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ABSTRACT

Large language models (LLMs) are increasingly used as personal assistants, access-
ing sensitive user data such as emails and medical records. Users currently face a
trade-off: they can send private records to powerful but untrusted LLM providers,
increasing their exposure risk, or they can run less powerful models locally on
trusted devices. We bridge this gap: our Socratic Chain-of-Thought Reasoning
(Socratic-CoT) first takes a user query and sends it to a powerful, untrusted LLM,
which generates a chain-of-thought prompt and sub-queries without accessing user
data. Next, we embed these sub-queries and perform encrypted semantic search
using our Homomorphically Encrypted Vector Database over up to one million
entries of a single user’s private data. This represents a realistic scale of personal
documents accumulated over years of digital activity. Finally, we feed the chain-of-
thought prompt and the decrypted records to a local language model to generate the
contextualized response. On the LoCoMo long-context QA benchmark, our hybrid
framework—combining GPT-4o with a local Llama-3.2-1B model—outperforms
using GPT-4o alone by up to 7.1 percentage points. This demonstrates a first step
toward systems in which tasks are decomposed and split between untrusted strong
LLMs and weak local ones, preserving user privacy. We will release all code and
implementations publicly to facilitate transparency and future research.

1 INTRODUCTION

Large language models (LLMs) are becoming the default backend for personal assistants that handle
emails and schedule meetings (Liu et al., 2023; Song et al., 2025). These assistants must integrate
data from heterogeneous sources using Retrieval-Augmented Generation (RAG) (Lewis et al., 2020b).
While forwarding user queries with retrieved data to powerful but untrusted LLMs can improve
performance, it also raises privacy concerns by potentially exposing private records to LLM providers
or to hackers (Zeng et al., 2024b; Jiang et al., 2024). Conversely, restricting these operations to local
trusted devices degrades performance (Liu et al., 2025). This raises the question: Can we perform
LLM interactions on private data without privacy risks or significant performance degradation?

Existing privacy-preserving methods, such as data minimization or scrubbing personally identifiable
information (PII), often sacrifice data utility or provide limited privacy through superficial suppres-
sions (Xin et al., 2025). To bridge the privacy-utility gap, we propose a hybrid framework that
clearly delineates trusted and untrusted environments (left and right sides of Figure 1), ensuring
private data either remains strictly within local boundaries or is securely encrypted when externally
stored or searched. We integrate two novel components: (1) Socratic Chain-of-Thought Reasoning
(Socratic-CoT), which enables challenging queries to be offloaded to a powerful external language
model; and (2) a Homomorphically Encrypted Vector Database, a cryptographic system that
allows semantic search over encrypted records without ever decrypting them. Our framework enables
users to leverage external compute resources and cloud storage while maintaining complete privacy.

Stage 1: When the user, Alice, poses a query (see Figure 1, top), Socratic-CoT elicits a detailed
chain-of-thought prompt and sub-queries from a powerful external LLM. We provide only the generic
query to the external LLM without exposing any private records. Rather than directly providing an
answer, we prompt the powerful LLM to generate chain-of-thought for reasoning and sub-queries
for retrieval—in this case, questions about medications and travel history. This approach allows the
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CoT over Private Data

Embedding Model

Local Language Model

Powerful Large Language Model

LLM Server

Socratic CoT & 
Sub-Query Generation

Homomorphically Encrypted 
Vector Similarity Search

Alice: Why do I keep having fever?

Vary your response depending on the situation: 
Case 1: If the fever follows a patterns such as ~, suspect ~. 
Case 2: If the user traveled to ~, identify ~.

Bot: Considering the two-day symptom cycle and recent travel to Africa, malaria may be the cause.

Has a fever every two days.

Private Data

Query

DB Server

Sub-Query Embedding 
Extraction

Query

Response

Alice’s Private Database

How often are the symptoms?

Sub-Queries

Have you traveled recently?

Chain-of-Thought Prompt

Recently traveled to Africa.

Figure 1: Overview of our hybrid framework. Upon receiving a query, a remote LLM generates a
Chain-of-Thought (CoT) prompt and sub-queries (Stage 1) which are embedded locally (Stage 2), and
used for our encrypted vector search on a remote database (Stage 3). Retrieved records are decrypted
and provided with the CoT prompt as context to a local model to generate the final response (Stage 4).

powerful model to break down complex task into simpler ones, making it easier for the weaker local
model to reason effectively when given access to private data. Stage 2: The sub-queries are then
locally embedded for secure search over our encrypted database containing Alice’s private records.
Stage 3: Once the sub-query embeddings reach our Homomorphically Encrypted Vector Database,
the system executes secure vector similarity search, where all key vectors are homomorphically
encrypted and compared against a million encrypted key vectors. Our novel inner product algorithm
computes similarity entirely in the encrypted domain in under one second using standard CPUs.
The system then retrieves the corresponding encrypted records, returning top-k matches from a
million-entry store in encrypted format. Stage 4: Finally, a much smaller, weaker language model
operating exclusively within the local trusted zone generates the final response, drawing on both the
decrypted private records and the chain-of-thought prompt supplied by the stronger remote model.

We extensively evaluate our framework on two long-context QA benchmarks. LoCoMo assesses
recall of extensive conversational histories (Maharana et al., 2024), while MediQ tests interactive
medical consultation (Li et al., 2024b). We establish two baselines representing privacy extremes: (1)
a (fully private) local-only baseline using Llama-3 with 1B, 3B, and 8B parameters, and (2) a (fully
non-private) remote-only golden baseline using GPT-4o, Gemini-1.5-Pro, and Claude-3.5 Sonnet.
Our approach provides a balanced trade-off between these extremes. Through our Socratic-CoT, the
Llama 1B-parameter local model achieves an F1 score of 87.7 on LoCoMo, notably surpassing GPT-
4o by 7.1 percentage points and the local-only baseline by 23.1 percentage points. This improvement
likely stems from additional test-time computation enabled by the chain-of-thought process (Chen
et al., 2024). For MediQ, the improvements are smaller due to domain-specific adaptation challenges,
but they remain beneficial. Our Homomorphically Encrypted Vector Database efficiently searches
entries from 106 records in under one second on commodity CPUs, maintaining > 99% Recall@5
with a median storage overhead of just 5.8×. Collectively, our findings mark an important step
toward privacy-preserving systems that effectively partition tasks between untrusted high-capacity
LLMs and trusted lightweight local models, without requiring any additional post-training.

2 PRIVACY-PRESERVING FRAMEWORK WITH SOCRATIC-COT

We present a privacy-preserving framework that enables powerful LLM reasoning while maintaining
strict privacy guarantees, ensuring that sensitive user data is never exposed during interaction.
This section outlines our approach, where Socratic Chain-of-Thought Reasoning (Socratic-CoT) is
integrated into a framework that separates a trusted local zone and an untrusted cloud zone.

2.1 PROBLEM FORMULATION

Background. LLMs increasingly serve as personal assistants, processing sensitive user data such as
emails and medical records (Zeng et al., 2024a; Qiu et al., 2024). Effective personal assistants require
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two fundamental capabilities: (1) Context Retrieval: The model must determine which contextual
data is necessary given the user query. As illustrated in Figure 1, a query such as "Why do I keep
having fever?" may not provide sufficient information to personalize an answer. The model must
generate targeted sub-queries to collect missing information, such as travel history that might reveal
malaria risk factors (Lewis et al., 2020b). (2) Contextual Reasoning: The model must establish
clear reasoning steps to accurately interpret the query in context. For instance, recognizing a fever
recurring every two days in combination with recent travel to Africa strongly suggests malaria.

Trade-off between Privacy and Performance. While powerful cloud-based LLMs offer superior
reasoning capabilities, they require users to expose private data to untrusted providers (Mireshghallah
et al., 2023). Conversely, local models that preserve privacy lack the computational capacity for
complex reasoning tasks. Local devices have limited computational resources insufficient for such
reasoning, whereas powerful cloud LLMs cannot be trusted with sensitive data (Wang et al., 2024).

Threat Model and Privacy Goal. We protect against three adversaries: (1) the LLM provider that
receives user queries, (2) the database provider storing encrypted records (Bonnetain et al., 2019),
and (3) external attackers who may compromise these services (Hutchins et al., 2011). Even with
standard encryption, providers often hold decryption keys, creating potential privacy risks through
insider threats or security breaches (Cappelli et al., 2012; Hunker & Probst, 2011). User data must
remain encrypted outside the local environment, with decryption keys never leaving the user’s control.
We assume that the local environment is secure, and that the server and network are semi-honest.
Threats include network sniffing, server compromise, and insider analysis of ciphertexts or access
patterns. Malicious queriers are excluded, since each user queries only their own authenticated
database. The system must support complex reasoning and efficient retrieval while ensuring that
untrusted components cannot access plaintext private data (Gentry, 2009b; Rivest et al., 1978).

2.2 OVERALL PROCESS

Figure 1 illustrates our framework’s overall process, which separates computation into trusted and
untrusted zones to balance privacy and performance. In the trusted zone (left side of the figure), the
user’s local device hosts a lightweight language model and embedding model with exclusive access
to decryption keys, ensuring that sensitive data never leaves the user’s control in plaintext form. The
untrusted zone (right side of the figure) comprises cloud providers hosting: (1) a powerful LLM
for abstract reasoning, and (2) an encrypted vector database storing the user’s private records using
homomorphic encryption (Gentry, 2009b; Brakerski et al., 2014), allowing secure processing without
data decryption. Consider the medical consultation example: when a user asks “Why do I keep
having fever?”, the query flows to the remote LLM without exposing any private medical history. The
powerful model generates targeted sub-queries (e.g., symptom frequency, travel history) that guide
retrieval from the encrypted database, where private records remain protected even during search
operations thanks to homomorphic encryption. We term this reasoning collaboration Socratic-CoT,
where the remote LLM questions the local model in a Socratic manner without accessing private data.

2.3 SOCRATIC-COT OPERATIONS

Let V be the set of tokens and define k-tuples of V as

Vk = {(v0, . . . , vk−1) | v0, . . . , vk−1 ∈ V},
with V∗ =

⋃∞
k=0 Vk denoting the set of all finite-length sequences.

We denote the CoT generator as Gc, the sub-query generator as Gq, the retriever as R, and the
database as D. Given a user query x, the remote LLM generates a CoT prompt c and a set of
sub-queries s. The client then embeds s, encrypts the embeddings, retrieves encrypted records v
from D via R, and finally the local model L produces the response y, conditioned on c, v, and the
conversation history h, where x, y, c, s, v, h ∈ V∗:

c = Gc(x), s = Gq(x), v = R(s,D), y = L(x, c, v, h).

This design ensures that Gc and Gq operate only on the user’s current query x, while private records
in D remain encrypted and are processed exclusively by L within the trusted local environment.
Importantly, the chat history h is never sent to the remote LLM; it is retained locally to support
coherent multi-turn conversations. As a result, our framework preserves user privacy while enabling
context-aware dialogue across multiple turns. Qualitative examples are provided in Appendix G.
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3 HOMOMORPHICALLY ENCRYPTED VECTOR DATABASE

3.1 MOTIVATIONS AND SETUP

The performance of personal assistants significantly improves when relevant user data is provided.
Thus, seamless accumulation and integration of private data are crucial for powerful assistants. While
storing data locally on the user’s device (e.g., smartphones and laptops) allows strong security and
quick retrieval, edge devices are inherently limited in disk storage. For example, storing a user’s
1M records with embeddings requires about 103 GB, over 80% of a base 128 GB iPhone’s capacity,
as calculated in Appendix B. Consequently, leveraging cloud solutions becomes essential, offering
extensive scalability. Moreover, cloud solutions offer various advantages, including multi-device
synchronization, snapshot backups, and simplified management. Therefore, we present an encrypted
vector database that combines the security of local storage with the scalability of the cloud.

The retrieval process within a vector database typically involves two sub-processes: search and return.
The search phase computes similarity scores between a query vector and the key vectors stored in the
database, and selects the top-k entries. In the return phase, corresponding data values are fetched
from the database based on the selected entry IDs. To ensure robust security, three main parts must
be executed in an oblivious manner: inner product (IP) computations, top-k selection, and data
access. Homomorphic Encryption (HE) is particularly effective for inner product calculations, as
it significantly reduces both communication rounds and client-side computation. However, top-k
selection, which involves numerous logical comparisons, becomes computationally intensive when
directly implemented with HE (Hong et al., 2021). Therefore, we adopt a client-aided approach,
enabling the client to efficiently select the top-k entry IDs without excessive computational overhead.
Finally, once the client identifies the relevant entry IDs, records are securely retrieved using Private In-
formation Retrieval (PIR) protocols, which fetch values corresponding to these IDs without revealing
which database entries are accessed. Existing sublinear PIR schemes that rely on preprocessing are
impractical for dynamic databases due to high preprocessing costs (Li et al., 2023). To mitigate this
issue, several lines of work (Menon & Wu, 2022; Mughees et al., 2021) propose single-server PIR
protocols that operate efficiently without preprocessing, thereby enabling dynamic and rapid updates
alongside secure and efficient searching. In this way, we can achieve the same security guarantees as
the naive baseline, which is fully secure but significantly inefficient, as described in Appendix C.4.
For clarity, a detailed illustration of the retrieval process is presented in Appendix C.5.

3.2 SECURE INNER PRODUCT

We introduce a novel HE-based IP algorithm, specifically designed for vector databases with consid-
erations for dynamic updates, data integrity, fast search, and efficient storage. The most significant
difference between semantic search and a vector database is that the database must be dynamic, sup-
porting insertion and deletion. An important observation is that HE operations should ideally not be
used for insertion and deletion, as they accumulate errors and eventually corrupt the message.1 Many
existing HE-based IP algorithms are unsuitable for scenarios requiring dynamic updates. Current
solutions for encrypted semantic search with a public database, such as Wally (Asi et al., 2024) and
HERS (Engelsma et al., 2022), typically precompute key vectors in plaintext domain for fast search.
However, this plaintext precomputation restricts dynamic updates in the ciphertext domain. In HERS,
for instance, each key data point is distributed across different ciphertexts, necessitating complex
HE operations for inserting or deleting keys along with their approximate values. This process can
degrade data integrity over time due to accumulated errors resulting from frequent HE computations.
One way to avoid HE computations during insertion and deletion is to assign one ciphertext per key,
allowing insertion and deletion by simply appending or removing ciphertexts. Building on this insight,
we designed a dedicated HE-based IP scheme for vector databases that enables exact updates.2 The
search process begins by computing the inner product between the query and the stored key vectors.
Let us break down each step to derive the complete algorithm. The detailed mathematical notations
used in the following derivations are provided in Appendix C.1.

1One may consider using bootstrapping (Gentry, 2009a) to clean the errors, but it is almost infeasible due to
its high computational cost.

2CHAM (Ren et al., 2023) also supports exact updates but is far less efficient than ours (as shown in
Section 4.2), incurring impractical latency and storage costs for real-world deployment.
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Inner Product. Let the query vector be q = [ξi]0≤i<r ∈ Rr and the key vector be k = [κi]0≤i<r ∈
Rr. The corresponding plaintext polynomials are encoded as:

q(X) =

r−1∑
i=0

qi ·X−si =

r−1∑
i=0

⌊∆ · ξi⌉ ·X−si ∈ R∗,d (1)

k(X) =

r−1∑
i=0

ki ·Xsi =

r−1∑
i=0

⌊∆ · κi⌉ ·Xsi ∈ R∗,d (2)

where ∆ > 0 is a scaling factor and d = rs. Here, the inner product ⟨q,k⟩ can be derived as:
1

∆2
· (q · k)[0] ≃ ⟨q,k⟩ (3)

We denote the (scaled) score σ as σ = (q · k)[0]. To pack multiple scores in a ciphertext for reducing
communication, we extract the constant term from the ciphertext. We slightly modify the conventional
homomorphic trace and write as:

r−1∑
i=0

φi(q · k) = r · σ (4)

where φi = p(X) 7→ p(X2i+1) is an automorphism overR∗,d for each 0 ≤ i < r.

Batching. We pack d scores σ0, σ1, . . . , σd−1 into a single ciphertext. By Equation 4,

r ·
d−1∑
j=0

σjX
j =

d−1∑
j=0

r−1∑
i=0

φi(q · kj)Xj =

r−1∑
i=0

φi(q) ·

d−1∑
j=0

φi(kj)X
j

 (5)

where σj = (q · kj)[0] for each 0 ≤ j < d. The last term can be interpreted as an inner product

between (φi)i and
(∑d−1

j=0 φi(kj)X
j
)
i
, separating query and key operations. The number of

automorphisms for the query is independent of n (when n ≥ d), and we can precompute the keys.

Caching. The key observation is that from Equation 5,

d−1∑
j=0

φi(kj)X
j = φi

d−1∑
j=0

kjX
j·inv(i)

 (6)

where inv(i) = (2i+ 1)−1 mod 2d so that φi(X
inv(i)) = X . This formula allows us to compute the

automorphism φi only once. Therefore, we can significantly reduce the number of (homomorphic)
automorphisms from d log(r) to r − 1.

Butterfly Decomposition. For k̃ =
(
k̃j

)
0≤j<d

∈ Rd
q,d and k =

(∑d−1
j=0 k̃jX

j·inv(i)
)
0≤i<r

∈
Rr

q,d, let

M = P ·


X0 X1 X2 · · · X(d−1)

X0 X3 X6 · · · X3(d−1)

X0 X5 X10 · · · X5(d−1)

...
...

...
. . .

...
X0 X2r−1 X2(2r−1) · · · X(2r−1)(d−1)}

 ∈ Rr×d
q,d

where P ∈ Rr×r
q,d is a permutation matrix that corresponds to the permutation i 7→ (2i+1)−1−1

2 mod
r : {0, 1, . . . , r − 1} → {0, 1, . . . , r − 1}. Then k = Mk̃ holds. Multiplying M to k̃ requires
r(r − 1) polynomial additions, which is not negligible. Therefore, we use a DFT-style butterfly
decomposition to reduce the computational cost.

Define k′ ∈ Rr
q,d as follows: k′[i] =

∑s−1
j=0 k̃j+siX

j for 0 ≤ i < r.
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Then for k′′ = Bk ∈ Rr
q,d, φi,r(k

′′[i]) = φi(k[i]) holds for 0 ≤ i < r, where

B = P ·


X0 Xs X2s · · · X(d−s)

X0 X3s X6s · · · X3(d−s)

X0 X5s X10s · · · X5(d−s)

...
...

...
. . .

...
X0 Xs(2r−1) X2s(2r−1) · · · X(2r−1)(d−s)}

 ∈ Rr×r
q,d (7)

and φi,r : Rq,d → Rq,d is a permutation on the coefficients that satisfies
φi,r(p)[(2i+ 1) · s · u+ j] = p[s · u+ j] (8)

for 0 ≤ j < s− 1 and 0 ≤ u < r. By leveraging the butterfly matrix decomposition, we reduce the
number of polynomial additions to r log(r). The detailed algorithm is written in Algorithm 7.

Removing the Leading Term r. To remove the leading term r from the result r ·
∑d−1

j=0 σjX
j , we

multiply r−1 (mod q) before automorphisms.

r ·
r−1∑
i=0

φi(r
−1 · q) ·

r · φi

d−1∑
j=0

r−1 · kjXj·inv(i)

 = r ·
d−1∑
j=0

σjX
j (9)

Therefore,
∑r−1

i=0

(
φi(r

−1 · q) ·
[
r · φi

(∑d−1
j=0 r

−1 · kjXj·inv(i)
)])

=
∑d−1

j=0 σjX
j .

Optimizations. To further enhance the performance of the encrypted database, we incorporate
several advanced techniques to optimize computation, storage, and accuracy. One key optimization is
caching via key-query decoupling, which allows keys to be precomputed and cached independently
of queries. This significantly reduces query response time by accelerating inner product computation.
We also apply hoisting (Halevi & Shoup, 2018; Bossuat et al., 2021) to efficiently decompose
queries, minimizing computational overhead. This technique, when combined with MLWE (Bae
et al., 2023) and seed-based ciphertext generation, enables compact storage and efficient updates.
Storage and update efficiency is further improved through batch processing and MLWE-based
seeding strategies (Bos et al., 2018), which reduce ciphertext size and update costs. Finally, we
improve numerical precision by removing leading constant terms (Chen et al., 2021) in homomorphic
computations, resulting in more accurate query results. See Appendix C for more detailed explanation.

3.3 DATABASE OPERATIONS

See Table 1 for our database’s API, enabling efficient search and dynamic updates with O(1)
complexity. We denote the client as Alice (A) and the server as Bob (B). Public parameters pp are
shared between them. The function GenSK generates secret keys used in Homomorphic Encryption
(HE), Advanced Encryption Standard (AES), and Private Information Retrieval (PIR), while GenSwk
produces the corresponding public keys of HE and PIR including switching keys for homomorphic
operations. The finite-length sequences, such as textual queries q and records v, are embedded using
an encoder E. The vector database D maintains the following attributes: num (number of entries),
key (stored key vectors), value (encrypted records), and cache (cached key vectors for efficient
search). Encryption and decryption are performed using EncryptHE, DecryptHE, EncryptAES,
and DecryptAES. The Score function computes similarity scores over encrypted vectors, and
TopK selects the top-k most relevant entries using a heap-based algorithm with O(n log k) complexity.
Retrieved values are fetched securely using PIR protocols. To support dynamic updates, we include
auxiliary operations such as len (entry count), Append (inserting new entries), Switch (deleting
entries by overwriting them with the last entry), and ReCache (refreshing the cached key vectors).
These operations are executed in a batched manner and achieve constant-time complexity.

3.4 SECURITY GUARANTEES.

Key vectors are encrypted using CKKS (Cheon et al., 2017). Values are encrypted using non-
deterministic AES-256. The combination of HE and AES provides robust security of our vector
database. That is, our database provides 128-bit IND-CPA security (Rogaway, 2004; Bossuat et al.,
2024) and is quantum-resistant (Bonnetain et al., 2019; Micciancio & Regev, 2009).
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Algorithm 1 Init
Require: public parameters pp

1: A: sk← GenSK(pp)
2: A: pk← GenPK(pp)
3: A: Send pk to Bob =0

Algorithm 2 Search
Require: query q, database D

1: A: q← E(q)
2: A: q← EncryptHE(q)
3: A: Send q to Bob
4: B: s← Score(q,Dcache)
5: B: Send s to Alice
6: A: s← DecryptHE(s)
7: A: I ← TopK(s) =0

Algorithm 3 Return
Require: record ids I

1: A&B: {v} ← PIR(Dvalue, I)
2: A: {v} ← {DecryptAES(v)} =0

Algorithm 4 Insert
Require: set of records {v}, database D

1: A: k← E(v)
2: A: k← EncryptHE(k)
3: A: v ← EncryptAES(v)
4: A: Send {(k, v)} to Bob
5: B: Dnum ← Dnum + len({(k, v)})
6: B: Dkey ← Append(Dkey, {k})
7: B: Dvalue ← Append(Dvalue, {v})
8: B: Dcache ← ReCache(Dcache,Dkey, {k})

=0

Algorithm 5 Delete
Require: record ids A, database D

1: A: Send A to Bob
2: B: Dnum ← Dnum − len(A)
3: B: Dkey ← Switch(Dkey,A)
4: B: Dvalue ← Switch(Dvalue,A)
5: B: Dcache ← ReCache(Dcache,Dkey,A)

=0

Table 1: Set of algorithms for homomorphically encrypted vector database operations.

4 EXPERIMENTS

In this section, we empirically demonstrate the practicality of our approach. We first present the
overall performance of our privacy-preserving framework, followed by ablations on Socratic-CoT.
We then examine the accuracy of our homomorphically encrypted vector database and assess its
latency and storage cost. Details of the experimental setup are provided in Appendix D.

4.1 PRIVACY-PRESERVING FRAMEWORK WITH SOCRATIC-COT

Our framework improves local-only baselines by up to +27.6 percentage points. Experiments
are conducted on two question-answering benchmarks: LoCoMo (Maharana et al., 2024), for personal
assistant scenarios, and MediQ (Li et al., 2024a), for medical consultation scenarios. Both benchmarks
require retrieving relevant private records and performing complex reasoning to predict an accurate
answer. Consequently, these experiments assess the model’s ability to retrieve appropriate private
data for a given user query and generate well-contextualized responses accordingly. As shown in
Table 2, our framework consistently outperforms the local-only baselines on both LoCoMo and
MediQ. Delegating complex reasoning to powerful remote models yields substantial performance
gains. Specifically, our hybrid framework improve over the local models by up to 23.1 percent points
on LoCoMo and 27.6 on MediQ. These gains are especially notable in challenging scenarios requiring
domain expertise, such as medical consultations. Despite operating under strict privacy constraints,
our framework approaches—and in some cases surpasses—the performance of oracle baselines
that operate without privacy constraints. This demonstrates the effectiveness of our approach in
balancing strong privacy with high utility. To further analyze the detailed sources of these performance
improvements, we conduct an ablation study on Socratic-CoT, which is presented in Appendix F.

4.2 HOMOMORPHICALLY ENCRYPTED VECTOR DATABASE

Encrypted search retains > 99% accuracy. We evaluate the search accuracy of our encrypted
vector database using the LoCoMo (Maharana et al., 2024), Deep1B (Babenko & Lempitsky, 2016),
and LAION (Schuhmann et al., 2022) datasets, which cover a wide range of modalities and vector
dimensions. As noted in prior work (Cheon et al., 2017), homomorphic encryption is commonly
known to introduce accuracy degradation as a result of error accumulation. Nevertheless, Table 3
shows that our database preserves high search fidelity across both plaintext-ciphertext and ciphertext-
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Baseline Model LoCoMo MediQ

Remote-Only Baselines (oracle)
R1 GPT-4o 80.6 81.8
R2 Gemini-1.5-Pro 84.2 69.8
R3 Claude-3.5-Sonnet 89.8 79.3

Local-Only Baselines
L1 Llama-3.2-1B 64.6 32.1
L2 Llama-3.2-3B 68.7 43.2
L3 Llama-3.1-8B 68.8 47.5

Hybrid Framework
w/ Socratic-CoT (ours)

L1 + R1 87.7 59.7
L1 + R2 85.1 49.7
L1 + R3 84.3 58.0
L2 + R1 85.9 60.7
L2 + R2 79.8 52.9
L2 + R3 74.6 59.0
L3 + R1 87.9 59.5
L3 + R2 88.0 52.1
L3 + R3 86.1 59.6

Table 2: Benchmark results on the LoCoMo and MediQ datasets. LoCoMo is evaluated by F1
score, while MediQ is evaluated by exact match. Takeaway: Our hybrid framework significantly
outperforms local-only baselines and approaches the oracle baselines without privacy constraints.

ciphertext inner product computations. The encrypted database achieves accuracy comparable to its
unencrypted counterpart, with both mean and maximum inner product errors remaining minimal.
Furthermore, metrics such as 1-Recall@1, 1-Recall@5, and MRR@10 confirm that the top-k results
from the encrypted database closely match those of the plaintext database. These results demonstrate
that encrypted semantic search can be performed with negligible impact on accuracy.

Dataset Max Error Mean Error Std Error MRR@10 1-Recall@1 1-Recall@5
Plaintext-Ciphertext

LoCoMo 6.94e-3 5.25e-3 4.53e-4 100 100 100
Deep1B 5.29e-5 6.42e-6 7.00e-11 99.97 99.96 99.99
LAION 1.06e-4 9.83e-6 1.36e-10 99.86 99.79 99.95

Ciphertext-Ciphertext
LoCoMo 1.61e-0 2.87e-1 2.15e-1 97.86 100 100
Deep1B 1.39e-3 1.71e-4 4.61e-8 99.59 99.21 99.97
LAION 2.70e-3 3.44e-4 1.87e-7 99.85 99.78 99.95

Table 3: Search accuracy across LoCoMo, Deep1B, and LAION datasets, evaluated under two
settings: when the query is in plaintext (top) and when the query is ciphertext (bottom), with
ciphertext keys in both cases. Takeaway: Our encrypted vector database preserves high semantic
search accuracy, achieving near-parity with the fully plaintext setting (both query and key).

Encrypted search scales to 1M entries with < 1 second latency. A well-known challenge of
homomorphic encryption is its heavy computational overhead. Nonetheless, our database achieves
practical latency for large-scale vector similarity search. Figure 2 shows search latencies on the
Deep1B (Babenko & Lempitsky, 2016) dataset. By leveraging efficient SIMD-style operations and
low-precision arithmetic in the ciphertext space, the database scales linearly across sizes ranging
from 1,000 to 1 million entries. At the million scale, end-to-end latency remains under one sec-
ond—including encryption, computation, and communication—even under a slow network. This
performance makes the encrypted database viable for real-time applications.

Our system also provides significant improvements over previous homomorphic encryption methods.
As shown in Table 4, our approach consistently delivers faster runtimes than CHAM (Ren et al., 2023),
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Figure 2: Search latency breakdown on
the Deep1B dataset as the number of
database elements increases. The results
are obtained using 64 threads. Red and
pink bars represent network communica-
tion time on fast and slow networks, re-
spectively, with the numbers above each
bar indicating the corresponding latency.
Blue bars denote query caching time,
while light-blue bars show query–key
multiplication time. Takeaway: Our en-
crypted search scales to 1M entries with
< 1 second latency.

an encrypted matrix–vector multiplication method designed for frequent updates. The performance
gap widens with scale: while CHAM requires 84,543 ms to process 1 million entries, our method
completes the same operation in just 2,280 ms—achieving a 37× speed-up. This efficiency primarily
stems from our query caching strategy, explained in Section 3.2, which restructures the key-switching
phase so that its computational complexity scales with the vector length rather than the full matrix
size, effectively removing the dominant bottleneck of prior designs. Moreover, in the 100K subset of
the LAION (Schuhmann et al., 2022) dataset, Compass (Zhu et al., 2024), an Oblivious RAM–based
search method, required 76 ms on the fast network and 931 ms on the slow network. In comparison,
our encrypted database achieved 62 ms and 251 ms, yielding 1.2× and 3.7× speed-ups, respectively.

Deep1B 1K 4K 10K 100K 1M
CHAM (Ren et al., 2023) 378 ms 389 ms 1,171 ms 9,406 ms 84,543 ms
Ours 150 ms 151 ms 156 ms 236 ms 951 ms

Table 4: Single-thread latency of homomorphically encrypted matrix–vector multiplication as the
number of database elements increases. The CHAM baseline is based on our re-implementation of
the original method, incorporating additional optimizations such as ring packing and packing multiple
vectors into a single ciphertext. Takeaway: Our method achieves up to 88× speed-up over CHAM,
enabling real-time encrypted search at million-scale.

Encrypted storage incurs < 5.8× overhead. Storing high-dimensional vectors in homomorphic
ciphertexts introduces nontrivial storage overhead. However, as detailed in Section 3 and Appendix C,
our implementation adopts optimizations such as packing multiple vector components into a single
ciphertext and omitting unused polynomial coefficients, effectively reducing space requirements.
Moreover, we apply module-LWE variants and seed-based ciphertext generation techniques, which
scale ciphertext size linearly with vector dimensionality rather than polynomial degree. As a result,
the encrypted database achieves practical storage costs, less than 5.8× overhead even for millions of
entries, enabling deployment in real-world systems without requiring excessive disk resources.

5 CONCLUSION AND DISCUSSION

We present a privacy-preserving framework that partitions tasks between powerful but untrusted re-
mote models and lightweight trusted local models. Our key contributions enable secure collaboration
without revealing sensitive data. By integrating Socratic-CoT, our framework not only safeguards
privacy but also sustains strong performance. In addition, our homomorphically encrypted vector
database supports million-scale collections with sub-second latency and negligible accuracy loss
compared to plaintext search. Taken together, this work demonstrates that strong privacy guarantees
can be achieved without sacrificing performance or scalability, providing a practical foundation for
the secure real-world deployment of large-scale AI systems.

Future work should extend our framework by incorporating query protection techniques, as user
queries themselves may also contain sensitive information. Since our approach is orthogonal to data
minimization and sanitization, combining them can strengthen both query and context privacy.
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6 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. The main paper provides a
detailed description of our proposed privacy-preserving framework (Sections 2– 3), including the
design of the Socratic-CoT and the Homomorphically Encrypted Vector Database. Appendix C
contains full mathematical derivations, algorithmic details, and additional explanations of the database
operations. Appendix D describes the full experimental setup, including benchmark choices, hy-
perparameter settings, and evaluation metrics. Appendix E specifies the compute resources used,
and the exact networking conditions emulated during evaluation. Finally, Appendix H lists all
prompt templates used for sub-query generation, chain-of-thought reasoning, and response generation.
An anonymized source code and scripts is also submitted as supplementary material to facilitate
reproduction of all reported experiments.

7 ETHICS STATEMENT

We acknowledge and adhere to the ICLR Code of Ethics3. Our study does not involve human
subjects or demographic data, but directly addresses critical ethical concerns of privacy and security
in large language model interactions. By introducing a framework that separates trusted and untrusted
zones and enabling encrypted semantic search over private data, our work strengthens user privacy
while maintaining strong utility. We believe this contributes positively to ethical AI development by
reducing risks of data exposure, insider threats, and misuse, and by providing a practical foundation
for deploying powerful AI systems without compromising personal privacy.
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A RELATED WORK

In this paper, we address the challenge of privacy-preserving LLM interaction, focusing on protecting
user records in the context, at inference time. Unlike private training approaches which safeguard
the training corpus through techniques like DP-SGD and DP-ICL (Abadi et al., 2016; Tang et al.,
2023), we focus on protecting user data provided as inputs to the model during inference, ensuring
that sensitive context information remains confidential and is not leaked or memorized by the remote
LLMs. Our work intersects with the following topics:

Private Inference via Encryption. Early approaches combined homomorphic encryption (HE) with
neural networks, exemplified by CryptoNets (Gilad-Bachrach et al., 2016), though with 103× compu-
tational overhead. Subsequent systems like Gazelle (Juvekar et al., 2018) and XONN (Riazi et al.,
2019) reduced latency by hybridizing HE with garbled circuits and binary networks. Recent work
extends these techniques to Transformers and LLMs: MPCFormer (Li et al., 2022), PermLLM (Zheng
et al., 2024), and PUMA (Dong et al., 2023) achieve privacy for BERT and LLaMA architectures but
still require seconds per token. Industry implementations like Apple’s HE+PIR photo search (Inc.)
show promise, but cloud LLM providers have been reluctant to adopt these approaches due to
significant computational overhead and complex key management.

Input Minimization and Sanitization Methods. Complementary approaches focus on sanitizing
prompts before transmission. PREEMPT (Chowdhury et al., 2025) detects and replaces sensitive
spans with placeholders or differentially private values. PAPILLON (Siyan et al., 2024) divides
processing between local lightweight models and external LLMs, sending only abstracted prompts
to the cloud. Additional work Dou et al. (2023); Staab et al. (2024) focuses on abstracting personal
information. While effective for specific domains, these approaches typically require task-specific
engineering or sacrifice accuracy when critical context is removed Xin et al. (2025). Our framework
preserves task performance without cryptographic overhead by keeping raw data in the trusted zone
while delegating only non-sensitive reasoning steps.

Chain-of-Thought Reasoning and Task Decomposition. Chain-of-thought (CoT) prompting has
emerged as a powerful technique for improving LLM reasoning through step-by-step solutions. Zero-
shot CoT techniques (Wei et al., 2022; Kojima et al., 2022) and task decomposition prompts (Zhou
et al., 2022; Press et al., 2022) guide models to break complex problems into manageable sub-
problems, often enhanced with supervised reasoning traces (Zelikman et al., 2022). Parallel work on
model cascades aims to maximize efficiency by routing queries between different-sized models, as
in FrugalGPT (Chen et al., 2023) and Hybrid LLM (Ding et al., 2024), typically using confidence
estimators to determine when smaller models are insufficient (Liu et al., 2024; Gupta et al., 2024).
Multi-model frameworks like Socratic Models (Zeng et al., 2022) and HuggingGPT (Shen et al.,
2023) divide tasks between a powerful LLM planner and specialized executors, but assume the central
model has full access to private data. In contrast, our approach performs test-time CoT decomposition
without additional training while preserving privacy by ensuring the large LLM only sees abstracted
queries rather than raw private data.

RAG and Agentic Workflows. Recent systems increasingly embed LLMs within persistent user-
centric datastores to deliver personalized assistance. These range from research prototypes like
Generative Agents (Park et al., 2023) that maintain interaction histories as long-term memory, to com-
mercial deployments such as ChatGPT’s "Memory" and Operator (OpenAI, 2024; 2025) that preserve
multi-day conversation logs, and open frameworks like LangChain and LlamaIndex (Mavroudis,
2024; LlamaIndex Team, 2024) that provide memory backends as first-class primitives. Life-logging
assistants like Rewind and Lindy (Rewind AI, 2024; Lindy AI, 2024) index users’ entire digital traces,
leveraging the success of retrieval-augmented generation (RAG) (Lewis et al., 2020a) for grounding
LLMs in external knowledge. However, these systems typically assume trustworthy datastores,
ignoring privacy risks highlighted by recent extraction and inference attacks (Bianchi et al., 2023).
Our framework is the first to combine an agentic RAG architecture with encrypted, local retrieval,
addressing this critical privacy gap while maintaining the benefits of contextual personalization.

B STORAGE LIMITATION ON EDGE DEVICES

We estimate the storage requirements when accumulating long-term user data locally on a personal
device. A single data record with its 768-dimensional float32 embedding requires approximately
103 KB (3 KB for the key embedding and 100 KB for the data value). Thus, 1M records per user
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would consume around 103 GB in total, corresponding to more than 80% of the 128 GB storage
available on a base iPhone 16. Allocating such a large portion of disk capacity for a single application
is clearly impractical, especially as user data continues to grow.

C DETAILS ON THE HOMOMORPHICALLY ENCRYPTED VECTOR DATABASE

C.1 MATHEMATICAL NOTATIONS

Given a power-of-two integer d > 1, let R∗,d = Z[X]/(Xd + 1). Given an integer q > 0, let
Rq,d = Zq[X]/(Xd + 1) ≃ R∗,d/qR∗,d. Polynomials are written in roman (e.g. q, k) and vectors
are written in bold (e.g. q,k). Given a vector v ∈ F t, v[i] denotes the i-th coordinate. Given
polynomials p,p′ ∈ R∗,d, p · p′ ∈ R∗,d denotes the ring multiplication in R. Given a polynomial
p ∈ R∗,d, p[i] denotes the coefficient of Xi. Given a polynomial in p ∈ R∗,d′ , we denote p̃ ∈ R∗,d
as the natural embedding p̃(X) = p(Xd/d′

). As we use d as the fixed RLWE dimension, we omit d
in the notation p̃. For simplicity, we first solve the case where n = d and r is a power of two. For
n ≥ d, we can extend the base case to compute multiple similarity scores. We describe the behavior
of the underlying plaintexts.

C.2 SECURE INNER PRODUCT, ALGORITHMS AND OPTIMIZATIONS

We specify the detailed algorithms as follows. Algorithms 6 and 7 describe the precomputations for
the query and key, respectively, as mentioned right after Equation (5). Algorithm 8 describes the
score computation algorithm starting from the precomputed query and cache ciphertexts.

Optimizations Summary. We summarize the optimizations mentioned in the previous subsection
and discuss some additional optimizations.

• Batching and Caching: We write the homomorphic inner product equation as in Equa-
tion (5). This separates the precomputations for query and key, which are denoted as
Decompose and Cache, respectively. This reduces the number of automorphisms from
d log(r) to r − 1.

• Butterfly Decomposition: The key side precomputation is significant as it involves O(r2)
polynomial additions. We leverage the butterfly decomposition to reduce the complexity
from r(r − 1) to r log(r).

• Seeding and MLWE: In order to improve the storage size, we use Module LWE
(MLWE) (Langlois & Stehlé, 2015) and Extendable Output-format Function (XOF) with
a public seed. This reduces ciphertext size from 2d (i.e. twoRq,d elements) to r (i.e. one
Rq,r element and a 128-bit public seed).

• Remove the leading term r: We use the optimization technique introduced in (Chen et al.,
2021) that evaluates the trace without the leading term r, thereby improving the precision.
This technique is applied for Line 2 of Algorithm 6 and Line 3 of Algorithm 7.

• Hoisting (Halevi & Shoup, 2018): We adapt the hoisting technique that lazily computes
the homomorphic operations to improve efficiency. Our adaptaion is similar to the double
hoisting algorithm in (Bossuat et al., 2021). Hoisting appears in the following instances.

– Line 3 of Algorithm 6: For each index 0 ≤ i < s, ModUp(ai) is computed only once.

– Line 5,6 of Algorithm 6, Line 13,14 of Algorithm 7: We ModDown after summation,
reducing the number of modDown to r per each j.

• Reducing NTT dimension: In Line 3,5,6 of Algorithm 6, we utilize dimension r NTT
instead of dimension d NTT, reducing the complexity by a factor of log(d)/ log(r). This is
possible because each âi is sparsely embedded into the larger ringRq,d.
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Algorithm 6 Decompose
Require: Query (seeded) MLWE ciphertext (b, ρ) that encrypts q ∈ Rq,r via the secret key s =

(su)0≤u<s ∈ Rs
q,r. Here b ∈ Rq,r and ρ is a 128-bit seed string. swkj = (swkj,u)0≤u<s ∈

(R2
qp,d)

s are the RLWE switching keys where swkj,u switches from s̃u to φ−1
j (s′) where s′ ∈

R∗,d is the target RLWE secret key. Here GenA generates the a-part of the MLWE ciphertext
from the 128-bit seed ρ, and ModUp and ModDown are the typical homomorphic base conversions
from q to qp and from qp to q.

Ensure: RLWE ciphertexts (ctj)0≤j<r that encrypt
(
φj(r

−1 · q)
)
0≤j<r

, i.e. polynomial of degree
d inRq with X2j+1 automorphism operations for 0 ≤ j < r.

1: a = (au)0≤u<s ∈ Rs
q,r ← GenA(ρ)

2: (b,a)← r−1 · (b,a) mod q
3: â = (âu)0≤u<s ∈ Rs

qp,r ← (ModUp(au))0≤u<s

4: for j = 0 to r − 1 do
5: ctj ∈ R2

qp,d ←
∑s−1

u=0(âi · swkj,u)
6: ctj ← ModDown(ctj)

7: ctj ← φj(ctj + (b̃ ∈ Rq,d, 0))
8: end for
9: return (ctj)0≤j<r =0

Algorithm 7 Cache
Require: Key (seeded) MLWE ciphertexts (bi, ρi) that encrypts ki ∈ Rq,r via the secret key

s = (su)0≤u<s ∈ Rs
q,r, for each 0 ≤ i < d. Here bi ∈ Rq,r and ρi is a 128-bit seed string.

swkj = (swkj,u)0≤u<s ∈ (R2
qp,d)

s are the RLWE switching keys where swkj,u switches from
φj(s̃i) to s′ where s′ ∈ R∗,d is the target RLWE secret key. Here GenA generates the a-part of the
MLWE ciphertext from the 128-bit seed ρ, and ModUp and ModDown are the typical homomorphic
base conversions from q to qp and vice versa, respectively. Let B ∈ Rr×r

q,d be the matrix as
defined in Equation 7.

Ensure: RLWE ciphertexts (ct′′′j )0≤j<r ∈ (R2
q,d)

r that encrypt
(∑d−1

i=0 φj(k̃i)X
i
)
0≤j<r

.

1: for i = 0 to d− 1 do
2: ai = (ai,u)0≤u<s ∈ Rs

q,r ← GenA(ρi)

3: (bi,ai)← r−1 · (bi,ai) mod q
4: end for
5: for j = 0 to r − 1 do

6: (b′j ,a
′
j) ∈ R

s+1
q,d ←

(∑s−1
v=0 b̃v+sj ·Xv,

(∑s−1
v=0 ã(v+sj),u ·Xv

)
0≤u<s

)
7: end for
8: ct′ ∈ (Rs+1

q,d )r ← (b′j ,a
′
j)0≤j<r

9: ct′ ∈ (Rs+1
q,d )r ← B · ct′

10: for j = 0 to r − 1 do
11: ct′′j = (b′′j ,a

′′
j ) ∈ Rq,d ×Rs

q,d ← φj,r (ct
′[j])

12: â′′j = (â′′j,u)0≤u<s ∈ Rs
qp,d ← ModUp(a′′j )

13: ct′′′j ∈ R2
qp,d ←

∑s−1
u=0(â

′′
j,u · swkj,u)

14: ct′′′j ∈ R2
q,d ← ModDown(ct′′′j )

15: ct′′′j ← ct′′′j + (b′′j ∈ Rq,d, 0)
16: ct′′′j ← r · ct′′′j mod q
17: end for
18: return (ct′′′j )0≤j<r =0
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Algorithm 8 Score

Require: Decomposed query ciphertexts ctq ∈ (R2
q,d)

r, Cached key ciphertexts ctk ∈ (R2
q,d)

r.

Ensure: A RLWE ciphertext ctout encrypting the resulting score polynomial
∑d−1

j=0 σjX
j .

1: ctout ← Relin(
∑r−1

i=0 ctq[i]⊗ ctk[i])
2: return ctout =0

C.3 PRIVATE INFORMATION RETRIEVAL

We extend our Secure Inner Product method to support Private Information Retrieval (PIR). Similar
to SPIRAL (Menon & Wu, 2022), we treat the database as a matrix. The protocol requires the client
to send two encrypted queries: one selecting the target row and the other selecting the target column,
each containing a one hot vector at the corresponding index. The server then performs PIR through
two sequential applications of the Secure Inner Product protocol. However, naively applying the
Secure Inner Product protocol in this PIR context introduces a cache invalidation issue. Specifically,
while the standalone Secure Inner Product scenario only requires refreshing the cache corresponding
to the updated index, PIR necessitates refreshing the entire cache whenever the database changes.
This occurs because the output from the first stage acts as the key for the second stage. To address
this, we modify our protocol by applying the inverse butterfly operation—originally intended for use
on the key—to the decomposed query instead.

In our experimental setting using a Fast network (see Section E), the modified PIR protocol achieves
an end-to-end retrieval latency of under 700 ms for databases consisting of 220 records, each sized at
1 KiB. Consequently, we demonstrate that our approach efficiently supports a secure vector database
of 1 GiB containing 1 million records with 96 dimensions each, achieving an end-to-end latency
below 1 second.

C.4 NAIVE BASELINE FOR ENCRYPTED DATABASES

Let us consider a simple yet inefficient baseline protocol for implementing a remote encrypted
vector database: whenever a client needs to search or update an entry, it downloads the entire
database from the server, decrypts it locally, performs the necessary operations, re-encrypts the
entire database, and uploads it back to the server. Although straightforward, this approach incurs
significant communication overhead and computational burden on the client, making it impractical for
large-scale applications. To address these inefficiencies, we aim to design a remote vector database
that preserves the same robust security guarantees as the naive approach—where the database remains
encrypted under a symmetric key held exclusively by the client—while achieving much greater
efficiency in both communication and client-side computation.

C.5 DETAILED ILLUSTRATION OF HOMOMORPHICALLY ENCRYPTED VECTOR DATABASE

As shown in Figure 3, our system demonstrates how homomorphic encryption enables privacy-
preserving retrieval across past and current interactions. In a previous interaction, the user provides
sensitive information with a document attachment (e.g., “I have a peanut allergy. Here is my pre-
scription."), which is converted into embeddings on the edge device. The chat history and document
attachment are AES-encrypted, while the embedding vectors are homomorphically encrypted and
both are sent to the server for secure storage as key–value pairs. At a later time, when the user
asks a new question (e.g., “Could you suggest a dinner menu?"), the query is similarly transformed
into embeddings, homomorphically encrypted, and transmitted to the server. The server computes
similarity scores using ciphertext–ciphertext matrix–vector multiplication, ensuring that search is
performed without exposing plaintext data. Since performing top-k selection directly under homo-
morphic encryption would be prohibitively expensive, the encrypted scores are returned to the client,
where they are decrypted and used to perform local top-k selection. Finally, the client retrieves the
corresponding records through private information retrieval, decrypts them, and integrates the results
into the retrieval-augmented generation process, allowing the model to provide a personalized output
while preserving data privacy.
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Figure 3: A detailed illustration of the homomorphically encrypted vector database.

D EXPERIMENTAL SETUP

D.1 PRIVACY-PRESERVING FRAMEWORK WITH SOCRATIC-COT

We empirically evaluate the effectiveness of our reasoning framework in addressing the computational
limitations of local models. Experiments are conducted on two QA-focused benchmarks: LoCoMo,
which simulates personal assistant scenarios, and MediQ, which simulates medical consultation
scenarios. Both tasks require retrieving relevant private user data and performing complex reasoning
to arrive at a final answer. We compare our framework against two categories of baselines: Golden
Baselines assume no privacy constraints, allowing private data to be directly passed to remote models.
We use GPT-4o (R1), Gemini-1.5-Pro (R2), and Claude-3.5-Sonnet (R3), which cannot be run locally
but offer strong reasoning capabilities. Local-only Baselines assume strong privacy constraints,
requiring the entire inference process to be carried out by local models. We use Llama-3.2-1B (L1),
Llama-3.2-3B (L2), and Llama-3.1-8B (L3), which are lightweight enough for local execution but
less capable in complex reasoning tasks. The goal of our reasoning framework is to improve the
performance of local-only baselines by leveraging model collaboration and delegated reasoning,
aiming to approach the performance of the golden baselines. We use DRAGON (Lin et al., 2023) to
extract embedding vectors.

D.2 HOMOMORPHICALLY ENCRYPTED VECTOR DATABASE

We examine whether vector search can be performed accurately and efficiently over encrypted data
using homomorphic encryption. Our goal is to match the quality and latency of plaintext vector search
while ensuring that both queries and database contents remain private. The encrypted vector database
is implemented using HEXL (Boemer et al., 2021) and evaluated in in the same Google Cloud
Platform configuration used by Compass (Zhu et al., 2024) for a fair comparison: an n2-standard-8
instance (8 vCPUs @ 2.8 GHz, 32 GB RAM) as the client and an n2-highmem-64 instance (64 vCPUs
@ 2.8 GHz, 512 GB RAM) as the server, co-located in the same region/zone. Using Linux Traffic
Control, we emulate two network regimes: Fast (3 Gbps, 1 ms Round Trip Time (RTT)) and Slow
(400 Mbps, 80 ms RTT) to isolate the impact of bandwidth and latency. We use 10k query vectors
and 1M key vectors from Deep1B (96D) and LAION (512D), as well as the entire LoCoMo dataset
(768D). For search accuracy, we report mean/max inner product error, MRR@10, and 1-Recall@k.
For latency, we measure end-to-end CPU runtime. All speed measurements assume that both the
query and the keys are ciphertexts and employ parameters that satisfy IND-CPA 128-bit security. To
evaluate storage, we analyze ciphertext overhead and apply packing optimizations.

D.3 HYPERPARAMETER SELECTION

To evaluate Socratic-CoT, we set the temperature of all language models to zero to ensure repro-
ducibility. We use top-k retrieval with reranking based on vector similarity scores. We set k to 5 for
LoCoMo and 20 for MediQ, as the maximum number of ground truth retrievals varies across datasets.
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D.4 MODEL SELECTION

We employ DRAGON (Lin et al., 2023) as the retriever because it outperforms other candidates, such
as DPR (Karpukhin et al., 2020), Contriever (Izacard et al., 2021), and Instructor (Su et al., 2022), on
our chosen datasets. It represents data as 768-dimensional vectors, and the inner product between two
vectors is used to compute the similarity score. For the remote models, we use GPT-4o (R1) (Hurst
et al., 2024), Gemini-1.5-Pro (R2) (Team et al., 2024), and Claude-3.5-Sonnet (R3) (Anthropic, 2024),
representing the most powerful closed API language models currently available. These models are
assumed to run in a public cloud environment. For the local models, we select Llama-3.2-1B (L1),
Llama-3.2-3B (L2), and Llama-3.1-8B (L3) (Dubey et al., 2024), which are lightweight enough to be
deployed on edge devices. These models reflect realistic constraints for privacy-preserving, on-device
inference. This selection enables a clear evaluation of our framework, balancing reasoning capability
with privacy constraints.

D.5 BENCHMARK SELECTION

We report the performance of Socratic-CoT on two benchmarks. The first, LoCoMo (Maharana et al.,
2024), is a benchmark designed to test language models in long-term dialogues. It simulates an
everyday personal assistance scenario, where personal information is gradually accumulated in a
vector database through extended observation. On LoCoMo, we evaluate (1) the remote models’s
impact on retrieval using Recall@5 and (2) its enhancement of response quality through improved
response generation, measured by the F1 score. We use only the single-hop QA and multi-hop QA
datasets out of the total five datasets in LoCoMo, as these are the only datasets suitable for our
scenario. The second benchmark, MediQ (Li et al., 2024a), presents a more specialized scenario
focused on medical consultation, where privacy risks are directly at odds with the need for access to a
patient’s personal context. MediQ is a multiple-choice question-answering dataset, so we evaluate
generation accuracy using the exact match metric. Since MediQ lacks retrieval annotations, we do
not report retrieval metric for this benchmark.

We report the performance of the homomorphically encrypted vector database on standard retrieval
benchmarks. To assess the scalability of encrypted storage and search, we selected a sufficiently large
dataset. We used the top 10k query vectors and 1M key vectors from Deep1B (Babenko & Lempitsky,
2016) and LAION (Schuhmann et al., 2022), represented as 96-dimensional and 512-dimensional
vectors respectively. For LoCoMo (Maharana et al., 2024), we used the entire dataset, which consists
of 1,742 query vectors and 4,972 key vectors, each represented as a 768-dimensional vector.

D.6 METRIC SELECTION

For the Socratic-CoT, we focus on measuring the quality of the generated answers. On the LoCoMo
benchmark, we report the F1 score, which captures token-level overlap between generated and
ground-truth responses in long-context dialogues. On the MediQ benchmark, we report exact match
accuracy, as the task involves multiple-choice question answering and requires strict correctness.
These metrics enable us to quantify the impact of delegating complex reasoning to powerful remote
models while keeping sensitive data within a trusted zone.

For the homomorphically encrypted vector database, we evaluate both search accuracy and latency.
To assess search accuracy, we compute the mean error and maximum error between the inner product
similarity scores produced by encrypted and plaintext searches. Additionally, we report 1-Recall@1
and 1-Recall@5, which represent the proportion of queries for which the top-1 result from the
plaintext database is not recovered in the top-1 or top-5 encrypted results. Lower values for these
metrics indicate higher retrieval consistency under encryption. To evaluate latency, we measure the
average response time of encrypted search queries. All metrics are reported separately for plaintext
and ciphertext queries.

E COMPUTE RESOURCES

For Socratic-CoT, all experiments were conducted using a single NVIDIA A100 GPU. Language
models from the Llama family were accessed via the Fireworks API (Team, 2025), while other
closed API models, including those from OpenAI, Gemini, and Claude, were accessed through
their respective APIs. Our homomorphically encrypted vector database was implemented using
HEXL (Boemer et al., 2021) and evaluated under the same Google Cloud Platform configuration
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used by Compass (Zhu et al., 2024) to ensure a fair comparison: an n2-standard-8 instance (8 vCPUs
@ 2.8 GHz, 32 GB RAM) was used as the client, and an n2-highmem-64 instance (64 vCPUs @ 2.8
GHz, 512 GB RAM) was used as the server, both co-located in the same region and zone. To emulate
realistic networking conditions, we used Linux Traffic Control to simulate two environments: Fast (3
Gbps bandwidth, 1 ms round-trip time and Slow (400 Mbps bandwidth, 80 ms round-trip time). The
following commands were used to apply these network configurations to the server.

Fast Network

tc qdisc add dev ens4 root netem delay 1ms
tc qdisc add dev ens4 root handle 1: htb default 30
tc class add dev ens4 parent 1: classid 1:1 htb rate 3096mbps
tc class add dev ens4 parent 1: classid 1:2 htb rate 3096mbps
tc filter add dev ens4 protocol ip parent 1:0 prio 1 u32 \
match ip dst $CLIENT_IP flowid 1:1
tc filter add dev ens4 protocol ip parent 1:0 prio 1 u32 \
match ip src $CLIENT_IP flowid 1:2

Slow Network

tc qdisc add dev ens4 root netem delay 80ms
tc qdisc add dev ens4 root handle 1: htb default 30
tc class add dev ens4 parent 1: classid 1:1 htb rate 400mbps
tc class add dev ens4 parent 1: classid 1:2 htb rate 400mbps
tc filter add dev ens4 protocol ip parent 1:0 prio 1 u32 \
match ip dst $CLIENT_IP flowid 1:1
tc filter add dev ens4 protocol ip parent 1:0 prio 1 u32 \
match ip src $CLIENT_IP flowid 1:2

F ABLATION STUDIES ON SOCRATIC-COT

To better understand the source of performance gains from Socratic-CoT, we conduct two ablation
studies on the LoCoMo (Maharana et al., 2024) and MediQ (Li et al., 2024a) datasets.

Reasoning augmentation leads to substantial performance gains. Table 5 compares remote-only
and local-only baselines, with and without Socratic-CoT. On LoCoMo, all methods benefit from
reasoning augmentation: explicitly prompting the model to reason through intermediate steps leads
to clear performance gains. For example, the local-only baseline improves from 64.6 to 82.0, a gain
of +17.4 percentage points, while the remote-only baseline improves from 80.6 to 92.6, a gain of
+12.0 percentage points. These results suggest that reasoning augmentation through Socratic-CoT is
key to performance gains on LoCoMo.

Method Model LoCoMo MediQ
Remote-Only Baseline R1 80.6 81.8
Remote-Only Baseline w/ Socratic-CoT R1 + R1 92.6 67.3

Local-Only Baseline L1 64.6 32.1
Local-Only Baseline w/ Socratic-CoT L1 + L1 82.0 32.5

Hybrid Framwork w/ Socratic-CoT (ours) L1 + R1 87.7 59.7

Table 5: First ablation study on Socratic-CoT. LocoMo is evaluated by F1 score, while MediQ is
evaluated by exact match. R1 is GPT-4o, and L1 is Llama-3.2-1B. Takeaway: Reasoning augmenta-
tion through Socratic-CoT is the primary driver of performance gains.

Delegating both sub-queries and chain-of-thought generation to more powerful models is key.
Table 6 highlights two key observations by isolating the contributions of sub-query generation and
chain-of-thought generation.
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First, delegating sub-query generation significantly improves retrieval quality. On LoCoMo, using a
smaller model (Llama-3.2-1B) for sub-query generation limits retrieval performance (Recall@5 =
21.8). When this task is handled by a more capable model (GPT-4o), performance nearly doubles to
44.1. This indicates that sub-query generation often requires deeper understanding and reasoning,
which smaller models struggle to achieve. Furthermore, using ground-truth retrieval results boosts
performance even more, implying that better sub-query generation—closer to the ideal target—can
further enhance final answer quality. On MediQ, the amount of private data per user is so limited that
most of the relevant records are retrieved even without high-quality sub-queries, reducing the impact
of sub-query generation on overall performance.

Second, delegating chain-of-thought generation improves final response quality. On LoCoMo, without
any chain-of-thought (N/A), the F1 score is 77.8. Incorporating chain-of-thought reasoning from
the smaller model raises it to 85.4, and using GPT-4o improves it further to 89.3. These results
demonstrate that guiding generation with reasoning augmentation produced by stronger models plays
a critical role in achieving high answer quality. Meanwhile, on MediQ, augmenting reasoning without
rich domain knowledge from remote models yields only marginal improvements. In this case, the
dominant factor is qualified reasoning criteria generated with rich domain knowledge, which powerful
remote models provide far more effectively than smaller local models. We provide a more detailed
analysis of the MediQ results in Appendix I.

These findings suggest that local-only baselines, even without disclosing queries, are sufficient as
effective personal assistants for casual tasks like LoCoMo. In contrast, specialized domains such as
MediQ necessitate leveraging the advanced expertise embedded within powerful remote models to
deliver high-quality answers. Therefore, collaborating with remote models becomes essential for
users seeking more accurate responses in expert domains.

Sub-Query
CoT R1 L1 N/A

GT 89.3 85.4 77.8
R1 (GPT-4o) 87.7 84.7 73.9
L1 (Llama-3.2-1B) 84.9 82.0 64.6

(a) LoCoMo

Sub-Query
CoT R1 L1 N/A

All 60.4 32.1 31.4
R1 (GPT-4o) 59.7 31.8 33.2
L1 (Llama-3.2-1B) 58.6 32.5 32.0

(b) MediQ

Table 6: Second ablation study on Socratic-CoT on the LoCoMo and MediQ datasets. LocoMo
is evaluated by F1 score, while MediQ is evaluated by exact match. Each row corresponds to a
different sub-query generation method: For LoCoMo, GT uses ground-truth private data without
sub-query generation (Recall@5=100.0), R1 uses GPT-4o (Recall@5=44.1), and L1 uses Llama-
3.2-1B (Recall@5=21.8). For Mediq, All setup uses the full user history as input since no retrieval
annotation is available, while R1 and L1 follow the same retrieval configuration as in LoCoMo. Each
column corresponds to a different chain-of-thought generation method, where N/A indicates that
chain-of-thought reasoning is not used. L1 is used for final response generation across all settings.
Takeaway: Delegating both sub-query and chain-of-thought generation to more powerful models is
crucial for optimal performance.

G QUALITATIVE ANALYSIS

We present qualitative examples from the LoCoMo and MediQ benchmarks to illustrate how our
system improves response quality under strict privacy constraints. By delegating sub-query generation
and chain-of-thought reasoning to a powerful remote model, and executing final response generation
locally, our framework ensures that sensitive data never leaves the trusted zone while still benefiting
from advanced reasoning capabilities.

G.1 LOCOMO

User Query. “What motivated Caroline to pursue counseling?”

This query requires linking the user’s past personal experiences to her career decisions, as this
information is often buried in long conversational histories.
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Sub-Query Generation by Remote Model. The remote model generated sub-queries such as: “Has
Caroline discussed any impactful personal experiences related to her career?” “Did she mention an
interest in counseling in past conversations?”

These sub-queries were embedded on the local client and used to search the homomorphically
encrypted vector database.

Encrypted Search from Private Records. The search retrieved a key statement: “My own journey
and the support I got made a huge difference... I saw how counseling and support groups improved
my life.”

Chain-of-Thought Reasoning from Remote Model. The model suggested this reasoning guideline:
“When personal growth or transformation is attributed to support or counseling, infer a connection
between that experience and a career motivation to help others.”

Response Generation by Local Model. Using the retrieved memory and the reasoning instruction,
the local model generated the following answer: “Caroline was motivated to pursue counseling
because of her own journey and the support she received, particularly through counseling and support
groups.”

G.2 MEDIQ

User Query. “I’ve been feeling more forgetful lately and have started falling more often. What
should I do?”

This query suggests a combination of cognitive and physical decline, potentially indicating an
underlying neurological issue. Proper assessment requires integration of personal medical context
and symptom history.

Sub-Query Generation by Remote Model. The remote model generated targeted follow-up
questions, including: “Is there any record of short-term memory impairment?” “Have the falls
become more frequent or severe over time?” “Are there other neurological symptoms noted in the
history?”

Encrypted Search from Private Records. These sub-queries were executed on encrypted medical
records, retrieving relevant notes such as: “I couldn’t remember any of the five things the doctor
asked me to recall after ten minutes.” “I’ve been falling more often lately, and it feels like it’s getting
worse.”

Chain-of-Thought Reasoning from Remote Model. The remote model provided the following
reasoning instruction to the local model: “When both progressive memory loss and increased
frequency of falls are reported, evaluate for possible neurodegenerative conditions and recommend
medical assessment.”

Response Generation by Local Model. Based on the retrieved data and reasoning instruction, the
local model generated the following concise response: “Parkinson’s disease.”

These examples demonstrate that our framework enables local models to generate informed, context-
sensitive responses by leveraging powerful remote models for high-level reasoning. Throughout the
process, sensitive user data remains local, ensuring strong privacy guarantees while maintaining or
even improving response quality.

H PROMPT TEMPLATES

For sub-query generation in both the baselines and Socratic-CoT, we used the prompt shown in
Figure 4. For response generation in the baselines, the prompt in Figure 5 was used. For Socratic-CoT,
chain-of-thought generation was performed using the prompt in Figure 6, and response generation
used the prompt in Figure 7. The prompts include substitution keys, which are described in Table 7.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Key Description Illustrative Example

{user_input} User input I have a fever and a cough.
What disease do I have?

{options} Multiple-choice option. For-
matted as bulleted list. For
open ended questions, this is
replaced with Empty instead.

- Common cold
- Flu
- Strep throat

{personal_context} List of retrieved personal con-
texts in descending order of
importance, one item on each
line.

In January 30th, user
consumed a half gallon
of ice cream.
User enjoys cold drink,
even in winter.
User spends most of the
time in their place alone.

{personal_context_json} List of retrieved personal
contexts in descending or-
der of importance, as JSON-
formatted array of strings.

[
"In January 30th, user

consumed a half gallon of
ice cream.",

"User enjoys cold
drink, even in winter.",

"User spends most of
the time in their place
alone."
]

{generated_reasoning} The output of reasoning gener-
ation step.

(omitted)

Table 7: Substitutions for our prompts. Whenever the listed substitution keys appear on our prompt
template, they are substituted into the actual values as described on the right side of the table.
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You are a sub-query generator.

1. You are given a query and a list of possible options.
2. Your task is to generate 3 to 5 sub-queries that help
retrieve personal context relevant to answering the query.
3. Each sub-query should be answerable based on the user's
personal context.
4. Ensure the sub-queries cover different aspects or
angles of the query.
5. If the options text says 'Empty,' it means no options
are provided.

Please output the sub-queries one sub-query each line, in
the following format:
"Sub-query 1 here"
"Sub-query 2 here"
"Sub-query 3 here"

Example 1)

## Query
I have a fever and a cough. What disease do I have?

## Options
Common cold
Flu
Strep throat

### Sub-queries
"Have user visited any countries in Africa recently?"
"Have user eat any cold food recently?"
"Have user been in contact with anyone who has a COVID-19
recently?"

Test Input)

### Query
{user_input}

### Options
{options}

### Sub-queries

Figure 4: Prompt used for sub-query generation in both the baselines and Socratic-CoT.
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You are a question answering model.

1. You are given a personal context, a query, and a list
of possible options.
2. Your task is to generate an answer to the query based
on the user’s personal context.
3. You should generate an answer to the query by referring
to the personal context where relevant.
4. If the options text says 'Empty,' it means no options
are provided.
5. If the options are not empty, simply output one of
the answers listed in the options without any additional
explanation.
6. Never output any other explanation. Just output the
answer.
7. If option follows a format like '[A] something', then
output something as the answer instead of A.

Test Input)

### Personal Context
{personal_context}

### Question
{user_input}

### Options
{options}

### Answer

Figure 5: Prompt used for response generation in the baselines.
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Your task is to provide good reasoning guide for students.

You are a chain-of-thought generator.
1. You are given a query and a list of possible options.
2. Your task is to provide a step-by-step reasoning guide
to help a student answer the query.
3. The reasoning guide should clearly show your reasoning
process so that the student can easily apply it to their
query.
4. Analyze the query and write a reasoning guide for the
student to follow.
5. If there is a lack of information relevant to the query,
you must identify the missing elements as "VARIABLES" and
write the guide on a case-by-case basis.
6. If the options text says 'Empty,' it means no options
are provided.

Test Input)

### Query
{user_input}

### Options
{options}

### Chain-of-Thought

Figure 6: Prompt used for chain-of-thought generation in Socratic-CoT.
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You are a question answering model.

1. Your task is to answer the query based on the teacher's
chain-of-thought decision guide, using additional personal
context.
2. Read the chain-of-thought decision guide carefully.
3. If the decision guide contains "VARIABLES" that may
affect the outcome, extract them and determine their values
based on the personal context.
4. Then, follow the decision guide and apply the extracted
variables appropriately to derive the final answer.
5. The final answer must be preceded by '### Answer', and
your response must end immediately after the answer.
6. If the options text says 'Empty,' it means no options
are provided.
7. If the options are not empty, simply output one of
the answers listed in the options without any additional
explanation.
8. Never output any other explanation. Just output the
answer.
9. If option follows a format like '[A] something', then
output something as the answer instead of A.

### Personal Context
{personal_context_json}

### Chain-of-Thought
{cot}

### Query
{user_input}

### Options
{options}

### Answer

Figure 7: Prompt used for response generation in Socratic-CoT.
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I ADDITIONAL MEDIQ ANALYSIS

As shown in Table 5, the Remote-Only Baseline with Socratic-CoT performs worse than the standard
Remote-Only Baseline on MediQ. To understand the cause of this drop, we conducted a detailed
qualitative analysis of the model’s inputs and outputs. As a result, we found that R1 (GPT-4o), when
generating chain-of-thought reasoning, often included the most likely answer without considering
the user’s personal context. As a result, L1 (Llama-3.2-1B) became strongly biased toward this
uncontextualized answer and also ignored the user’s personal context. To address this issue, we added
explicit rules to the prompt—shown in Figure 8—to reduce this bias and re-ran the experiment under
this setup only. With this adjustment, performance improved from 67.3 to 77.0, indicating that the
bias was partially mitigated.

Your task is to provide good reasoning guide for students.

You are a chain-of-thought generator.
1. You are given a query and a list of possible options.
2. Your task is to provide a step-by-step reasoning guide
to help a student answer the query.
3. The reasoning guide should clearly show your reasoning
process so that the student can easily apply it to their
query.
4. Analyze the query and write a reasoning guide for the
student to follow.
5. The student may have less domain knowledge than you,
but they have more context about the situation.
6. If there is a lack of information relevant to the query,
you must identify the missing elements as "VARIABLES" and
write the guide on a case-by-case basis.
7. Since you don’t have full context about the situation,
your goal is not to choose a final answer but to present a
set of possible answers along with the reasoning steps that
could lead to each one.
8. If the options text says 'Empty,' it means no options
are provided.

Test Input)

### Query
{user_input}

### Options
{options}

### Chain-of-Thought

Figure 8: Prompt used for chain-of-thought generation in the additional MediQ analysis.
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