
Under review as a conference paper at ICLR 2023

SELF-GUIDED DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have demonstrated remarkable progress in image generation qual-
ity, especially when guidance is used to control the generative process. However,
guidance requires a large amount of image-annotation pairs for training and is
thus dependent on their availability, correctness and unbiasedness. In this paper,
we eliminate the need for such annotation by instead leveraging the flexibility of
self-supervision signals to design a framework for self-guided diffusion models.
By leveraging a feature extraction function and a self-annotation function, our
method provides guidance signals at various image granularities: from the level of
holistic images to object boxes and even segmentation masks. Our experiments on
single-label and multi-label image datasets demonstrate that self-labeled guidance
always outperforms diffusion models without guidance and may even surpass guid-
ance based on ground-truth labels, especially on unbalanced data. When equipped
with self-supervised box or mask proposals, our method further generates visually
diverse yet semantically consistent images, without the need for any class, box, or
segment label annotation. Self-guided diffusion is simple, flexible and expected to
profit from deployment at scale.

1 INTRODUCTION

The image fidelity of diffusion models is spectacularly enhanced by conditioning on class la-
bels (Dhariwal & Nichol, 2021). Classifier guidance goes a step further and offers control over the
alignment with the class label, by using the classifier gradient to guide the image generation (Dhariwal
& Nichol, 2021). Classifier-free guidance (Ho & Salimans, 2021) replaces the dedicated classifier
with a diffusion model that is trained by randomly setting the condition to the special non-label class.
This has proven a fruitful research line for several other condition modalities, such as text (Saharia
et al., 2022; Ramesh et al., 2021), image layout (Rombach et al., 2022), visual neighbors (Ashual et al.,
2022), and image features (Giannone et al., 2022). However, all these conditioning and guidance
methods require ground-truth annotations. This is an unrealistic and too costly assumption in many
domains. For example, medical images require domain experts to annotate very high-resolution data,
which is infeasible to do exhaustively (Panteli et al., 2021). In this paper, we propose to remove the
necessity of any ground-truth annotation for guidance diffusion models.

We are inspired by progress in self-supervised learning (Chen et al., 2020; Caron et al., 2021), which
encodes data, and especially images, into semantically meaningful latent vectors without using any
label information. It usually does so by solving a pretext task (Zhang et al., 2017; Gidaris et al., 2018;
Asano et al., 2020; He et al., 2020) on image-level to remove the necessity of labels. This annotation-
free paradigm enables the representation learning to upscale to larger and more diverse (image)
datasets (Gao et al., 2021). Recently, the holistic image-level self-supervision has been extended
to more expressive dense representations, including bounding boxes, e.g., (Siméoni et al., 2021;
Melas-Kyriazi et al., 2022) and pixel-precise segmentation masks, e.g., (Hamilton et al., 2022; Ziegler
& Asano, 2022). Some self-supervised learning methods even outperform supervised alternatives (He
et al., 2020; Caron et al., 2021). We hypothesize that for diffusion models, self-supervision may also
provide a flexible and competitive, possibly even stronger guidance signal than ground-truth labeled
guidance.

In this paper, we propose self-guided diffusion, a framework for image generation using guided
diffusion without the need for any annotated image-label pairs. The framework encompasses a
feature extraction function and a self-annotation function, that are compatible with recent self-
supervised learning advances. Furthermore, we leverage the flexibility of self-supervised learning
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to generalize the guidance signal from the holistic image level to (unsupervised) local bounding
boxes and segmentation masks for more fine-grained guidance. We demonstrate the potential of
our proposal on single-label and multi-label image datasets, where self-labeled guidance always
outperforms diffusion models without guidance and may even surpass guidance based on ground-truth
labels. When equipped with self-supervised box or mask proposals, our method further generates
visually diverse yet semantically consistent images, without the need for any class, box, or segment
label annotation.

2 APPROACH

Before detailing our self-guided diffusion framework, we provide a brief background on diffusion
models and the classifier-free guidance technique.

2.1 BACKGROUND

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) gradually add
noise to an image x0 until the original signal is fully diminished. By learning to reverse this process
one can turn random noise xT into images. This diffusion process is modeled as a Gaussian process
with Markovian structure:

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI), q(xt|x0) := N (xt;

√
αtx0, (1− αt)I, (1)

where β1, . . . , βT is a fixed variance schedule on which we define αt := 1− βt and αt :=
∏t
s=1 αs.

All latent variables have the same dimensionality as the image x0 and differ by the proportion of the
retained signal and added noise.

Learning the reverse process reduces to learning a denoiser xt ∼ q(xt|x0) that recovers the original
image as (xt − (1− αt)εθ(xt, t))/

√
αt ≈ x0. Ho et al. (2020) optimize the network parameters θ

by minimizing the error of the noise prediction:

L(θ) = Eε,x,t

[
||εθ(xt, t)− ε||22

]
, (2)

in which ε ∼ N (0, I), x ∈ D is a sample from the training dataset D and the noise prediction
function εθ(·) are encouraged to be as close as possible to ε.

The standard sampling (Ho et al., 2020) requires many neural function evaluations to get good quality
samples. Instead, the faster Denoising Diffusion Implicit Models (DDIM) sampler (Song et al.,
2021a) has a non-Markovian sampling process:

xt−1 =
√
αt−1

(
xt −

√
1− αtεθ(xt, t)√

αt

)
+
√
1− αt−1 − σ2

t · εθ(xt, t) + σtε, (3)

where ε ∼ N (0, I) is standard Gaussian noise independent of xt.

Classifier-free guidance. To trade off mode coverage and sample fidelity in a conditional diffusion
model, Dhariwal & Nichol (2021) propose to guide the image generation process using the gradients
of a classifier, with the additional cost of having to train the classifier on noisy images. Motivated by
this drawback, Ho & Salimans (2021) introduce label-conditioned guidance that does not require a
classifier. They obtain a combination of a conditional and unconditional network in a single model,
by randomly dropping the guidance signal c during training. After training, it empowers the model
with progressive control over the degree of alignment between the guidance signal and the sample by
varying the guidance strength w:

ε̃θ(xt, t; c, w) = (1− w)εθ(xt, t) + wεθ(xt, t; c). (4)

A larger w leads to greater alignment with the guidance signal, and vice versa. Classifier-free
guidance (Ho & Salimans, 2021) provides progressive control over the specific guidance direction at
the expense of labor-consuming data annotation. In this paper, we propose to remove the necessity of
data annotation using a self-guided principle based on self-supervised learning.
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2.2 SELF-GUIDED DIFFUSION

The equations describing diffusion by classifier-free guidance implicitly assume dataset D and
its images each come with a single manually annotated class label. We prefer to make the label
requirement explicit. We denote the human annotation process as the function ξ(x;D, C) : D → C,
where C defines the annotation taxonomy, and plug this into Equation (4):

ε̃θ(xt, t; ξ(x; D, C), w) = (1− w)εθ(xt, t) + wεθ(xt, t; ξ(x; D, C)). (5)

We propose to replace the supervised labeling process ξ with a self-supervised process that requires
no human annotation:

ε̃θ(xt, t; fψ(gφ(x; D); D), w) = (1− w)εθ(xt, t) + wεθ(xt, t; fψ(gφ(x; D); D), (6)

where g is a self-supervised feature extraction function parameterized by φ that maps the input data
to feature space H, g : x → gφ(x),∀x ∈ D, and f is a self-annotation function parameterized by
ψ to map the raw feature representation to the ultimate guidance signal k, fψ : gφ(·;D) → k. The
guidance signal k can be any form of annotation, e.g., label, box, pixel, that can be paired with an
image, which we derive by k=fψ(gφ(x; D); D). The choice of the self-annotation function f can
be non-parametric by heuristically searching over dataset D based on the extracted feature gφ(·; D),
or parametric by fine-tuning on the feature map gφ(·; D).

For the noise prediction function εθ(·), we adopt the traditional UNet network architecture (Ron-
neberger et al., 2015) due to its superior image generation performance, following (Ho et al., 2020;
Song et al., 2021b; Ramesh et al., 2022; Saharia et al., 2022).

Stemming from this general framework, we present three methods working at different spatial
granularities, all without relying on any ground-truth labels. Specifically, we cover image-level,
box-level and pixel-level guidance by setting the feature extraction function gφ(·), self-annotation
function fψ(·), and guidance signal k to an approximate form.

Self-labeled guidance. To achieve self-labeled guidance, we need a self-annotation function f
that produces a representative guidance signal k ∈ RK . Firstly, we need an embedding function
gφ(x),x ∈ D which provides semantically meaningful image-level guidance for the model. We
obtain gφ(·) in a self-supervised manner by mapping from image space, gφ(·) : RW×H×3 → RC ,
where W and H are image width and height and C is the feature dimension. We may use any type of
feature for the feature embedding function g, which we will vary and validate in the experiments.
As the image-level feature gφ(·; D) is not compact enough for guidance, we further conduct a
non-parametric clustering algorithm, e.g., k-means, as our self-annotation function f . For all features
gφ(·), we obtain the self-labeled guidance via self-annotation function fψ(·) : RC → RK . Motivated
by Rolfe (2017), we use a one-hot embedding k ∈ RK for each image to achieve a compact guidance.

We inject the guidance information into the noise prediction function εθ by concatenating it with
timestep embedding t and feed the concatenated information concat[t,k] into every block of the
UNet. Thus, the noise prediction function εθ is rewritten as:

εθ(xt, t; k) = εθ(xt,concat[t, k]), (7)

where k=fψ(gφ(x; D); D) is the self-annotated image-level guidance signal. For simplicity, we
ignore the self-annotation function fψ(·) here and in the later text. Self-labeled guidance focuses on
the image-level global guidance. Next we consider a more fine-grained spatial guidance.

Self-boxed guidance. Bounding boxes specify the location of an object in an image (Ren et al.,
2015; Carion et al., 2020) and complements the content information of class labels. Our self-
boxed guidance approach aims to attain this signal via self-supervised models. We represent the
bounding box as a feature map (W ×H) rather than coordinates ([X,Y,W,H]). We propose the self-
annotation function f that obtains a bounding box ks ∈ RW×H by mapping from feature space H
to the bounding box space via fψ(·; D) : RW×H×C → RW×H , and inject the guidance signal by
concatenating in the channel dimension: xt := concat[xt, ks] Usually in self-supervised learning,
the derived bounding box is class-agnostic (Vo et al., 2020; 2021). To inject a self-supervised pseudo
label to further enhance the guidance signal, we again resort to clustering to obtain k and concatenate
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it with the time embedding t := concat[t,k]. To incorporate such guidance, we reformulate the
noise prediction function εθ as:

εθ(xt, t; ks,k) = εθ(concat[xt,ks],concat[t,k]), (8)

in which ks is the self-supervised box guidance obtained by self-annotation functions fψ, k is the
self-supervised image-level guidance from clustering. The design of fψ is flexible as long as it obtains
self-supervised bounding boxes by fψ(·; D) : RW×H×C → RW×H . Self-boxed guidance guides
the diffusion model by boxes, which specifies the box area in which the object will be generated.
Sometimes, we may need an even finer granularity, e.g., pixels, which we detail next.

Self-segmented guidance. Compared to a bounding box, a segmentation mask is a more fine-
grained signal. Additionally, a multichannel mask is more expressive than a binary foreground-
background mask. Therefore, we propose a self-annotation function f that acts as a plug-in built on
feature gφ(·; D) to extract the segmentation mask ks via function mapping fψ(·; D) : RW×H×C →
RW×H×K , where K is the number of segmentation clusters.

To inject the self-segmented guidance into the noise prediction function εθ, we consider two pathways
for injection of such guidance. We first concatenate the segmentation mask to xt in the channel
dimension, xt := concat[xt, ks], to retain the spatial inductive bias of the guidance signal.
Secondly, we also incorporate the image-level guidance to further amplify the guidance signal along
the channel dimension. As the segmentation mask from the self-annotation function fψ already
contains image-level information, we do not apply the image-level clustering as before in our self-
labeled guidance. Instead, we directly derive the image-level guidance from the self-annotation result
fψ(·) via spatial maximum pooling: RW×H×K → RK , and feed the image-level guidance k̂ into the
noise prediction function via concatenating it with the timestep embedding t:=concat[t, k̂]. The
concatenated results will be sent to every block of the UNet. In the end, the overall noise prediction
function for self-segmented guidance is formulated as:

εθ(xt, t; ks, k̂) = εθ(concat[xt,ks], concat[t, k̂]), (9)

in which ks is the spatial mask guidance obtained from self-annotation function f , k̂ is a multi-hot
image-level guidance derived from the self-supervised learning mask ks.

We have described three variants of self-guidances by setting the feature extraction function gφ(·),
self-annotation function fψ(·), guidance signal k to an approximate form. In the end, we arrive
at three noise prediction functions εθ, which we utilize for diffusion model training and sampling,
following the standard guided (Ho & Salimans, 2021) diffusion approach as detailed in Section 2.1.

3 EXPERIMENTS

In this section, we aim to answer the overarching question: Can we substitute ground-truth annotations
with self-annotations? First, we consider the image-label setting, in which we examine what kind of
self-labeling is required to improve image fidelity. Next, we look at image-bounding box pairs. Finally,
we examine whether it is possible to gain fine-grained control with self-labeled image-segmentation
pairs. We first present the general settings relevant for all experiments.

Evaluation metric. We evaluate both diversity and fidelity of the generated images by the Fréchet
Inception Distance (FID) (Heusel et al., 2017), as it is the de facto metric for the evaluation of
generative methods, e.g., (Dhariwal & Nichol, 2021; Karras et al., 2019; Brock et al., 2019; Saharia
et al., 2022). It provides a symmetric measure of the distance between two distributions in the feature
space of Inception-V3 (Szegedy et al., 2016). We use FID as our main metric for the sampling quality.

Baselines & implementation details. Throughout our experiments, we always use the diffusion
model following (Ho et al., 2020). We train with timestep T=1000, guidance drop probability p=0.1
and the linear variance schedule. For sampling, we set the guidance strength w=2 and deploy a
clipping operation in every sampling timestep. As the baseline for a guided diffusion model with
ground-truth labels we follow classifier-free guidance (Ho & Salimans, 2021). We use DDIM (Song
et al., 2021a) samplers with 250 steps, σt=0. All hyperparameter of our self-guided diffusion and the
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Figure 1: Effect of number of clusters. Self-labeled guidance outperforms DDPM without any
guidance beyond a single cluster, is competitive with classifier-free guidance beyond 1,000 clusters
and is even able to outperform guidance by ground-truth (GT) labels for 5,000 clusters. We visualize
generated samples from ImageNet64 (middle) and ImageNet32 (right) for ground-truth labels guid-
ance (top) and self-labeled guidance (bottom). More qualitative results in Appendix Figure 14.

baselines are the same, allowing us to compare methods under a fixed compute budget. For details of
the learning rate, optimizer, and hyperparameters, we refer to Appendix C. All code will be released.

3.1 SELF-LABELED GUIDANCE

We use ImageNet32/64 (Deng et al., 2009) to validate the efficacy of self-labeled guidance. For
better evaluation of sampling quality, we also adopt the Inception Score (IS) (Salimans et al., 2016),
following the common practice on this dataset (Dhariwal & Nichol, 2021; Karras et al., 2019; Brock
et al., 2019). IS measures how well a model fits into the full ImageNet class distribution.

Table 1: Choice of feature extraction function on
ImageNet32. DINO and MSN ViT-B/16 obtain
good trade-offs between FID and IS.

FID↓ IS↑
Label-supervised
ResNet50 22.00 8.23
ViT-B/16 22.30 7.81
Self-supervised
MAE ViTBase 32.58 8.20
SimCLR-v2 23.96 9.35
MSN ViT-B/16 21.16 10.59
DINO ViT-B/16 19.35 10.41

Choice of feature extraction function g.
We first measure the influence of the fea-
ture extraction function g used before cluster-
ing. We consider two supervised feature back-
bones: ResNet50 (He et al., 2016) and ViT-
B/16 (Dosovitskiy et al., 2021), and four self-
supervised backbones: SimCLR (Chen et al.,
2020), MAE (He et al., 2022), MSN (Assran
et al., 2022) and DINO (Caron et al., 2021). To
assure a fair comparison we use 10k clusters
for all architectures. From the results in Ta-
ble 1, we make the following observations. First,
features from the supervised ResNet50, and
ViT-B/16 lead to a satisfactory FID perfor-
mance, at the expense of relatively limited diver-
sity (low IS). However, they still require label
annotation, which we strive to avoid in our work. Second, among the self-supervised feature ex-
traction functions, the MSN- and DINO-pretrained ViT backbones have the best trade-off in terms
of both FID and IS. They even improve over the label-supervised backbones. This implies the
label assignment for the guidance is not unique, pretext labels on top of self-supervised learning
can still provide influential guidance signal in comparison with human annotated labels. Also, the
diversity of label-supervised ViT-B/16 is much lower than self-supervised ViT-B/16 with an IS
of 7.81 vs. 10.41, suggesting that self-supervised guidance leads to more unbiased representation in
comparison to supervised guidance. From now on we pick the DINO ViT-B/16 architecture as our
self-supervised feature extraction function g.

Effect of number of clusters. Next, we ablate the influence of the number of clusters on the overall
sampling quality. We consider 1, 10, 100, 500, 1,000, 5,000 and 10,000 clusters on the extracted
CLS token from the DINO ViT-B/16 feature. For efficient, yet uniform, comparison we only run
20 epochs on ImageNet32. To put our sampling results in perspective, we also provide FID and IS
results for DDPM and classifier-free guidance. From the result in Figure 1 we first observe that when
the cluster number is ranging from 1 to 5,000, our model’s performance monotonously increases and
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-17.8%

(a) Setting I: ImageNet32 balanced

-18.7%

(b) Setting II: ImageNet32 unbalanced

Figure 2: Varying guidance strength w. Self-labeled guidance surpasses the guidance based on
ground-truth labels for both (a) ImageNet32 balanced and (b) ImageNet32 unbalanced. The dotted
gray line indicates the best achieved performance of both methods under various guidance strength.
The difference between them is slightly more prominent for unbalanced data, we conjecture that
is because our self-labeled guidance is obtained by clustering based on the statistics of the overall
dataset, which can potentially lead to more robust performance in unbalanced setting.

always surpasses the DDPM model. Beyond 1,000 clusters, we are competitive with classifier-free
guidance using ground-truth labels. For 5,000 clusters, there is a sweet spot where we outperform
classifier-free guidance with an FID of 16.4 vs. 17.9 and an IS of 9.94 vs. 10.35, see also the
generated images in Figure 1. The performance of FID starts to deteriorate from 5,000 to 10,000
clusters. We conclude that self-labeled guidance outperforms DDPM without any guidance beyond a
single cluster, is competitive with classifier-free guidance beyond 1,000 clusters, and is even able to
outperform guidance by ground-truth labels for 5,000 clusters. From now on we use 5,000 clusters
for self-labeled guidance on ImageNet.

Varying guidance strength w. Next we consider the influence of the guidance strength w on
our sampling results. As the validation set of ImageNet32 is strictly balanced, we also consider an
unbalanced setting which is more similar to real-world deployment. Under both settings we compare
the FID between our self-labeled guidance and ground-truth guidance. We train both models for 100
epochs. For the standard ImageNet32 validation setting in Figure 2a, our method achieves a 17.8%
improvement for respective optimal guidance strength of the two methods. Self-labeled guidance is
especially effective for lower values of w. We observe similar trends for the unbalanced setting in
Figure 2b, be it that the overall FID results are slightly higher for both methods. The improvement
increases to 18.7%. We conjecture this is due to the unbalanced nature of the k-means algorithm (Last
et al., 2017), and clustering based on the statistics of the overall dataset can potentially lead to more
robust performance in unbalanced setting.

Self-labeled comparisons on ImageNet32/64. We compare our self-labeled guidance with ground-
truth labels guidance, which utilizes the technique of classifier-free guidance (Ho & Salimans, 2021).
We train all experiments for 100 epochs which take about 6 days to converge on four RTX A5000
GPUs. All hyperparameters are the same between the two methods to make the comparison as
fair as possible. Results on ImageNet32 and ImageNet64 are in Table 2. Similar to Dhariwal &
Nichol (2021), we observe that any guidance setting improves considerably over the unconditional &
no-guidance model. Surprisingly, our self-labeled model even outperforms the ground-truth labels by
a large gap in terms of FID of 2.9 and 4.7 points respectively. We hypothesize that the ground-truth
taxonomy might be suboptimal for learning generative models and the self-supervised clusters offer a
better guidance signal due to better alignment with the visual similarity of the images. This suggests
that the label-conditioned guidance from Ho & Salimans (2021) can be completely replaced by
guidance from self-supervision, which would enable guided diffusion models to learn from even
larger (unlabeled) datasets than feasible today.

3.2 SELF-BOXED GUIDANCE

We report on Pascal VOC and COCO_20K to validate the efficacy of self-boxed guidance. To obtain
class-agnostic object bounding boxes, we use LOST (Siméoni et al., 2021) as our self-annotation
function f . We report train FID for Pascal VOC and train/validation FID for COCO_20K. For
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Table 2: Self-labeled comparisons on ImageNet32/64. Self-labelled guidance surpasses the no-
guidance baseline by a large margin on both datasets and even outperforms the guided diffusion
model trained using ground-truth class labels.

ImageNet32 ImageNet64
Diffusion Method Annotation-free? FID↓ IS ↑ FID↓ IS↑
Ground-truth labels Guidance 7 10.2 19.0 16.8 18.6
No Guidance 3 14.3 10.8 36.1 10.4
Self-labeled Guidance (this paper) 3 7.3 20.3 12.1 23.1

Table 3: Self-boxed comparisons on Pascal VOC and COCO_20K. Self-boxed guidance outper-
forms the no-guidance baseline FID considerably for multi-label datasets and is even better than a
label-supervised alternative.

Diffusion Method Annotation-free? Pascal VOC COCO_20K
Ground-truth labels Guidance 7 23.5 19.3
No Guidance 3 58.6 42.5
Self-boxed Guidance (this paper) 3 18.4 16.0

image-level clustering to attain the guidance signal, we empirically found k=100 works best on both
datasets as those datasets are relatively small-scale in images and labels compared to ImageNet. We
train our diffusion model for 800 epochs with input image size 64×64. See Appendix C for more
details.

Self-boxed comparisons on Pascal VOC and COCO_20K. For the ground-truth labels guidance
baseline, we condition on a class embedding. Since there are now multiple objects per image, we
represent the ground-truth class with a multi-hot embedding. Aside from the class embedding which
is multi-hot in our method, all other settings remain the same for a fair comparison. The results
in Table 3, confirm that the multi-hot class embedding is indeed effective for multi-label datasets,
improving over the no-guidance model by a large margin. This improvement comes at the cost of
manually annotating multiple classes per image. Self-boxed guidance further improves upon this
result, by reducing the FID by an additional 5.1 and 3.3 points respectively without using any ground-
truth annotation. In Figure 3, we show our method generates diverse and semantically well-aligned
images.

3.3 SELF-SEGMENTED GUIDANCE

Finally, we validate the efficacy of self-segmented guidance on Pascal VOC and COCO-Stuff. For
COCO-Stuff we follow the split from (Hamilton et al., 2022; Ji et al., 2019; Cho et al., 2021; Zhang

Original Image Self-Guided Generated Samples

Figure 3: Self-boxed guided diffusion results on Pascal VOC. Each column is sampled using
different random noise. Our method generates visually diverse and semantically consistent images.
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Table 4: Self-segmented comparisons on Pascal VOC and COCO-Stuff. Any form of guidance re-
sults in a considerable FID reduction over the no-guidance model. Self-segmented guidance improves
over ground-truth multi-hot labels guidance and narrows the gap with guidance by annotation-
intensive ground-truth masks.

COCO-Stuff
Diffusion Method Annotation-free? Pascal VOC Train Val
Ground-truth labels Guidance 7 23.5 16.3 20.5
No Guidance 3 58.6 29.1 34.1
Self-segmented Guidance (this paper) 3 17.1 12.5 17.7
Ground-truth masks 7 12.5 8.1 11.2

et al., 2022), with a train set of 49,629 images and a validation set of 2,175 images. Classes are merged
into 27 (15 stuff and 12 things) categories. For self-segmented guidance we apply STEGO (Hamilton
et al., 2022) as our self-annotation function f . We set the cluster number to 27 for COCO-Stuff, and
21 for Pascal VOC, following STEGO. We train all models on images of size 64×64, for 800 epochs
on Pascal VOC, and for 400 epochs on COCO-Stuff. We report the train FID for Pascal VOC and
both train and validation FID for COCO-Stuff. More details on the dataset and experimental setup
are provided in Appendix C.

Self-segmented comparisons on Pascal VOC and COCO-Stuff. We compare against both the
ground-truth labels guidance baseline from the previous section and a model trained with ground-truth
semantic masks guidance. The results in Table 4 demonstrate that our self-segmented guidance still
outperforms the ground-truth labels guidance baseline on both datasets. The comparison between
ground-truth labels and segmentation masks reveals an improvement in image quality when using
the more fine-grained segmentation mask as the condition signal. But these segmentation masks
are one of the most costly types of image annotations that require every pixel to be labeled. Our
self-segmented approach avoids the necessity for annotations while narrowing the performance gap,
and more importantly offering fine-grained control over the image layout. We demonstrate this
controllability with examples in Figure 4. These examples further highlight a robustness against
noise in the segmentation masks, which our method acquires naturally due to training with noisy
segmentations.

4 RELATED WORK

Conditional generative models. Earlier works on generative adversarial networks (GANs) have
already observed improvements in image quality by conditioning on ground-truth labels (Mirza &
Osindero, 2014; Brock et al., 2019; Casanova et al., 2021). Recently, conditional diffusion models
have reported similar improvements, while also offering a great amount of controllability via classifier-
free guidance by training on images paired with textual descriptions (Ramesh et al., 2021; 2022;
Saharia et al., 2022), semantic segmentations (Wang et al., 2022), or other modalities (Bordes et al.,
2022; Yang et al., 2022; Song et al., 2022). Our work also aims to realize the benefits of conditioning
and guidance, but instead of relying on additional human-generated supervision signals, we leverage
the strength of pretrained self-supervised visual encoders.

Zhou et al. (2022) train a GAN for text-to-image generation without any image-text pairs, by
leveraging the CLIP (Radford et al., 2021) model that was pretrained on a large collection of paired
data. In this work, we do not assume any paired data for the generative models and rely purely on
images. Additionally, image layouts are difficult to be expressed by text, thus our self-boxed and self-
segmented methods are complementary to text conditioning. Instance-Conditioned GAN (Casanova
et al., 2021), Retrieval-augmented Diffusion (Blattmann et al., 2022) and KNN-diffusion (Ashual
et al., 2022) are three recent methods that utilize nearest neighbors as guidance signals in generative
models. Similar to our work, these methods rely on conditional guidance from an unsupervised
source, we differ from them by further attempting to provide more diverse spatial guidance, including
(self-supervised) bounding boxes and segmentation masks.
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Original image Self-Segmentation Generated Samples

Baseline

Ours

Ours

Ours

Figure 4: Self-segmented guided diffusion results on Pascal VOC. Each column is sampled using
different random noise. The first two rows indicate our self-segmented guidance provides more
fine-grained guidance than ground-truth labels guidance for the generation of bus images. Note how
the noisy window-bar in the self-segmented mask (marked by dotted ellipse) still results in plausible
window separations in the generated image samples. The two bottom rows shows our method creates
visually diverse examples that are well aligned with the self-segmented guidance signal. We provide
more examples in Appendix Figure 11.

Self-supervised learning in generative models. Self-supervised learning (Caron et al., 2020; Chen
et al., 2020; Asano et al., 2020; Caron et al., 2021) has shown great potential for representation
learning in many downstream tasks. As a consequence, it is also commonly explored in GAN
for evaluation and analysis (Morozov et al., 2020), conditioning (Casanova et al., 2021; Mangla
et al., 2022), stabilizing training (Chen et al., 2019), reducing labeling costs (Lučić et al., 2019) and
avoiding mode collapse (Armandpour et al., 2021). Our work focuses on translating the benefits
of self-supervised methods to the generative domain and providing flexible guidance signals to
diffusion models at various image granularities. In order to analyze the feature representation from
self-supervised models, Bordes et al. (2022) condition on self-supervised features in their diffusion
model for better visualization in data space. We instead condition on the compact clustering after the
self-supervised feature, and further introduce the elasticity of self-supervised learning into diffusion
models for multi-granular image generation.

5 CONCLUSION

We have explored the potential of self-supervision signals for diffusion models and propose a
framework for self-guided diffusion models. By leveraging a feature extraction function and a
self-annotation function, our framework provides guidance signals at various image granularities:
from the level of holistic images to object boxes and even segmentation masks. Our experiments
indicate that self-supervision signals are an adequate replacement for existing guidance methods
that generate images by relying on annotated image-label pairs during training. Furthermore, both
self-boxed and self-segmented approaches demonstrate that we can acquire fine-grained control over
the image content, without any ground-truth bounding boxes or segmentation masks. Due to limited
computational resources, we restricted our experiments to images of a maximum size of 64×64. For
future work, it will be of interest to verify our findings on larger image resolutions. Ultimately, our
goal is to enable the benefits of self-guided diffusion for unlabeled and more diverse datasets at scale,
wherein we believe this work is a promising first step.
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Figure 5: Self-guided diffusion framework. Starting from unlabeled dataset D, we apply unsuper-
vised feature extractor gψ(.) to self-annotation function fφ(.), which allows to incorporate different
self-guided signals, from image-level to box-level and mask-level. Those freely-obtained guidance
signals are utilized for the training and sampling stage of a diffusion model.

A MAIN FRAMEWORK

We illustrate the pipeline of our framework in Figure 5.
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𝑅! = 0.675

Figure 6: Correlation between NMI and FID on ImageNet32. The Normalized Mutual Information
(NMI) is not related to FID for supervised backbones, while, for the self-supervised model, NMI and
FID are negatively correlated. Conclusion: Self-supervised representation learning measures the
progress via NMI, thus the (negative) correlation between NMI and FID suggest that future progress
in self-supervised learning will also translate to improvements to self-labeled guidance.

Table 5: Comparison with baseline on ImageNet32 and ImageNet64 dataset with FID, IS,
Precision (P), Recall (R).

Diffusion Method Annotation-free? ImageNet32 ImageNet64
FID↓ IS ↑ P ↑ R ↑ FID↓ IS↑ P↑ R ↑

Ground-truth labels Guidance 7 10.2 19.0 0.71 0.62 16.8 18.6 0.71 0.62
No Guidance 3 14.3 10.8 0.49 0.61 36.1 10.4 0.59 0.60
Self-labeled Gudiance (this paper) 3 7.3 20.3 0.77 0.63 12.1 23.1 0.78 0.62

B MORE QUANTITATIVE RESULTS

B.1 CORRELATION BETWEEN NMI AND FID IN DIFFERENT FEATURE BACKBONES.

To assess the correlation between cluster quality and sample fidelity, we consider the Normalized
Mutual Information (NMI), which is commonly adopted as a mutual information-derived metric to
assess clustering quality based on provided ground truth labels. In Figure 6 we plot the connection
between NMI and FID. For the label-supervised functions, the NMI is unrelated to the FID, but for
the self-supervised functions, NMI and FID are negatively correlated, suggesting that NMI — a
metric commonly applied to assess the quality of self-supervised methods — is also predictive of the
model’s usefulness in our setting.

B.2 PRECISION AND RECALL IN IMAGENET32/64 DATASET

We show the extra results of ImageNet on precision and recall in Table 5. We follow the evaluation
code of precision and recall from ICGAN (Casanova et al., 2021), our self-labeled guidance also
outperforms ground-truth labels in precision and remains competitive in recall.

B.3 CLUSTER NUMBER ABLATION IN SELF-BOXED GUIDANCE

In table 6, we empirically evaluate the performance when we alter the cluster number in our self-boxed
guidance. We find the performance will increase from k = 21 to k = 100, and saturated at k = 100.
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Table 6: Cluster number ablation on Pascal VOC dataset for self-boxed guidance.

Cluster number k FID ↓
21 22.5
50 18.6
100 18.5
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Figure 7: Training epoch loss and and validation FID by total 20 epochs. For epoch loss, our
self-labeled guidance monotonously lower than ground-truth labels. For validation FID, our validation
FID is more stable than our baseline.

B.4 TREND VISUALIZATION OF TRAINING LOSS AND VALIDATION FID

We visualize the trend of training loss and validation FID in Figure 7.

C MORE EXPERIMENTAL DETAILS

Training details. For our best results, we train 100 epochs on 4 GPUs of A5000 (24G) in ImageNet.
We train 800/800/400 epochs on 1GPU of A6000 (48G) in Pascal VOC, COCO_20K, COCO-Stuff,
respectively. All qualitative results in this paper are trained in the same setting as mentioned above.
We train and evaluate the Pascal VOC, COCO_20K, COCO-Stuff in image size 64, and visualize
them by bilinear up sampling to 256, following (Liu et al., 2022).

Sampling details. We sample the guidance signal from the distribution of training set in our all
experiments. For each timestep, we need twice of Number of Forward Evaluation (NFE), we optimize
them by concatenating the conditional and unconditional signal along the batch dimension so that we
only need one time of NFE in every timestep.

Evaluation details. We use the common package Clean-FID (Parmar et al., 2022), torch-
fidelity (Obukhov et al., 2020) for FID, IS calculation, respectively. For IS, we use the standard
10-split setting, we only report IS on ImageNet, as it might be not an appropriate metric for non
object-centric datasets (Barratt & Sharma, 2018). For checking point, we pick the checking point
every 10 epochs by minimal FID between generated sample set and train set.

C.1 UNET STRUCTURE

Guidance signal injection. We describe the detail of guidance signal injection in Figure 8. The
injection of self-labeled guidance and self-boxed/segmented guidance is slightly different. The
common part is by concatenation between timestep embedding and noisy input, the concatenated
feature will be sent to every block of the UNet. For the self-boxed/segmented guidance, we not
only conduct the information fusion as above, but also incorporate the spatial inductive-bias by
concatenating it with input, the concatenated result will be fed into the UNet.

Timestep embedding. We embed the raw timestep information by two-layer MLP: FC(512,
128)→SiLU→FC(128, 128).

17



Under review as a conference paper at ICLR 2023

guidance k time t x

sum UNet

x

sum UNet tokenize

Cross Att

Cross Att

MLP MLP

guidance k time t

MLP MLP

guidance k

(a).UNet for self-labeled guidance

concatenate

(b). UNet for self-boxed/segmented guidance

Figure 8: The structure of UNet module.

Guidance embedding. The guidance is in the form of one/multi-hot embedding RK , we feed it
into two-layer MLP: FC(K, 256)→SiLU→FC(256, 256), then feed those guidance signal into the
UNet following in Figure 8.

Cross-attention. In training for non object-centric dataset, we also tokenize the guidance signal
to several tokens following Imagen Saharia et al. (2022), we concatenate those tokens with image
tokens (can be transposed to a token from typical feature map by RW×H×C → RC×WH ), the
cross-attention (Rombach et al., 2022; Blattmann et al., 2022) is conducted by CA(m, concat[k,m]).
Due to the quadratic complexity of transformer (Katharopoulos et al., 2020; Lu et al., 2021), we only
apply the cross-attention in lower-resolution feature maps.

C.2 TRAINING PARAMETER

3×32×32 model,4GPU,ImageNet32

Base channels: 128 Optimizer: AdamW
Channel multipliers: 1, 2, 4 Learning rate: 3e− 4
Blocks per resolution: 2 Batch size: 128
Attention resolutions: 4 EMA: 0.9999
number of head: 8 Dropout: 0.0
Conditioning embedding dimension: 256 Training hardware: 4 × A5000(24G)
Conditioning embedding MLP layers: 2 Training Epochs: 100
Diffusion noise schedule: linear Weight decay: 0.01
Sampling timesteps: 256

3×64×64 model, 4GPU, ImageNet64

Base channels: 128 Optimizer: AdamW
Channel multipliers: 1, 2, 4 Learning rate: 1e− 4
Blocks per resolution: 2 Batch size: 48
Attention resolutions: 4 EMA: 0.9999
number of head: 8 Dropout: 0.0
Conditioning embedding dimension: 256 Training hardware: 4 × A5000(24G)
Conditioning embedding MLP layers: 2 Training Epochs: 100
Diffusion noise schedule: linear Weight decay: 0.01
Sampling timesteps: 256

3×64×64 model, 1GPU, Pascal VOC, COCO_20K, COCO-Stuff
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Base channels: 128 Optimizer: AdamW
Channel multipliers: 1, 2, 4 Learning rate: 1e− 4
Blocks per resolution: 2 Batch size: 80
Attention resolutions: 4 EMA: 0.9999
Number of head: 8 Dropout: 0.0
Conditioning embedding dimension: 256 Training hardware: 1 × A6000(45G)
Conditioning embedding MLP layers: 2 Training Epochs: 800/800/400
Diffusion noise schedule: linear Weight decay: 0.01
Sampling timesteps: 256 Context token number: 8
Context dim: 32

C.3 DATASET PREPARATION

The preparation of unbalanced dataset. There are 50,000 images in the validation set of ImageNet
with 1,000 classes (50 instances for each). We index the class from 0 to 999, for each class ci, the
instance of the class ci is bi× 50/1000c = bi/200c.

Pascal VOC. We use the standard split from (Siméoni et al., 2021). It has 12,031 training images.
As there is no validation set for Pascal VOC dataset, therefore, we only evaluate FID on train set. We
sample 10,000 images and use 10,000 random-croped 64-sized train images as reference set for FID
evaluation.

COCO_20K. We follow the split from (Siméoni et al., 2021; Vo et al., 2020; Lin et al., 2014).
COCO_20k is a subset of the COCO2014 trainval dataset, consisting of 19,817 randomly chosen im-
ages, used in unsupervised object discovery (Siméoni et al., 2021; Vo et al., 2020). We sample 10,000
images and use 10,000 random-croped 64-sized train images as reference set for FID evaluation.

COCO-Stuff. It has a train set of 49,629 images, validation set of 2,175 images, where the original
classes are merged into 27 (15 stuff and 12 things) high-level categories. We use the dataset split
following (Hamilton et al., 2022; Ji et al., 2019; Cho et al., 2021; Zhang et al., 2022), We sample
10,000 images and use 10,000 train/validation images as reference set for FID evaluation.

C.4 LOST, STEGO ALGORITHMS

LOST algorithm details. We conduct padding to make the original image can be patchified to be
fed into the ViT architecture (Dosovitskiy et al., 2021), and feed the original padded image into the
LOST architecture using official source code 1. LOST can also be utilized in a two-stage approach to
provide multi-object, due to its complexity, we opt for only single-object discovery in this paper.

STEGO algorithm details. We follow the official source code 2, and apply padding to make the
original image can be fed into the ViT architecture to extract the self-segmented guidance signal.

For COCO-Stuff dataset, we directly use the official pretrained weight. For Pascal VOC, we train
STEGO ourselves using the official hyperparameters.

In STEGO’s pre-processing for the k-NN, the number of neighbors for k-NN is 7. The segmentation
head of STEGO is composed of a two-layer MLP (with ReLU activation) and outputs a 70-dimension
feature. The learning rate is 5e− 4, batch size is 64.

D MORE QUALITATIVE RESULTS

1https://github.com/valeoai/LOST
2https://github.com/mhamilton723/STEGO
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Figure 9: Self-segmented guidance samples from COCO-Stuff. Best viewed in color.
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Self-
segmentation

Denoising Process

Figure 10: Denoising process of self-segmented guidance samples (uncurated) from COCO-Stuff.
The first column is the self-segmented guidance mask from STEGO (Hamilton et al., 2022), The
remaining columns are from the most noisy period to less noisy period. Best viewed in color.
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Guidance signal from training set:

Guidance signal from validation set:

Original Image Self-
Segmentation

Self-guided Samples

Figure 11: Self-segmented guidance samples (uncurated) from COCO-Stuff. The first column is
the real image where we attain the conditional mask. The second column is the self-segmented mask
we obtain from STEGO (Hamilton et al., 2022), The remaining columns are the random samples
conditioning on the same self-segmented mask. Best viewed in color.
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Original Image Self-Seg Increasing guidance strength w from 0 to 3 averagely by 8 steps. 

Figure 12: Self-segmented guidance samples from Pascal VOC. The first column is the real image
where we attain the conditional mask. The second column is the self-segmented mask we obtain from
STEGO (Hamilton et al., 2022). The remaining columns are the visualization when we averagely
increase guidance strength w from 0 to 3 by 8 steps. Best viewed in color.
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Figure 13: Self-segmented guidance samples (uncurated) from COCO-Stuff companies with
segmentation mask from STEGO (Hamilton et al., 2022). The color map is shared among the overall
dataset. Best viewed in color.

24



Under review as a conference paper at ICLR 2023

Figure 14: Self-labeled guidance samples (uncurated) conditioning on the same guidance from
ImageNet64. Best viewed in color.
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Figure 15: Ground-truth labels guidance samples (uncurated) conditioning on the same guidance
signal from ImageNet64. Best viewed in color.
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Figure 16: Self-labeled guidance samples (uncurated) from ImageNet64. Best viewed in color.
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Figure 17: Self-labeled guidance samples (uncurated) from ImageNet32. Best viewed in color.
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(a) Querying by sample in feature similarity. (b) Querying by real images in feature similarity.

(c) Querying by sample in pixel similarity. (d) Querying by real images in pixel similarity.

Figure 18: k-NN query result visualization. Blue means samples, red means real images. Images
are ordered from left to right, top to down, by SimCLR (Chen et al., 2020) feature similarity or pixel
similarity. Sampled images are sampled by DDIM (Song et al., 2021a) with 250 steps. Guidance
strength w is 2. Firstly, we construct a gallery which is composed of equivalent number of sampled
and real images, then we ablate two experiments by querying using sampled image or real images
in feature space and image space. Conclusion:We can easily see, regardless of the feature space or
image space, the k-NN query results are always highly semantic similar, and they show the diffusion
model is not only to memorize the training data/real images, but also can generalize well to synthesize
novel images.
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Figure 19: Denoising process for ImageNet64.

Conditioned

Unconditioned

Figure 20: Denoising process for Pascal VOC. The first two rows are sampled from guidance
strength w = 2 using our self-segmented guidance, the last two rows are sampled from guidance
strength w = 0. By conditioning on our self-segmented guidance, the denoising process becomes
easier and faster, this efficient denoising aligns with the observation from (Preechakul et al., 2022).
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Figure 21: Sample visualization with guidance strength w from 0 to 3 in ImageNet64. Best
viewed in color.

Figure 22: Sphere interpolation between two random self-labeled guidance signals on Ima-
geNet64. The sphere interpolation follows the DDIM (Song et al., 2021a). Best viewed in color.
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(a) cluster625

(b) cluster807

(c) cluster890

Figure 23: Cluster visualization of real images in ImageNet32 after k-means.
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(a) cluster17 (b) cluster18

(c) cluster45 (d) cluster50

Figure 24: Cluster visualization of real images in Pascal VOC after k-means. Best viewed by
zooming in.

33



Under review as a conference paper at ICLR 2023

Figure 25: Bounding box result from LOST on Pascal VOC. As LOST (Siméoni et al., 2021) is an
unsupervised-learning method, some flaws in the generated box are expected. Images are resized
squarely for better visualization.
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Figure 26: Bounding box result from LOST (Siméoni et al., 2021) on COCO_20K. Images are
resized squarely for better visualization.
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Figure 27: Segmentation mask result from STEGO on Pascal VOC dataset. Cluster number k is
21. Images are resized squarely for better visualization. The color map is shared among the overall
dataset. Best viewed in color.
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