† for sufficiently
small ϵ > 0, and also that PH(M)† = limϵ→0(ΠMPH(M + ϵId)ΠM)†. This implies

lim
ϵ↘0
⟨M , PH(M + ϵId)

−1⟩ = ⟨M , PH(M)†⟩. (17)

Therefore, assuming the existence of the limit of ⟨ϵId, PH(M + ϵId)
−1⟩ as ϵ→ 0, taking the limit of ϵ→ 0 on both sides

of (16) yields

⟨M , PH(M)†⟩+Tr(PH(M)) + lim
ϵ→0
⟨ϵId, PH(M + ϵId)

−1⟩ ≤ ⟨M ,H−1⟩+Tr(H). (18)

Hence, it suffices to show that ⟨ϵId, PH(M + ϵId)
−1⟩ → 0 as ϵ → 0. To prove this, note that for any ϵ > 0, PH(M) +√

ϵ(Id −ΠM) ≻ 0, and its inverse is given by PH(M)† + ϵ−1/2(Id −ΠM). Also, PH(M) +
√
ϵ(Id −ΠM) ∈ H by

Lemma A.1. Therefore, by the optimality of PH(M + ϵId), we have

⟨M + ϵId, PH(M + ϵId)
−1⟩+Tr(PH(M + ϵId))

≤ ⟨M + ϵId, (PH(M) +
√
ϵ(Id −ΠM))−1⟩+Tr(PH(M) +

√
ϵ(Id −ΠM))

= ⟨M + ϵId, PH(M)† + ϵ−1/2(Id −ΠM)⟩+Tr(PH(M)) +
√
ϵ(d− rank(PH(M)))

= ⟨M , PH(M)†⟩+ ϵ · Tr(PH(M)†) + Tr(PH(M)) + 2
√
ϵ(d− rank(PH(M)))

where we apply Tr(Id −ΠM) = d− rank(PH(M)) and the last equality follows from the fact that ⟨M , Id −ΠM ⟩ = 0.
Rearranging the above inequality, we obtain

ϵ⟨Id, PH(M + ϵId)
−1⟩ ≤ ⟨M , PH(M)†⟩ − ⟨M , PH(M + ϵId)

−1⟩+Tr(PH(M))− Tr(PH(M + ϵId))

+ ϵ · Tr(PH(M)†) + 2
√
ϵ(d− rank(PH(M))).

Now applying (17) and noting that ϵ⟨Id, PH(M + ϵId)
−1⟩ ≥ 0, taking the limit ϵ→ 0, we obtain

lim
ϵ→0
⟨ϵId, PH(M + ϵId)

−1⟩ = 0. (19)

Then combining (18) and (19), we conclude that for any H ∈ H,

⟨M , PH(M)†⟩+Tr(PH(M)) ≤ ⟨M ,H−1⟩+Tr(H).

This confirms the optimality of PH(M). Further applying the same argument as in the proof of Proposition A.3 yields the
optimality of PH(M) = Tr(PH(M))−1PH(M).

15

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Proof for property (d) of PH(M). By the optimality of PH(M), we have

⟨M , PH(M)†⟩+Tr(PH(M)) = inf
H∈H

⟨M ,H−1⟩+Tr(H)︸ ︷︷ ︸
fM (H)

= inf
H∈H

⟨M ,H−1⟩+Tr(ΠMHΠM)︸ ︷︷ ︸
f̃M (H)

. (20)

To see why the last equality holds, first note that infH∈H fM (H) ≥ infH∈H f̃M (H) because Tr(H) ≥ Tr(ΠMHΠM).
Then for the other direction, note that we can always approximate f̃M (H) using fM (Hδ) where Hδ = (1−δ)ΠMHΠ⊤

M+

δId, for which fM (Hδ) ≤ 1
1−δ ⟨M ,H−1⟩ + (1 − δ) Tr(ΠMHΠM) + δd → f̃M (H) as δ → 0. This implies that

infH∈H f̃M (H) ≥ infH∈H fM (H), and thus the optimal objective values of the two optimization problems are the same.
Now define H̃M = PH(M) + (Id −ΠM) ∈ H whose inverse is H̃−1

M = PH(M)† + (Id −ΠM), then H̃M ≻ 0 is a
solution to the optimization problem in (20) because f̃M (H̃M) = ⟨M , PH(M)†⟩ + Tr(PH(M)) = infH∈H fM (H).
The gradient of f̃M is given by ∇f̃M (H) = −H−1MH−1 +ΠM . Since H is a cone, the optimality of H̃M implies
that for any H ∈ H,

0 = ⟨∇f(H̃M),H − H̃M ⟩ = ⟨−H̃−1
M MH̃−1

M +ΠM ,H − H̃M ⟩.

By the definition of H̃M , we have H̃−1
M MH̃−1

M = PH(M)†MPH(M)† because span(M) ⊆ span(PH(M)). There-
fore, it follows that

0 = ⟨PH(M)†MPH(M)† −ΠM ,H − PH(M)− (Id −ΠM)⟩
= ⟨PH(M)†MPH(M)† −ΠM ,H − PH(M)⟩.

Proof for the operator monotonicity of the extended PH. For any M1 ⪰M2 ⪰ 0, it follows from Proposition A.3 that
for any ϵ > 0, PH(M1 + ϵId) ⪰ PH(M2 + ϵId). Taking the limit as ϵ → 0 on both sides yields PH(M1) ⪰ PH(M2).
Similarly, as PH(M1 + ϵId)− PH(M2 + ϵId) ∈ H for every ϵ > 0 by Proposition A.3, we have PH(M1)− PH(M2) =
limϵ→0 PH(M1 + ϵId)− PH(M2 + ϵ) ∈ H becauseH is a closed set. This completes the proof.

A.3. Adaptive gradient norm corresponds to the dual norm

Proof of Lemma 3.3. We begin with the case of t = 1. Fix any g ∈ Rd. First for any w ∈ Rd with ∥w∥H ≤ 1, by
Cauchy-Schwarz inequality, it holds for all H ∈ H with Tr(H) ≤ 1 that

g⊤w ≤
√
g⊤H−1g

√
w⊤Hw ≤

√
⟨gg⊤,H−1⟩ · ∥w∥H ≤

√
⟨gg⊤,H−1⟩

where the second inequality follows from the definition of ∥w∥H. Now, further taking infimum over H ∈ H with
Tr(H) ≤ 1 and then taking supremum over w ∈ Rd with ∥w∥H ≤ 1, we obtain that

∥g∥∗H ≤
√

inf
H∈H,Tr(H)≤1

⟨gg⊤,H−1⟩. (21)

Next, we need to show that the above inequality holds also for the other direction.

By Proposition A.4, we define H∗ = Tr(PH(gg⊤))−1PH(gg⊤) = infH∈H,Tr(H)≤1⟨M ,H−1⟩. We choose correspond-

ingly w∗ =
H†

∗g

∥H†
∗g∥H

, which satisfies that ∥w∗∥H = 1. Then

∥g∥∗H ≥ g⊤w∗ =
g⊤H†

∗g

∥H†
∗g∥H

. (22)

Therefore, it suffices to show that g⊤w∗ ≥
√
g⊤H†

∗g, which is equivalent to

g⊤H†
∗g ≥ ∥H†

∗g∥2H = sup
H∈H,Tr(H)≤1

g⊤H†
∗HH†

∗g.

16

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

By the property (d) of PH(gg⊤) from Proposition A.4, we have ⟨PH(gg⊤)†gg⊤PH(gg⊤)†−Πgg⊤ ,H −PH(gg⊤)⟩ = 0
for any H ∈ H. Rearranging this equality, we obtain

g⊤PH(gg⊤)†HPH(gg⊤)†g = g⊤PH(gg⊤)†g + ⟨Πgg⊤ ,H − PH(gg⊤)⟩
= g⊤PH(gg⊤)†g + ⟨Πgg⊤ ,H⟩ − Tr(PH(gg⊤))

where the second equality is because Πgg⊤ is exactly the projection matrix onto span(PH(gg⊤)). Applying the above
equality with Tr(PH(gg⊤)) ·H in place of H and plugging in the definition of H∗, we further have

g⊤H†
∗HH†

∗g = g⊤H†
∗g +Tr(PH(gg⊤))⟨Πgg⊤ ,H⟩ − Tr(PH(gg⊤))

≤ g⊤H†
∗g +Tr(PH(gg⊤))2 Tr(H)− Tr(PH(gg⊤))2

= g⊤H†
∗g.

This implies that for any H ∈ H with Tr(H) ≤ 1, we have g⊤H†
∗HH†

∗g ≤ g⊤H†
∗g. Therefore, it follows from (22) that

∥g∥∗H ≥
√
g⊤H†

∗g

√√√√ g⊤H†
∗g

infH∈H,Tr(H)≤1 g⊤H†
∗HH†

∗g

≥
√
g⊤H†

∗g =
√

inf
H∈H,Tr(H)≤1

⟨gg⊤,H−1⟩ (23)

where the equality follows from the definition of H∗.

Finally, combining (21) and (23), we conclude that

∥g∥∗H = inf
H∈H,Tr(H)≤1

√
⟨gg⊤,H−1⟩. (24)

For the general case of g1:t = (g1, . . . , gt) ∈ Rd×t, note that for any H ∈ H〈 t∑
s=1

gsg
⊤
s ,H

−1

〉
= ⟨vec(g1:t) vec(g1:t)⊤,H−1 ⊗ It⟩ = ⟨vec(g1:t) vec(g1:t)⊤, (H ⊗ It)

−1⟩.

Then applying (24) with vec(g1:t) in place of g andH⊗ It in place ofH, we obtain

∥ vec(g1:t)∥∗H⊗It = inf
H⊗It∈H⊗It,Tr(H⊗It)≤1

√
⟨vec(g1:t) vec(g1:t)⊤, (H ⊗ It)−1⟩

= inf
H∈H,Tr(H)≤1

√
t⟨vec(g1:t) vec(g1:t)⊤, (H ⊗ It)−1⟩

=
√
t · inf

H∈H,Tr(H)≤1

√√√√〈 t∑
s=1

gsg⊤
s ,H

−1

〉

where the second equality is because Tr(H ⊗ It) = Tr(H) Tr(It) = t · Tr(H). This completes the proof.

A.4. Examples of ill-structured preconditioner sets

A.4.1. PRECONDITIONER SET OF TWO-SIDED SHAMPOO

Consider H = {H ∈ Sd+ : H = U ⊗ V for some U ∈ RdL×dL ,V ∈ RdR×dR}. In particular, we consider the special
case of dL = dR = 2, and the following two matrices

G1(ϵ) = diag(1, ϵ, ϵ, ϵ), G2(ϵ) = diag(1, ϵ, ϵ, 1)

17

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

where ϵ > 0 is a small constant to be determined later. Clearly G1(ϵ) ⪯ G2(ϵ) when ϵ ≤ 1, but we will show that
HG1(ϵ) ⪯HG2(ϵ) does not hold for sufficiently small ϵ > 0. For any H = U ⊗ V ∈ H, it holds that both U and V are
PSD, and we explicitly parametrize them as

U =

(
u1 u2

u2 u3

)
, V =

(
v1 v2
v2 v3

)
where u1, u3 ≥ 0, u1u3 ≥ u2

2, and similarly, v1, v3 ≥ 0, v1v3 ≥ v23 . Correspondingly,

H = U ⊗ V =


u1v1 u1v2 u2v1 u2v2
u1v2 u1v3 u2v2 u2v3
u2v1 u2v2 u3v1 u3v2
u2v2 u3v2 u3v2 u3v3

 .

We first analyze HG2(ϵ). For convenience, we consider

H−1
G2(ϵ)

= argmin
H∈H

⟨G2(ϵ),H⟩+Tr(H−1)

= argmin
U ,V ∈S2

+

⟨G2(ϵ),U ⊗ V ⟩+Tr((U ⊗ V)−1)︸ ︷︷ ︸
=:fG2(ϵ)(U ,V)

Recall the properties of the Kronecker product that (U ⊗ V)−1 = U−1 ⊗ V −1 and that Tr(U−1 ⊗ V −1) = Tr(U−1) ·
Tr(V −1). Then further using the definition of G2(ϵ), we have

fG2(ϵ)(U ,V) = u1v1 + u3v3 +Tr(U−1) · Tr(V −1) + ϵ(u1v3 + u3v1)

= u1v1 + u3v3 +
u1 + u3

u1u3 − u2
2

· v1 + v3
v1v3 − v22

+ ϵ(u1v3 + u3v1)

where we apply the explicit expression of U−1 and V −1. First observe that to minimize fG2(ϵ)(U ,V), we must have
u2 = v2 = 0 because otherwise u1+u3

u1u3−u2
2
> u1+u3

u1u3
and similarly v1+v3

v1v3−v2
2
> v1+v3

v1v3
. Therefore, it suffices to further

minimize the following:

fG2(ϵ)(U ,V) = u1v1 + u3v3 +
u1 + u3

u1u3
· v1 + v3

v1v3︸ ︷︷ ︸
f̃G2

(U ,V)

+ϵ(u1v3 + u3v1).

For the first term f̃G2
(U ,V), we can apply the AM-GM inequality to get f̃G2

(U ,V) ≥ (4
√
u1u3v1v3)

1/3, where the
equality is achieved when u1 = u3, v1 = v3, and u1v1 =

√
2. Moreover, for sufficiently small ϵ > 0, the contribution of

the second term ϵ(u1v3 + u3v1) is negligible, and thus we conclude that limϵ→0 HG2(ϵ) =
√
2
2 I4.

Similarly, for G1(ϵ), we have

fG1(ϵ)(U ,V) = u1v1 +
u1 + u3

u1u3 − u2
2

· v1 + v3
v1v3 − v22

+ ϵ(u1v3 + u3v1 + u3v3)

≥ u1v1 +
u1 + u3

u1u3
· v1 + v3

v1v3
+ ϵ(u1v3 + u3v1 + u3v3)

= u1v1 +
1

u1v1︸ ︷︷ ︸
f̃G1

(U ,V)

+
1

u1v3
+

1

u3v1
+

1

u3v3
+ ϵ(u1v3 + u3v1 + u3v3)

where the equality holds when u2 = v2 = 0. The first term f̃G1
(U ,V) attains the minimum value when u1v1 = 1,

and the remainder can be made small by choosing large u3, v3 when ϵ is sufficiently small. Therefore, we conclude that
limϵ→0 HG1(ϵ) = diag(1, 0, 0, 0).

Now comparing the limits of HG1(ϵ) and HG2(ϵ) as ϵ → 0, we can see that for sufficiently small ϵ > 0, it holds that
HG1(ϵ)[1, 1] > HG2(ϵ)[1, 1]. Hence, for sufficiently small ϵ > 0, HG1(ϵ) ⪯HG2(ϵ) does not hold.

18

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

A.4.2. TRIDIAGONAL MATRICES

ConsiderH = {H ∈ Sd+ : H is tridiagonal}. Here, for H to be tridiagonal, it has nonzero elements on the main diagonal,
the first diagonal above the main diagonal, and the first diagonal below the main diagonal. We consider the specific example
of 3-by-3 tridiagonal matrices, and examine PH(·) for the following two matrices

M =

2 1 1
1 2 1
1 1 2

 , M ′ =

10000 1 1
1 2 1
1 1 2

 .

It is clear that 0 ≺M ⪯M ′. We numerically solve for PH(M) and PH(M ′) to get

PH(M) ≈

1.382548 0.297594 0
0.297594 1.318491 0.297594

0 0.297594 1.382548

 , PH(M ′) ≈

100.000004 0.007229 0
0.007229 1.365999 0.366002

0 0.366002 1.366032

 .

Note that PH(M) ⪯ PH(M ′) does not hold because the last diagonal entry of PH(M) is larger than that of PH(M ′).

B. Calculations for Examples of Well-Structured Preconditioner Sets
As mentioned in Section 3.3, we provide calculations for how to derive each specific algorithm from Algorithm 1 with
specific choice ofH and explain each entry in Table 1. Recall from Algorithm 1 that

Mt = ϵId +

t∑
s=1

gsg
⊤
s .

B.1. AdaGrad-Norm

For AdaGrad-Norm, we haveH = {c · Id | c ≥ 0}.

Calculation for Ht. Then for any H = c · Id ∈ H,〈
Mt,H

−1
〉
+ η2 Tr(H) =

1

c
Tr(Mt) + η2cd ≥ 2η

√
d · Tr(Mt)

where the equality is achieved by choosing

c =
1

η

√
1

d
Tr(Mt) =

1

η

√√√√ϵ+
1

d

t∑
s=1

∥gs∥22.

This corresponds exactly to the update rule of AdaGrad-Norm, which adjusts the global learning rate based on the
accumulated ℓ2 norm of past gradients.

Calculation for ∥ · ∥H. For the associated ∥ · ∥H, we have

∥x∥H = sup
0≤c≤1/d

√
c · x⊤Idx =

∥x∥2√
d

.

Calculation for |||g1:t|||H. We can calculate the adaptive gradient norm similarly:

|||g1:t|||H = inf
0≤c≤1/d

√√√√〈 t∑
s=1

gsg⊤
s , (cId)

−1

〉
=
√
d

√√√√Tr

(t∑
s=1

gsg⊤
s

)
=
√
d

√√√√ t∑
s=1

∥gs∥22.

B.2. Diagonal AdaGrad

For diagonal AdaGrad,H = Dd
+ = {diag(c1, . . . , cd) | c1, . . . , cd ≥ 0}.

19

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Calculation for Ht. For any H = diag(c1, . . . , cd) ∈ H, we have

〈
Mt,H

−1
〉
+ η2 Tr(H) =

d∑
i=1

(
Mt,ii

ci
+ η2ci

)
≥

d∑
i=1

2η
√

Mt,ii

where the equality is achieved by choosing

ci =
1

η

√
Mt,ii =

1

η

√√√√ϵ+

t∑
s=1

g2s,i, for i = 1, . . . , d.

This corresponds to the update rule diagonal AdaGrad, which computes the historical sum of squared gradients for each
individual coordinate.

Calculation for ∥ · ∥H. For the associated ∥ · ∥H, we have

∥x∥H = sup∑d
i=1 ci≤1

√
x⊤diag(c1, . . . , cd)x = sup∑d

i=1 ci≤1

√√√√ d∑
i=1

cix2
i = max

i∈[d]
|xi| = ∥x∥∞

Calculation for |||g1:t|||H. We can calculate the adaptive gradient norm similarly:

|||g1:t|||H = inf∑d
i=1 ci≤1

√√√√〈 t∑
s=1

gsg⊤
s ,diag(c1 . . . , cd)

−1

〉

= inf∑d
i=1 ci≤1

√√√√ d∑
i=1

1

ci

t∑
s=1

g2s,i

=

d∑
i=1

√√√√ t∑
s=1

g2s,i

where the last equality is because of the Cauchy inequality: for c1, . . . , cd ≥ 0 such that
∑d

i=1 ci ≤ 1,√√√√ d∑
i=1

1

ci

t∑
s=1

g2s,i ≥

√√√√ d∑
i=1

1

ci

t∑
s=1

g2s,i

√√√√ d∑
i=1

ci ≥
d∑

i=1

√√√√ t∑
s=1

g2s,i.

B.3. Full-matrix AdaGrad

For full-matrix AdaGrad,H = Sd+.

Calculation for Ht. Note that ⟨Mt,H
−1⟩ + η2 Tr(H) is a convex function of H ≻ 0, so we can get Ht by first

calculating the gradient of the objective function and then setting it to zero. Specifically, for any H ≻ 0, we have

∇H

(〈
Mt,H

−1
〉
+ η2 Tr(H)

)
= −H−1MtH

−1 + η2Id.

Setting it to zero yields

Ht =
1

η
M

1
2
t =

1

η

(
ϵId +

t∑
s=1

gsg
⊤
s

) 1
2

.

This corresponds to the update rule of full-matrix AdaGrad.

20

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Calculation for ∥ · ∥H. For the associated ∥ · ∥H, we have

∥x∥H = sup
H⪰0,Tr(H)≤1

√
x⊤Hx

= sup
H⪰0,Tr(H)≤1

√
⟨xx⊤,H⟩ =

√
λ1(xx⊤) = ∥x∥2 .

Calculation for |||g1:t|||H. We can adapt the calculation for Ht to the constrained optimization problem in the definition
of |||g1:t|||H to get

|||g1:t|||H = inf
H∈H,Tr(H)≤1

√√√√〈 t∑
s=1

gsg⊤
s ,H

−1
〉

=

√√√√〈 t∑
s=1

gsg⊤
s ,

(
1

Tr[(
∑t

s=1 gsg
⊤
s)

1
2]

(t∑
s=1

gsg⊤
s

) 1
2
)−1〉

= Tr

[(t∑
s=1

gsg
⊤
s

) 1
2
]
.

B.4. One-sided Shampoo

For one-sided Shampoo,H = SdL
+ ⊗ IdR

.

Calculation for Ht. For any H = HL ⊗ IdR
∈ H, H−1 = H−1

L ⊗ IdR
, so we have Tr(H) = dR Tr(HL) and

⟨Mt,H
−1⟩ = ⟨Mt, (HL ⊗ IdR

)−1⟩

= ⟨ϵId,H−1
L ⊗ IdR

⟩+
t∑

s=1

⟨vec(Gs) vec(Gs)
⊤,H−1

L ⊗ IdR
⟩

= ϵdR Tr(H−1
L) +

t∑
s=1

Tr(G⊤
s H

−1
L Gs)

= Tr

[(
ϵdRIdL

+

t∑
s=1

GsG
⊤
s

)
H−1

L

]
where we use the fact that ⟨vec(X) vec(X)⊤,HL ⊗ IdR

⟩ = ⟨XX⊤,HL⟩ for any X ∈ RdL×dR . Again, since the
objective function is convex in HL ≻ 0, we can derive HL by first calculating the gradient and then setting it to zero.
Taking derivative with respect to HL, we obtain

∇HL

(
⟨Mt,H

−1⟩+ η2 Tr(H)
)
= −H−1

L

(
ϵdRIdL

+

t∑
s=1

GsG
⊤
s

)
H−1

L + η2dRIdL
.

Setting it to 0, we obtain

argmin
HL∈SdL

+

⟨Mt, (HL ⊗ IdR
)−1⟩+ η2dR Tr(HL ⊗ IdR

) =
1

η
√
dR

(
ϵdRIdL

+

t∑
s=1

GsG
⊤
s

) 1
2

=
1

η

(
ϵIdL

+
1

dR

t∑
s=1

GsG
⊤
s

) 1
2

.

This is exactly the Lt in Algorithm 2. Therefore, the preconditioner Ht in one-sided Shampoo is given by

Ht =
1

η

(
ϵIdL

+
1

dR

t∑
s=1

GsG
⊤
s

) 1
2

⊗ IdR
.

As a result, Algorithm 1 withH = SdL
+ ⊗ IdR

recovers Algorithm 2.

21

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Calculation for ∥ · ∥H. For the associated ∥ · ∥H, we have

∥x∥H = sup
H=HL⊗IdR ,HL⪰0,Tr(H)≤1

√
x⊤Hx

= sup
HL⪰0,Tr(HL)≤1/dR

√
⟨vec (X) vec (X)

⊤
,HL ⊗ IdR

⟩

= sup
HL⪰0,Tr(HL)≤1/dR

√
⟨XX⊤,HL⟩

=
1√
dR
∥X∥op

where the last equality is achieved at HL = uu⊤/dR for u being the leading eigenvector of XX⊤. The derivation above
provides a proof for Lemma 4.1.

Calculation for |||g1:t|||H. Again, for the adaptive gradient norm, we can adapt the calculation for Ht to the constrained
optimization problem in the definition of |||g1:t|||H to get

|||g1:t|||H = inf
H∈H,Tr(H)≤1

√√√√〈 t∑
s=1

gsg⊤
s ,H

−1

〉

= inf
HL∈SdL

+ ,Tr(HL)≤ 1
dR

√√√√〈 t∑
s=1

GsG⊤
s ,H

−1
L

〉

=

√√√√〈 t∑
s=1

GsG⊤
s ,

[
1

dR Tr[(
∑t

s=1 GsG⊤
s)

1
2]

(t∑
s=1

GsG⊤
s

) 1
2
]−1〉

=
√
dR Tr

[(t∑
s=1

GsG
⊤
s

) 1
2
]
= Tr

[(
dR

t∑
s=1

GsG
⊤
s

) 1
2
]
.

C. Analysis for EMA adaptive optimization
As mentioned in Section 3, our analysis can be generalized to Algorithm 4, which is an EMA variant of Algorithm 1. To
simplify the theoretical analysis, we instead focus on Algorithm 5 in which the current gradient is not scaled by 1− β2 when
computing Mt. It serves as a bridge between Algorithms 1 and 4. When β2 = 1, Algorithm 5 exactly recovers Algorithm 1.
When the learning rate η̃ is rescaled by

√
1− β2 and ϵ is rescaled by 1/(1− β2), Algorithm 5 is equivalent to Algorithm 4.

Theorem C.1 extends Theorem 3.4 to get online regret bound for Algorithm 5. The proof is in Appendix D.3.
Theorem C.1. Let H be a well-structured preconditioner set under Definition 3.1. Then for any convex loss functions
L̃1, . . . , L̃T , the regret of Algorithm 5 compared to any x∗ ∈ X can be bounded as

T∑
t=1

β
T−t
2

2

[
L̃t(xt)− L̃t(x

∗)
]
≤
(
D2

2η̃
+ η̃

)
inf

H∈H,Tr(H)≤1

√〈
M̃T ,H−1

〉
where D = maxt∈[T] ∥xt − x∗∥H.

Theorem C.2 provides the convergence rate for Algorithm 5, which generalizes Theorem 3.8. The proof is in Appendix D.3.
Theorem C.2. LetH be a well-structured preconditioner set under Definition 3.1. Consider any independent stochastic
convex loss functions L̃1, . . . , L̃T satisfying Assumption 3.7, and let H(L̃,H) be the H-smoothness of their expectation
L̃. Suppose the global minimizer of L, denoted by x∗, is in X . Then for the iterates x1, . . . ,xT of Algorithm 5, denoting

x̄1:T = (
∑T

t=1 β
T−t
2

2)−1
∑T

t=1 β
T−t
2

2 xt, it holds that

EL̃(x̄1:T)− L̃t(x
∗) ≤ 16∑T

t=1 β
T−t
2

2

∥X∥2H H(L̃,H) + 4
√
2√∑T

t=1 β
T−t
2

∥X∥H σ +
4
√
2∑T

t=1 β
−t
2

2

∥X∥H d
√
ϵ

22

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Algorithm 4 EMA Adaptive Regularization Meta-
Algorithm

Hyperparam: ϵ > 0, convex set X ⊆ Rd, learning rate
η, preconditionersH ⊂ Sd+, β2 ∈ (0, 1)
Input: initialization x1, loss functions {Lt}Tt=1 :Rd→R
M0 ← ϵId
for t = 1, 2, . . . , T do
gt ← ∇Lt(xt)
Mt ← β2Mt−1 + (1− β2)gtg

⊤
t

Ht ← argminH∈H
〈
Mt,H

−1
〉
+ η2 Tr(H)

xt+1 ← ΠHt

X
(
xt −H−1

t gt
)

Return x1, . . . ,xT

Algorithm 5 Weighted Adaptive Regularization Meta-
Algorithm

Hyperparam: ϵ > 0, convex set X ⊆ Rd, learning rate
η̃, preconditionersH ⊂ Sd+, β2 ∈ (0, 1)

Input: initialization x1, loss functions {L̃t}Tt=1 :Rd→R
M̃0 ← ϵId
for t = 1, 2, . . . , T do
g̃t ← ∇L̃t(x̃t)
M̃t ← β2M̃t−1 + g̃tg̃

⊤
t

H̃t ← argminH̃∈H

〈
Mt, H̃

−1
〉
+ η̃2 Tr(H̃)

x̃t+1 ← ΠH̃t

X

(
x̃t − H̃−1

t g̃t

)
Return x̃1, . . . , x̃T

where σ = infH∈H,Tr(H)≤1

√
⟨Σ,H−1⟩.

When β2 = 1, Theorem C.2 recovers the result in Theorem 3.8 and provides a O(T− 1
2) convergence rate. When β2 < 1,

the optimality gap is upper bounded by O
(
(1− β2) ∥X∥2H H(L̃,H) +

√
1− β2 ∥X∥H σ

)
when T = Θ

(
1

1−β2

)
.

D. Proof for the Unified Analysis
D.1. Regret bound

We first present the proof for the main result on the regret bound for Algorithm 1 with a well-structured preconditioner set
H.

Theorem 3.4. Let H be a well-structured preconditioner set under Definition 3.1. Then for any convex loss functions
L1, . . . , LT , the regret of Algorithm 1 compared to any x∗ ∈ X can be bounded as

T∑
t=1

Lt(xt)−
T∑

t=1

Lt(x
∗) ≤

(
D2

2η
+ η

)(
G+ d

√
ϵ
)

where G = |||g1:T |||H, D = maxt∈[T] ∥xt − x∗∥H.

Proof of Theorem 3.4. First we will analyze the property of each Ht. Recall from Proposition 3.2 that Ht satisfies〈
Mt,H

−1
t

〉
= η2 Tr(Ht) and that Ht := Tr(Ht)

−1Ht = argminH∈H,Tr(H)≤1

〈
Mt,H

−1
〉
. Therefore,

〈
Mt,H

−1
t

〉
= η2 Tr(Ht) = η

√〈
Mt,H

−1
t

〉
Tr(Ht) = η

√
⟨Mt,H

−1
t ⟩. (25)

Now recall the regret bound from Theorem 2.1:

T∑
t=1

Lt(xt)−
T∑

t=1

Lt(x
∗) ≤ 1

2

(〈
MT ,H

−1
T

〉
+ η2 Tr(HT)− η2 Tr(H0)

)
+

1

2

T∑
t=1

(
∥xt − x∗∥2Ht

− ∥xt+1 − x∗∥2Ht

)
=

1

2

(
2η
√
⟨MT ,H

−1
T ⟩ − η2 Tr(H0)

)
+

1

2

T∑
t=1

(
∥xt − x∗∥2Ht

− ∥xt+1 − x∗∥2Ht

)
(26)

23

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

where the equality follows from the facts in (25). Next, for the second term on the right-hand side of (26), we rearrange the
summation to obtain

T∑
t=1

(
∥xt − x∗∥2Ht

− ∥xt+1 − x∗∥2Ht

)
≤ ∥x1 − x∗∥2H1

+

T∑
t=2

(
∥xt − x∗∥2Ht

− ∥xt − x∗∥2Ht−1

)
= ∥x1 − x∗∥2H1

+

T∑
t=2

∥xt − x∗∥2Ht−Ht−1
.

Notice that Mt −Mt−1 = gtg
⊤
t ⪰ 0, and thus Ht −Ht−1 ∈ H by Proposition 3.2. This implies

∥xt − x∗∥2Ht−Ht−1
= (xt − x∗)⊤(Ht −Ht−1)(xt − x∗) ≤ Tr(Ht −Ht−1) ∥xt − x∗∥2H

where the inequality follows from the definition of ∥ · ∥H in (1). It then follows that

T∑
t=1

(
∥xt − x∗∥2Ht

− ∥xt+1 − x∗∥2Ht

)
≤ Tr(H1) ∥x1 − x∗∥2H +

T∑
t=2

Tr(Ht −Ht−1) ∥xt − x∗∥2H

≤ Tr(HT) max
1≤t≤T

∥xt − x∗∥2H

=
1

η

√
⟨MT ,H

−1
T ⟩ max

1≤t≤T
∥xt − x∗∥2H

where the equality again follows from (25). Plugging this back into (26), we obtain

T∑
t=1

Lt(xt)−
T∑

t=1

Lt(x
∗) ≤ η

√
⟨MT ,H

−1
T ⟩+

1

2η

√
⟨MT ,H

−1
T ⟩ max

1≤t≤T
∥xt − x∗∥2H

=

(
max1≤t≤T ∥xt − x∗∥2H

2η
+ η

)
inf

H∈H,Tr(H)≤1

√
⟨MT ,H−1⟩

≤
(
max1≤t≤T ∥xt − x∗∥2H

2η
+ η

)√
⟨MT −M0,H−1⟩+ ⟨M0,H−1⟩

for any H ∈ H with Tr(H) = 1. In particular, we choose H = αH∗
T + 1−α

d Id for some α ∈ (0, 1) where H∗
T =

argminH∈H,Tr(H)≤1

√
⟨MT −M0,H−1⟩, so ⟨MT −M0,H

−1⟩ = |||g1:T |||2H according to the definition of the adaptive
gradient norm in (7). Since H−1 ⪯ 1

α (H
∗
T)

−1 and H−1 ⪯ d
1−αId, we further have

T∑
t=1

Lt(xt)−
T∑

t=1

Lt(x
∗) ≤

(
max1≤t≤T ∥xt − x∗∥2H

2η
+ η

)√
1

α
⟨MT −M0, (H∗

T)
−1⟩+ d

1− α
⟨M0, Id⟩

=

(
max1≤t≤T ∥xt − x∗∥2H

2η
+ η

)√
1

α
|||g1:T |||2H +

d2ϵ

1− α
.

Finally choosing α =
|||g1:T |||H

|||g1:T |||H+d
√
ϵ
, we obtain

T∑
t=1

Lt(xt)−
T∑

t=1

Lt(x
∗) =

(
max1≤t≤T ∥xt − x∗∥2H

2η
+ η

)(
|||g1:T |||H + d

√
ϵ
)

This completes the proof.

The proof for Corollary 3.5 is straightforward.

Corollary D.1. Under the setting of Theorem 2.1, further suppose that X is a bounded set in Rd. Then choosing
η =
√
2 ∥X∥H, the regret bound for Algorithm 1 becomes

T∑
t=1

Lt(xt)−
T∑

t=1

Lt(x
∗) ≤ 2

√
2 ∥X∥H

(
G+ d

√
ϵ
)
.

24

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Proof of Corollary 3.5. Note that D = maxt∈[T] ∥xt − x∗∥H ≤ maxt∈[T] ∥xt∥H + ∥x∗∥H ≤ 2 ∥X∥H because

x1, . . . ,xT and x∗ are all in X . The proof is completed by setting η =
√
2 ∥X∥H to minimize 2

∥X∥2
H

η + η.

D.2. Convergence rate

Next, we present the proof for the convergence rate of Algorithm 1 with a well-structured preconditioner setH.

Theorem 3.8. LetH be a well-structured preconditioner set under Definition 3.1. Consider any independent stochastic
convex loss functions L1, . . . , LT satisfying Assumption 3.7, and let H(L,H) be the H-smoothness of their expectation
L. Suppose the global minimizer of L, denoted by x∗, is in X . Then for the iterates x1, . . . ,xT of Algorithm 1, denoting
x̄1:T = 1

T

∑T
t=1 xt, it holds that

E [L(x̄1:T)− L(x∗)]

≤16

T
∥X∥2H H(L,H) + 4

√
2√
T
∥X∥H σ +

4
√
2d
√
ϵ

T
∥X∥H

where σ = infH∈H,Tr(H)≤1

√
⟨Σ,H−1⟩.

Proof of Theorem 3.8. Let H∗ ∈ H be the matrix given in Definition 3.6 for the loss function L, such that ∇2L(x) ⪯H∗.
Therefore, for any x,x′ ∈ X ,

L(x′) ≤ L(x) +∇L(x)⊤(x′ − x) +
1

2
(x′ − x)⊤H∗(x′ − x)

= L(x) +
1

2

(
x′ − x+ (H∗)−1∇L(x)

)⊤
H∗ (x′ − x+ (H∗)−1∇L(x)

)
− 1

2
∇L(x)⊤(H∗)−1∇L(x).

Then we have that

L(x∗) = min
x′

L(x′)

≤ min
x′

L(x) +
1

2

(
x′ − x+ (H∗)−1∇L(x)

)⊤
H∗ (x′ − x+ (H∗)−1∇L(x)

)
− 1

2
∇L(x)⊤(H∗)−1∇L(x)

= L(x)− 1

2
∇L(x)⊤(H∗)−1∇L(x).

Applying the above inequality to x1, . . . ,xT and denoting ḡt = ∇L(xt), we then have

E
[T∑

t=1

(L(xt)− L(x∗))

]
≥ 1

2
E
[T∑

t=1

ḡ⊤
t (H∗)

−1
ḡt

]

=
1

2

〈
E
[T∑

t=1

ḡtḡ
⊤
t

]
, (H∗)

−1

〉

=
1

2Tr(H∗)

〈
E
[T∑

t=1

ḡtḡ
⊤
t

]
, (H∗/Tr(H∗))

−1

〉

≥ 1

2H(L,H)
inf

Tr(H)≤1,H∈H

〈
E
[T∑

t=1

ḡtḡ
⊤
t

]
,H−1

〉
. (27)

For any δ > 0, we choose Hg ∈ H such that ⟨E[
∑T

t=1 ḡtḡ
⊤
t],H

−1
g ⟩ ≤ δ + infH∈H,Tr(H)≤1⟨E[

∑T
t=1 ḡtḡ

⊤
t],H

−1⟩ and
Tr(Hg) ≤ 1. Similarly, we choose HΣ ∈ H such that ⟨Σ,H−1

Σ ⟩ ≤ δ + infH∈H,Tr(H)≤1⟨Σ,H−1⟩ and Tr(HΣ) ≤ 1.
Correspondingly, we define H ′ = αHg + (1− α)HΣ, which satisfies that H ′ ∈ H and Tr(H ′) ≤ 1. Then by Jensen’s
inequality, we have

E inf
H∈H,Tr(H)≤1

√
⟨MT −M0,H−1⟩ ≤ E

√
⟨MT −M0, (H ′)−1⟩ ≤

√
E ⟨MT −M0, (H ′)−1⟩.

25

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Plugging in MT −M0 =
∑T

t=1 gtg
⊤
t , since E[

∑t
t=1 gtg

⊤
t] ⪯ E[

∑T
t=1 ḡtḡ

⊤
t] + TΣ, we further have

E inf
H∈H,Tr(H)≤1

√
⟨MT −M0,H−1⟩ ≤

√√√√〈E[T∑
t=1

ḡtḡ⊤
t

]
, (H ′)−1

〉
+ T ⟨Σ, (H ′)−1⟩

≤

√√√√ 1

α

〈
E
[T∑

t=1

ḡtḡ⊤
t

]
,H−1

g

〉
+

1

1− α
T
〈
Σ,H−1

Σ

〉

=

√√√√〈E[T∑
t=1

ḡtḡ⊤
t

]
,H−1

g

〉
+
√
T
〈
Σ,H−1

Σ

〉
where in the last step we choose α to be

α =

√〈
E[
∑T

t=1 ḡtḡ
⊤
t],H

−1
g

〉√〈
E[
∑T

t=1 ḡtḡ
⊤
t],H

−1
g

〉
+
√
T
〈
Σ,H−1

Σ

〉 .
Recall that σ = infH∈H,Tr(H)≤1

√
⟨Σ,H−1⟩. Then it follows from (27) and the definitions of Hg,HΣ that

E
[

inf
H∈H,Tr(H)≤1

√
⟨MT −M0,H−1⟩

]
≤

√√√√2H(L,H) · E
[T∑

t=1

(Lt(xt)− Lt(x∗))

]
+ δ +

√
Tσ2 + Tδ

Since δ > 0 is arbitrary, this implies that

E
[

inf
H∈H,Tr(H)≤1

√
⟨MT −M0,H−1⟩

]
≤

√√√√2H(L,H) · E
[T∑

t=1

(Lt(xt)− Lt(x∗))

]
+
√
Tσ2

Now recall the regret bound from Corollary 3.5, and it follows from the above inequality that

E
[T∑

t=1

(Lt(xt)− Lt(x
∗))

]
≤ 2
√
2∥X∥H · E

[
inf

H∈H,Tr(H)≤1

√
⟨Mt −M0,H−1⟩+ d

√
ϵ

]

≤ 2
√
2 ∥X∥H


√√√√2H(L,H) · E

[T∑
t=1

(Lt(xt)− Lt(x∗))

]
+
√
Tσ2 + d

√
ϵ

 .

Solving the above inequality yields

E
[
1

T

T∑
t=1

(Lt(xt)− Lt(x
∗))

]
≤ 16

T
∥X∥2H H(L,H) + 4

√
2√
T
∥X∥H σ +

4
√
2

T
∥X∥H d

√
ϵ.

This completes the proof.

D.3. Analysis for EMA style optimizers

Here we present the proof for the theorems in Appendix C.

Theorem C.1. Let H be a well-structured preconditioner set under Definition 3.1. Then for any convex loss functions
L̃1, . . . , L̃T , the regret of Algorithm 5 compared to any x∗ ∈ X can be bounded as

T∑
t=1

β
T−t
2

2

[
L̃t(xt)− L̃t(x

∗)
]
≤
(
D2

2η̃
+ η̃

)
inf

H∈H,Tr(H)≤1

√〈
M̃T ,H−1

〉
where D = maxt∈[T] ∥xt − x∗∥H.

26

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Proof of Theorem C.1. We can choose Lt = β
− t

2
2 L̃t, ϵ = ϵ̃ and η = η̃. Then we claim Algorithm 5 is equivalent to

Algorithm 1 with hyperparameter ϵ, η and loss functions {Lt}Tt=1, which will be shown by induction.

Assume x̃s = xs for s ≤ t. Then we know gs = ∇Ls(xs) = β
− s

2
2 ∇L̃s(x̃s) for s ≤ t.

We consider the update in the step t of Algorithm 5.

M̃t =

t∑
i=1

βt−i
2 g̃ig̃

⊤
i + βt

2M̃0 = βt
2

[
t∑

i=1

gtg
⊤
t + ϵId

]
= βt

2Mt,

H̃t = argmin
H̃∈H

〈
M̃t, H̃

−1
〉
+ η̃2 Tr(H̃) = argmin

H∈H

〈
βt
2Mt,H

−1
〉
+ η2 Tr(H) = β

t
2
2 Ht,

H̃−1
t g̃t = β

− t
2

2 H−1
t β

t
2
2 gt = H−1

t gt,

x̃t+1 = ΠH̃t

X

(
x̃t − H̃−1

t g̃t

)
= ΠH̃t

X
(
xt −H−1

t gt
)
= ΠHt

X
(
xt −H−1

t gt
)
= xt+1.

Therefore, we can obtain the regret bound for Algorithm 4 with Theorem 3.4.

T∑
t=1

β
− t

2
2

[
L̃t(xt)− L̃t(x

∗)
]
=

T∑
t=1

[Lt(xt)− Lt(x
∗)]

≤

(
max1≤t≤T ∥xt − x∗∥2H

2η
+ η

)
inf

H∈H,Tr(H)≤1

√
⟨MT ,H−1⟩

= β
−T

2
2

(
max1≤t≤T ∥xt − x∗∥2H

2η̃
+ η̃

)
inf

H∈H,Tr(H)≤1

√〈
M̃T ,H−1

〉
and

T∑
t=1

β
− t−1

2
2

β
− 1

2
2 − 1

β
−T

2
2 − 1

[
L̃t(xt)− L̃t(x

∗)
]
≤ 1−

√
β2

1− β
T
2
2

(
max1≤t≤T ∥xt − x∗∥2H

2η̃
+ η̃

)
inf

H∈H,Tr(H)≤1

√〈
M̃T ,H−1

〉

Theorem C.2. LetH be a well-structured preconditioner set under Definition 3.1. Consider any independent stochastic
convex loss functions L̃1, . . . , L̃T satisfying Assumption 3.7, and let H(L̃,H) be the H-smoothness of their expectation
L̃. Suppose the global minimizer of L, denoted by x∗, is in X . Then for the iterates x1, . . . ,xT of Algorithm 5, denoting

x̄1:T = (
∑T

t=1 β
T−t
2

2)−1
∑T

t=1 β
T−t
2

2 xt, it holds that

EL̃(x̄1:T)− L̃t(x
∗) ≤ 16∑T

t=1 β
T−t
2

2

∥X∥2H H(L̃,H) + 4
√
2√∑T

t=1 β
T−t
2

∥X∥H σ +
4
√
2∑T

t=1 β
−t
2

2

∥X∥H d
√
ϵ

where σ = infH∈H,Tr(H)≤1

√
⟨Σ,H−1⟩.

Proof of Theorem C.2. Similar to the proof of Theorem 3.8, we know

L̃(x̃t)− L̃(x̃∗) ≥
〈
Eg̃tEg̃⊤

t , (H̃
∗)−1

〉
and

T∑
t=1

β
T−t
2

2 L̃(x̃t)− L̃(x̃∗) ≥

〈
T∑

t=1

β
T−t
2

2 Eg̃tEg̃⊤
t , (H̃

∗)−1

〉

≥ 1

2H(L̃,H)
inf

Tr(H)≤1,H∈H

〈
T∑

t=1

β
T−t
2

2 Eg̃tEg̃⊤
t ,H

−1

〉

27

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

For any δ > 0, we choose Hg ∈ H such that Tr(Hg) ≤ 1 and〈
T∑

t=1

β
T−t
2

2 Eg̃tEg̃⊤
t ,H

−1
g

〉
≤ δ + inf

H∈H,Tr(H)≤1

〈
T∑

t=1

β
T−t
2

2 Eg̃tEg̃⊤
t ,H

−1

〉
.

We also choose HΣ ∈ H such that
〈
Σ,H−1

Σ

〉
≤ δ + infH∈H,Tr(H)≤1

〈
Σ,H−1

〉
and Tr(HΣ) ≤ 1. We define

H ′ = αHg + (1− α)HΣ. Then H ′ ∈ H and Tr(H ′) ≤ 1. We have that

E inf
H∈H,Tr(H)≤1

√〈
M̃T − βT

2 M̃0,H−1
〉
≤ E

√〈
M̃T − βT

2 M̃0, (H ′)−1
〉

≤
√
E
〈
M̃T − βT

2 M̃0, (H ′)−1
〉

≤

√√√√〈 T∑
t=1

βT−t
2 Eg̃tEg̃⊤

t , (H
′)−1

〉
+

T∑
t=1

βT−t
2 ⟨Σ, (H ′)−1⟩.

Now plugging in the definition of H ′, we obtain

E inf
H∈H,Tr(H)≤1

√〈
M̃T − βT

2 M̃0,H−1
〉
≤

√√√√〈 T∑
t=1

βT−t
2 Eg̃tEg̃⊤

t , (αHg)−1

〉
+

T∑
t=1

βT−t
2 ⟨Σ, ((1− α)HΣ)−1⟩

=

√√√√ 1

α

〈
T∑

t=1

β
T−t
2

2 Eg̃tEg̃⊤
t , (Hg)−1

〉
+

1

1− α

T∑
t=1

βT−t
2 ⟨Σ, (HΣ)−1⟩

≤

√√√√〈 T∑
t=1

β
T−t
2

2 Eg̃tEg̃⊤
t , (Hg)−1

〉
+

√√√√ T∑
t=1

βT−t
2 ⟨Σ, (HΣ)−1⟩.

where in the last step we choose α to be

α =

√〈∑T
t=1 β

T−t
2

2 Eg̃tEg̃⊤
t , (Hg)−1

〉
√〈∑T

t=1 β
T−t
2

2 Eg̃tEg̃⊤
t , (Hg)−1

〉
+
√∑T

t=1 β
T−t
2 ⟨Σ, (HΣ)−1⟩

.

Then we have that

E inf
H∈H,Tr(H)≤1

√〈
M̃T − βT

2 M̃0,H−1
〉
≤

√√√√2H(L̃,H)

(
E

T∑
t=1

β
T−t
2

2 [Lt(xt)− Lt(x∗)]

)
+ δ +

√√√√ T∑
t=1

βT−t
2

√
σ2 + δ.

When taking δ to 0, we have that

E
T∑

t=1

β
T−t
2

2

[
L̃t(xt)− L̃t(x

∗)
]
≤ 2
√
2D


√√√√2H(L̃,H)

(
E

T∑
t=1

β
T−t
2

2 [Lt(xt)− Lt(x∗)]

)
+

√√√√ T∑
t=1

βT−t
2 σ + β

T
2
2 d
√
ϵ


and

E
T∑

t=1

β
T−t
2

2

[
L̃t(xt)− L̃t(x

∗)
]
≤ 16D2H(L̃,H) + 4

√√√√2

T∑
t=1

βT−t
2 Dσ + 4

√
2Dβ

T
2
2 d
√
ϵ.

28

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

If we choose x̄1:T = 1∑T
t=1 β

T−t
2

2

∑T
t=1 β

T−t
2

2 xt, then from the convexity of L̃ we know that

E[L̃(x̄1:T)− L̃(x∗)] ≤ E
1∑T

t=1 β
T−t
2

2

T∑
t=1

β
T−t
2

2

[
L̃t(xt)− L̃t(x

∗)
]

≤ 1∑T
t=1 β

T−t
2

2

16D2H(L̃,H) + 4

√√√√2

T∑
t=1

βT−t
2 Dσ + 4

√
2Dβ

T
2
2 d
√
ϵ


≤ 16∑T

t=1 β
T−t
2

2

D2H(L̃,H) + 4
√
2√∑T

t=1 β
T−t
2

Dσ +
4
√
2∑T

t=1 β
−t
2

2

Dd
√
ϵ

This completes the proof.

E. Proof for One-Sided Shampoo
E.1. Proof for left smoothness

Lemma E.1 (Left smoothness for one-sided Shampoo). LetH = SdL
+ ⊗ IdR

be the well-structured preconditioner set for
one-sided Shampoo. Then theH-smoothness H(L,H) defined in Definition 3.6 is equal to the smallest number H ≥ 0 such
that there exists H∗

dL
∈ RdL×dL satisfying that H = dR Tr(H∗

dL
) and that for any X,∆ ∈ RdL×dR ,∣∣∇2L(X)[∆,∆]

∣∣ ≤ 〈H∗
dL
,∆∆⊤〉 .

In this case, theH-smoothness is denoted by Hleft(L).

Proof of Lemma 4.3. First, for any X,∆ ∈ RdL×dR and x = vec(X), we have

vec(∆)⊤∇2L(x) vec(∆) = ∇2L(X)[∆,∆].

Therefore, given the Kronecker product form of all H ∈ H, to find H ∈ H with the smallest trace such that −H ⪯
∇2L(x) ⪯H , it is equivalent to find H = HdL

⊗ IdR
∈ H with the smallest trace such that for any ∆ ∈ RdL×dR ,

|∇2L(X)[∆,∆]| ≤ vec(∆)⊤(HdL
⊗ IdR

) vec(∆)

= Tr(∆⊤HdL
∆)

= ⟨HdL
,∆∆⊤⟩.

Further note that Tr(H) = dR Tr(HdL
), and thus we conclude that it is equivalent to find HdL

∈ SdL
+ with the smallest

trace such that the above inequality holds for all ∆ ∈ RdL×dR . This completes the proof.

E.2. Proof for regret bound

Theorem 4.2 (Regret bound for one-sided Shampoo). For convex functions L1, . . . , LT , the regret of one-sided Shampoo
(Algorithm 2) compared to any X∗ ∈ RdL×dR satisfies

T∑
t=1

Lt(Xt)−
T∑

t=1

Lt(X
∗) ≤

(
D2

op

2dRη
+ η

)(
G+ d

√
ϵ
)
,

where Dop = maxt∈[T] ∥Xt−X∗∥op and G =
√
dR Tr

[(∑T
t=1 GtG

⊤
t

) 1
2

]
. When the domain X is bounded in operator

norm, i.e., ∥X∥op <∞, further choosing η =
√
2/dR∥X∥op, it holds

T∑
t=1

Lt(Xt)−
T∑

t=1

Lt(X
∗)

≤2
√
2∥X∥op

Tr

(T∑
t=1

GtG
⊤
t

) 1
2

+
d√
dR

√
ϵ

 .

29

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

Proof of Theorem 4.2. We will apply Theorem 3.4 to one-sided Shampoo. According to the analysis in Appendix B.4,
Algorithm 1 with H =

(
RdL×dL ⊗ IdR

)
∩ Sd+ recovers one-sided Shampoo. We can plug in ∥x∥H =

∥X∥op√
dR

and

|||g1:T |||H =
√
dR Tr

[(∑T
t=1 GtG

⊤
t

) 1
2

]
into Theorem 3.4 and get that

T∑
t=1

Lt(Xt)−
T∑

t=1

Lt(X
∗) ≤

√
2

(
D2

op

2dRη
+ η

)(
G+min

(
d
√
ϵ,
d2ϵ

2G

))

with Dop = maxt∈[T] ∥Xt −X∗∥op and G =
√
dR Tr

[(∑T
t=1 GtG

⊤
t

) 1
2

]
.

F. Additional Results for Experiments
F.1. Efficient implementation of full-matrix AdaGrad.

Directly applying full-matrix AdaGrad to this 106-dimensional problem is impractical. Instead, we consider the eigende-
composition of H to be U⊤ΣU and define the transformation T (X) = UX . We further define d orthogonal matrices
V1, . . . ,Vd ∈ Rd×d such that the first row of Vi is in the same direction of T (X∗−X0)i,: and define V = diag(V1, . . . ,Vd).
We can know that V vec(T (X∗ −X0) = v ⊗ e1 where vi = ∥T (X∗ −X0)i,:∥2 for i ∈ [d].

Then it holds that

f(X) =
〈
H, (X −X∗)(X −X∗)⊤

〉
=
〈
Σ, (UX −UX∗)(UX −UX∗)⊤

〉
=
〈
Σ, (T (X)− T (X∗))(T (X)− T (X∗))⊤

〉
=
〈
Σ⊗ Id, vec(T (X −X∗)⊤) vec(T (X −X∗)⊤)⊤

〉
=
〈
Σ⊗ Id,V vec(T (X −X∗)⊤) vec(T (X −X∗)⊤)⊤V ⊤〉

Further denoting x̃ = V vec(T (X)⊤) and ỹ = V vec(T (X0)
⊤), then we obtain

f(X) =

d∑
i=1

σi

∥∥x̃(i−1)d+1:id − (v ⊗ e1)(i−1)d+1:id

∥∥2
2

=

d∑
i=1

σi

[
(x̃(i−1)d+1 − ỹ(i−1)d+1 − vi)

2 +

d∑
j=2

(x̃(i−1)d+j − ỹ(i−1)d+j)
2

]

Running full-matrix AdaGrad on f(X) starting from X0 can be implemented equivalently by using x̃ as variable starting
from ỹ. Only x̃(i−1)d+1 will receive non-zero gradient so full-matrix AdaGrad actually only cares these d coordinates,
which reduces the original problem to a problem only with d variables.

F.2. Results for EMA algorithms

As mentioned in Section 5, we compare AdaSGD, Adam, one-sided EMA Shampoo and full-matrix AdaSGD, which are
EMA version of AdaGrad-Norm, diagonal AdaGrad, one-sided Shampoo and full-matrix Adagrad. The results are plotted in
Figure 2. We set β2 = 0.95 and disable first-order momentum, i.e., β1 = 0 in Adam.

We tried 60 learning rates between 1 × 10−4 and 1 × 102. The relationship between loss and learning rate is shown in
Figure 3.

30

Structured Preconditioners in Adaptive Optimization: A Unified Analysis

0 20 40 60 80 100
Step

10 3

10 2

10 1

100

La
st

 It
er

at
e

Lo
ss

AdaSGD
Adam
Full-Matrix AdaSGD
One-sided EMA Shampoo

0 20 40 60 80 100
Step

10 3

10 2

10 1

100

Av
er

ag
e

Ite
ra

te
 L

os
s

AdaSGD
Adam
Full-Matrix AdaSGD
One-sided EMA Shampoo

Figure 2. We plot the last iterate training loss f(Xt) =
〈
H, (Xt −X∗)(Xt −X∗)⊤

〉
and the average iterate training loss

f(1−β2

1−βt
2

∑t
s=1 β

t−s
2 Xs) over steps for optimizers obtained from Algorithm 5.

10 4 10 3 10 2 10 1 100 101 102

Learning Rate
10 4

10 3

10 2

10 1

100

101

102

103

La
st

 It
er

at
e

Lo
ss

10 4 10 3 10 2 10 1 100 101 102

Learning Rate
10 4

10 3

10 2

10 1

100

101

102

103
Av

er
ag

e
Ite

ra
te

 L
os

s

AdaGrad-Norm AdaGrad Full-Matrix AdaGrad One-sided Shampoo

10 4 10 3 10 2 10 1 100 101 102

Learning Rate
10 4

10 3

10 2

10 1

100

101

102

103

La
st

 It
er

at
e

Lo
ss

10 4 10 3 10 2 10 1 100 101 102

Learning Rate
10 4

10 3

10 2

10 1

100

101

102

103

Av
er

ag
e

Ite
ra

te
 L

os
s

AdaSGD Adam Full-Matrix AdaSGD One-sided EMA Shampoo

Figure 3. We plot the last iterate loss and average iterate loss versus learning rate. For each learning rate the plotted value is the average of
last iterate loss and average of average iterate loss across five random seeds.

31

