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Abstract

Graph neural networks (GNN) have shown promising results for several domains
such as materials science, chemistry, and the social sciences. GNN models often
contain millions of parameters, and like other neural network (NN) models, are
often fed only a fraction of the graphs that make up the training dataset in batches
to update model parameters. The effect of batching algorithms on training time and
model performance has been thoroughly explored for NNs but not yet for GNNs.
We analyze two different batching algorithms for graph based models, namely
static and dynamic batching for two datasets, the QM9 dataset of small molecules
and the AFLOW materials database. Our experiments show that changing the
batching algorithm can provide up to a 2.7x speedup, but the fastest algorithm
depends on the data, model, batch size, hardware, and number of training steps run.
Experiments show that for a select number of combinations of batch size, dataset,
and model, significant differences in model learning metrics are observed between
static and dynamic batching algorithms.

1 Introduction

Graph neural networks (GNN) models have recently shown great promise in regression and classifi-
cation tasks, where the input data can be represented as graphs (19) (36). These methods have been
applied to predict molecular and material behavior from nanometer to millimeter scale (32; 18; 29; 25).
These tasks are of upmost importance to society, since they have opened up a research path towards
exploring new molecules for drug design and carbon capture (9) and finding new materials for energy
storage and generation. (30).

Similar to neural network (NN) models, GNN models typically contain millions of parameters and
require large training datasets to achieve sufficient predictive power. In order to effectively train
GNNs on large datasets, the graph structured data needs to be batched, otherwise each update over
the entire dataset takes too long for the model parameters to converge in a reasonable amount of
time. In this paper, we examine two different batching techniques for graph networks, static and
dynamic batching. The two algorithms differ in that static batching always grabs the same number of
graphs whereas dynamic batching adds graphs to the batch conditionally and seeks to ensure that the
memory occupied by the batch of graphs is constant. For static-batching we look at three algorithms,
the static-64, static-2N and static-constant algorithms.

With the advent of neural architecture searches in different fields, including with graph structured data,
it is often the case that researchers train model candidate architectures several thousand times (38; 14;
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34). End-users are likely to re-train the resulting model and re-tune hyper-parameters on new datasets.
The total costs involved with the GNN model search and re-training pose a significant computational,
financial and environmental burden (21; 33; 26). Therefore, any savings in training time offered by
the batching algorithm are significant.

We examine the effect of the algorithms on training time and metrics. For different batch sizes, we
compare the computation time required to assemble the graphs in a batch. We also analyze the time
to update the model parameter weights using a batch of graphs. Finally, we monitor the effect of the
batching techniques on the test metrics of the models. We do this for different batch sizes, models,
and datasets. Our main contributions presented in this paper are:

• We formally introduce the static and dynamic batching algorithms and several variants
thereof.

• The majority of experiments show no significant difference in model learning between the
algorithms, but for some combinations of the dataset, model and batch size, the dynamic
batching algorithm yields significantly different test metrics than the static algorithms.

• We find the static-constant algorithm to be the slowest algorithm and recommend not
using it unless the goal is to maximize the robustness of the training pipeline. Across our
experiments, we observe speedups of up to 12.5x when switching from the static-constant
algorithm to another algorithm.

• Excluding the static-constants batching algorithm, we observe at most a 2.7x speedup in
mean time per training step when switching from the slowest algorithm to the fastest.

• We demonstrate that the performance of the algorithm is dependent on the graph distribution
in the dataset, model used, batch size, and the number of training steps run.

• The static-64 and dynamic algorithms generally outperform the static-2N algorithms.

• We recommend using the dynamic algorithm, whose performance is similar to the static-64
algorithm, but is faster for fewer number of training steps.

2 Related Work

Several different batching methods, i.e., full-batching, mini-batching (3), stochastic learning (5),
have been thoroughly analyzed for NNs in the literature (4). For instance, NN learning performance
when using mini-batching has been examined as a function of the batch size. Computation time as a
function of batch size has also been explored on GPUs (20). In (7), large batch sizes were found to
typically slow down the convergence of the model parameters. In practice, researchers typically set
the batch size as a hyperparameter that is found via cross validation (CV).

For NNs, updating the model weights can take up the bulk of training time through backpropaga-
tion (24). Typically, NNs operate on numeric data (or data that has been transformed into numeric
values). When training the NN with a fixed mini-batch size of numeric data, batches have constant
shape and memory requirements. Using JAX, this enables highly efficient training, since the gradient
update step can be compiled once at the start of the training. For convolutional neural networks
(CNNs), this is not the case, and images of different pixel dimensions are often padded before being
fed into the network (35). Similarly, for graph neural networks, the graphs in the dataset typically
contain a wide variety of number of nodes and edges. To this end, batching algorithms have emerged,
which pad batches of graphs to constant shapes. In this way, the gradient update step for GNNs
on batches can be compiled on GPU. Two such methods have become popular, static batching and
dynamic batching. The static batching methods always collect a fixed number of graphs while
dynamic methods add graphs incrementally to a batch until some padding budget/target is reached.

That said, not all GNN models and libraries pad their data. M3GNet (8), a GNN trained for interatomic
potentials (IAP) is written in TensorFlow and performs batching in a similar way to NNs. Its batching
procedure collects a number of graphs corresponding to the batch size, and concatenates the atoms,
bonds, states and indices into larger lists for the batch. However, it does not perform any padding
after batching data. The pyTorch GNN (ptgnn) library implements a dynamic batching algorithm
that also does not use padding (1). The algorithm adds graphs until either the batch has the desired
batch size (i.e., number of graphs) or some safety limit on the number of nodes in the batch has been
reached. This safety limit ensures that the batch will fit into memory.
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The pyTorch geometric library (13) implements a similar dynamic batching algorithm. The user
specifies whether to use either (but not both) a total number of nodes as the batch cutoff/limit or total
number of edges. The algorithm then adds graphs incrementally to the batch until the target number
of graphs are in the batch (i.e., the target batch size) or the cutoff has been reached. It also allows the
user to skip adding single graphs to the batch that would by themselves exceed the node/edge cutoff.

The Jraph library, which is built on JAX (6), implements a dynamic batching algorithm (15). Given a
batch size, it performs a one-time estimate of the next largest multiple of 64 to which the sum of the
nodes/edges in the batch should be padded. We can think of these estimates as the node/edge padding
targets for each batch (i.e., the number of nodes/edges in a batch after padding). This estimation is
done by sampling a random subset of the data. It then iteratively adds one graph at a time to the
batch and stops if adding another graph would exceed the node/edge padding targets or the maximum
number of graphs (i.e., the batch size) is already in the batch.

The Tensorflow GNN library (12) implements a static and dynamic batching algorithm. The static
batching adds a fixed number of graphs to the batch and then pads to a constant padding value. The
dynamic batching method, similar to Jraph, estimates a padding budget (they call it a size constraint)
for the batch based on a random subset of data, and then adds graphs incrementally to the batch as
long as they do not break this budget.

The static and dynamic algorithms have, to our knowledge, not been described in the literature,
but solely within code repositories. Experiments to measure the training time as a function of the
algorithm, batch size, model, or dataset are also to our knowledge not found in the literature. Our
work seeks to describe the static and dynamic batching algorithms in sufficient detail and perform the
aforementioned timing experiments using an implementation based on the Jraph library.

3 Preliminaries

Static-constant batching. In static batching, the method grabs a fixed number of graphs for each
batch. It then checks how many nodes/edges are present in the batch. It then adds a dummy graph
and adds dummy edges/nodes to this graph to serve as padding. Typically, the number of graphs
included in the batch is the batch size minus one in order to leave space for the dummy graph in the
batch. The algorithm pads the number of nodes/edges up to the next power of two to try to ensure
that most batches have a similar number of nodes/edges, and thereby a similar memory footprints. In
the static-constant algorithm, implemented in TensorFlow’s GNN (TF-GNN) library, the algorithm
first finds the graph with the most nodes/edges in the dataset and multiplies this number by the batch
size to get the padding target. The padding target dictates how many nodes/edges are expected in
each batch. For example, for batch size 32, the algorithm grabs 31 graphs, and then adds a dummy
graph with enough dummy nodes/edges so that the batch has the same nodes/edges as the padding
target. In this way, each static-constant batch occupies the same memory footprint. This means that
the gradient-update step, which updates the model parameters, can always expect a batch size of a
constant memory input, and can be compiled for this input size. The downside to this approach, is
that for some datasets and batch sizes the target is extremely large since it is based off the largest
graph in the dataset.

Static-2N and static-64 algorithms. In the static-2N algorithm, which we introduce here, the
algorithm grabs batch size minus one number of graphs into a batch, and then pads the batch’s total
number of nodes/edges to the next largest power of two. Over the course of training, one might
encounter a batch that requires a larger power of two than previously used in order to contain all
of the nodes and edges in the batch. This requires the gradient-update function to recompile for
a different, i.e., larger, input size. The static-2N algorithm is shown in the appendix Algorithm 4.
Similarly, in the static-64 algorithm, which we also introduce here, the total number of nodes/edges
in the batch are padded to the next largest multiple of 64.

Dynamic batching. The dynamic batching algorithm, as implemented in Jraph and TF-GNN, first
grabs a random subset of the data (e.g., 1000 graphs). It then estimates the mean nodes per graph and
mean edges per graph. It uses this to create a padding target (or memory budget), which in effect
is the maximum number of nodes and edges allowed to be stored in the batch. The edge (node)
padding target is created by multiplying the mean number of edges (nodes) by the batch size and then
rounding to the next largest multiple of 64. The algorithm to estimate the padding target is shown in
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the appendix in Algorithm 5. It is used to determine the padding required for each batch to ensure
that each batch uses the same amount of memory.

The dynamic algorithm, given the padding target, appends one graph at a time to the initially empty
batch. Before the addition of each graph, it checks if adding the graph would put the batch over the
node or edge padding target. If it does, the graph is not added to the batch. Instead, the algorithm
adds a dummy graph with fake nodes/edges, the number of which is determined so as to pad the
number of nodes/edges to the padding target. It then adds, if necessary, dummy graphs with no
nodes/edges to ensure that the number of graphs in the batch is equal to the batch size. A pseudocode
representation is shown in Algorithm 1. The batch method called in the algorithm, concatenates
all of the nodes/edges in the list of graphs and creates a single super-graph out of the list of graphs
(Pseudocode for the method is found in the Appendix, Section B).

Algorithm 1 dynamic batching

Input: set of training graphs G
b← (nn, ne, ng) = estimate_budget (G)
B ← [ ]
s← (0, 0, 0)
nn ← 0 {Accumulated # of nodes}
ne ← 0
for g in G do
si ← graph_size (g)
if s+ si > b− (0, 0, 1) then

yield batch(pad-to-target(B, nn, ne))
else
B += g
s += si
nn += si[0] {Update node sum}
ne += si[1]

end if
end for

If, however, during the course of training, a single graph is encountered with more nodes/edges than
the padding target, the program terminates. The algorithm must be restarted with a larger node/edge
padding target. This issue can be minimized by looking at a larger sample of graphs when estimating
the targets. Alternatively, the user can loop through the entire dataset of graphs and find the graph
with the largest number of nodes/edges to determine suitable budgets. Note that the algorithm we
present here is quite different from the pyTorch-Geometric implementation, whose implementation
does not perform a budget estimation (has to be entered by the user) and it does not perform a check
on the number of edges, but only the nodes. We find the Jraph/TF-GNN implementation, for which a
simplified version is shown in Algorithm 1, to be the more sophisticated method, and so it was used
for our tests.

4 Datasets

We run profiling experiments on two different datasets. The QM9 dataset (27) contains chemical
properties (e.g., internal energies, molecular orbital energy levels) of small organic molecules. The
AFLOW dataset (10) is a collection of relevant material properties (e.g., formation energies, band
gaps, elastic properties). We choose these datasets for two reasons. First, they have served as
benchmark datasets for GNN models (32; 23; 2). Second, they have real world applications. For
instance, learning on the QM9 dataset may help models better perform targeted drug discovery, while
AFLOW data may help models discover more efficient solar cell semiconductors. For QM9 we target
the molecular internal energy and for AFLOW we focus on learning the enthalpy of the crystal.

The datasets are not provided in a graph format. To convert them to graphs, each atom is represented
as a node in the graph. For QM9 the edges are added by fully connecting the nodes. For AFLOW,
the edges are added with the K-nearest neighbor algorithm based on pairwise distance and setting
K equal to 24. This KNN value was chosen from CVstudies studies in the literature (18). From the
AFLOW dataset, we remove duplicates and keep only calculations that contain both the enthalpy and
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Figure 1: Left: Histograms of the number of nodes (top) and edges (bottom) in the AFLOW and
QM9 datasets. Right: Histograms of the number of nodes (top) and edges (bottom) in a batch of size
32 before padding for the static-2N and dynamic batching algorithms running on the QM9 dataset.

the band structure, following the procedure in (2). We visualize the variety in the graph structures in
the datasets in Fig. 1. From the figure we can see that the QM9 dataset node distribution appears
Gaussian and centered around 17 nodes per graph. AFLOW’s node distribution has long tails despite
the mean of the distribution being smaller than QM9’s. The distribution of edges for AFLOW and
QM9 are reflective of the distribution of the nodes, this is because the number of edges are dependent
on the number of nodes when using the KNN algorithm or fully connecting the graphs.

5 Implementation

There are several open-source software libraries to choose from to perform these experiments. We
opt to use the Jraph library (15), which is built using the JAX library (6). The JAX library traces out
computations into a computation graph that it uses to optimize and compile the code. This compiled
auto-differentiation code is optimized to run fast, especially on GPU. To run our experiments, we
extend Jraph to run the static-2N , static-64, and static-constant algorithms, log necessary profiling
information and run the models we have selected for our tests.

6 Models

We evaluate three models to get insight into any model dependent effects on our profiling results.
Specifically, the SchNet model (32), a message passing model with edge updates (MPEU) model (18;
2) and the PaiNN model (31) which uses equivariant features. The three models were chosen, since
the SchNet model is often used as a benchmark, the MPEU has shown better results on the AFLOW
dataset in a benchmark study (2), and the PaiNN model is widely used (22). These models vary in
size. The SchNet model is the smallest with 84,768 trainable parameters. The next largest is the
PaiNN model with 177,568 trainable parameters, and the MPEU model contains 2,553,472.

7 Test setup and compute hardware

As mentioned, the benefit of dynamic batching and static-constant batching is that the memory
allocated to a batch of graphs is always the same for each batch. This allows the user to compile the
update functions only once and optimize the compiled binary to run on GPU. Note that with static-64
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and static-2N batching, the update function can also be compiled, but needs to be recompiled for
different multiples of 64 / powers of two (the static-constant algorithm does not have this problem).
We time the training of models for different batching algorithms.

Batching and weight update timing experimental setup. We perform timing experiments on both
algorithms for four batch sizes (16, 32, 64, 128) using both datasets and the three models for two
million training steps. This number of training steps was chosen since it resulted in converged models
(2). Experiments with fewer steps are run and the results can be found in the Appendix. We run each
combination of batch size, algorithm, model, and dataset ten times to limit noise effects from the
hardware in the profiling results. Each experiment reports the mean batching time, mean gradient
update step time (update time), and the sum of the two (combined time).

Hardware used. We run experiments on a cluster that comprises two Intel Xeon IceLake Platinum
8360Y CPUs and 4 NVIDIA A100 GPUs connected via NVLINK. We ran experiments with using a
single CPU core and single GPU. This is done so that we can understand the algorithms performance
in a controlled setting. Results from running only on CPU and multi-gpu setups are described in the
appendix.

8 Profiling results

Batch statistics To understand how the batching algorithms work in practice, we analyze the statistics
of the number of nodes in a batch before padding occurs. The histograms for both batching algorithms
are shown for the QM9 dataset in Fig. 1 for 10,000 batches with a batch size of 32. As stated above,
the dynamic batching algorithm checks the node and edge padding target, as well as the number of
graphs already in the batch, before adding a graph to the batch. For this dataset and batch size, the
dynamic algorithm’s node padding target is 576. We can see that all dynamic batches have fewer
than 576 nodes before padding. This results in a one-sided distribution, roughly a truncated Gaussian
distribution, where the right-hand side is cutoff near the budget. For static batching, however, no such
check exists, and we observe a roughly Gaussian distribution of nodes. Similar effects are seen in the
figure for the number of edges before padding.

Figure 2: The running average of the combined
time (sum of the batching step and gradient-update
step and) required per training step as a function
of the total number of training steps run. Here
only a single iteration is run for the batch size
32, MPEU model and QM9 dataset for both the
dynamic, static-64 and static-2N algorithms.

Recompilation. For fewer training steps,
the number of recompilations required in the
gradient-update step can be the dominant factor
defining the ranking of the algorithms. The num-
ber of recompilations is shown in Fig. 3 for the
QM9 data for two million training steps. The
number of recompilations is model and hard-
ware independent. We see that the static-64 al-
gorithm performs several orders of magnitude
more recompilations than the static-2N and dy-
namic algorithms. This is to be expected, since
the dynamic algorithm compiles only once, and
if it encounters a graph, which is bigger than the
budget, the program terminates and needs to be
restarted with a larger pardding target. More-
over, for static-64 batching, JAX recompiles
the gradient-update step function every time a
new nearest multiple of 64 is encountered when
padding, and for static-2N batching every time a
new nearest power of two is encountered, which
is less likely for larger powers of two. For ex-
ample, for the batch size of 32, the static-2N
algorithm recompiles four times while the static-
64 algorithm recompiles 89 times.

Most of the recompilations for the QM9 dataset
happen in the first hundred thousand training steps. From training step one hundred thousand to two
million, the static-2N algorithm does not recompile again and the static-64 algorithm recompiles only
an additional twenty times. The effect of recompilations is seen in Fig. 6 and Fig. 7 in the Appendix

6



Figure 3: Left: number of recompilations on the QM9 dataset after two million training steps in the
gradient-update step as a function of batch size for different batching algorithms. Note, that these
numbers are model and hardware independent. Right: histogram of the number of graphs before
padding in a batch size of 32 for the AFLOW and QM9 dataset.

which show the mean and median combined times after running only one hundred thousand training
steps respectively. In the figures, the static-64 algorithm has the lowest median update times while
the static-2N has the lowest mean update times. The mean is affected by outliers while the median is
not. This tells us that when removing the effect of outliers, i.e., slow gradient-update steps which are
caused by recompilations, the static-64 algorithm is fastest to update the gradients. This tells us that
the algorithm training time rankings are dependent on the dataset (where more variability in graph
sizes causes more recompilations) and the number of training steps run.

Static-constant batching results. The static-constant algorithm was also evaluated for a subset of
data, models and batch sizes. The results are shown in the Appendix Section H. The static-constant
model performs poorly compared to the other static algorithms. As shown in Figure 1, the AFLOW
dataset contains a long-tailed distribution in terms of the node/edges (the estimated excess kurtosis of
the two histograms are greater than one (11)). Moreover, the mean number of nodes/edges is 10-20
times smaller than the maximum number. As a result, for AFLOW, the static-constant model uses a
large padding target that slows down the batching and update step. For QM9, the histograms of the
dataset show that the distribution of nodes and edges resemble more closely a normal distribution.
The number of edges varies from roughly one hundred to six hundred edges, and as a result, for the
QM9 data, we see a smaller yet still significant slowdown using the static-constant batching algorithm
compared to other methods.

Static-64, static-2N and dynamic algorithm results Fig. 4 displays the breakdown of batching time
per training step. We see the batching times appear roughly model and dataset independent and scale
linearly with the batch size. This reflects the expectation that the time complexity of the batching
algorithms is governed by the batch size. The dynamic batching is slower than the static-2N and
static-64 algorithms. In all cases, the dynamic algorithm is slower due to the added overhead from
the bookkeeping of the padding targets.

For the SchNet and MPEU models, the timing results of the gradient-update step at small batch sizes
are similar for all algorithms. For the PaiNN model, the static-2N algorithm has a slower gradient
update for all batch sizes. For larger batch sizes, across all models and datasets, the dynamic batching
algorithm performs the gradient update the fastest. The dynamic batching algorithm is the fastest,
since the gradient update code is never recompiled. As seen in the histograms in Fig. 1, the number
of nodes in a batch before padding is typically smaller for the dynamic algorithm. This is also true
after padding. GNNs like the models we examine here, typically have a node update equation, which
means that inference, and therefore the gradient update step, scales roughly linearly with the number
of nodes. When the difference between the number of nodes is small between the dynamic and
static-64 algorithm we do not expect much difference in the gradient update step time. The static-2N
algorithm, however, typically adds a large number of padded nodes, which explains why the algorithm
is typically slower than the dynamic algorithm in the gradient update step. The static-64 and dynamic
algorithm show roughly linear scaling in the update time with the batch size. The static-2N algorithm
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Figure 4: Timing measurements while varying the batch size for SchNet (left two columns), MPEU
(middle columns) and PaiNN (right two columns) Results for the AFLOW and QM9 dataset are
shown for each model. For each datapoint, ten iterations of two million training steps are run.

shows poor relative performance especially for larger batch sizes. More work needs to be done to
understand the static-2N scaling behavior.

The sum of the batching and gradient-update step mean timings, i.e., the mean combined time, gives
us the mean time per training step. The speedup is defined as the ratio between the slowest algorithm
combined time per step, Ts, and the faster algorithm combined time per step, Tx, as Ts

Tx
(17). For the

PaiNN model and batch size 128, the dynamic batching and static-64 algorithm have a speedup of
over 2.7 when compared to the static-2N algorithm. Similarly, for the PaiNN model for AFLOW and
batch sizes of 32, 64 and 128, the dynamic algorithm has a speedup of roughly 1.5x when compared
to the static-2N algorithm. For the MPEU model on the QM9 dataset, we observe 1.5x speedup when
using the static-64 algorithm compared to the static-2N algorithm. These observations over different
datasets and models point to the large effect that changing the batching algorithm can have on the
training time. The speedup from switching algorithms for the PaiNN model on the QM9 and AFLOW
datasets can be seen in the Fig. 5. If we include the static-constant algorithm, which is always the
slowest algorithm for the parameter space we explored here, the largest speedup we see is 3.64 for
SchNet, batch size 32, and AFLOW dataset.

Effect on learning. The batching algorithm may also affect the learning of the model. Dynamic
batching does not always include the same number of graphs in a batch, since one or more fake
padded graphs are added when the node or edge budget is reached. These padded graphs do not
contribute to the gradient in the update step. The histogram in Fig. 3 depicts the distribution of the
number of graphs before padding for the AFLOW and QM9 dataset after running 10,000 iterations
with the dynamic algorithm. While most batches contain 31 graphs for a batch size of 32, some
batches for the AFLOW dataset contain as few as ten graphs from the training data. The fact that the
QM9 graph node and edge distribution have shorter tails than the AFLOW distribution, as seen in
Fig. 1, may explain why the distribution of the number of graphs before padding has shorter tails for
QM9 than for AFLOW. The effect of the algorithm on learning can be discerned by training each
model to convergence. The test loss (RMSE) as a function of the number of training steps on the
QM9 data is shown in the Appendix Fig. 12. Visually, we see general agreement across models but
for some batch sizes there are significant discrepancies.

To quantify the difference in test metrics between two batching methods, we perform a pairwise
student t-test across the final RMSE test loss. Fig. 14 in the Appendix shows a heatmap of pairwise
t-test values and Fig. 15 shows the associated p-values across batching methods for the SchNet
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model for the QM9 dataset and batch size 64. The complete set of plots for the other combinations of
datasets, models and batch sizes can be found in the Data Availability section.

Figure 5: Speedup, on GPU, when switching from
the slowest algorithm in terms of combined train-
ing time per step for the PaiNN model (not includ-
ing the static-constant model) for the AFLOW (top)
and QM9 (bottom) datasets. For both datasets the
slowest algorithm is the static-2N algorithm. If the
static-constant algorithm is included the speedup
increases to a maximum of to 12.5

One can either use the t-test statistic (critical
value approach) or the associated p-value to
determine whether to reject the null hypothe-
sis (16) that the test metrics after two million
training steps from different batching methods
belong to the same underlying distribution. We
adopt a p-value criteria from the literature (28),
that argues that there is little evidence that the
distribution of the test metrics differ significantly
if the p-values are greater than 0.10. For p-
values between 0.05 to 0.10, there is moderate
evidence that the distributions are different. For
lower p-values the evidence is strong. Ignor-
ing the p-values that are greater than 0.10, we
can look at several interesting results. For the
QM9 data, SchNet model, and batch size 64, the
static-2N and dynamic methods have a p-value
of 0.033. For the QM9 data, SchNet model,
and batch size 32, the static-2N and static-64
algorithms have p-values with the dynamic al-
gorithm of 0.067 and 0.053, respectively. For
QM9 data, MPEU model, and batch size 64,
the static-2N and dynamic methods have a p-
value of 0.071. These results show that for some
datasets, models, and batch sizes, the dynamic
algorithm gives significantly different test met-
rics than the static algorithm. For the majority of
combinations, however, the results are similar,
which may be due to use of the Adam optimizer
whose adaptive estimation of first and second
moments may reduce the effect of occasionally
having smaller batch sizes.

9 Discussion

We find the static-constant algorithm to perform
the worst in terms of timing performance per
training step. We do not recommend using the
algorithm unless the user has a dataset where the
maximum graph size is very similar to the mean

graph size, and/or the priority is to have robustness in the training pipeline. We see in some cases a
speedup of up to 12.5x when switching from the static constant algorithm to the other algorithms. If
we discard the static-constant algorithm, choosing one algorithm versus another can result in more
than a 2.7x speedup in training time without observable differences in learning metrics. For larger
hyperparameter searches or neural architecture searches (NAS), this speedup can save a very large
amount of computational resources. Across, the parameter space explored in this work, the static-64
and dynamic algorithm appear the fastest. In general, we would recommend the dynamic algorithm
since it performs faster than the static-64 algorithm for fewer number of training steps, which can be
important for NAS.

Diving deeper into the timing performance, the static algorithms perform the batching step faster. This
is due to the added overhead from the bookkeeping of the padding targets in the dynamic algorithm.
All of the algorithms show linear scaling in the batching time with respect to the batch size. The
static-64 and dynamic algorithms show linear scaling in the gradient-update step, while the static-2N
algorithm shows exponential scaling. This is due to the exponentially larger memory sizes required
when using powers of two for padding. The gradient-update step is performed fastest by the dynamic
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algorithm. This is partially because the algorithm is never recompiled. Moreover, the static-2N
algorithm typically has a larger number of nodes/edges in the batch, which slows down the gradient
update step.

The learning curves from the static and dynamic algorithms are mostly similar across batching
algorithms, but for some batch sizes, datasets, and models they differ significantly between static and
dynamic algorithms. This is because the dynamic batching algorithm contains, on average, fewer
labeled graphs per batch.

We hope that this work serves to aide users to reduce the computational cost of training graph based
models. Further work might focus on predicting the fastest algorithm as a function of the dataset,
batch size, and model. Finally, this work could in the future be extended to combine the batching
algorithms with batching schemes that partition large graph networks across GPUs.

Software and data availability

The software to perform the batching, profiling experiments, parsing of experiments, and
plotting is found in https://github.com/speckhard/gnn_batching/. The complete set
of student t-test heatmaps can be found at https://drive.google.com/drive/folders/
1W4Fc0a7ne0z5vUDYgNc1_YuUNcjxwX3W?usp=sharing_.
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VELIČKOVIĆ, P., AND SANCHEZ-GONZALEZ, A. Jraph: A library for graph neural networks
in jax., 2020.

[16] HARTMANN, K., KROIS, J., AND RUDOLPH, A. Statistics and geodata analysis using r, 2023.

[17] HENNESSY, J. L., AND PATTERSON, D. A. Computer architecture: a quantitative approach.
Elsevier, 2011.

[18] JØRGENSEN, P. B., JACOBSEN, K. W., AND SCHMIDT, M. N. Neural message pass-
ing with edge updates for predicting properties of molecules and materials. arXiv preprint
arXiv:1806.03146 (2018).

[19] KIPF, T. N., AND WELLING, M. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016).

[20] KOCHURA, Y., GORDIENKO, Y., TARAN, V., GORDIENKO, N., ROKOVYI, A., ALIENIN,
O., AND STIRENKO, S. Batch size influence on performance of graphic and tensor processing
units during training and inference phases. In International Conference on Computer Science,
Engineering and Education Applications (2019), Springer, pp. 658–668.

[21] KOROLEV, V., AND MITROFANOV, A. The carbon footprint of predicting co2 storage capacity
in metal-organic frameworks within neural networks. Iscience 27, 5 (2024).
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A Model descriptions

In this section we describe the three models used to evaluate the batching algorithms in greater detail.
The models take in a graph, G, composed of nodes (or vertices) and edges G(n, e). The nodes
are represented by feature vectors ht

n, where the subscript represents the specific node n, and the
superscript t represents the number of times the vector has been updated.

The SchNet model (32) is a graph convolutional NN. The node feature vectors are updated with a
node update equation (or convolution) that convolves the feature vector of the node, ht

i, and feature
vectors in neighborhood, Ni, of the node, i. It uses a convolutional kernel, W (r⃗j − r⃗i), which
depends on the euclidean distance between nodes:

ht+1
i =

∑
j∈Ni

ht
j ⊙W t(r⃗j − r⃗i). (1)

We also look at a message passing NN model with edge updates (MPEU) (18; 2). Message passing
NNs make use of a message function M t

ij , which is defined for a pair of nodes, i and j, and their
corresponding edge etij .

M t
ij = fm(ht

i, h
t
j , e

t
ij) (2)

Here, the messages are aggregated for each node with a permutation-invariant operator. The MPEU
aggregates the messages with a sum,

mt+1
i =

∑
j∈Ni

M t
ij . (3)
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In the MPEU, the edges between any two connected nodes, i and j, are represented by edge vectors
etij . The message function is a function of the edge vector,

M t
ij = f t

m(ht
j , e

t
ij) = (W t

1h
t
j)⊙ σ(W t

3σ(W
t
2e

t
ij)). (4)

where, the feature vectors, hi, are updated in the MPEU as:

ht+1
n = St(h

t
n,m

t+1
n ) = ht

n +W t
5σ(W

t
4m

t+1
n ). (5)

⊙ denotes element-wise multiplication and σ represents the shifted soft plus function (37).

Finally, we evaluate the algorithms on the equivariant PaiNN model (31). This model differs from the
MPEU and SchNet by learning not only scalar features, si ∈ RFx1, for the representation of each
atom but also equivariant features, v⃗i ∈ RFx3. The two representations are used to update each other.
The scalar representation is updated with the following equation:

∆sui = ass(si, ∥V v⃗∥) + asv(si, ∥V v⃗∥)⟨Uv⃗, V v⃗⟩, (6)

where ass and asv represent neural networks with non-linear activation functions and V and U weight
matrices that need to be learned. The update function for the equivariant representation is:

∆v⃗ui = avv(si, ∥V v⃗∥)Uv⃗ (7)

B Batch and pad algorithms

For completeness, we provide pseudocode for the batch algorithm mentioned in Section 3. The
pseudocode provided is a simplified version of the method found in Jraph, although the TF-GNN,
ptgnn, and pyTorch libraries all perform something similar. The basic principle to create a single
disconnected graph that contains all of the information of the individual graphs in the batch. The
batch method in Algorithm 2, works by creating six empty lists to store information about the
batch. It creates a list to collect information about the individual graphs. The lists collect node/edge
feature vectors, number of node/edges, and sender/receiver node indices. It then loops over the input
graphs list, and concatenates the graph’s node features, edge features, number of nodes/edges and
sender/receiver indices into the respective batch lists. Finally, the method creates a new graph object
where the constructor is fed the concatenated lists. Thereby, from a list of graphs, we have created
one super-graph containing all of the information about the smaller graphs. The individual graphs
can be rebuilt from the super-graph if desired. Note that the sender and receiver node indices need to
be offset by a running counter of the number of nodes already added into the batch.

The static algorithm’s padding method, pad-nearest-power-2, mentioned in Section 3 works by adding
a fake dummy graph to the list of graphs. It adds a graph object with the number of nodes and edges
being equal to the number of nodes/edges required to bring the sum of all the nodes/edges in the list
of graphs to the nearest power of two. The algorithm is shown in pseudocode in Algorithm 3. When
running the static-64 algorithm the padding is done to the nearest multiple of 64.

For the static-constant algorithm, the method first finds the graph with the largest number of nodes
and the graph with the largest number of edges. These values are saved and when rounded to the
nearest multiple of 64 serve as targets for padding. For the dynamic algorithm, the padding method
is slightly more complex than Algorithm 3. The padding needs to add more dummy graphs if after
adding a single dummy graph, the batch has less graphs than the batch size.

The static batching algorithm is shown in Algorithm 4.

The padding budget estimation is shown in the Algorithm 5.

C Timing experiments setup

The timing experiments made use of python’s time library. Timing statements were executed
before batching, before the gradient-update step and after the gradient-update step. Block until
ready commands were executed to ensure operations on the GPU had finished before the timing
measurements were taken. We also experimented with placing timing measurements before the
training loop and after the training loop (i.e., after 2 million steps in some cases). We then averaged
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Algorithm 2 Batch

Input: set of training graphs G
ln ← [] {list of node features}
le ← [] {list of edge features}
ls ← [] {list of receivers}
lr ← [] {list of senders}
nn ← [] {list of number of nodes}
ne ← [] {list of number of edges}
o← 0 {offset}
for g in G do
ln = concatenate(ln, g.nodes_list)
le = concatenate(le, g.edges_list)
nn = concatenate(nn, g.num_nodes)
ne = concatenate(ne, g.num_edges)
for i = 0 to len(g.senders) do

lr.append(g.receivers[i] + o)
ls.append(g.senders[i] + o)

end for
o += g.num_nodes

end for
return Graph(ln, le, nn, ne)

Algorithm 3 pad-nearest-power-2

Input: set of training graphs G, batch size B
sn ← 0 {sum of nodes}
se ← 0 {sum of edges}
mn ← 0 {missing nodes}
me ← 0 {missing edges}
for g in G do
sn += g[i].num_nodes
se += g[i].num_edges

end for
tn = next_power_2(sn)
te = next_power_2(se)
mn = tn - sn
me = te - se
G′ = Graph(mn, me)
return G.append(G′)

Algorithm 4 Static batching

Input: batch size BG, training graphs G, start point s
A← [] {Accumulated list of graphs}
nn ← 0 {Accumulated # of nodes}
ne ← 0 {Accumulated # of edges}
for i = s to s+BG do
A← A.append(G[i])
nn += G[i].num-nodes
ne += G[i].num-edges
if len(A) == (BG − 1) then

return batch(pad-nearest-power-2(A, nn, ne))
end if

end for
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Algorithm 5 Estimate dynamic batching padding target

Input: subset size N , list of graphs G, batch size BG

n← 0 {number of nodes in N graphs}
e← 0 {number of edges in N graphs}
g ← G[1 : N ] {Grab N graphs from training data}
for i = 1 to i = N do
n += G[i].num-nodes
e += G[i].num-edges

end for
Bn ← next-multiple-64(n ∗BG/N) {padding target}
Be ← next-multiple-64(e ∗BG/N)
return Bn, Be, BG

this time by the number of training steps executed. We found this number to be within a standard
deviation of the sum of our batching and gradient-update step timing results. This points to the
fact that the library runs batch creation and update-kernel execution consecutively. It is possible to
run these steps synchronously but this optimization was not done in this study. More details on the
implementation can be found in the code repository.

D Mean versus median in timing measurements

For each timing experiment ten experiments are run and either the mean or median is taken. The
median timing results for the MPEU model after running one hundred thousand steps is seen in
Fig. 6. The mean results for the same experiments are shown in Fig. 7. The difference in the two
figures shows the importance of the number of recompilations in the gradient-update method. This is
because the mean is affected by outlier measurements, such as recompilations, while the median is
not. The fact that for one hundred thousand training steps, the static-64 algorithm has the best median
performance but not the best mean performance is due to the number of recompilations which is
highest for this algorithm.

The mean and median timing results for two million steps are shown for the MPEU model in Fig. 8
and in Fig. 9 respectively. We see the mean static-64 gradient-update step times are shifted higher
than the median results, showing that the recompilations still affect the mean results. However, the
rankings of the mean combined times are the same for the median combined times across algorithms,
suggesting that for longer training time the effect of recompilations is no longer as significant as we
saw earlier for one hundred thousand steps.

E CPU only timing results

The algorithm performances are different when running only on CPU. The batching (inclusive of
padding) performance is the same as when running on a system that has both a GPU and a CPU which
indicates that the batching is executed only on CPU. We experimented with trying to run part of the
batching and padding code on GPU using JAX commands but found no speedup. The gradient-update
step, however, is much slower on CPU. The mean timing results, from ten iterations of one hundred
thousand training steps, are shown in Fig. 10 for the MPEU model. The median is shown in Fig. 11
for the same model. We ran one hundred thousand training steps instead of two million training steps
since the computer cluster we used had a time limit of twelve hours for experiments. From the mean
results, we see the dynamic batching algorithm is fastest. The median results, however, show that
when the effect of recompilations are reduced, the static-64 algorithm is the fastest except for batch
size 128 on the AFLOW dataset. This suggests that for longer training times the static-64 algorithm
will be the fastest. The results for the SchNet model can be seen in the accompanying code repository.

F Multi-GPU behavior

We used JAX parallel map (pmap) function to run the batching algorithms on a multi-GPUs of four
GPUs. In this case, we saw that the static-64 and static-2n algorithms did not work out of the box
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Figure 6: Median batching (top) and median gradient-update times (middle), and median combined
time (bottom) for varying batch sizes on the AFLOW (left) and QM9 (right) data using the MPEU
model. For each datapoint, ten iterations of one hundred thousand training steps are run.

with pmap since the algorithm expects the batches sent to each GPU to be the same size. For the
AFLOW dataset, we saw roughly that the four batches had different shapes after padding when using
the static-2n algorithm roughly 90% of the time, and close to 99% when using the static-64 algorithm.
It’s possible to alter the static-64 and static-2N to work by padding, with another round of padding,
each batch to the largest of the four padded batches. The results, will be highly implementation
dependent, more-so than in the single-GPU case. To simplify the comparison of the algorithms, we
evaluate the algorithms only on single-GPU setups and note that the dynamic algorithm is easily
ported to a multi-GPU setup using JAX’s pmap function.

G Test metric results

The test metric (RMSE) curves for each of the ten iterations are averaged for each batch size, model
and dataset combination. The resulting mean curve is shown for the MPEU and SchNet models
using the QM9 data in Fig. 12. We do not see significant differences in the test performance for the
static-2N or dynamic batching algorithm. Note that we do not expect nor do we see any noticeable
difference in learning from the static-64 to static-2N algorithms since the difference between the
methods is the padding scheme which does not affect the loss. Therefore, the static-64 curve is left
out of Fig. 12 for visual clarity. The results for AFLOW can be seen in the accompanying code
repository.

H Static-constant batching

The TF-GNN library tutorial suggests running the static batching algorithm with a constant padding
target. As described in Section 3, the algorithm first iterates through all the graphs in the dataset and
saves the maximum number of nodes/edges seen in a graph and uses this as a padding target. We
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Figure 7: Mean batching (top) and mean gradient-update times (middle), and mean combined time
(bottom) for varying batch sizes on the AFLOW (left) and QM9 (right) data using the MPEU model.
For each datapoint, ten iterations of one hundred training steps are run.

evaluated this method on a subset of batch sizes, dataset and model combinations, and compared it to
the static-2N , static-64 and dynamic algorithms. The results are shown in Table 1. Our results show
that the static-constant algorithm performs poorly in comparison to the other algorithms, and as a
result it is not used in the main text.

I Effect on rankings of the number of training steps

The effect of the number of training steps run on the rankings of the fastest algorithms is depicted
in Fig. 13. We can clearly see that for a smaller number of training steps, the dynamic batching
algorithm is faster than the static-64 algorithm which is due to the number of recompilations that
happen during the gradient-update step. For more training steps, this effect is subdued and the
static-64 algorithm is faster.

J Student t-tests on test metrics

The student t-test was performed in a pairwise fashion between two batching algorithms upon their
distribution of final test RMSE values. For the SchNet model on the QM9 dataset for batch size 64, a
heatmap of the t-test values is shown in Fig. 14 and the associated p-values in Fig. 15.

Figures for other datasets and models can be found in the Software and Data section.

17



Figure 8: Mean batching time (upper row), mean gradient-update time (middle row), and the mean
combined time (bottom row) for varying batch sizes on the AFLOW (left) and QM9 (right) data using
the MPEU model. For each datapoint, ten iterations of two million training steps are run.
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Figure 9: Median batching time (upper row), median gradient-update time (middle row), and the
median combined time (bottom row) for varying batch sizes on the AFLOW (left) and QM9 (right)
data using the MPEU model. For each datapoint, ten iterations of two million training steps are run.
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Figure 10: Mean batching time (upper row), mean gradient-update time (middle row), and the mean
combined time (bottom row) on CPU for varying batch sizes on the AFLOW (left) and QM9 (right)
data using the MPEU model. The experiments were run for one hundred thousand training steps.
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Figure 11: Median batching time (upper row), median gradient-update time (middle row), and the
median combined time (bottom row) on CPU for varying batch sizes on the AFLOW (left) and QM9
(right) data using the MPEU model. The experiments were run for one hundred thousand training
steps.
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Figure 12: Mean test RMSE curves for the MPEU model (left) and SchNet (right) on QM9 test for
batch sizes of 16, 32, 64 and 128 (from top to bottom).

Figure 13: Running average combined time (gradient-update step and batching) as a function of the
total number of training steps run. Here only a single iteration is run for the batch size 32, MPEU
model and QM9 dataset for both the dynamic, static-64 and static-2N algorithms.
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Table 1: Static-constant timing results compared with the batching algorithms.

Algorithm Dataset Model Batch
size

Batch time
(ms)

Update
time (ms)

Combined
time (ms)

static-constant AFLOW MPEU 16 0.63 6.34 7.30
static-2N AFLOW MPEU 16 0.49 1.89 2.38
static-64 AFLOW MPEU 16 0.49 1.89 2.38
dynamic AFLOW MPEU 16 0.60 2.41 3.01
static-constant AFLOW SchNet 32 0.99 6.34 7.33
static-2N AFLOW SchNet 32 0.71 1.38 2.01
static-64 AFLOW SchNet 32 0.71 1.64 2.35
dynamic AFLOW SchNet 32 0.87 1.30 2.17
static-constant AFLOW PaiNN 16 0.83 46.56 47.39

static-2N AFLOW PaiNN 16 0.45 3.82 4.27
static-64 AFLOW PaiNN 16 0.46 3.88 4.34
dynamic AFLOW PaiNN 16 0.59 3.20 3.79
static-constant QM9 SchNet 32 0.78 2.02 2.80
static-2N QM9 SchNet 32 0.74 1.55 2.29
static-64 QM9 SchNet 32 0.77 1.38 2.36
dynamic QM9 SchNet 32 1.03 1.38 2.41
static-constant QM9 SchNet 128 2.31 5.19 7.50
static-2N QM9 SchNet 128 2.20 3.88 6.08
static-64 QM9 SchNet 128 2.24 2.39 4.63
dynamic QM9 SchNet 128 3.38 2.13 5.51
static-constant QM9 PaiNN 16 0.94 11.67 12.61

static-2N QM9 PaiNN 16 0.71 6.43 7.14
static-64 QM9 PaiNN 16 0.50 3.30 3.80
dynamic QM9 PaiNN 16 0.68 3.33 4.01

Figure 14: Heatmap of pairwise student t-test values on the distribution of test RMSE values for the
SchNet model, QM9 data and a batch size of 64.

23



Figure 15: Heatmap of p-values from the pairwise student t-test on the distribution of test RMSE
values for the SchNet model, QM9 data and a batch size of 64.
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