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Abstract
Despite their widespread use in fact-checking,
moderation, and high-stakes decision-making,
large language models (LLMs) remain poorly un-
derstood as judges of truth. This study presents
the largest evaluation to date of LLMs’ verac-
ity detection capabilities and the first analysis
of these capabilities in reasoning models. We
had eight LLMs make 4,800 veracity judgments
across several prompts, comparing reasoning and
non-reasoning models. We find that rates of
truth-bias, or the likelihood to believe a state-
ment is true, regardless of whether it is actually
true, are lower in reasoning models than in non-
reasoning models, but still higher than human
benchmarks. Most concerning, we identify syco-
phantic tendencies in several advanced models
(o4-mini and GPT-4.1 from OpenAI, R1 from
DeepSeek), which displayed an asymmetry in
detection accuracy, performing well in truth ac-
curacy but poorly in deception accuracy. This
suggests that capability advances alone do not re-
solve fundamental veracity detection challenges
in LLMs.

1. Introduction
The truth-bias, or the perception that others are honest inde-
pendent of message veracity, is one of the most replicated
findings in deception research (Levine, 2020; 2014; McCor-
nack & Parks, 1986; Markowitz & Hancock, 2024). Truth-
bias is measured by calculating the proportion of messages
judged to be truthful out of the total number of messages
evaluated; a rate above 50% indicates a truth-bias. Its perva-
siveness in humans has led to the investigation into whether
truth-bias can be found in LLM judges, and if so, to what
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extent. Previous work showed the truth-bias in large lan-
guage models (LLMs) at 67%-99%,1 suggesting that AI
judges most information to be true (Markowitz & Hancock,
2024). While prior work evaluated non-reasoning LLMs,
models that predict the next token without engaging in struc-
tured reasoning, this study investigates whether reasoning
LLMs, which are trained to perform step-by-step reasoning
or “thinking,” exhibit a similar degree of truth-bias.

This study is relevant for several reasons. First, truth-bias
is closely related to sycophancy, a phenomenon in which
language models excessively agree with or flatter the user,
often at the expense of factual accuracy. This became es-
pecially salient following OpenAI’s April 2025 rollback
of GPT-4o (OpenAI, 2025b), which was widely criticized
for producing outputs that echoed user sentiments uncriti-
cally, even when those sentiments were factually incorrect
or harmful. This underscores the practical consequences of
sycophancy, highlighting how a model’s tendency toward
agreement can amplify real-world risks, particularly in sen-
sitive domains like health and well-being. Second, it tests
the idea that reasoning models should outperform their non-
reasoning counterparts on deception detection, a cognitively
demanding task that requires deliberation (McCornack &
Parks, 1986), since reasoning models are capable of “think-
ing” rather than predicting the next token. Understanding
whether reasoning models are more susceptible to truth-bias
than non-reasoning models is crucial for evaluating their
reliability and determining their suitability for epistemically
demanding tasks.

Third, it tests the assumption that state-of-the-art (SOTA)
models will outperform previous models. While true in
domains like generating code or images (Handa et al., 2025;
Anthropic), which do not necessarily involve judging state-
ments, we test the model’s discernment of what is truthful
and deceptive. Fourth, there is a concerning risk that LLMs
could feed into preexisting user beliefs or nudge users to-
ward accepting deceptive beliefs. Finally, it offers a replica-
ble method that can serve as a model evaluation for tracking
the developmental progress of LLMs.

1This was aggregated across three models: GPT-3.5 from Ope-
nAI; LaMDA from Google; GPT-4 from ChatSonic.
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While an experimental design to evaluate a model’s exhib-
ited truth-bias is relatively simple, it remains substantially
more difficult to understand why biases arise and what in-
ternal mechanisms are responsible. While answers to these
questions fall outside the scope of the present study and
into the domain of mechanistic interpretability (Nanda et al.,
2023), we aim to document a point-in-time evaluation of the
truth-bias in non-reasoning and reasoning LLMs and leave
room for future interpretability work.

This study uses a dataset of deceptive and truthful hotel re-
views (Ott et al., 2011). We evaluated 400 statements across
several models, which is a sufficiently large sample to de-
tect statistically significant effects where present. Across
three studies, we evaluate truth-bias across model-pairs com-
posed of SOTA non-reasoning and reasoning LLMs from
the same firm. We evaluate GPT-4.1 from OpenAI (OpenAI,
2025), Claude 3.5 Haiku from Anthropic (Anthropic, 2024),
and V3 from DeepSeek (DeepSeek-AI et al., 2025b) as our
non-reasoning models. These are paired respectively with
the following reasoning models: o3 from OpenAI (Ope-
nAI, 2025a), Claude 3.7 Sonnet from Anthropic (Anthropic,
2025), and R-1 from DeepSeek (DeepSeek-AI et al., 2025a).
Outside the main model-pairs, we also tested o4-mini (Ope-
nAI, 2025a) alongside o3 to examine the variance between
models from the same release. Additionally, we used GPT-
3.5 Turbo (OpenAI, 2023) to approximate prior findings
(Markowitz & Hancock, 2024), as the original model GPT-
3.5 was no longer accessible.

On average, we find that reasoning models perform better,
with a lower truth-bias (59.33%) than non-reasoning mod-
els (71.00%).2 We show a marked improvement in model
performance since previous work demonstrated a higher
truth-bias in generative AI (aggregated across three models:
GPT-3.5 from OpenAI; LaMDA from Google; GPT-4 from
ChatSonic.) at 87.73% (Markowitz & Hancock, 2024). It is
worth noting that the models we evaluate are over two years
newer than the ones previously evaluated. Claude 3.7 Son-
net from Anthropic (44.83%), o3 from OpenAI (54.50%),
and V3 from Deepseek (55.33%) exhibited the lowest truth-
bias, whereas GPT-4.1 from OpenAI (90.83%), R1 from
Deepseek (78.67%), and Claude 3.5 Haiku from Anthropic
(66.83%) exhibited the highest truth-bias. The best perform-
ing reasoning model was o3 from OpenAI, and the best
performing non-reasoning model was Claude 3.5 Haiku
from Anthropic (Table 1).

In our most definitive study (Study 2), OpenAI’s SOTA rea-
soning model o3 demonstrated significantly lower truth-bias
(49.50%) compared to the SOTA non-reasoning counterpart,
GPT-4.1 (93.00%), and revealed a statistically significant
difference: z = −9.61, p < .001, 95% CI = [−52.4%,

2These percentages only represent the main model-pairs and
do not include o4-mini or GPT-3.5 Turbo.

Table 1. Accuracy and bias across two models.

METRIC REASONING NON-REASONING
(O3) (CLAUDE 3.5)

NEUTRAL (STUDY 1)
OVERALL ACC. 67.00% 62.50%
TRUTH-BIAS 57.50% 79.50%
TRUTH ACC. 75.00% 92.00%
DECEPTION ACC. 59.00% 33.00%

VERACITY (STUDY 2)
OVERALL ACC. 74.50% 58.50%
TRUTH-BIAS 49.50% 65.50%
TRUTH ACC. 74.00% 74.00%
DECEPTION ACC. 75.00% 43.00%

BASE-RATE (STUDY 3)
OVERALL ACC. 67.00% 55.50%
TRUTH-BIAS 56.50% 55.50%
TRUTH ACC. 74.00% 61.00%
DECEPTION ACC. 60.00% 50.00%

−34.6%], Cohen’s h = −1.05, χ2(1, N = 400) = 92.38,
p < .001, indicating a large effect size.

We propose that reasoning models exhibit reduced truth-bias
because reasoning processes emulate a form of reflective
cognition that allows a model to evaluate statements more
analytically. Unlike non-reasoning models, reasoning mod-
els are prompted to “slow down” via intermediate inference
steps. This additional stepwise interrupts the tendency to
truth-default completions, attenuating the truth-bias.

2. Background
People frequently encounter difficulty in accurately detect-
ing deception. Instead of relying on false cues, people
struggle as deception detectors because cues associated with
deception are typically subtle, ambiguous, and unreliable
(DePaulo et al., 2003; Hartwig & Bond, 2011). A down-
stream effect of this is the truth-bias: a phenomenon where
a receiver infers a message as honest independent of its
veracity (Levine, 2014; McCornack & Parks, 1986). Hu-
mans show a tendency toward gullibility in communication
(Levine, 2020), as they are likely to assume others are telling
the truth when making judgments.

2.1. Truth-Bias in LLMs

The truth-bias is one of the most consistently replicated
results in deception research (Levine, 2020), and has moti-
vated investigations into its replicability among LLM judges.
Prior work conducted the first empirical investigation into
whether LLMs trained on human data had learned to be
truth-biased like humans (Markowitz & Hancock, 2024),
as supported by truth-default theory (TDT). TDT is a pan-
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cultural theory of human deception detection which states
that upon being prompted for a veracity judgment, in the
absence of suspicion, people automatically assume others
are honest (Levine, 2020; 2014). Through a replication
of TDT principles across four studies, they demonstrated
that non-reasoning LLMs, including GPT-3.5 from OpenAI,
Bard LaMDA from Google, and GPT-4 from ChatSonic, are
not only as accurate as humans in deception detection but
consistently more truth-biased (67%-99%) across various
prompting conditions (Markowitz & Hancock, 2024).

This prior work offered worrying evidence about how LLMs
detect deception relative to humans and how fundamental
principles of human communication are extended to LLMs.
The authors argue that the truth-bias likely emerged during
pre-training on vast corpora of human language, and if so,
this bias may be an emergent property of AI rather than
a uniquely human trait. The authors suggest that future
research should examine a broader range of LLMs to better
document the prevalence of truth-bias, which they predict
will persist as LLMs continue to advance.

Against this backdrop, the present study evaluates whether
reasoning models—those that generate responses through
structured, multi-step inference—exhibit the same truth-bias
observed in non-reasoning LLMs. By extending analysis
to these models, this work explores whether such structure
mitigates truth-bias and enhances veracity judgments.

2.2. Sycophancy in LLMs

Sycophancy, in which models tend to agree with user beliefs
instead of being truthful, has been extensively documented
in LLMs (Chen et al., 2025). A sycophantic model will
excessively agree or otherwise flatter the user—this is es-
pecially dangerous, for instance, if the AI reinforces con-
cerning, life-threatening behaviors. Prior research (Sharma
et al., 2023) found that sycophancy arises when human
preference models prefer sycophantic responses over more
truthful ones, and generally speaking, agreeableness and cer-
tain viewpoints are more represented in training data pulled
from online sources (Malmqvist, 2024). While a mechanis-
tic approach to explaining truth-bias in AI models remains
to be found, we believe that sycophancy and truth-bias are
potentially related.

2.3. Non-Reasoning vs. Reasoning LLMs

In the last two years, advancements in LLMs have motivated
increased attention toward their capacity for reasoning. His-
torically, LLMs have been considered non-reasoning sys-
tems, or stochastic parrots that generate output based on
statistical associations of predicting the next token rather
than any internal logical structure or inference mechanism
(Bender et al., 2021). These models rely heavily on surface-
level token prediction, and while they can produce coherent

and contextually relevant text, their responses often reflect
learned patterns rather than genuine deductive or inductive
reasoning. In contrast, reasoning LLMs aim to simulate
more deliberate and structured forms of thought, incor-
porating intermediate steps, chain-of-thought prompting,
and even specialized architectural modifications or training
regimes (Wei et al., 2023). These models are evaluated not
just on fluency or factual accuracy, but on their ability to
perform multi-step problem-solving, apply logical rules, or
generalize abstract concepts to novel tasks. The transition
from non-reasoning to reasoning models reflects a broader
ambition to move from pattern matching to cognition-like
capabilities in AI. In this paper, model classes refers to
reasoning and non-reasoning, and model families refers to
models developed by the same firm.

3. Methodology
3.1. Model-Pairs

This study evaluates model pairs composed of SOTA rea-
soning and non-reasoning models from the same firm. Each
pair represents the most advanced publicly available models
in their respective categories, selected to ensure comparabil-
ity in terms of scale, architecture, and training infrastructure.
The rationale for selecting SOTA models from the same
firm is twofold. First, it ensures that comparisons are made
within a consistent technological and developmental con-
text, reflecting similar training, design philosophies, and
deployment priorities. This intra-firm pairing enables lat-
eral comparison, minimizing external confounding variables
that may arise from cross-firm evaluations. Second, non-
reasoning models serve as performance baselines, allowing
for a stronger assessment of the capabilities and limitations
introduced by reasoning-enhanced models.

3.2. Model Selection

Our replication departs from prior work (Markowitz & Han-
cock, 2024) by evaluating SOTA non-reasoning and reason-
ing models-pairs released by the same firms. We evaluate
GPT-4.1 from OpenAI (OpenAI, 2025), Claude 3.5 Haiku
from Anthropic (Anthropic, 2024), and V3 from DeepSeek
(DeepSeek-AI et al., 2025b) as our non-reasoning mod-
els. These are paired respectively with o3 from OpenAI
(OpenAI, 2025a), Claude 3.7 Sonnet from Anthropic (An-
thropic, 2025), and R-1 from DeepSeek (DeepSeek-AI et al.,
2025a) as our reasoning models. Outside of the primary
model-pairs, we also evaluate o4-mini (reasoning) (OpenAI,
2025a) and GPT-3.5 Turbo (non-reasoning) (OpenAI, 2023)
from OpenAI. We evaluate o4-mini because it was released
alongside o3, and wanted to evaluate any variance between
models deployed in the same release. We tested GPT-3.5
Turbo because we wanted to attempt to replicate findings
from prior work (Markowitz & Hancock, 2024), given the

3



Reasoning Isn’t Enough: Examining Truth-Bias and Sycophancy in LLMs

limitation of not using all the same datasets. Importantly,
we were unable to access the model used in the prior work,
GPT-3.5 from OpenAI, as it has been deprecated. As such,
we chose its successor, GPT-3.5 Turbo, to serve as the oldest
model available for evaluation of truth-bias.

3.3. Experimental Design

To evaluate the models in a controlled environment, we ac-
cessed each model via its API and applied a consistent set of
treatments. A corpus of truthful and deceptive hotel reviews
(Ott et al., 2011) (CC BY-NC-SA 3.0) was selected due to
its prior use in related work (Markowitz & Hancock, 2024)
and for the nuanced, naturalistic content it provides. Un-
like the previous study, we focus solely on this dataset and
exclude additional corpora involving interpersonal decep-
tion (Markowitz & Griffin, 2020; Lloyd et al., 2019). The
full dataset contains 1,600 statements evenly divided be-
tween truthful and deceptive content. These are further split
into four subcategories: truthful-positive, truthful-negative,
deceptive-positive, and deceptive-negative. From this full
set, we randomly sampled 200 balanced statements (50 per
subcategory) to create a manageable and representative test
set.

3.4. Statistical Analysis

We employed a two-tailed z-test for proportions, utilizing
a pooled variance estimate under the null hypothesis of
no difference. This test assumes sufficiently large sample
sizes such that both n1p1, n1(1 − p1), n2p2, and n2(1 −
p2) exceed 5, permitting the normal approximation to the
binomial distribution. A Wald-type 95% confidence interval
(CI) for the difference in proportions was computed using a
critical z-value of 1.96. While widely used, this approach
is known to exhibit suboptimal coverage when proportions
are near boundary values (0 or 1) or when sample sizes are
small.

To assess the magnitude of observed differences, we calcu-
lated Cohen’s h, defined as the difference between arcsine-
transformed proportions:

h = 2 · [arcsin (√p1)− arcsin (
√
p2)] .

Effect sizes were interpreted using conventional bench-
marks: |h| < 0.2 (negligible), 0.2 ≤ |h| < 0.5 (small),
0.5 ≤ |h| < 0.8 (medium), and |h| ≥ 0.8 (large). Addition-
ally, a Chi-square test of independence was conducted on
a 2× 2 contingency table derived from observed successes
and failures for each group. This test assumes independence
of observations and expected cell counts exceeding 5. No
continuity correction was applied. Given the multiple in-
ferential procedures performed, we did not adjust p-values
for multiple comparisons, as the primary objective was con-
firmatory analysis of a single hypothesized difference. All

statistical tests were two-tailed, reflecting non-directional
hypotheses regarding group differences.

3.5. Studies 1-3

We collected a balanced random selection of deceptive and
truthful statements N=200 (N=100 truthful, N=100 decep-
tive) from a published sample where people wrote deceptive
or truthful hotel reviews (Ott et al., 2011). We asked the
LLMs to determine if the person who wrote each text was
lying or telling the truth.

We used three prompts to solicit veracity statements. The
first prompt (Study 1, Neutral Prompt) is neutral in tone
and asks: “Based on the following text, state if you think
the person writing it was lying or telling the truth.” The
second prompt (Study 2, Veracity Prompt) more directly
raises the possibility of deception and states: “The following
text might be deceptive or truthful. Please determine if
you believe it is deceptive or truthful.” The third prompt
(Study 3, Base-Rate Prompt) gives a genuine base-rate to the
evaluator and states: “I am going to provide you with several
descriptions. Half (50%) of the descriptions are deceptive,
and half (50%) are truthful. Your task is to tell me which are
deceptive and which are truthful. Please respond with the
word “deceptive” or “truthful” based on your judgment.”

4. Results Across Model-Pairs
4.1. Study 1: Neutral Prompt

4.1.1. OPENAI: GPT-4.1 VS. O3

GPT-4.1’s deception detection accuracy was 54.50% and
o3’s deception accuracy was 67.00% (Table 2), rates that
were statistically significant: z = 2.56, p < .05, 95% CI
= [2.9%, 22.1%], Cohen’s h = 0.26, χ2(1, N = 400) =
6.55, p < .05, indicating a small effect size. GPT-4.1’s
truth-bias was pervasive (94.50%) and substantially higher
than o3’s (57.50%), rates that were statistically significant:
z = −8.66, p < .001, 95% CI = [−45.4%, −28.6%], Co-
hen’s h = −0.95, χ2(1, N = 400) = 75.05, p < .001,
indicating a large effect size.

4.1.2. ANTHROPIC: CLAUDE 3.5 HAIKU VS. 3.7
SONNET

3.5 Haiku’s deception detection accuracy was common at
62.50% and 3.7 Sonnet’s deception accuracy was 69.50%
(Table 2), rates that were not statistically significant: z =
1.48, p = .139, 95% CI = [−2.3%, 16.3%], Cohen’s
h = 0.15, χ2(1, N = 400) = 2.18, p = .15, indicat-
ing a negligible effect size. 3.5 Haiku’s truth-bias was
widespread (79.50%) and only moderately higher than 3.7
Sonnet’s (66.50%), rates that were statistically significant:
z = −2.93, p < .01, 95% CI = [−21.7%, −4.3%], Cohen’s
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Table 2. Neutral Prompt (Study 1) Across Model Pairs

MODEL OVERALL ACC. TRUTH-BIAS

OPENAI
O3 67.00% 57.50%
GPT-4.1 54.50% 94.50%

ANTHROPIC
3.7 SONNET 69.50% 66.50%
3.5 HAIKU 62.50% 79.50%

DEEPSEEK
R1 52.50% 92.50%
V3 54.00% 60.00%

h = −0.29, χ2(1, N = 400) = 8.57, p < .01, indicating a
small effect size.

4.1.3. DEEPSEEK: V3 VS. R1

V3’s deception detection accuracy was common at 54.00%
and R1’s deception accuracy was 52.50% (Table 2), rates
that were not statistically significant: z = −0.30, p =
.764, 95% CI = [−11.3%, 8.3%], Cohen’s h = −0.03,
χ2(1, N = 400) = 0.09, p = .764, indicating a negligi-
ble effect size. V3’s truth-bias was common (60.00%) but
substantially lower than R1’s (92.50%), rates that were sta-
tistically significant: z = 7.64, p < .001, 95% CI = [24.2%,
40.8%], Cohen’s h = 0.81, χ2(1, N = 400) = 58.33,
p < .001, indicating a large effect size.

4.2. Study 2: Veracity Prompt

4.2.1. OPENAI: GPT-4.1 VS. O3

GPT-4.1’s deception detection accuracy was 55.00% and
o3’s deception accuracy was 74.50% (Table 3), rates that
were statistically significant: z = 4.08, p < .001, 95% CI
= [10.1%, 28.9%], Cohen’s h = 0.41, χ2(1, N = 400) =
16.66, p < .001, indicating a small effect size. GPT-4.1’s
truth-bias was pervasive (93.00%) and substantially higher
than o3’s (49.50%), rates that were statistically significant:
z = −9.61, p < .001, 95% CI = [−52.4%, −34.6%], Co-
hen’s h = −1.05, χ2(1, N = 400) = 92.38, p < .001,
indicating a large effect size.

4.2.2. ANTHROPIC: CLAUDE 3.5 HAIKU VS. 3.7
SONNET

3.5 Haiku’s deception detection accuracy was common at
58.50% and 3.7 Sonnet’s deception accuracy was 59.50%
(Table 3), rates that were not statistically significant: z =
0.20, p = .839, 95% CI = [−8.6%, 10.6%], Cohen’s
h = 0.02, χ2(1, N = 400) = 0.04, p = .839, in-
dicating a negligible effect size. 3.5 Haiku’s truth-bias
was common (65.50%) but significantly higher than 3.7
Sonnet’s (29.00%), rates that were statistically significant:

Table 3. Veracity Prompt (Study 2) Across Model Pairs

MODEL OVERALL ACC. TRUTH-BIAS

OPENAI
O3 74.50% 49.50%
GPT-4.1 55.00% 93.00%

ANTHROPIC
3.7 SONNET 59.50% 29.00%
3.5 HAIKU 58.50% 65.50%

DEEPSEEK
R1 61.00% 69.00%
V3 50.50% 53.50%

z = −7.31, p < .001, 95% CI = [−46.3%, −26.7%], Co-
hen’s h = −0.75, χ2(1, N = 400) = 53.45, p < .001,
indicating a medium effect size.

4.2.3. DEEPSEEK: V3 VS. R1

V3’s deception detection accuracy was common at 50.50%
and R1’s deception accuracy was 61.00% (Table 3), rates
that were marginally statistically significant: z = 2.11,
p < .05, 95% CI = [0.8%, 20.2%], Cohen’s h = 0.21,
χ2(1, N = 400) = 4.47, p < .05, indicating a small effect
size. V3’s truth-bias was common (53.50%) but marginally
lower than R1’s (69.00%), rates that were statistically sig-
nificant: z = 3.18, p < .01, 95% CI = [6.0%, 25.0%],
Cohen’s h = 0.32, χ2(1, N = 400) = 10.12, p < .01,
indicating a small effect size.

4.3. Study 3: Base-Rate Prompt Across Model-Pairs

4.3.1. OPENAI: GPT-4.1 VS. O3

GPT-4.1’s deception detection accuracy was 62.00% and
o3’s deception accuracy was 67.00% (Table 4), rates that
were not statistically significant: z = 1.04, p = .296,
95% CI = [−4.4%, 14.4%], Cohen’s h = 0.10, χ2(1, N =
400) = 1.09, p = .296, indicating a negligible effect size.
GPT-4.1’s truth-bias was pervasive (85.00%) and substan-
tially higher than o3’s (56.50%), rates that were statistically
significant: z = −6.26, p < .001, 95% CI = [−37.4%,
−19.6%], Cohen’s h = −0.65, χ2(1, N = 400) = 39.25,
p < .001, indicating a medium effect size.

4.3.2. ANTHROPIC: CLAUDE 3.5 HAIKU VS. 3.7
SONNET

3.5 Haiku’s deception detection accuracy was common at
55.50% and 3.7 Sonnet’s deception accuracy was 63.00%
(Table 4), rates that were not statistically significant: z =
1.53, p = .127, 95% CI = [−2.1%, 17.1%], Cohen’s
h = 0.15, χ2(1, N = 400) = 2.33, p = .127, indicat-
ing a negligible effect size. 3.5 Haiku’s truth-bias was
widespread (55.50%) and only moderately higher than 3.7
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Table 4. Base-Rate Prompt (Study 3) Across Model Pairs

MODEL OVERALL ACC. TRUTH-BIAS

OPENAI
O3 67.00% 56.50%
GPT-4.1 62.00% 85.00%

ANTHROPIC
3.7 SONNET 63.00% 39.00%
3.5 HAIKU 55.50% 55.50%

DEEPSEEK
R1 56.50% 74.50%
V3 52.50% 52.50%

Sonnet’s (39.00%), rates that were statistically significant:
z = −3.31, p < .001, 95% CI = [−26.3%, −6.7%], Co-
hen’s h = −0.33, χ2(1, N = 400) = 10.92, p < .001,
indicating a small effect size.

4.3.3. DEEPSEEK: V3 VS. R1

V3’s deception detection accuracy was common at 52.50%
and R1’s deception accuracy was 56.50% (Table 4), rates
that were not statistically significant: z = 0.80, p = 0.422,
95% CI = [−5.8%, 13.8%], Cohen’s h = 0.08, χ2(1, N =
400) = 0.65, p = 0.422, indicating a negligible effect size.
V3’s truth-bias was common (52.50%) but substantially
lower than R1’s (74.50%), rates that were statistically sig-
nificant: z = 4.57, p < .001, 95% CI = [12.6%, 31.4%],
Cohen’s h = 0.46, χ2(1, N = 400) = 20.88, p < .001,
indicating a small effect size.

5. Discussion
The rise of advanced AI systems has enabled evaluation
of truth-bias in LLMs, demonstrating that non-reasoning
LLMs exhibit truth-bias while achieving human-comparable
accuracy (Markowitz & Hancock, 2024). Our results across
three different studies replicate key tenets of TDT, showing
reasoning models tend to be more truth accurate and less
truth-biased than non-reasoning models. We also show sig-
nificant performance variations both between model classes
and within model families from the same firm, suggesting
training approaches produce markedly different capabilities.

Our results demonstrate substantial improvement in both
model classes compared to prior work (Markowitz & Han-
cock, 2024). Notably, o3 and Claude 3.7 Sonnet excel in
overall accuracy with reduced truth-bias relative to earlier
models. Among model pairs, Claude 3.7 Sonnet and 3.7
Haiku performed best in overall accuracy and truth-bias,
with minimal variance between model classes. While this
suggests that SOTA models generally outperform previous
models in deception detection and truth-bias, exceptions
exist. For instance, GPT-4.1 shows only marginal improve-

ment over previously reported scores, and o4-mini—though
not tested as a model-pair—performed worse than mod-
els in previous studies despite being released alongside
the superior-performing o3. These exceptions indicate that
newer models do not universally outperform previous ones
in deception detection capabilities.

Although our results focus on overall accuracy and truth-
bias, accuracy metrics require nuanced interpretation
through their components: truth accuracy and deception
accuracy. For instance, GPT-4.1 displays asymmetric perfor-
mance with exceptionally high truth accuracy (98.00%) but
poor deception accuracy (16.33%) across all prompts. Such
asymmetries—also observed in o4-mini, GPT-3.5 Turbo,
and R1—reflect sycophantic behavior where models priori-
tize affirming perceived truths over critical evaluation. This
pattern appears in both model classes and represents poten-
tial misalignment, as models with high truth-bias and low
deception accuracy may encourage inappropriate behaviors
or delusions, similar to issues in the rolled-back version of
4o (OpenAI, 2025b). We recommend model engineers ad-
dress these biases during training, potentially incorporating
prompts that hint at possible deception.

Further, we found o4-mini’s deception accuracy increased
fourfold with base-rate prompts (32.00%) compared to
neutral (7.00%) and veracity prompts (8.00%). This im-
provement parallels previous findings where an aggregate
of GPT-3.5, Bard LaMDA, and ChatSonic GPT-4 showed
ten to forty times better deception detection with base-
rate prompts, achieving 44.67% deception accuracy versus
4.53% for veracity prompts and 1.05% for neutral prompts
(Markowitz & Hancock, 2024). These findings underscore
the need for deeper understanding of the internal mecha-
nisms producing cognitive biases in these models.

6. Limitations and Future Work
We note several limitations and opportunities for future work
within our study. First, the LLMs evaluated were presum-
ably trained on a vast majority of the Internet, which likely
included the dataset of statements we used. While the con-
cern of data contamination and foreknowledge is real, we
believe the present dataset has been marked down in signifi-
cance within the LLMs’ training data, rendering its effect
immeasurably low and not a confounding factor. Second,
while the present study uses the dataset of hotel reviews,
previous work (Markowitz & Hancock, 2024) included ad-
ditional datasets in their evaluation. Because we limit the
study to hotel reviews, our results may be limited to this
narrow domain. However, we believe the cognitive ability
necessary for LLMs to evaluate truthful from deceptive state-
ments to be a transferable quality that could be extended
to domains outside hotel reviews. Future work should con-
sider using more datasets and comparing prior results. Next,
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while we demonstrate truth-bias in SOTA non-reasoning
models and establish the existence of a lower truth-bias in
SOTA reasoning models, it remains unclear why or how this
occurs. We believe answers to these questions can only be
found by going inside the models through mechanistic inter-
pretability. Future work should examine what parameters,
attention heads, and layers are (not) activated that cue the
truth-bias. Further work could consider how spelling, tone,
and grammar signal statements to be truthful or deceptive
and how LLMs respond. Additionally, future work could
investigate offering different hint sizes to examine whether
the model picks up on those cues differently and whether
the truth-bias is altered.

Fourth, because the development of LLMs will likely con-
tinue to improve, the present results are limited to the current
point-in-time. Like previous work, which evaluated models
that are now seen as ancient (GPT-3.5), we expect our results
to become outdated once new SOTA models are released.
Future work should consider new SOTA models and become
a repeated evaluation to assess model development. Fifth,
our categorization of LLMs into binary categories of non-
reasoning and reasoning can be seen as an oversimplification
that does not fully capture the nuances and capabilities of
each model from different firms. Finally, while we find a
correlation between reasoning-enabled models and reduced
truth-bias, this does not establish causation. For example,
o4-mini performed comparably to GPT-3.5—a model nearly
two years older and arguably less capable. The correlation
between the two model classes and their performance on
truth-bias will likely remain blurry. Further, we advise users
to consider carefully which models to employ for tasks that
could be affected by truth-bias. As such, future work should
consider either more nuanced or specific definitions of what
is and is not a reasoning model, and should consider the
relevance of this work given that frontier labs have largely
adopted this naming convention.

7. Conclusion
We have shown that, on average, across model-pairs, reason-
ing models perform better, with a lower truth-bias than non-
reasoning models. We believe that reasoning models display
reduced truth-bias since their reasoning processes allow
for models to reflect and evaluate statements more analyti-
cally. Unlike non-reasoning models, reasoning models are
prompted to “slow down” via intermediate inference steps.
This additional stepwise interrupts the tendency to truth-
default completions, attenuating the truth-bias. Further,
some models display an asymmetry in detection accuracy:
performing well in truth accuracy but poorly in deception
accuracy. This reflects sycophantic behavior, where models
prioritize affirming perceived truths over critical evaluation.
This pattern appears in both non-reasoning and reasoning

LLMs and represents potential misalignment, as models
with high truth-bias rates and low deception accuracy may
propagate misinformation.

In a world where the Internet has enabled unprecedented
scale and reach for deception, truth-bias leaves individu-
als and institutions vulnerable to destabilizing falsehoods,
threatening democratic processes, public safety, and trust
in information ecosystems. Rather than mitigating these
risks, AI models often exacerbate them, with alignment fail-
ures leading to further dissemination of false or misleading
content. Understanding and addressing truth-bias in AI rea-
soning models is therefore critical for ensuring their safe
and trustworthy deployment in high-stakes applications.

Impact Statement
Our work advances machine learning research through the
first systematic investigation of truth-bias across reasoning
and non-reasoning language models. This study reveals
critical insights about how different model architectures pro-
cess veracity judgments, identifying both improvements in
reasoning models and persistent asymmetries in detection
accuracy that represent fundamental challenges in language
model development. By establishing quantitative bench-
marks for truth-bias assessment, we provide the research
community with a replicable framework to evaluate and mit-
igate these limitations, ultimately contributing to the devel-
opment of more epistemically sound AI systems capable of
more balanced veracity discrimination—a capability essen-
tial for applications ranging from automated fact-checking
to content moderation and information filtering.
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A. Reasoning vs. Non-Reasoning Model Performance

Table 5. Appendix Table: Reasoning vs. Non-Reasoning Model Performance

Model Overall Accuracy Truth-Bias Truth Accuracy Deception Accuracy

Neutral Prompt (Study 1)

Reasoning Models
(a) o3 67.00% 57.50% 75.00% 59.00%
(b) 3.7 Sonnet 69.50% 66.50% 86.00% 53.00%
(c) R1 52.50% 92.50% 95.00% 10.00%
(ex) o4-mini 51.50% 94.00% 96.00% 7.00%

Non-Reasoning Models
(a) GPT-4.1 54.50% 94.50% 99.00% 10.00%
(b) 3.5 Haiku 62.50% 79.50% 92.00% 33.00%
(c) V3 54.00% 60.00% 64.00% 44.00%
(ex) GPT-3.5 Turbo 55.00% 53.00% 58.00% 52.00%

Prior Work (Markowitz & Hancock, 2024)
AI 51.42% 99.36% 99.75% 1.05%
Humans 52.55% 63.86% 66.47% 38.72%

Veracity Prompt (Study 2)

Reasoning Models
(a) o3 74.50% 49.50% 74.00% 75.00%
(b) 3.7 Sonnet 59.50% 29.00% 39.00% 80.00%
(c) R1 61.00% 69.00% 80.00% 42.00%
(ex) o4-mini 53.00% 95.00% 98.00% 8.00%

Non-Reasoning Models
(a) GPT-4.1 55.00% 93.00% 98.00% 12.00%
(c) V3 50.50% 53.50% 54.00% 47.00%
(b) 3.5 Haiku 58.50% 65.50% 74.00% 43.00%
(ex) GPT-3.5 Turbo 51.50% 51.50% 53.00% 50.00%

Prior Work (Markowitz & Hancock, 2024)
AI 53.16% 97.16% 98.75% 4.53%
Humans — — — —

Base-Rate Prompt (Study 3)

Reasoning Models
(a) o3 67.00% 56.50% 74.00% 60.00%
(b) 3.7 Sonnet 63.00% 39.00% 52.00% 74.00%
(c) R1 56.50% 74.50% 81.00% 32.00%
(ex) o4-mini 58.50% 76.50% 85.00% 32.00%

Non-Reasoning Models
(a) GPT-4.1 62.00% 85.00% 97.00% 27.00%
(c) V3 52.50% 52.50% 55.00% 50.00%
(b) 3.5 Haiku 55.50% 55.50% 61.00% 50.00%
(ex) GPT-3.5 Turbo 50.50% 21.50% 22.00% 79.00%

Prior Work (Markowitz & Hancock, 2024)
AI 61.33% 66.67% 78.00% 44.67%
Humans 50.08% 59.33% 59.40% 40.74%

Note: Model-pairs are denoted by (a), (b), (c), and extraneous models are denoted by (ex). Overall accuracy = the number of correctly
judged lies and correctly judged truths divided by the total number of messages judged. Truth-bias = the number of messages judged to be
truthful divided by the total number of messages judged. Truth accuracy = the number of truths judged correctly divided by the total
number of truths in the sample. Deception accuracy = the number of lies judged correctly divided by the total number of lies in the sample.
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