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SUMMARY
Genetic association studies for brain connectivity phenotypes have gained prominence due to advances
in noninvasive imaging techniques and quantitative genetics. Brain connectivity traits, characterized by
network configurations and unique biological structures, present distinct challenges compared to other
quantitative phenotypes. Furthermore, the presence of sample relatedness in the most imaging genetics
studies limits the feasibility of adopting existing network-response modeling. In this article, we fill this gap
by proposing a Bayesian network-responsemixed-effect model that considers a network-variate phenotype
and incorporates population structures including pedigrees and unknown sample relatedness. To accom-
modate the inherent topological architecture associated with the genetic contributions to the phenotype,
we model the effect components via a set of effect network configurations and impose an inter-network
sparsity and intra-network shrinkage to dissect the phenotypic network configurations affected by the
risk genetic variant. A Markov chain Monte Carlo (MCMC) algorithm is further developed to facilitate
uncertainty quantification. We evaluate the performance of our model through extensive simulations. By
further applying themethod to study, the genetic bases for brain structural connectivity using data from the
HumanConnectome Project with excessive family structures, we obtain plausible and interpretable results.
Beyond brain connectivity genetic studies, our proposed model also provides a general linear mixed-effect
regression framework for network-variate outcomes.

KEYWORDS: brain connectivity; genome-wide association studies; imaging genetics; mixed effects;
network-response model; sample relatedness.

1. IN TRODUCTION
Brain imaging genetics, aiming to uncover the genetic basis of brain structure and function,
has provided an unprecedented opportunity to understand the molecular support for different
neurobiological processes. By leveraging imaging quantitative traits as endophenotypes that re-
flect underlying neurological etiologies, we gain a deeper understanding of the risk biomarkers
implicated in both disease outcomes and normal trajectory of development and aging.
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Brain connectivity, encoding the relations between distinct units or nodes within a nervous
system, has played an essential role in disclosing the brain neuronal interactions and reflecting
correspondence with behavior. Depending on the aspect of characterization, brain connectivity
can be summarized by anatomical links capturing the white matter fiber tracts known as struc-
tural connectivity, or statistical dependence between functional time courses known as functional
connectivity. Converging evidence indicates brain connectivity is heritable, and can offer distinct
genetic underpinnings compared with other neuroimaging traits (Zhao et al., 2021; Elliott et al.,
2018). This underscores the significance of studying the genetic contributions to connectivity
patterns. From an analytical perspective, structural and functional connectivity can be viewed as an
indirect graph with all the nodes over the brain as the vertex set and the corresponding connections
as the edge set. By extracting single edges as univariate phenotypes, most of the current genome-
wide association studies (GWAS)were performed separately on eachbrain connection (Zhao et al.,
2021; Jahanshad et al., 2013; Elsheikh et al., 2020). However, such analyses overlook the bio-
logical interdependence and graphical structure inherent in brain network topography, which
can raise concerns regarding biological plausibility and interpretability, as our data application
demonstrates.

On the other hand, as the study of brain connectivity gains increasing interest, network-variate
modeling has emerged as an advanced analytical framework capable of accommodating the un-
derlying dependence and brain topological architectures. In contrast to marginal and univariate
analyses, network-variate modeling directly handles the (weighted) adjacency matrix of connec-
tivity, enabling an explicit characterization of the biological structure. Depending on the objectives
of the study, the network-variate can serve three distinct roles. Firstly, it can be employed solely
to describe the neurobiological profiles of the brain using different types of graphical model-
ing techniques in light of topological assumptions (Wang and Guo, 2020; Zhang et al., 2020).
Secondly, when associated with a behavioral outcome, the network-variate can be treated as a
predictor, involving specific matrix/tensor operations such as outer products (Wang et al., 2021)
to transform the predictive component into a linear term (Zhao et al., 2022). Finally, to investigate
the impact of covariates or exposures on the variation of connectivity, the network-variate can be
treated as an outcome in a network-response regression. In this case, the coefficient parameters
reveal a matrix or tensor format and can be further decomposed to elucidate the latent effect
mechanisms (Zhang et al., 2023; Zhao et al., 2023; Kong et al., 2019). It is evident that the last
category could shed light on genetic association analyses involving connectivity or network-variate
phenotypes.

From a study design perspective, sample relatedness is highly prevalent and almost unavoidable
in quantitative genetics studies. Such relatedness could be induced by recruitment from the same
family or pedigree, or unknown or uncertain relationships including distant levels of unknown
common ancestry (Eu-Ahsunthornwattana et al., 2014). Failure to account for potential sample
structures within GWAS can lead to spurious results (Helgason et al., 2005), emphasizing the
necessity for appropriate correction methods. One common approach to account for sample
structures is to include a random effect component to incorporate known or unknown relatedness.
Building on linear mixed-effect models (LMMs), various numerical implementation approaches
proposed in recent years to characterize genetic associations accommodating population substruc-
ture and potential sample relatedness (Kang et al., 2010; Zhou and Stephens, 2012). However,
most of these approaches are designed for univariate phenotypes or vector-variate multivariate
phenotypes, and there is currently no existing framework that adequately considers or readily
applies to network-variate phenotypes.

To address the above limitations, we propose a Bayesian Network-phenotype Mixed Effect
model (BNME) to performgenetic association analyseswith brain connectivity phenotype.Within
this unified modeling framework, we simultaneously characterize genetic contributions and iden-
tify affected phenotypic network components, while quantifying their uncertainty. To leverage the
biological knowledge that brain connectivity operates via network configurations, our approach
assumes that risk genetic variants influence network alternations by acting upon specific network
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configurations that are to be uncovered. By imposing shrinkage and sparsity priors on the effect
parameters, we canmap out the genetically targeted brain network configurations that play a critical
role in guiding future intervention strategies. In contrast to the existing works on network-response
genetic association analyses, our proposedmethod incorporates pedigree information or unknown
sample structures, ensuring the reliability and validity of the findings. In our data application, we
apply the BNMEmodel to study the genetic bases of brain structural connectivity using data from
the Human Connectome Project (HCP), accommodating the extensive family structures among
the subjects. Lastly, despite the proposed model being motivated by brain connectivity genetic
studies, it can be readily extended to perform general network- or matrix-response mixed effects
modeling.To thebest of our knowledge, thiswork is among the very first to develop such amodeling
framework, which directly fulfills an urgent need to capture multi-source of random variability for
a growing collection of network data in epidemiology and social studies.

The remainder of the article is organized as follows. In Section 2, we describe the proposedLMM
with anetwork response (Section2.1), the prior specifications (Section2.2), the posterior inference
procedure (Section 2.3), and the covariates effect adjustment (Section 2.4).We conduct simulation
studies inSection3, followedby an application toHCPbrain connectivity genetics data inSection4.
In the end, we conclude the article with a discussion in Section 5.

2. M ATER I A L S A ND M ETHODS
2.1. Linear mixed-effect model with a network phenotype

We first describe the problem setting in the context of GWAS with genetic correlation, though the
model formulation represents a general network-responsemixed-effectmodel that can be extended
to other applications. Assume the study includes N subjects with known pedigree structure or
unknown relationship. For subject i (i = 1, . . . ,N), let zi denote the genotype of interest which
is encoded as 0, 1 or 2 according to the number of copies for the tested allele, xi ∈ R

P×1 represents
a set of covariates, and Ai ∈ R

V×V denotes the network phenotype summarized by a graphical
matrix.WithAi stacked across all the subjects, we have the network phenotype arrayA ∈ R

N×V×V .
Specifically in the application of brain connectivity studies, with images processed under a common
brain atlas with V nodes, both structural and functional connectivity can be viewed as an indirect
graph across vertex set {1, . . . ,V}. Thus, Ai becomes a symmetric matrix to summarize brain
connectivity for each subject with diagonal elements to be zero, and its (v, v′)th entry aivv′ , 0 < v �=
v′ ≤ V represents the connection between nodes v and v′ characterizing either the white matter
fiber tracts (structural connectivity) or statistical dependence of functional time course (functional
connectivity). We adopt continuous metrics to measure structural and functional connections.
After normalizing the genetic variant and each phenotypic connection, we propose the following
genetic association model for the indirect network response:

Ai = �zi − Hol[�zi] + Bi + Ei. (2.1)

Here, � ∈ R
V×V is the symmetric coefficient matrix to capture the genetic effect on the network

phenotype, Hol[·] is the operation to hollow out the diagonal elements to form a diagonal matrix,
Bi ∈ R

V×V is the hollow symmetric random polygenic effect matrix, and Ei ∈ R
V×V is the hollow

symmetric random error matrix characterizing the environmental effects. To demonstrate themain
idea, we include only the genetic fixed effect at this moment, and we will extend the model to
include covariates afterwards. Model (2.1) can be viewed as an extension of the traditional linear
mixed-effect model for genetic association accommodating sample relatedness. In addition to a
matrix-variate phenotype, we design bothmean and variance components tomaintain their original
functions while satisfying the symmetric and hollow structure of the indirect network as shown in
the right-hand side of model (2.1). Specifically, for the genetic and environmental effect matrix, by
stacking each of them across all the subjects, we have the random effect tensor B ∈ R

N×V×V and
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residual error tensor E ∈ R
N×V×V with

vec(B) ∼ N

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, Diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ
(a)
11
...

σ
(a)

vv′
...

σ
(a)
VV

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⊗ 2�

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
, vec(E) ∼ N

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, Diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ
(e)
11
...

σ
(e)
vv′
...

σ
(e)
VV

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⊗ IN

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
,

where Diag(·) constructs the diagonal matrix formed by the inside vector, σ (a)

vv′ and σ
(a)

vv′ represent
the additive genetic variance and random environmental variance, IN ∈ R

N×N is the identify
matrix, and � ∈ R

N×N is the kinship matrix estimated by pedigree information for known family
structures or genotypic relationship for unknown relatedness (Eu-Ahsunthornwattana et al., 2014).
Tomaintain the symmetric hollow structure ofBi andEi, we further specified thatBivv′ = Biv′v and
Eivv′ = Eiv′v when v �= v′, and setBivv′ andEivv′ to 0 for v = v′. Byproposing so,we can show thephe-
notypic variance of each connection Var(avv′) = 2σ (a)

vv′ � + σ
(e)
vv′ IN , avv′ = (a1vv′ , . . . , aNvv′)T , v �=

v′, consistent with the existing literature (Kang et al., 2010).
Given the size of the commonly used brain atlas can be large with V in the range of 200–1000,

directly performing estimation on model (2.1) is not ideal under a high-dimensional parameter
space. More importantly, considering the primary interest in investigating the genetic association
with brain network architectures, the topological structure cannot be plausibly reflected by ignoring
the dependence within the genetic coefficient matrix. To address so, we adopt the following
two-dimensional Tucker decomposing under a symmetry constrain for the coefficient matrix

� =
H∑

h=1

ηhθh ⊗ θh, (2.2)

where ⊗ represents the outer product, and θh = (θh1, . . . , θhV )T , h = 1, . . . ,H are column co-
efficient vectors. Under this representation, each outer product θh ⊗ θh forms a clique graph
with nodes corresponding to the nonzero elements of θh fully connected. We show that the
decomposition structure in equation (2.2) is uniquely determined with detailed proof provided
in supplementary material S.2. Additionally, from a neurobiological perspective, each θh ⊗ θh
describes an effect network component adjustedby aweight parameterηh.Combiningmodels (2.1)
and (2.2), we allow the genetic variant to deliver its impact on the phenotype via a series of signaling
network architectures.

2.2. Prior specifications
Weconsider a fully Bayesian paradigm to estimate and perform inference for the proposed network-
response LMM. For the fixed genetic effect component, we anticipate the genetic impact is sparse
across the brain as shown by the existing empirical studies (Zhao et al., 2021). Therefore, we assign
the following combination of point mass mixture prior and shrinkage prior

ηh ∼ (1 − τh)δ0 + τhN(0,ω); θhv ∼ L(ν), h = 1, . . . ,H; v = 1, . . . ,V . (2.3)

Here, τh is the latent selection indicator to determine whether a network configuration is signif-
icantly affected by the genotype as a whole. When τh = 1, the weight parameter ηh is generated
from a noninformative Normal prior with a large variance parameter ω; otherwise, we assign ηh
to a point mass at zero denoted by δ0 to remove the whole component from the model. In real
practice, with the number of effect component H unknown, such a specification of sparsity could
efficiently assist the determination of the number of associated phenotypic network configurations
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during the learning process. As shown in our numerical studies, by imposing a conservative value
to H, our model can still correctly uncover the signaling network phenotypes. To specify priors
for latent indicators τh, one can either impose a noninformative Bernoulli distribution for each of
the elements, or resort to a more informative prior by incorporating additional biological structure
(Li and Zhang, 2010). For the coefficients, we assign a Laplace prior L(ν) with a scale parameter
ν to shrink the noise effect to a close to zero value. To further facilitate a straightforward posterior
computation, followingPark and Casella (2008),we represent eachLaplace prior by a scalemixture
of Normals for each h = 1, . . . ,H

θh ∼ N(0,Dh); Dh = Diag(σh1, . . . , σhV ); σhv ∼ ν2

2
exp(−ν2σhv

2
)dσhv, v = 1, . . . ,V .

(2.4)

Combining priors (2.3) and (2.4), we characterize the phenotypic signals in a hierarchical waywith
an inter-group sparsity to induce the selection of a phenotypic network as a whole and an intra-
group shrinkage to identify the signaling phenotypic network configuration within each selected
component. In contrast to the existing sparse group selection or shrinkage models that primarily
focus on group structural covariates, the current work emphasizes the network-variate outcome,
which captures the associations between covariates and latent topological hierarchies. Additionally,
we opt for shrinkage priors for individual coefficients instead of point mass mixture priors, driven
by computational considerations that result in lower computational costs for shrinkage priors.
However, it is important to note that the Laplace prior can be readily replaced with spike-and-slab
types of priors or other graphical priors (Chang et al., 2018; Stingo et al., 2011) to impose sharp
sparsity or incorporate spatial information. For the genetic and environmental variances σ

(a)

vv′ and
σ

(e)
vv′ , we consider two types of prior distribution. For the first one, we assign each σ

(a)

vv′ and σ
(e)
vv′

an Inverse Gamma distribution IG(α0,β0). This specification, while not directly accounting for
the correlations among σ

(a)

vv′ (or σ
(e)
vv′ ), 0 < v �= v′ ≤ V , across brain anatomy, offers a significant

reduction of computational demands in posterior inference. Alternatively, in line with Zhao et al.
(2022), we assume each σ

(a)

vv′ and σ
(e)
vv′ follows a predefined probability function G(a) and G(e),

respectively; and we assign a nonparametric Dirichlet process (DP) prior for G(a) and G(e). Such
a modeling strategy has been adopted in the previous brain imaging studies to impose spatial
smoothness (Li et al., 2015; Zhao et al., 2022). The discrete nature of DP facilitates a clustering
effect on contiguous brain locations, thereby allowing them to share the same parameter value. In
our numerical studies shown in Section 3, we comprehensively compare the model performance
under these two variance prior implementations and conclude the consistency of their results.
Therefore, we primarily focus on the computationally more efficient IG priors in the following
sections andnameourmodelBayesianNetwork-phenotypeMixedEffectmodel (BNME).We refer
to the DP version as BNMEDP and detail its implementations in supplementary materials. Finally,
for the tuning parameters including the number of informative network configurations H and scale
parameter ν, we consider a grid search of them and choose the optimal values using the Bayesian
information criterion (BIC). Our numerical experience suggests that this strategy is effective in
practical applications.

2.3. Posterior likelihood and inference for BNME
To perform posterior inference for the proposed BNME model, we first develop the posterior

likelihood for the collection of unknown parameters denoted as ζ =
[{

θh, ηh, τh,
(
σhv

)V
v=1

}H
h=1,(

σ
(a)

vv′
)V

v,v′=1,
(
σ

(e)
vv′

)V
v,v′=1, ν

]
. Based on the observed data O = (Ai, zi,�; i = 1, . . . ,N), the joint

posterior distribution follows:
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π(ζ | O) ∝
∏

i
π

(
Ai, zi,� | {θh, ηh, τh}H

h=1,
(
σ

(a)

vv′
)V

v,v′=1,
(
σ

(e)
vv′

)V
v,v′=1

)

×
∏

v

{∏
h

π(θhv | σhv, ν)π(σhv)
∏

v′
π(σ

(a)

vv′ )π(σ
(e)
vv′ )

} ∏
h

{
π(τh)π(ηh|τh)

}
,

(2.5)
which combines the conditional observed data likelihood with prior distributions. Given uncer-
tainty quantification is an essential component for genetic association analyses, instead of pursuing
point estimates via optimization algorithms, we develop a Markov chain Monte Carlo sampling
algorithm for posterior inference based on a combination of Gibbs samplers and Metropolis–
Hastings (MH) updates. Under random initialization, we cycle through the following steps:

• For h = 1 . . . H, v = 1 . . . V , v′ = 1 . . . V , denote the (v, v′)th entry of matrix {Ai −∑
h′ �=h ηh′θh′ ⊗ θh′zi} as ãivv′h, and define ãvv′h = (̃a1vv′h, . . . , ãNvv′h)T , z = (z1, . . . , zN)T .

Sample θhv from N(μθhv , σθhv) with σθhv = (∑
v′ �=v η2

hθ
2
hv′zT

(
2σ (a)

vv′ � + σ
(e)
vv′ I

)−1
z +

σ−1
hv

)−1 andμθhv = ∑
v′ �=v ãT

vv′h

(
2σ (a)

vv′ � + σ
(e)
vv′ I

)−1
zηhθhv′σθhv

• For h = 1 . . . H, v = 1 . . . V , sample σ−1
hv from an Inverse Normal distribution IN( ν

|θhv| , ν
2).

• For h = 1 . . . H, when τh = 0, set ηh to be zero. Otherwise, denote the (v, v′)th entry
of matrix θh ⊗ θhzi as qivv′h, and qvv′h = (q1vv′h, . . . , qNvv′h)T . Update between network
configuration coefficient ηh from their corresponding posterior Normal distribution

N(μηh , σηh) with σηh =
(∑

v<v′ qvv′hT(2σ (a)

vv′ � + σ
(e)
vv′ I)−1qvv′h + ω−1

)−1
, and μηh =∑

v<v′ ãT
vv′h(2σ

(a)

vv′ � + σ
(e)
vv′ I)−1qvv′hσηh .

• For h = 1 . . . H, define l0 := C
ω
exp(− 1

2 (
Cηh
ω

)2) and l1 := 1
ω
exp(− 1

2 (
ηh
ω

)2) with C a large
constant. We then update the selection indicators τh following the posterior Bernoulli dis-
tributions Bern( l1

l0+l1 ).

• For v = 1 . . . V , v′ = 1 . . . V , update σ
(a)

vv′ by sampling a proposed value σ
(a)p
vv′ from a

random walk proposal distribution N(σ
(a)

vv′ , ρ2
1), and setting σ

(a)

vv′ = σ
(a)p
vv′ with proba-

bility min{1,R1}I{σ (a)p
vv′ > 0}, where R1 = π(σ

(a)p
vv′ |O,{ηh,τh,θh}H

h=1,σ (a)

−v,−v′ ,σ (e))

π(σ
(a)

vv′ |O,{ηh,τh,θh}H
h=1,σ (a)

−v,−v′ ,σ (e))
, with π(σ

(a)

vv′ |
O, {ηh, τh, θh}H

h=1, σ
(a)

−v,−v′ , σ (e)) ∝ L(O | ζ ){σ (a)

vv′ }−α0−1 exp(− β0

σ
(a)

vv′
) the full conditional.

• For v = 1 . . . V , v′ = 1 . . . V , update σ
(e)
vv′ by sampling a proposed value σ

(e)p
vv from a

random walk proposal distribution N(σ
(e)
vv′ , ρ2

2) and setting σ
(e)
vv′ = σ

(e)p
vv′ with probabil-

ity min{1,R2}I{σ (e)p
vv′ > 0}, where R2 = π(σ

(e)p
vv′ |O,{ηh,τh,θh}H

h=1,σ (a),σ (e)
−v,−v′ )

π(σ
(e)
vv′ |O,{ηh,τh,θh}H

h=1,σ (a),σ (e)
−v,−v′ )

, with π(σ
(e)
vv′ |

O, {ηh, τh, θh}H
h=1, σ

(a), σ (e)
−v,−v′) ∝ L(O | ζ ){σ (e)

vv′ }−α0−1 exp(− β0

σ
(e)
vv′

) the full conditional.

Based on the posterior samples, the convergence of the algorithm is examined by trace plots
and GR method (Gelman and Rubin, 1992). To characterize the genetic impact and dissect the
associated signaling brain network configurations, we first determined the overall phenotypic
network configurations linkedwith the genetic variant basedona0.5 cutoffof theposteriormean for
each τh. This cutoff is adopted in light of themedian probabilitymodel (Hastie et al., 2004). Under
a conservativeH, most of the risk genetic variants are associatedwith less thanH brain connectivity
network configurations. When none of the elements in {τh}H

h=1 surpasses the cutoff, the genetic
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variant is considered a noise variant, indicating that it does not have a significant impact on any
component of the network phenotype. For the selected network configurations with τh larger than
the cutoff, the genetic effect over network structures is capturedby the posteriormeanof θh. Despite
that a Laplace prior does not impose strict sparsity, we can determine the specific brain network
configurations that are most relevant to the genetic impact by extracting the elements from θh with
95% posterior credible interval excluding zero. Eventually, ourmodel could provide estimation and
inference for the risk genetic factors and their most influencing phenotypic topological elements.

2.4. Covariates adjustment
In genetic association studies, onemay need to adjust for additional covariates, such as demograph-
ics and genetic principle components. Denote the covariatematrixX = (x1, . . . , xN)T ∈ R

N×P. By
including the covariates, model (2.1) takes the following compact representation

A = S ×1 X + (� − Hol[�]) ×1 z + B + E , (2.6)

with ×1 representing the 1-mode product, and S ∈ R
P×V×V the coefficient tensor for the covari-

ates which is symmetric at the horizontal slice Sp,:,:. In practice, S can be considered as nuisance
parameters. The canonical way is to assign simple conjugate priors for S , which in our case are
element-wise Gaussian priors, and then perform inference within MCMC. We denote our model
under such an implementation as BNMEadj and provide detailed prior settings and posterior
algorithm in the supplementary materials.

Alternatively, we can remove the nuisance parameters from (2.6) through a projection approach
to reduce the parameter space and computational cost, which is in line with existing works on
multivariate outcomes (Ge et al., 2016; Zhao et al., 2022). Specifically, we define a projection
matrix W = IN − X(XTX)−1XT . Clearly, W is symmetric and idempotent matrix with a rank
N − P, and this further indicates that W can be decomposed as W = UTU, where matrix U ∈
R

(N−P)×N and satisfies UUT = IN−P and UX = 0. Through matrix U, the data can be projected
from theN dimensional space onto anN − P dimensional subspace. This facilitates an efficientway
to remove the nuisance covariate effects by multiplying U to both sides in (2.6) that becomes

A ×1 U = (� − Hol[�]) ×1 (Uz) + B ×1 U + E ×1 U. (2.7)

Model (2.7) indicates that by replacing the connectivity arrayAwith Ã = A ×1 U ∈ R
(N−P)×V×V ,

genotype zwith z̃ = Uz and the kinshipmatrix�with �̃ = U�UT , the joint posterior distribution
will follow the same structure as (2.5). Hence, all sampling procedures can be adapted accordingly.
In the following numerical studies, we also confirm that our model complemented under this
projection approach achieves consistent results with BNMEadj.

3. SI MUL ATION ST UDIES
We carry out simulation studies to evaluate the performance of BNME to uncover genetic signals
and the associated phenotypic network configurations under related samples. To mimic the data
dimension in our data application, we assign sample sizesN = 100 and 500with brain connectivity
generated under a brain atlas with V = 50. We consider two scenarios on the phenotypic network
configurations that are highly impacted by the genetic factor. In the first scenario, we generate
a single phenotypic network configuration that is linked with the genetic variant, and we set
η1 = 1. In the second scenario, we create a more challenging setting by generating three network
configurations with the associated weight parameter ηh equals 0.7, 0.3 and 0, respectively. The third
network configuration is not linked to the genetic variant, allowing us to evaluate the performance
of ourmodel in detecting the true number of signaling phenotypic components. For both scenarios,
we consider a range of sparsity levels for each θh by imposing 50%, 90% and 100% of the elements
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within the vector to be zero to define the genetically associated network configurations. As shown
inWeb Figure 1, we provide the signal patterns upon the whole network phenotype under 50% and
90% sparsity levels for the second scenario assembled across network configurations.Of note, when
sparsity level is 100%, the genotype does not impact any of the phenotypic structures, facilitating a
test on a noise genetic variant. For the genetic and environmental effects, we first generate a kinship
matrix � with diagonal entries to be 1 and off-diagonal entries ranging from (0, 1), and consider
two scenarios for their variance components. In the first scenario, we set σ

(a)

vv′ to be 1.5 and σ
(e)
vv′

to be 1 with effects across brain locations to be independent. In the second scenario, we evaluate
the robustness of our methods by imposing brain spatial correlation among the effect elements.
Specifically, we simulate a random correlation matrix �V×V and generate vec(B) and vec(E) from
Normal distributions with covariance matrices 3� ⊗ � and � ⊗ IN , respectively. Finally, for the
fix effects, we sample the genotype for each subject from {0, 1, 2}, and add three different types of
covariates including one generated from a Bernoulli distribution Bern(0.5), one from a Uniform
distribution U(−0.5, 0.5), and one from a Normal distribution N (−0.5, 0.5). Each of the fixed
effect coefficients are generated fromN (0.3, 0.5) and fixed for all the settings. Overall, we consider
24 settings with different sample sizes and phenotypic signal patterns, andwe generated 200Monte
Carlo datasets for each setting.

We implement the proposed BNME along with two variations BNMEDP and BNMEadj. To
assess the robustness of the models, we set H = 3 which is larger than the actual number of the
associated phenotypic network configurations for both scenarios. We also set α0 = β0 = 0.01,
and determine ν by a grid search from (0.5, 0.8, 1) based on BIC. The MCMC algorithm is
performed for 5000 iterations after 2000 burn-in, and both trace plots and GR value indicate a
convergence. For the competing methods, given there is no existing regression approach that can
accommodate a network outcome with mixed effects, we extract unique edges from the phenotype
matrix. With each of the upper diagonal elements of Ai as a phenotypic trait, we implement a linear
mixed-effect model (LMM) using the lme4 package in R, linear mixed-effects kinship model
(LMEKIN) using the coxme package and one of the most popular GWAS pipelines for related
samples Genome-wide Efficient Mixed Model Association (GEMMA) (Zhou and Stephens,
2012). To evaluate both estimation and feature selection, we consider the following performance
metrics: (a) root mean predicted square error (RMSE) of �, (b) sensitivity (Sene) and specificity
(Spee) for distinguishing signaling phenotypic elements captured by the nonzero elements in
�, and (c) specificity (Speg) for identifying noise genetic variant when sparsity level is 100%.
The simulation results are summarized in Tables 1 and 2 separated by variance generation
scenarios.

Based on the results, we conclude that our proposed BNME along with BNMEDP and BNMEadj
demonstrate excellent performance in uncovering genetic effects, identifying associated pheno-
typic network configurations, and distinguishing noise genetic variants. Specifically, the proposed
methods exhibit significantly smallerRMSEs compared to alternativemethods indicating higher es-
timation accuracy.Ourmethods also achieve over 90%phenotypic sensitivity and specificity across
all the simulation settings, and genotypic specificitywhen the sparsity level is 100%, indicating their
ability to uncover the associated phenotypic networks for the risk genotype and distinguish the
noise genetic variant. When comparing different settings, we consistently observe improvements
in performancemetrics for all methods as the sample size increases. Interestingly, the correlation of
effect components across brain spatial locations appears to have minimal influence on the results.
As anticipated, a higher sparsity level aids in signal identification for all the methods. Notably,
when sparsity reaches 100% with no associated phenotypic connections, given that our methods
allow to exclude the noise phenotypic component entirely, it successfully detects this situation
as evidenced by a close to one Speg . Moreover, as more phenotypic network configurations are
impacted, including a noise network configuration, we observe a notable decrease in the accuracy
of phenotypic feature selection for all competing methods. However, our methods maintain their
superior performance, indicating robustness and ability to uncover the true signaling phenotypic
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Table 1. Simulation results for all the methods when random effects and random errors are independent
under different settings range from sample sizes, sparsity levels and phenotypic network configurations.
The results are summarized over 200MC datasets and the standard deviations are included in the
parenthesis.

N = 100 N = 500

# Sub Sparsity Model RMSE Spee Sene Speg RMSE Spee Sene Speg

BNME 0.13 (0.05) 0.96 (0.04) 1.00 (0.00) – 0.04 (0.02) 0.97 (0.03) 1.00 (0.00) –
LMM 0.71 (0.22) 0.94 (0.12) 0.86 (0.10) – 0.32 (0.06) 0.95 (0.05) 0.98 (0.01) –

50% LMEKIN 0.25 (0.10) 0.94 (0.14) 0.93 (0.05) – 0.24 (0.07) 0.95 (0.05) 0.98 (0.03) –
GEMMA 0.25 (0.13) 0.94 (0.14) 0.93 (0.03) – 0.20 (0.04) 0.95 (0.05) 0.99 (0.00) –
BNMEadj 0.07 (0.02) 0.95 (0.03) 1.00 (0.00) – 0.03 (0.01) 0.98 (0.03) 1.00 (0.00) –
BNMEDP 0.17 (0.12) 0.94 (0.05) 1.00 (0.00) – 0.08 (0.06) 0.97 (0.03) 1.00 (0.00) –

BNME 0.53 (0.14) 0.99 (0.01) 1.00 (0.00) – 0.34 (0.30) 0.99 (0.01) 1.00 (0.00) –
LMM 0.58 (0.02) 0.94 (0.01) 0.99 (0.02) – 0.35 (0.26) 0.95 (0.04) 1.00 (0.00) –

1 90% LMEKIN 0.26 (0.07) 0.93 (0.03) 0.99 (0.01) – 0.28 (0.06) 0.95 (0.05) 0.99 (0.00) –
GEMMA 0.23 (0.09) 0.95 (0.06) 0.99 (0.01) – 0.22 (0.03) 0.95 (0.02) 0.99 (0.00) –
BNMEadj 0.56 (0.16) 0.99 (0.01) 1.00 (0.00) – 0.35 (0.28) 0.99 (0.01) 1.00 (0.00) –
BNMEDP 0.57 (0.12) 0.96 (0.02) 1.00 (0.01) – 0.38 (0.12) 0.99 (0.01) 1.00 (0.00) –

BNME 0.01 (0.02) 1.00 (0.01) – 0.96 0.01 (0.01) 1.00 (0.01) – 1.00
LMM 0.58 (0.02) 0.95 (0.01) – 0.00 0.25 (0.01) 0.95 (0.01) – 0.00

100% LMEKIN 0.22 (0.02) 0.95 (0.02) – 0.00 0.25 (0.01) 0.95 (0.01) – 0.02
GEMMA 0.22 (0.01) 0.95 (0.01) – 0.00 0.25 (0.01) 0.94 (0.01) – 0.00
BNMEadj 0.02 (0.02) 0.99 (0.01) – 0.95 0.00 (0.00) 1.00 (0.00) – 1.00
BNMEDP 0.03 (0.03) 0.99 (0.01) – 0.89 0.01 (0.01) 0.95 (0.01) – 0.97

BNME 0.14 (0.03) 0.90 (0.04) 0.92 (0.08) – 0.09 (0.03) 0.93 (0.05) 0.88 (0.08) -
LMM 0.71 (0.23) 0.90 (0.12) 0.62 (0.12) – 0.32 (0.06) 0.95 (0.05) 0.87 (0.06) –

50% LMEKIN 0.39 (0.11) 0.93 (0.14) 0.70 (0.18) – 0.23 (0.06) 0.93 (0.04) 0.90 (0.03) –
GEMMA 0.39 (0.09) 0.94 (0.03) 0.69 (0.19) – 0.23 (0.06) 0.95 (0.05) 0.94 (0.04) –
BNMEadj 0.13 (0.04) 0.90 (0.05) 0.89 (0.07) – 0.08 (0.02) 0.95 (0.05) 0.90 (0.08) –
BNMEDP 0.20 (0.08) 0.96 (0.06) 0.94 (0.10) – 0.09 (0.03) 0.95 (0.05) 0.91 (0.06) –

BNME 0.21 (0.06) 0.99 (0.01) 0.95 (0.09) – 0.12 (0.20) 0.99 (0.02) 1.00 (0.00) –
LMM 0.71 (0.23) 0.94 (0.12) 0.73 (0.13) – 0.25 (0.01) 0.95 (0.01) 0.97 (0.03) –

3 90% LMEKIN 0.23 (0.10) 0.95 (0.09) 0.85 (0.09) – 0.21 (0.05) 0.96 (0.02) 0.95 (0.05) –
GEMMA 0.21 (0.06) 0.96 (0.07) 0.85 (0.09) – 0.21 (0.05) 0.95 (0.01) 0.99 (0.01) –
BNMEadj 0.23 (0.06) 0.99 (0.01) 0.96 (0.08) – 0.25 (0.28) 0.99 (0.01) 1.00 (0.00) –
BNMEDP 0.23 (0.09) 0.95 (0.05) 0.90 (0.10) – 0.13 (0.08) 0.98 (0.02) 1.00 (0.00) –

BNME 0.01 (0.01) 1.00 (0.00) – 1.00 0.02 (0.04) 0.98 (0.02) – 0.90
LMM 0.58 (0.02) 0.94 (0.01) – 0.00 0.25 (0.01) 0.94 (0.01) – 0.00

100% LMEKIN 0.22 (0.09) 0.95 (0.03) – 0.00 0.21 (0.15) 0.95 (0.04) – 0.03
GEMMA 0.23 (0.13) 0.95 (0.01) – 0.01 0.24 (0.01) 0.94 (0.01) – 0.01
BNMEadj 0.02 (0.02) 0.99 (0.00) – 1.00 0.01 (0.00) 0.99 (0.01) – 0.95
BNMEDP 0.08 (0.06) 0.98 (0.02) – 0.93 0.05 (0.05) 0.99 (0.01) – 0.93

*Phenotypic sensitivity does not exist at a 100% sparse level with no connection associated with the genotype.

network configurations even under amisspecified network configuration numberH. In the compar-
ison among competing methods, both LMEKIN and GEMMA demonstrate similar performance,
surpassing the traditional LMM. Their performance in the presence of a noise genotype suggests
a high risk of false positives when considering GWAS under a network phenotype.Finally, the
performance between BNME and the variations BNMEDP and BNMEadj are highly consistent,
including the scenarioswith spatially correlated effect components (Table 2). This suggests that the
prior independence assumption for variance components across brain locations brings a negligible
impact on the model performance, and the application of a projection approach for covariate
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Table 2. Simulation results for all the methods when random effects and random errors are correlated
under different settings range from sample sizes, sparsity levels and phenotypic network configurations.
The results are summarized over 200MC datasets and the standard deviations are included in the
parenthesis.

N=100 N=500

# Sub Sparsity Model RMSE Spee Sene Speg RMSE Spee Sene Speg

BNME 0.13 (0.05) 0.96 (0.03) 1.00 (0.00) - 0.04 (0.02) 0.98 (0.04) 1.00 (0.00) –
LMM 0.68 (0.24) 0.94 (0.13) 0.88 (0.01) - 0.30 (0.07) 0.95 (0.05) 0.99 (0.01) –

50% LMEKIN 0.49 (0.12) 0.88 (0.14) 0.90 (0.11) – 0.29 (0.10) 0.91 (0.07) 0.95 (0.05) –
GEMMA 0.50 (0.09) 0.86 (0.10) 0.90 (0.12) - 0.33 (0.10) 0.89 (0.10) 0.90 (0.06) –
BNMEadj 0.08 (0.02) 0.94 (0.05) 1.00 (0.00) - 0.03 (0.01) 0.98 (0.03) 1.00 (0.00) –
BNMEDP 0.13 (0.05) 0.95 (0.02) 0.98 (0.03) - 0.05 (0.03) 0.99 (0.06) 1.00 (0.00) –

BNME 0.56 (0.16) 0.99 (0.01) 1.00 (0.00) – 0.35 (0.28) 0.99 (0.01) 1.00 (0.00) –
LMM 0.60 (0.02) 0.95 (0.01) 0.99 (0.02) – 0.35 (0.07) 0.95 (0.05) 1.00 (0.00) –

1 90% LMEKIN 0.26 (0.05) 0.94 (0.03) 0.99 (0.00) – 0.29 (0.05) 0.95 (0.03) 0.99 (0.01) –
GEMMA 0.26 (0.10) 0.95 (0.03) 0.99 (0.01) – 0.27 (0.06) 0.97 (0.02) 0.99 (0.01) –
BNMEadj 0.35 (0.14) 0.99 (0.01) 1.00 (0.00) – 0.27 (0.21) 0.92 (0.02) 1.00 (0.00) –
BNMEDP 0.60 (0.10) 0.97 (0.05) 0.99 (0.01) – 0.43 (0.22) 0.95 (0.02) 0.99 (0.00) –

BNME 0.01 (0.02) 0.99 (0.00) – 1.00 0.01 (0.01) 1.00 (0.00) – 1.00
LMM 0.54 (0.02) 0.95 (0.01) – 0.00 0.24 (0.01) 0.95 (0.01) – 0.00

100% LMEKIN 0.20 (0.01) 0.95 (0.02) – 0.03 0.23 (0.03) 0.94 (0.01) – 0.02
GEMMA 0.24 (0.02) 0.95 (0.01) – 0.00 0.24 (0.01) 0.94 (0.01) – 0.01
BNMEadj 0.03 (0.03) 0.99 (0.00) – 0.99 0.01 (0.01) 1.00 (0.00) – 1.00
BNMEDP 0.03 (0.05) 0.99 (0.01) – 0.98 0.02 (0.03) 1.00 (0.00) – 1.00

BNME 0.15 (0.03) 0.90 (0.01) 0.90 (0.02) – 0.09 (0.03) 0.95 (0.06) 0.89 (0.08) –
LMM 0.77 (0.29) 0.85 (0.10) 0.81 (0.11) – 0.30 (0.07) 0.96 (0.05) 0.88 (0.09) –

50% LMEKIN 0.36 (0.08) 0.94 (0.10) 0.70 (0.12) - 0.23 (0.10) 0.91 (0.03) 0.90 (0.06) –
GEMMA 0.40 (0.10) 0.95 (0.06) 0.69 (0.10) – 0.24 (0.09) 0.91 (0.01) 0.93 (0.10) –
BNMEadj 0.12 (0.02) 0.90 (0.05) 0.91 (0.07) - 0.07 (0.02) 0.93 (0.07) 0.91 (0.08) -
BNMEDP 0.13 (0.05) 0.91 (0.02) 0.91 (0.03) - 0.10 (0.05) 0.92 (0.06) 0.89 (0.05) -

BNME 0.23 (0.06) 0.99(0.01) 0.96 (0.08) – 0.15 (0.11) 0.99 (0.01) 0.98 (0.04) –
LMM 0.68 (0.24) 0.76 (0.14) 0.94 (0.13) – 0.24 (0.08) 0.93 (0.01) 0.97 (0.05) –

3 90% LMEKIN 0.27 (0.08) 0.96 (0.08) 0.84 (0.10) – 0.23 (0.04) 0.96 (0.03) 0.96 (0.03) –
GEMMA 0.26 (0.08) 0.98 (0.03) 0.88 (0.06) – 0.23 (0.08) 0.96 (0.02) 0.97 (0.06) –
BNMEadj 0.23 (0.12) 0.99 (0.01) 0.96 (0.09) – 0.31 (0.16) 0.99 (0.02) 1.00 (0.00) –
BNMEDP 0.25 (0.03) 0.99 (0.02) 0.96 (0.10) – 0.16 (0.04) 0.99 (0.01) 0.99 (0.03) –

BNME 0.01 (0.01) 1.00 (0.00) – 1.00 0.01 (0.01) 1.00 (0.00) – 1.00
LMM 0.53 (0.02) 0.95 (0.01) – 0.00 0.54 (0.01) 0.95 (0.00) – 0.00

100% LMEKIN 0.20 (0.05) 0.95 (0.01) – 0.01 0.23 (0.02) 0.95 (0.02) – 0.00
GEMMA 0.20 (0.08) 0.96 (0.02) – 0.00 0.21 (0.01) 0.96 (0.01) – 0.02
BNMEadj 0.02 (0.02) 0.98 (0.01) – 0.95 0.01 (0.01) 1.00 (0.00) – 1.00
BNMEDP 0.02 (0.01) 0.99 (0.01) – 0.98 0.01 (0.01) 1.00 (0.00) – 1.00

*Phenotypic sensitivity does not exist at the 100% sparse level with no connection associated with the genotype.

adjustment in BNME is validated. From a computational standpoint, we advocate for BNME,
considering that BNMEDP and BNMEadj require approximately 18% and 30% more posterior
computational time than BNME, respectively.

4. R E A L DATA A PPLIC ATION
4.1. Imaging genetics data for HCP

We implement our model to the Human Connectome Project (HCP) data. HCP is a landmark
study that has collected a rich set of imaging, behavioral and genetic data. In the current analyses,
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Table 3. Significant genetic variants and their associated phenotypic structural network configurations,
along with cis-eQTL results obtained from UKBEC brain database.

eQTL Phenotypic network configurations

SNP Chromosome p-value Regulated genes # Association Macroscale systems

rs2465095 2 9.30E-03 THSD7B 91 Subcortical, parietal lobe
rs1918367 2 3.50E-02 GALNT13 91 Subcortical, parietal lobe
rs4725467 7 2.20E-02 GALNTL5 325 Subcortical, temporal lobe
rs10760611 9 5.00E-03 ASB6 20 Subcortical
rs4948428 10 2.50E-02 TMEM26 6 Subcortical
rs1537969 13 5.50E-02 SGCG 22 Subcortical, temporal lobe
rs9928439 16 2.50E-02 SLC38A8 91 Subcortical, temporal lobe
rs6563992 16 1.30E-03 ATP2C2 15 Subcortical
rs58090793 16 3.30E-03 ZDHHC7 3 Frontal lobe

we adopt the WU-Minn HCP minimally processed S1200 release that includes over 1,000 young
adults aged 22 to 37 years. For each subject, both T1 magnetic resonance imaging (MRI) and
diffusion MRI (dMRI) are available, allowing the construction of brain structural connectivity
to capture the white matter fiber tracts connecting different brain regions. Specifically, based on
the minimally prepossessed dMRI and T1 data from ConnectomeDB, we first generate the whole-
brain tractography for each subject, and perform the anatomical parcellation via Desikan-Killiany
(DK) atlas (Desikan et al., 2006) including 68 cortical surface regions and 19 subcortical regions.
To extract the streamlines linking each pair of ROIs, a series of steps including dilation of each
gray matter ROI to incorporate white matter regions, separation of the streamlines connecting
several ROIs into parts, and removing obvious outlier streamlines are conducted. Subsequently,
the mean fractional anisotropy (FA) value along streamlines is used to evaluate the strength of
structural connections. Eventually, we construct brain structural connectivity for 1,065 subjects.
Comprehensive details are available elsewhere on HCP neuroimaging protocols (Van Essen et al.,
2013) and our tractography pipeline (Zhao et al., 2023).

The young adult participants in HCP were also genotyped by Illumina’s MultiEthnic Global
Array (MEGA) Chip and three specialized neuroimaging chips: Psych, NeuroX, and Immunochip.
After standard data quality by excluding subjects with more than 10% missing SNPs or sex check
failure, 1,010 subjects with both genotypes and phenotypes are included in our analyses. For the
genetic variants, to mitigate computational cost, we focus on the 1,860 SNPs that were identified in
the previous study to highly associate with brain structural network (Zhao et al., 2023). However,
unlike the previous analyses that didn’t accommodate the sample relatedness, we consider family
structure after creating the kinshipmatrix for 149 pairs of genetically-confirmedmonozygotic twins
(298 participants), 94 pairs of genetically-confirmed dizygotic twins (188 participants) and their
non-twin siblings (524 participants). All the model implementations closely follow the simulation
studies, and we account for age, gender, and the top ten genetic principal components. The
computational cost for each model is around 15 h under Yale High-Performance Computing (one
CPU core, 3GB RAM) and we apply parallel computing across the models. A demonstration of the
model convergence is provided in supplementary material S.4.

4.2. Analysis results
Our goal is to identify risk genetic markers and their associated brain connectivity phenotypic
components. Based on the posterior samples of η, we identify nine risk SNPs as shown in
Table 3. After mapping those SNPs to the genes they belong to, we identify five unique gene
variants including THSD7B, LINC01503, LOC105373693, CDH13 and SLC38A8. Among them,
THSD7B andCDH13 have been considered to play an essential role in the development of the cen-
tral nervous system and neural connectivity (Wang et al., 2011; Polanco et al., 2021). Particularly,
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THSD7B has also been shown to be associated with intellectual disability (Lyons-Warren et al.,
2022); and CDH13 is related to various psychiatric disorders including ADHD and substance
abuse (Rivero et al., 2013;Treutlein and Rietschel, 2011).To evaluate the neurogenetic processes of
the selected genetic variants, we further perform a brain tissue-specific expression quantitative trait
loci (eQTL) analysis via theUKBrain ExpressionConsortium (UKBEC) (Ramasamy et al., 2014).
The consortium generated genotype and exon-specific expression data for 134 neuropathologically
healthy subjects under ten different brain tissues, which allows us to evaluate each identified genetic
variant on its alteration of tissue-specific and cross-tissue gene expressions within 100kb of the
SNP. Table 3 Column 3 shows the cross-tissue cis-effect p-value calculated in their BRAINEAC
web server, and the regulated genes for each risk SNP. The small p-values of cross-tissue eQTLs
reflect the molecular regulation through gene expression over different brain areas, aligning with
the circular nature of brain network phenotypes.

We further investigate the associated brain network configurations and phenotypic components
for each of the identified genetic signals. Visualization of each genetically associated brain network
component is displayed in Figure 1, where the color of connections indicates the effect size of
genetic association. Additionally, we summarize themacroscale structures involved in network con-
figurations for each identified SNPand add it toTable 3.Our analysis reveals that cross-hemispheric
connections and inter-subcortical connections account for the largest proportion of all the signaling
connections. This finding agrees with the previous literature, which has consistently demonstrated
that genetic effects lead to alterations in white matter fiber tracts across brain hemispheres and
subcortical structures (Jahanshad et al., 2013; Zhong et al., 2021).

Finally, we also implement GEMMA to the HCP data. Given that GEMMA is applied on each
brain connection individually, we adjust p-value to 1.34 × 10−5 accounting for the 3741 unique
connections among 87 ROIs. As a result, GEMMA identifies a total of 36 SNPs that exhibit
significant associations with at least one brain connection. To assess the agreement in the top
selected genetic variants between the two approaches, we map the top 36 selected SNPs from each
method to their associated cytogenetic bands (Clark and Pazdernik, 2016) and examine the overlap
in signals. Eventually, there are ten cytogenetic bands that encompass the genetic signals identified
by both BNME and GEMMA. This indicates a certain degree of consistency in the genetic signals
identified by the twomethods, which lends support to the plausibility and reliability of our results.
The detailed results are provided in the supplementary materials.

Furthermore, we also visualize the number of associated brain connections for each of the
top selected SNPs under both methods respectively in Figure 2. It is evident that, in contrast to
BNME, which dissects a phenotypic network configuration architecture for each genetic variant,
the phenotypic signals identified under GEMMA appear to be extremely sparse and scattered. This
result indicates that themajority of the SNPs identified under GEMMA are associated with a single
brain connection, raising questions regarding the biological interpretability and meaningfulness of
the observed genetic associations.

5. DISCUSSION
In this article, we present a Bayesian network-response mixed-effect model that addresses the
challenges of genetic association studies in brain connectivity. Our model is specifically designed
to capture the genetic contributions to phenotypic network configurations while accounting for
family structures and unknown sample relatedness. To accommodate the biological architecture
in the network phenotype, we consider the genetic variant influences the phenotype via a set of
unknown network configurations, where the targeted phenotypic networks are uncovered through
a hierarchical selection procedure. Through posterior inference, we quantify the uncertainty asso-
ciated with determining a risk genetic variant and its impact on the network phenotype. Extensive
simulations demonstrate the superiority of ourmethod in estimating genetic effects and identifying
relevant phenotypic elements with signaling capabilities. By applying the proposed method to the
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Figure 1. The identified risk genetic variants under the BNMEmodel and their associated brain network
configurations.
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Figure 2. The number of the highly associated phenotypic connections for each of the top selected
genetic risk variants obtained by BNME and GEMMA, respectively.

HCP cohort with excessive family structures, we obtain biologically interpretable results that shed
light on uncovering the genetic underpinnings of brain structural connectivity.

In addition to the current application to brain connectivity genetics studies, the proposed
BNME model provides a fundamental framework for mixed-effect models involving network- or
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matrix-variate outcomes. As data collection in epidemiology and social studies becomes more
complex, there is a growing need to analyze network-related or matrix-structured outcomes arising
from related samples caused by pedigree or repeated measurements. By extending the random
effect tensor B to include an additional dimension corresponding to random slopes, along with
the associated variance–covariance component, we can effectively capture more intricate sources
of variation and address diverse modeling requirements.

Our current model formulation employs a decomposition of the effect matrix into a series of
weighted outer products. This design choice aligns well with the biological assumptions inherent in
our application and facilitates the interpretationof results.However, in caseswhere prior knowledge
suggests alternative association structures, such as a modular structure, one can easily modify the
model (2.2) by adopting a different decomposition approach, such as a stochastic block model.
Moreover, our proposedmodel can be readily extended to performheritability analyses for network
phenotypes. As a fundamental quantitative genetic analysis, the existing heritability analyses only
consider scalar- or vector-variate phenotypes. By adapting our model to this future direction, we
could contribute to filling this literature gap and provide valuable insights into the heritability of
network-related traits.
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