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ABSTRACT

The main idea of canonical correlation analysis (CCA) is to map different views
onto a common latent space with maximum correlation. We propose a deep
interpretable variational canonical correlation analysis (DICCA) for multi-view
learning. The developed model extends the existing latent variable model for linear
CCA to nonlinear models through the use of deep generative networks. DICCA is
designed to disentangle both the shared and view-specific variations for multi-view
data. To further make the model more interpretable, we place a sparsity-inducing
prior on the latent weight with a structured variational autoencoder that is comprised
of view-specific generators. Empirical results on real-world datasets show that our
method is competitive across domains.

1 INTRODUCTION

Canonical correlation analysis (CCA) (Hotelling, |1936)) is a popular two-view data analysis technique
which extracts the common information between two multivariate random variables by projecting
them into a space in which they are maximally correlated. CCA has been used as a standard
unsupervised two-view learning (Andrew et al., 2013} Wang et al., 2015), a cross-view classification
(Chang et al.} |2018}; |(Chandar et al., |2016; Kan et al., 2016)), a representation learning on multiple
views for prediction (Sargin et al.|2007; Dorfer et al., 2016), and for a classification from a single
view when a second view is available (Arora and Livescul, 2012).

When the data comes from several different views or modalities of the same underlying source of
variation, all views jointly characterize the same phenomenon. We can consider that there is shared
information amongst them (or amongst subsets of them) by which they are all related. Further, we
also expect that there might exist unique or private variations in each view, i.e., information specific
to an individual view.

A variety of extensions of CCA have been developed to learn a shared low-dimensional feature space
of multi-view data, such as kernel-based extensions (Lai and Fyfe} [2000; |Akahol 2001} Bach and
Jordan, 2002). The limitation of kernel-based methods is the computational cost for large datasets
since kernel-CCA requires an [N x N eigenvalue decomposition, where [V is the sample size. To
capture the nonlinearity presented in complex data, deep neural network CCA (DCCA) was proposed
(Andrew et al.,[2013)). DCCA maximizes the cross correlation between the nonlinear projections
from the outputs of two deep nonlinear neural networks of both views. DCCA is further extended to
deep CCA autoencoder (DCCAE) (Wang et al.,|2015)) to improve the representation learning over
DCCA by leveraging autoencoders to additionally reconstruct the inputs through reconstruction error
terms for the objective function. While DCCA learns embeddings that capture shared variation, it
does not explicitly model view-specific noise as in probabilistic CCA (PCCA) (Bach and Jordan,
2005)). PCCA is a probabilistic generative interpretation to the classical CCA.

Latent variable modelling has been used widely for providing interpretable descriptions of data.
A generative model is a popular approach to achieve a compact representation through exploiting
dependency structures in the observed data. The latent probabilistic version of CCA (Ghahramani
2015)) is attractive in medical applications where the data are typically of small sample sizes but large
feature spaces. However, the generative interpretation of CCA will ignore nonlinear structure in
complex data such as images. Lasso and group lasso are commonly used for simple interpretable
models (Tibshirani, |1994; Yuan and Lin, 2006). They work by shrinking many model parameters
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towards zero and have shown great success in regression models, covariance selection (Danaher et al.
2014), linear factor analysis (Hirose and Konishil [2012)), and group factor analysis (Klami et al.,
2015). Commonly, sparsity-inducing penalties are considered in the convex optimization literature
due to their computational tractability using proximal gradient descent. Recently, two deep variational
CCAs (VCCA) were proposed (Tang et al., 2017; Wang et al.| 2016 which yield a generative model
with shared and view-specific factors. However, these two VCCA models are only applicable to
two-view data.

Recent high-throughput techniques, such as next-generation sequencing, have generated a wide variety
of multiomics datasets that enable the identification of biological functions and mechanisms via
multiple facets. However, integrating these large-scale multiomics data and discovering interpretable
insights are, nevertheless, challenging tasks. To address this, previous work embedded biological
knowledge into the machine learning model for underlying mechanisms; e.g., interpretable deep
neural network modeling (Wang et al.| 2018} Ma et al., 2018). The model architecture of those
methods relies heavily on the prior biological knowledge.

We present a deep interpretable CCA generative model (DICCA), in which the linear probabilistic
layers are extended to deep generative multi-view networks. DICCA captures the variations of the
views by a shared latent representation that describes most of the variability of multi-view data, and a
set of view-specific factors. Our main contributions can be summarized as follows:

* We propose a novel generative framework for CCA which can disentangle the shared and
view-specific variations from multi-view data.

* We leverage the sparsity-inducing hierarchical priors on the latent weight to achieve an
interpretable model understanding.

* We evaluate our approach on real datasets to demonstrate that our algorithm achieves
better performance compared to the state-of-the-art methods and have wide applications in
integrating multiomics data for biomarker discovery.

2 METHODS

We now describe the proposed DICCA for multi-view data. We assume that the mth view X" €
R <1 is independent with N co-occurring observations. Z™ € R *! denote the K -dimensional
latent representation specific to the mth view for m € {1, ..., M}, where M is the total number of
views. Z € RX*! denote the K -dimensional latent representation common to all views. Z is the
shared latent variable capturing the shared variation across M views, while the view-specific latent
variables Z™ accounts for the view-specific variation. We then write the generative process of the
latent variables as:
Z ~ N(0g,Ik), 0
Z" ~ N(0g,Ik).
View Generator The variational autoencoder (VAE) (Kingma and Welling|, 2014) propose the idea
of amortized inference to perform variational inference in probabilistic models that are parameterized
by deep neural networks. The limitation for deep generative models and VAE is that the learned
representations are not easily interpretable due to complex interaction from latent dimensions to
the observations. We consider view-specific generators and a linear latent-to-generator mapping
with weights from a single latent dimension to a specific view. We model each view with separate

generative networks fé:f) parameterized by 6,,,. We write the generative process of the data as:
X"~ N(fyr (A" Z+ WTZ™), o), @)

where A, W™ ¢ R¥»*K_¥™ i5 a diagonal matrix containing the marginal variances of each
component of X™. The latent representation Z is shared over all the view-specific generators, Z""
is view-specific. One of the main goals of this framework is to capture interpretable relationships
between view-specific activation through the latent representation.

Interpretable Sparsity Prior We refer to A™, W' as the latent-to-view matrices. When the jth
column of the latent-to-view matrix for view m, i.e., Af?), W(T) is all zeros, then the jth latent
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(m)

dimension, z;, will have no influence on view m. We place a hierarchical prior on the columns A, j

and W(?) to induce the column-wise sparsity as follows (Kyung et al.,[2010):

dm+1>\72
2 2

*y?nj ~ Gamma <
3)

. J ) . j
where Gamma(-, -) is defined by shape and rate and d,,, is the number of rows in each A(™) and
W (™) The amount of sparsity is defined by the rate parameter \, with larger \ implying more
column-wise sparsity in A("™) and W (™), %an controls the column specific variation for the mth

view. Marginalizing over ’ernj induces view sparsity over the columns of A and W("); the
maximum a posterior estimator of the resulting posterior is equivalent to a group lasso penalized
objective. Different from linear factor models, the deep structure of this framework encourages the
model to learn a set of A and W (™) matrices with very small weights only to have the values
revived to “appropriate” magnitudes in the following layers of fg(::). A standard normal prior on the

parameters of each generative network was placed: 6,,, ~ N (0,I). Figure[l|provides a graphical
illustration of our DICCA model under m = 2.
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Figure 1: Graphical illustration of the DICCA model.

2.1 VARIATIONAL INFERENCE

One unique feature of VAE (Kingma and Welling| [2014) is that it allows the conditional p(x | z)
being a potentially highly nonlinear mapping from z to x.

The likelihood is then parameterized with a generative network (called decoder). VAE uses ¢(z|x)
with an inference network (called encoder) to approximate the posterior distribution of z. For example,
q(z]x) can be a Gaussian N (p, 021), where both ;1 and o are parameterized by a neural network:
[, log o] = fs(x), where f4 is a neural network with parameters ¢. The parameters for both
generative and inference networks are learned through variational inference. Jensen’s inequality
yields the evidence lower bound (ELBO) on the marginal likelihood of the data:

log pa(x) > Eq(z¢)log pe(x | 2)] — Dr1(q(z; ¢) || p(2)),

L(x;0,¢)

“4)

where KL(Q||P) is Kullback-Leibler (KL) divergence between two distributions @) and P. ¢(z; ¢)
is a tractable “variational” distribution meant to approximate the intractable posterior distribution
p(z | x); it is controlled by some parameters ¢. We want to choose ¢ that makes the bound in
Eq. equation {4 as tight as possible.One can train a feedforward inference network to find good
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variational parameters ¢(x) for a given x, where ¢(x) is the output of a neural network with
parameters ¢ that are trained to maximize £(x; 6, ¢(x)) (Kingma and Welling, 2014).

The KL divergence between the approximate posterior and the prior distribution of the latent variables
regularizes the prior knowledge about the latent variable for the learning algorithm. Let z™ and z
represent the view-specific and shared latent variables, respectively. We can write the approximate
posterior of the set of latent variables as ¢, (z|x) H%Zl ge(z™|x™). Therefore, the KL divergence
term can be decomposed as

M
Dicrlgs(2x)Ip(z)] + Y Drcrlge(z"x™)|Ip(z")]. (5)

m=1

2.2 LEARNING

Traditionally, variational inference is learned by applying stochastic gradient methods directly to
the ELBO in equationE} We borrow the idea from o0i-VAE (Ainsworth et al.,[2018) which extends
the basic amortized inference procedure to incorporate the sparsity inducing prior over the columns
of the latent-to-view matrices. We consider a collapsed variational objective function. Since our
sparsity inducing prior over W(m) is marginally equivalent to the convex group lasso penalty, we
can use proximal gradient descent on the collapsed objective and obtain the true group sparsity
(Parikh and Boyd, [2014)). Following the standard VAE approach of |[Kingma and Welling| (2014]),
we use simple point estimates for the variational distributions on the neural network parameters
W= (WO ... W) A= (AD ... Al™) g = (6;,...,0,,), and We take g, (z|x) =
N (u(x),0%(x))), where the mean and variances are parameterized by an inference network with
parameters ¢.

The collapsed objective Under m € {1, ..., M}, the data likelihood is defined by

p@(xl7 7xm7Z7Z17 7Zm)
M
(6)
=p(z) [ p(z™)po(x™(2,2™; 6,m).
m=1

We construct a collapsed variational objective function by marginalizing the 2, ; to compute log pe (x)
as:

log po (x) = log / p(x|z, 2", ... 2™, W, A, 0)p(2)

x H p(z™)pWIY?) x p(Al7?)p(v*)p(0) dy? dz... d="™
m=1

o (2lxm) s (zm|xm) [10g o (2™ |2, 2™, W, A, 0]

b SMS

<q¢<z|x1, X [p(2)) @
- Z Dicr(go(2™x™)||p(2™))
m=1
M
+ 3 logp(Bn) = AD ATl = A (W)l
m=1 m,j m,j
= £(¢7 07 W7 A)

To maximize this collapsed ELBO over {¢,0,V, A}, we use efficient proximal gradient descent
updates on the latent-to-view matrices ¥V and A. Proximal algorithms achieve better rates of
convergence than sub-gradient methods and have shown great success in solving convex objectives
with group lasso penalties. We use Adam for the remaining neural net parameters, 6 and ¢.
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3 RELATED WORK

Deep variational CCA (DVCCA) (Wang et al.,[2016) is for two-view data representation learning.
DVCCA shows that by modeling the view-specific variables that are specific to each view, DVCCA
can disentangle shared and private variables and provide higher-qualify features and reconstructions.
The key model architecture difference between DVCCA and our method is that DVCCA assumes the
shared variation only comes from one set of data, we disentangle the shared information from all the
datasets.

Two-view deep probabilistic CCA (DPCCA) was proposed (Gundersen et al., [2020) based on PCCA
(Bach and Jordan| [2005) and convolutional neural networks for paired medical images and gene
expression levels. The estimation of DPCCA requires PCCA to be estimated first, then the projection
obtained from PCCA is passed to the convolutional neural network. The requirement for both PCCA
and neural network to be available is a major limitation for reconstruction and that is why they
perform worse than multimodal autoencoder (MAE) (Ngiam et al.| |2011)) in their reconstruction
experiment. Another limitation is that DPCCA is designed specifically for paired image data.

Interpretable VAEs for nonlinear group factor analysis (0i-VAE) (Ainsworth et al2018)) is the first
generative nonlinear group latent factor model. It combines deep generative models with a hierarchical
sparsity-inducing prior that leads to the ability to extract meaningful interpretations of latent-to-
observed interactions when the observations are structured into groups. Deep latent variable model for
learning longitudinal multi-view data (DLGFA) (Qiu et al.l 2020) is an advanced temporal extension
of 0i-VAE, which can learn the dynamic dependency among groups through the shared latent variable
and disentangle the interpretable dynamics among groups. Both 0i-VAE and DLGFA use multiple
decoders over the same latent variables, with the goal of having interpretable factors for the multi-
view data. 0i-VAE and DLGFA are more interpretable compared to DVCCA, however, they do not
model the common and view-specific variations like DVCCA which leaves a challenge for modeling
complex multi-view data. Variational inference for deep probabilistic canonical correlation analysis
(VPCCA) (Karami and Schuurmans},|2021)) can disentangle the shared and view-specific variations,
however, VPCCA lacks model interpretation. Additionally, the existing models’ interpretation is
based on latent factor level not feature level which also poses a big application challenge for dealing
with high-dimensional problems, like multi-omics data, where researchers are more interested in
some particular features.

Our model is built on the variational generative model framework for efficient approximation purpose
and we jointly model share and view-specific variations for complex multi-view data. Most impor-
tantly, we place sparsity-inducing prior on the latent weights to achieve feature-level interpretability.

4 EXPERIMENTS

We empirically evaluate the representation learning and model interpretability of the proposed method.
The performances of the proposed method are evaluated over the following two datasets.

4.1 NoOIsy MNIST DATASET

Two-view noisy MNIST datasets from (Wang et al.|2015;[2016)) are widely used for testing multi-view
models. This dataset is generated from the MNIST dataset, the first view of the dataset is generated
by rotating each image at angles randomly sampled from uniform distribution &/ (—7 /4, 7 /4), while
the second view is from randomly sampled images with the same identity to the first view but not
necessarily the same image. Then, it is corrupted by random uniform noise. Thus, both views share
the same identity of the digit, but they are not of the same style of the handwriting in the same class.
The original training set is split into training/tuning sets of size SOK/10K. The data generation
process ensures that the digit identity is the only common variable underlying both views. The
performance is measured on the 10K images in the test set. We tune the latent dimension K over
[10,20,30,40,50], and fix K; = K9 = 30, where K; and K represent the latent dimensions for the
two views of the dataset. We choose A = 1 based on the mean squared error on the test dataset.

Disentanglement learning To evaluate the learned representation, our model should be able to
reconstruct both views using the shared and view-specific latent variables. As baseline, we fit 0i-VAE
(Ainsworth et al., [2018), DPCCA (Gundersen et al., 2020) and VCCA (Wang et al.,[2016) to both



Published at the MLDD workshop, ICLR 2022

Table 1: Reconstruction comparison on noisy two-view MNIST

Method View 1 MSE (STD) View 2 MSE (STD)
0i-VAE 0.059 (0.009) 0.172 (0.009)
DPCCA 0.052 (0.012) 0.134 (0.003)
VCCA 0.023 (0.011) 0.088 (0.0042)
VCCA-p 0.024 (0.011) 0.084 (0.005)
DICCA (Ours) 0.016 (0.005) 0.080 (0.005)
Viewl View2
Input DICCA Input DICCA | Input DICCA Input DICCA

Figure 2: Reconstruction of images from the noisy MNIST test set by DICCA.

data views. VCCA-p represents VCCA-private which has view-specific latent variables in the model.
We find that DICCA can reconstruct both views well relative to these baselines (Table[T). 0i-VAE
performs the worst since it does not model the view-specific variations. DPCCA also does not perform
well because it requires optimizing PCCA in an inner loop so that the parameters are not optimized
with other variables in the neural network. VCCA and VCCA-p perform better than oi-VAE and
DPCCA, but they are worse than DICCA which indicates that modeling view-specific variations
is more powerful to extract the hidden truth than modeling only the common variations. DICCA
performs better in reconstruction than VCCA and VCCA-p. This confirms that the view-generator
structure of DICCA is more suitable for learning multi-view data rather than using a single encoder
of VCCA and VCCA-P. Figure 2] shows sample reconstruction of noisy MNIST dataset by DICCA
for view 1 (left) and view 2 (right).
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Figure 3: t-SNE visualization of the extracted latent variable z from images of view 2 on noisy
MNIST test set by VCCA, VCCA-p, 0i-VAE, DICCA, and DICCA-share. Note: DICCA represents
view 2 specific latent variable z, DICCA-share is the shared latent variable between views 1 and 2.

We can see that DICCA can capture the styles of each image very well and it can separate the
background noise from the view 2 images. In addition, Figure [3| provides 2D ¢-SNE embedding
of the view-specific latent representations from view 2 images learned by VCCA, VCCA-p, oi-
VAE, DICCA, and DICCA-share (the shared latent projections). All the methods show improved
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separation performance compared to the original input data. VCCA and VCCA-p perform similarly,
but, there are some digits not very well separated, e.g., digit 3 and digit 2, digit 6 and digit 5. We also
observe that 0i-VAE has similar problem. This indicates that 0i-VAE cannot capture the view-specific
variations. DICCA and DICCA-share perform surprisingly well which quantitatively verify that the
learned features of the images of different classes are well separated by view-specific latent variables
and the shared latent projections.

4.2 GENETIC DATA

We now analyze a data set of 200 patients with chronic lymphocytic leukaemia (CLL)
[2018). This data combines ex vivo drug response measurements (D = 310) with somatic mutation
status (D = 69), transcriptome profiling (D = 5000) and DNA methylation assays (D = 4248).
Thus, there are four measurements on the same patients (/N = 200). We apply DICCA on CLL dataset
to show model interpretability by exploring group dependency relationship and latent dimensions’
interpretation and annotation. After tuning, we choose K = 10.

a ‘ b c
0i-VAE DICCA- share DICCA-private
Drugs
Methylation
mRNA
Mutations
BREE B B e e T L] T e e o o T e e |
12345678910 12345678910 12345678910
Latent dimensions Latent dimensions Latent dimensions
d e f
HOXB4 | e CALB1
ZCCHC12 | SMPDL3A
3 35 4
Mutations 3 b B :
Absolute loading on factor 2 Absolute loading on factor 10

Figure 4: Results on CLL data. a-c: The learned W(T) from oi-VAE, the learned AF?) from DICCA,

name as DICCA-share, the learned W(T) from DICCA, name as DICCA-private. Specifically, the
values of latent dimensions are color-coded from white (zero) to dark blue (maximum non-zero value)
to indicate the strength of the latent-to-view mappings. d: cumulative proportion of total variance
explained (R2) by each view. e-f: Absolute loadings of top features of latent dimensions 2 and 10 in
the mRNA data, top feature is marked as red color.

Group dependency relationship Each latent dimension of z influences only a sparse subset of
the observational groups. We can view the observational groups associated with a specific latent
dimension. The latent weight matrix can give us a bipartite graph in which we can quickly identify
correlation and independence relationships among the groups themselves. This group dependency
correlation among multi-view data is attractive as an exploratory tool independent of building a
generative model. In our case, we explore the shared and view-specific dependency respectively. We
compare the group dependency extracted by 0i-VAE (Ainsworth et al.} 2018)), DICCA-share and
DICCA-private in Figure E| a, b, and c. Both 0i-VAE and DICCA show that methylation and mRNA
data have the dominant variations across the 10 latent dimensions. As expected, we observe the




Published at the MLDD workshop, ICLR 2022

view-specific variations are captured by DICCA-private. For example, under the latent dimension
6, the dominant variation is explained by mRNA in 0i-VAE which is the same as in DICCA-share.
However, in DICCA-private, the variations are explained by methylation. Another example is under
latent dimension 2, oi-VAE shows the dominant variations are from the mRNA, however, in DICCA-
share, we observe that the shared dominant variations are from methylation, but, the DICCA-private
shows the view-specific variations are from mRNA.

Latent dimension interpretation and biomarker discovery In Figure ] d, we plot the variance
explained by each view, DICCA explains 90%, 86%, 75% variations in drug, methylation, mRNA,
respectively, and only 22% in mutations. This is much higher compared to MOFA (Argelaguet
et al.| [2018)). Based on the top weights in mRNA data, factor 2 is aligned with SEPTS which is
a member of the septin gene family of nucleotide binding proteins. Disruption of septin function
can disturb cytokinesis and result in large multinucleate or polyploid cells (Elzamly et al.| [2018)).
Cancer-associated chromosomal changes often involve regions containing fragile sites. Factor 10 is
aligned with TES which maps to a common fragile site on chromosome 7q31.2 designated FRA7G.
TES is a negative regulator of cell growth and may act as a tumour suppressor gene that is inactivated
primarily by transcriptional silencing resulting from CpG island methylation (Tobias et al., 2001).

5 DISCUSSION

In this work, we develop a deep interpretable variational canonical correlation analysis for multi-view
learning. It has been shown that following the view-generator and group sparsity formulation of
the linear latent CCA model, we can obtain an interpretable learning algorithm for multi-view data.
Empirical results have shown that this can efficiently disentangle the relationship among multiple
views to obtain a more powerful representation. Besides the outperformed representation learning
achieved by jointly modeling the share and view-specific variations, the proposed method can also
have better interpretations for the latent dimensions and potentially wide applications in multiomics
biomarker discovery.
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A. SUPPLEMENTARY METHODS

A.1. Proof of additive property of KL in Equation 5.

The approximate posterior of the set of latent variables can be factorized as

M
g5(z | %) [] a6 (2™ | 2,x™). ®)
m=1

We assume independent prior distribution on the latent variables which leads to

M M

Drcrgs(zlx)|Ip(z)] + Z Drcrlge(z™x™)|lp(z™)] = /%(Z | x) H qe (2" | z,x™)

g 202 1) Ty 66 (2" | 2,X™)
o p(z) Hﬁfilp(zm) 9)
_ 2 | x) o 22021 %)
—/q¢( | x) 1 OB

]\/I m 7 Xm
+ mz_:l/qqs (z™ | z,x™)log o127 12X ) (Zp (z|m; )

A.2. Proximal gradient descent

A proximal algorithm is an algorithm for solving a convex optimization problem which uses the
proximal operators of the objective terms. Consider the problem

min f(x) + g(), (10)
where f : R — Rand g : R" — R U {400} are closed proper convex and f is differentiable.
The proximal gradient method is

zh L :proxAkg(xk —nAf(z*)), (11)

where \¥ > 0 is a step size, prox () is the proximal operator for the function f. Expanding the
definition of prox, ,, we can show that the proximal step corresponds to minimizing g(z) plus a
quadratic approximation to g(z) centered on z*. For g(z) = n||z||2, the proximal operator is given
by

T
prox,, () = T (llzll2 = X*n) - (12)

According to Parikh and Boyd, we know (v) 2 max(0, v). This operator can reduce = by An, and
x can be shrank to zero under ||z|[2 < M.

A.3. Latent dimension interpretation

After the model has been trained, the first step is to disentangle the variations in each view. We
compute the fraction of the variance explained (R?) per view by

R? —1_ (Cna Xomta = 2op 2 Wia = 34 2 Wia)®
" (Zn,d X;Z:Ld)z

Subsequently, each dimension is characterized by two complementary analyses:

* Ordination of the samples in factor space: Visualize a low dimensional representation of the
main drivers of sample heterogeneity.

* Inspection of top features with largest weight: The loadings can give insights into the
biological process underlying the heterogeneity captured by a latent dimension. We scale
each weight vector by its absolute value.
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B. MODEL ARCHITECTURE AND TRAINING PROCEDURE

Selection on ) and k The parameter A controls the model sparsity, larger A implies more column-wise

sparsity in W( ¥ ") We propose to select \ based on the learned W( ™) to check the sparsity and the
MSE(test]. The latent dimension k is chosen based on 1nterpretat10n purpose.

B.1. Two-view noisy MNIST experiments

We have view-specific encoder for each view: Encoder;, Encodery and shared encoder Encodergp g e-
After tuning, we use dy = da = dspare = 30.

¢ Encoder;:
- p(x1) = Whrelu(xy ) + b.
- 0(x1) = Wasoftplus(xy) + bo.

¢ Encoders:
- u(x2) = Warelu(xz) + bs.
- 0(x2) = Wysoftplus(xz) + by.

e Encodergj,gre:
- /J(Xl + Xz) = W5(X1 —+ Xz) —+ b5.
- O'(X]_ + Xz) = exp(WG(Xl + Xz) + b6)

e Decoder:
- u(z) = Wtanh(z) + br.
- 0(z) = exp(bs).

The learning rate on W is le-4 for encoder and decoder, batch size is 128. Optimization was run for
1,000 epochs.

B.2. CLL experiments

We have view-specific encoder for each view: Encodergy,.,q, Encoder,,cihyiation, Encoder,, ry 4,
Encodery,ytation and shared encoder Encoderspqre. After tuning, we use dgrug = dmethylation =
dmRNA = dmutation = dsha're =10.

* Encoderg,yg4:
- p(x1) = Whrelu(xy ) + bs.
- 0(x1) = Wasoftplus(x1) + ba.

b EnCOder'methylation:
- pu(x2) = Wjrelu(xz) + bs.
- 0(x2) = Wysoftplus(xz) + bs.

e Encoder,, gy a:
- p(x3) = Wirelu(xg) + bs.
- 0(x3) = Wgsoftplus(xs) + be.

b EnCOdermutution:
- ‘u(x4) = W7relu(X4) + b7~
- 0(x4) = Wgsoftplus(xy4) + bs.

e Encodergj,gre:
- p(x1 + X2 + X3 + X4)

12



Published at the MLDD workshop, ICLR 2022

= WQ(X]_ + X2 + X3 + X4) + bg.
-0(x1 + X2 + X3 + X4)
= exp(Wlo(xl + X2 —+ X3 —+ X4) —+ blg).

e Decoder:

- /J,(Z) = Wlltanh(z) + b11.
-o(z) = exp(b12).

The learning rate on WV is le-4 for encoder and decoder, batch size is 12. Optimization was run for
2,000 epochs.
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