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ABSTRACT

The introduction of subtasks holds the promise of promoting coordination in sce-
narios without communication. Instead of manually defined subtasks, recent stud-
ies attempt to decompose the overall task and allocate subtasks to agents auto-
matically, but it remains unclear how to acquire a set of proficient subtask repre-
sentations. In essence, the subtasks serve as auxiliary signals that assist agents in
deducing the broader context from limited observations. To embed maximal infor-
mation into subtask representations, we propose to first learn a vector quantised-
variational autoencoder which takes individual observations of agents as inputs
and reconstructs the global state based on their assigned subtasks as latent vari-
ables. Next, the informative representations can be readily integrated into various
classic multi-agent reinforcement learning frameworks to facilitate insightful de-
cisions of agents. Experiments on StarCraft II micro-war challenges and Google
Research Football have demonstrated that our method learns reasonable and in-
formative subtask representations, which facilitate the decision-making of agents
and significantly improve the overall performance.

1 INTRODUCTION

Recently, multi-agent reinforcement learning (MARL) has been regarded as a powerful tool for
solving complex cooperative tasks, such as MOBA games (Vinyals et al., 2019; Berner et al., 2019;
Ye et al., 2020), flocking control (Pham et al., 2018; Xu et al., 2018), autonomous driving (Sham-
soshoara et al., 2019), and traffic control (Chu et al., 2019; Wu et al., 2020). In multi-agent tasks,
each agent faces a non-stationary environment due to the updating policies of other agents during
training. Besides, the joint observation and action of all agents generate an extensive solution space
which poses significant challenges in finding the optimal solution. These problems severely impede
the performance of MARL algorithms.

Most MARL methods follow the centralized training and decentralized execution (CTDE) (Lowe
et al., 2017) paradigm, which utilizes global information to train decentralized policies for all indi-
viduals. To address large-scale problems, recent approaches, including value-based (Sunehag et al.,
2017; Rashid et al., 2018; Son et al., 2019; Yang et al., 2020; Wang et al., 2020a; Rashid et al., 2020)
and policy-based(Lowe et al., 2017; Foerster et al., 2018), commonly share network parameters be-
tween agents. This technique markedly diminishes the quantity of trainable parameters and reduces
the complexity of the model. Additionally, it allows agents to leverage each other’s experience
through concurrent parameter updates, resulting in mutual benefits. The aforementioned advantages
facilitate the enhancement of training efficiency, but they also result in new challenges. Agents with
shared parameters often exhibit similar behaviors (Li et al., 2021), thereby suggesting that the joint
policy is stuck in a local optimum and unable to realize sophisticated coordination. For example,
workers in Ford’s factory undertake different tasks to produce automobiles collaboratively, and the
required skills can hardly be represented by a single set of parameters Wang et al. (2020b).

To reach a balance between training efficiency and diversity of individual policies, the concept of
subtask (or role) is introduced into MARL. In particular, agents are categorized into distinct groups,
where agents within the same group focus on the same subtask, thereby learning a shared pol-
icy. The key question is how to decompose the task into a set of subtasks. Previous works often
rely on subtasks manually defined by experts (Becht et al., 1999; Stone & Veloso, 1999; Pavón
& Gómez-Sanz, 2003; Spanoudakis & Moraitis, 2010; Lhaksmana et al., 2018), which prevents
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such approaches from extending to complex tasks without prior domain knowledge. Several recent
studies seek to automatically encode the subtasks. ROMA (Wang et al., 2020b) learns a subtask
encoder that maximizes the mutual information (MI) between the agent’s subtask and trajectory.
LDSA (Yang et al., 2022) maps the one-hot vectors of the subtasks to distinct high-dimensional rep-
resentations. Nevertheless, these approaches aim to build differentiated subtask representations but
neglect the information that ought to be incorporated within the subtask. Ideally, an agent can attain
partial awareness of the global situation and adjust its behavior according to its assigned subtask.
RODE (Wang et al., 2020c) suggests that only a subset of actions is needed in a certain subtask. It
first learns the representation of each agent based on its effect on the environment then clusters the
actions into subtasks. RODE establishes a new state-of-the-art (SOTA), but it may fail to address
particular subtasks due to the restricted action space.

We believe that a proficient subtask representation should reflect the global information to a certain
extent, thereby aiding the agent’s decision-making. In this paper, we propose to Learn Subtask rep-
resentations via Vector Quantization (LSVQ) for cooperative multi-agent reinforcement learning,
rooted in the notion of subtasks. We first design a novel subtask learner with a structure akin to
a variational autoencoder that attempts to reconstruct the global state through discrete subtask rep-
resentations. Then, we incorporate the subtask learner into classic MARL frameworks to allocate
subtasks to each agent. The hypernetwork (Ha et al., 2016) is adopted to generate subtask-specific
policies for agents, mitigating the potential for homogeneous behaviors effectively. LSVQ exhibits
strong portability and allows seamless integration into diverse algorithms, as the subtask learner can
be updated concurrently with the MARL framework while requiring only minimal adjustments to
the hyperparameters in the joint loss function. Experiments on StarCraft II micromanagement sce-
narios (SMAC) (Samvelyan et al., 2019) and Google Research Football (GRF) (Kurach et al., 2020)
as well as subsequent ablation studies have demonstrated the prominent superiority of our proposed
method.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

A fully cooperative multi-agent system (MAS) is typically represented by a decentralized partially
observable Markov decision process (Dec-POMDP) Oliehoek & Amato (2016), which is composed
of a tuple G = ⟨S,U ,P,Z, r,O, n, γ⟩. At each time-step, the current global state of the environ-
ment is denoted by s ∈ S , while each agent a ∈ A := {1, . . . , n} only receives a unique local
observation za ∈ Z generated by the observation function O(s, a) : S × A → Z . Subsequently,
every agent a selects an action ua ∈ U , and all individual actions are combined to form the joint
action u = [u1, . . . , un] ∈ U ≡ Un. The interaction between the joint action u and the current
state s leads to a change in the environment to state s′ as dictated by the state transition function
P(s′|s,u) : S × U × S → [0, 1]. All agents in the Dec-POMDP share the same global reward
function r(s,u) : S × U → R, and γ ∈ [0, 1) represents the discount factor.

Definition 1 (Subtasks) The cooperative multi-agent task G = ⟨S,U ,P,Z, r,O, n, γ⟩ invokes a
set of K subtasks Φ := {1, ...,K}, where K is set manually. Each subtask k holds a tuple
⟨ek,Ak, πk⟩, where ek ∈ Rm is the embedding vector of subtask k, and Ak is a set of agents
assigned with subtask k, satisfying ∪Kk=1Ak = A and Ai ∩ Aj = ∅ for ∀1 ≤ i < j ≤ K. Each
ai ∈ Ak shares the policy network πk.

On the basis of introducing subtasks into Dec-POMDP, each agent a selects a subtask ϕk based on
its own action-observation history τa ∈ T ≡ (Z×U), thus the policy of each agent a can be written
as πk(ua|τa) : T × U → [0, 1]. The joint action-value function can be computed by the following
formula: Qπ(st,ut) = Est+1:∞,ut+1:∞ [Rt|st,ut], where π is the joint policy of all agents. The
goal is to maximize the discounted return Rt =

∑∞
l=0 γ

lrt+l.

2.2 VALUE DECOMPOSITION METHOD

Credit assignment is a key problem in cooperative MARL problems. When agents share a joint value
function, it is challenging for an individual agent to discern its impact on the collective performance.
Insufficient feedback raises the probability of learning failure.
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Value decomposition methods assume that each agent has a specific value function for decision-
making. The integration of these individual functions creates the joint value function. To guarantee
that the optimal action for each agent aligns with the global optimal joint action, all value decompo-
sition methods satisfy the Individual Global Max (IGM) Rashid et al. (2018) conditions, which are
described below:

argmax
u

Qtot(τ ,u) =

 argmaxu1
Q1 (τ1, u1)
...

argmaxun
Qn (τn, un)

 ,

where Qtot = f(Q1, ..., Qn), Q1, ..., Qn denote the individual Q-values, and f is the mixing func-
tion.

QMIX, the most well-known value decomposition algorithm, is highly regarded for its effectiveness
across a range of scenarios. To fulfill the IGM conditions, QMIX confines the parameters of the
value mixing network to non-negative values. This is achieved by satisfying the inequality as listed
below:

∂Qtot(τ ,u)

∂Qa (τa, ua)
≥ 0, ∀a ∈ {1, . . . , n}.

2.3 VECTOR QUANTISED-VARIATIONAL AUTOENCODER

Vector quantization (VQ) (Gray, 1984) is a classical quantization technique from signal processing
and has been widely used for lossy data compression, pattern recognition, density estimation, and
clustering. VQ works by encoding values from a high-dimensional vector space into a finite set of
values (known as codebook) from a lower-dimensional discrete subspace.

Traditional works about generative models, including generative adversarial networks
(GAN) (Goodfellow et al., 2014) and variational autoencoder (VAE) (Kingma & Welling,
2013), focus on learning representations with continuous features. However, discrete representa-
tions are more suitable for certain modalities (e.g., symbolized language is inherently discrete).
Van Den Oord et al. (2017) propose VQ-VAE, in which VQ is adopted to quantize a feature
representation layer and VAE has been developed for modeling distributions over discrete latents.
Specifically, given an input x which is passed through an encoder producing output ze(x), the
discrete latent variable z is calculated by a nearest neighbor look-up in the predefined codebook
E ∈ RK×D which contains K vectors ei ∈ RD, i = 1, 2, ...,K, as shown in Equations 1 and 2.

q(z = k|x) =
{
1 for k = argmini ∥ze(x)− ei∥2,
0 otherwise

, (1)

zq(x) = ek, where k = argmin
i
∥ze(x)− ei∥2, (2)

where q(z|x) is a categorical distribution and zq(x) is the input for the decoder. VQ-VAE gets
comparable performance with its continuous counterparts, while it is easier to train and free from
the “posterior collapse” issue.

3 METHOD

A group of people with assigned responsibilities always establish efficient collaboration in real-life
tasks. In MARL, agents with specific subtasks also demonstrate better coordination. In this section,
we introduce LSVQ, a novel cooperative MARL framework founded on the concept of subtasks.
Instead of using prior knowledge, LSVQ aims to learn a vector representation for each subtask and
automatically select a subtask for each agent, which renders the algorithm applicable to diverse
scenarios. We first discuss how to discover a set of representative subtasks from the environment.
Next, we present how the learned subtasks facilitate the decision and coordination of the agents. The
overall optimization objective is presented at the end.

3.1 SUBTASK LEARNER

Assumption 1 It is sufficient to determine each agent’s assigned subtask za based on the current
global state s.
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Figure 1: The overall framework of subtask learner.

Following assumption 1, we need to learn a posterior categorical distribution q(z|s) for selecting
subtasks. However, only the local observation oa is available for each agent a under the CTDE
paradigm. As oa = O(s, a) can be viewed as a projection of the global state s, we adopt the
following approximation in practice:

argmax
z

q(z|s) ≈

 argmaxz1 q(z1|o1)
...

argmaxzn q(zn|on)

 (3)

Making decisions solely based on local observation is highly limiting for agents, and a well-learned
subtask representation is expected to be informative enough to help infer the global state and enhance
coordination. Such an objective can be formulated as below:

maxEz∼q(z|s) [log p(s|z)] (4)

It is intuitive to associate the optimization target in Equation 4 with VAEs. Nevertheless, the sub-
tasks of the agents, which function as the latent variables in VAE, are discrete in nature rather than
continuous. Inspired by VQ-VAE (Van Den Oord et al., 2017), we propose a novel subtask learner
as Figure 1 shows. This model is sequentially composed of an encoder, a subtask dictionary, and a
decoder. The observation oa of each agent a is fed into the model and interpreted as a perspective
of the global state s, which is similar to the “channel” in convolutional neural networks. The en-
coder ze( · ; θe), consisting of two fully-connected layers and a ReLU activation unit, encodes the
observation oa into a vector ze(oa) ∈ RD of equivalent length to the subtask representation.

The subtask dictionary maps the K subtasks to representations E = {e1, ..., eK}. Each agent a
selects its subtask based on a deterministic distribution q(z|oa) that is computed using embedding
ze(oa) and subtask representations, in accordance with Equation 1. Meanwhile, the output of the
encoder ze(oa) is transformed into zq(oa) ∼ q(z|oa) by the discretization bottleneck according to
Equation 2.

Following the approximation in Equation 3, we aggregate all the zq(oa) together and deduce the
latent representation of the global state zq(s). Next, the model passes zq(s) through a decoder
fd( · ; θd) that is symmetric in structure to the encoder, in order to reconstruct the original global
state as below:

ŝ = fd (zq(s)) = fd (concatenate (zq(o1), ..., zq(on))) (5)

Typically, a VAE is updated by maximizing the evidence lower bound (ELBO) (Kingma & Welling,
2013), which consists of a reconstruction loss term and a Kullback-Leibler (KL) divergence term.
Similar but not the same, the overall loss function of our subtask learner is given by Equation 6, in
which sg stands for stopping the propagation of gradients. The first term is the state reconstruction
loss which optimizes the decoder and encoder. We suppose a uniform distribution p(z) = 1

K as the
prior for all subtasks, and the KL divergence term in ELBO can be ignored as it is a constant:

DKL (q(z|oa)∥p(z)) = 1 · log
(

1
1
K

)
+ (K − 1) · 0 · log

(
0
1
K

)
= logK,
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where DKL refers to KL divergence. However, the representations E in the subtask dictionary
receive no gradients from the first term. Therefore, we employ the vector quantization objective
in dictionary learning in the second term, which moves the chosen representation ek towards the
embedding ze(x) by minimizing the l2 error. The last term serves as a regularizer for the encoder. It
encourages the output of the encoder to stay close to the chosen representation to prevent oscillations
in the agents’ subtask selection.

Lsub = ∥ŝ− s∥22 +
n∑

a=1

∥sg [ze(oa)]− zq(oa)∥22 + β

n∑
a=1

∥ze(oa)− sg [zq(oa)] ∥22 (6)

3.2 LSVQ ARCHITECTURE

Because the subtask representations are able to capture the global state information, it is imperative
to integrate them into the decision-making process of agents. Figure 2 depicts the overview of classic
MARL methods with our proposed subtask learner. First, the subtask learner assigns a subtask qa to
agent a using its local observation. Next, both the local information and the assigned subtask are fed
into the Q network in Figure 2(a) or the policy network in Figure 2(b) to produce the action at the
current time step. Instead of simply concatenating the local information with the assigned subtask,
we refer to the implementation in LDSA (Yang et al., 2022) and employ hypernetworks (Ha et al.,
2016) to build a subtask-specific policy for each agent. Consider the model in Figure 2(a) as an
example, each agent a uses a shared trajectory encoder composed of a multi-layer perceptron (MLP)
and a gated recurrent unit (GRU) (Chung et al., 2014) to process the local observation and history
preliminarily. This encoder is followed by another MLP, of which the parameters are generated
by a hypernetwork that takes the subtask representation eza as input. At every time step, agent a
can adopt one of the K distinct subtask-specific Q networks for decision-making according to its
selected subtask, leading to a more flexible and versatile policy.

(a) (b)

Figure 2: Illustration of MARL methods with subtasks. SL refers to the subtask learner. Left: The
value decomposition method with subtask learner. Right: The multi-agent actor-critic method with
subtask learner.

LSVQ makes modifications to the decision-making process of agents while leaving other parts of
the model unchanged, such as the mixing network in QMIX (Rashid et al., 2018) and the critic
networks in MADDPG (Lowe et al., 2017). Therefore, LSVQ can be readily deployed into various
MARL algorithms for cooperative tasks. For value decomposition methods with LSVQ, the model
is trained by minimizing the following loss:

LRL = (ytot −Qtot(τ , z,u))
2
, (7)

where ytot = r+ γmaxu′ Q̂tot(τ
′, z′,u′). In the multi-agent policy gradient methods with LSVQ,

the critic network Qa(s, za, u1, ..., un) is updated by a loss similar to Equation 7, and the policy
gradient is calculated as:

∇J(πa) = ED [∇πa(τa, za)∇uaQa(s, za, u1, ..., un)|ua = πa(τa, za)] . (8)
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The overall optimization objective is simply the sum of Lsub and LRL, as shown in Equation 9. In
our implementation, the gradients of reinforcement learning are detached from the subtask learner
to maintain the independence of distinct modules during training, hence the model can be trained
end-to-end without the need to manually adjust the weights of two loss terms for an equilibrium. It
is worth noting that Lsub is also insensitive to coefficient β in the range from 0.1 to 2, and the only
extra hyperparameter that needs to tune in LSVQ compared to the original method is the number of
subtasks K. These merits enable the facile migration of LSVQ onto a broad spectrum of MARL
algorithms.

L = LRL + Lsub (9)

4 EXPERIMENTS

We evaluate the effectiveness of LSVQ on two popular testbeds for multi-agent cooperative tasks. In
our experiments, we primarily employ LSVQ-QMIX, a variant that deploys LSVQ into the QMIX
framework, owing to the prevalent conjunction of previous subtask-based MARL methods with
value decomposition methods (Wang et al., 2020b;c; Yang et al., 2022; Zeng et al., 2023). A
number of recognized state-of-the-art (SOTA) methods have been selected as baselines, including
QMIX (Rashid et al., 2018), MAVEN (Mahajan et al., 2019), and three subtask-based algorithms
(ROMA (Wang et al., 2020b), RODE (Wang et al., 2020c), LDSA (Yang et al., 2022)). All of the
above methods possess an identical mixing network structure and differ from the architecture of their
respective agent networks. Therefore, the performance of LSVQ can be assessed intuitively and im-
partially. The algorithms in our experiments are implemented based on the PyMARL (Samvelyan
et al., 2019), without any modification made to the original environment settings or hyperparameters.

4.1 PERFORMANCE ON MULTI-AGENT ENVIRONMENTS

StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) offers a diversity of micro-war
scenarios in StarCraft II, in which each unit has limited local observation and a large action space.
Notably, the version of StarCraft II used in our experiments is 4.6.2 instead of the simpler 4.10, and
results from different versions are not always comparable. We conducted experiments on a group
of representative scenarios of various difficulty levels, and Figure 3 shows the results on six Hard
and Super Hard scenarios, in which the 25− 75% percentiles are shaded. In 3s_vs_5z and corridor,
RODE performs slightly better than LSVQ-QMIX, but it may fail in certain scenarios. Meanwhile,
LSVQ-QMIX exhibits the best overall performance and outperforms all baselines in most scenarios.
LSVQ makes significant progress on the basis of QMIX, as LSVQ-QMIX not only elevates the
performance but also effectively tackles challenges that QMIX is unable to solve. This demonstrates
its great generality and superior performance in multi-agent coordination tasks, and we believe the
reason is that LSVQ promotes cooperative behaviors by providing agents with informative subtasks.

Google Research Football (GRF) (Kurach et al., 2020) offers a user-friendly platform for training
and evaluating agents in a football game, which has been well received by the reinforcement learning
community. Agents are required to refine their individual skills as well as learn to cooperate with
teammates. The performance and analysis of LSVQ-QMIX on GRF scenarios can be found in
Appendix D.1.

4.2 PRE-TRAINED SUBTASK LEARNER

Here we provide another paradigm for training LSVQ-QMIX, which can be extended to other vari-
ants. We first use a policy µ to collect data from the environment and train the subtask learner in
light of Equation 6. Then the parameters in the subtask learner are fixed, and we update the joint
policy π following Equation 7. We denote this version as LSVQ_PT and test it on three SMAC sce-
narios. From Figure 4 we find that LSVQ_PT exhibits a similar learning process and lower variance
in comparison to LSVQ-QMIX, which proves the feasibility of the pre-trained subtask learner.

However, due to the discrepancy between policy π and µ, the subtask learner receives data with
distinct distributions during training and execution. This issue is frequently encountered in offline
reinforcement learning and may have a detrimental impact on algorithm performance. Some studies
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Figure 3: Comparison of LSVQ-QMIX against baselines on SMAC scenarios.

Figure 4: Comparison of different training methodologies.

suggest that training the subtask learner and the MARL framework alternately can alleviate the
problem and improve the results (Hafner et al., 2019).

4.3 VISUALIZATION OF SUBTASKS

To investigate how the subtask learner works and affects the behaviors of agents, we first employ
t-SNE (Van der Maaten & Hinton, 2008) for dimensionality reduction to visualize the raw observa-
tions and the associated embeddings within the subtask learner. As shown in Figure 5(a) and 5(b),
the observations associated with the same subtask tend to exhibit proximity within the 2D t-SNE
embedding space, and the clarity of clusters is enhanced after encoding the observations into latent
subtask space. This evidence indicates that the subtask learner can derive informative representa-
tions by discovering and accentuating potential correlations from individual observations of agents.

Next, we select an episode to conduct a case study. Figure 5(c) depicts the subtasks assigned to
agents within the episode, and the related game screens are displayed in Figure 5(d). At the begin-
ning, agents are arranged in a formation with two wings spread out, and the Medivac is protected at
the rear. Later, the injured agents retreat to the back of the formation while the healthy ones move
forward. After gaining a numerical advantage, the allies focus fire to kill the rest enemies one by
one. We notice that the attacking agents tend to select the subtask in orange while the dead ones
opt for the subtask in green. Thanks to vector quantization, LSVQ enables agents to select various
subtasks in different stages and situations as well as preventing too frequent changes of chosen sub-
tasks that could lead to unstable training, whereas other subtask-based methods require additional
regularization terms and hyperparameters to achieve the same.

4.4 ABLATION

We investigate three issues below: (a) Is the superior performance of LSVQ from the subtasks or the
additional parameters? (b) Can LSVQ be transferred to other MARL frameworks? (c) How does
the number of subtasks K influence the performance of LSVQ?
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(a) oa in MMM2 (b) ze(oa) in MMM2

(c) Timeline of agents’ subtasks (d) Gameplay screenshots

Figure 5: Visualization of subtasks in MMM2 scenario. (a)(b) The 2D t-SNE embedding of the
observations oa and the subtask encoder’s outputs ze(oa) respectively. (c) The changes of subtasks
assigned to each agent in an episode. (d) The game screenshots of the episode, in which each agent is
marked with a colored circle representing its assigned subtask. The alignment of colors and subtasks
is consistent across figures.

Figure 6: Ablation study on the number of parameters.

First, we implement QMIX-Large, within which the scale of the Q network is enlarged to achieve
a comparable parameter count with that of LSVQ-QMIX. Results in Figure 6 have indicated that
simply adding parameters does not make a significant improvement to QMIX. On the contrary, the
large network imposes a great burden on the training process, leading to a decline in performance in
some cases.

Second, we integrate LSVQ with MADDPG (Lowe et al., 2017) and test it in three coopera-
tive scenarios with the same continuous action space and different numbers of agents: Continu-
ous_pred_prey_3a, 6a and 9a (Peng et al., 2021), in which we control a team of predators to catch
the preys with built-in heuristic policies. The details of the scenarios can be found in Appendix B.4.
The hyperparameter configurations of LSVQ-MADDPG remain exactly the same as MADDPG,
without any adjustments. According to the learning curves in Figure 7, LSVQ-MADDPG can suc-
cessfully solve all the tasks and achieve results equivalent to or even superior to those of MADDPG.
This strongly demonstrates the capability of LSVQ to transfer to other algorithms and problems.

Last, we compare the performances of LSVQ-QMIX with different numbers of subtasks while keep-
ing other settings unchanged. We represent the variants as LSVQ(K), in which K refers to the num-
ber of subtasks. Figure 8 displays the outcomes in two distinct scenarios. A large value of K does
not necessarily result in improved performance, as an excessive number of subtasks can increase the
scale of the problem and impede coordination. The key is to choose an appropriate K based on the
overall task to decompose and reach a balance between policy diversity and model complexity.
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Figure 7: The performance of LSVQ-MADDPG with continuous action space.

Figure 8: Ablation study on the influence of the number of subtasks.

5 CONCLUSION

To overcome the limitations of previous subtask-based MARL methods, we propose a novel learn-
ing framework called LSVQ. Inspired by VQ-VAE, LSVQ designs a subtask learner that attempts to
reconstruct the global state based on discrete latent variables. Therefore, the latent variables possess
the ability to reflect a broader context and serve as informative subtask representations. By incor-
porating LSVQ with classic MARL methods, the coordination of agents is significantly improved
with the aid of assigned subtasks. We hope that LSVQ could provide a scalable and transferable
approach for addressing general cooperative problems in multi-agent systems.
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los Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, and Sylvain Gelly. Google
research football: A novel reinforcement learning environment, 2020.

Kemas M Lhaksmana, Yohei Murakami, and Toru Ishida. Role-based modeling for designing agent
behavior in self-organizing multi-agent systems. International Journal of Software Engineering
and Knowledge Engineering, 28(01):79–96, 2018.

Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang. Cel-
ebrating diversity in shared multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 34:3991–4002, 2021.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. Advances in Neural Information Processing Systems, 32, 2019.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs.
Springer, 2016.

Juan Pavón and Jorge Gómez-Sanz. Agent oriented software engineering with ingenias. In Interna-
tional Central and Eastern European Conference on Multi-Agent Systems, pp. 394–403. Springer,
2003.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy gra-
dients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

Huy Xuan Pham, Hung Manh La, David Feil-Seifer, and Aria Nefian. Cooperative and distributed
reinforcement learning of drones for field coverage. arXiv preprint arXiv:1803.07250, 2018.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforce-
ment learning. In International conference on machine learning, pp. 4295–4304. PMLR, 2018.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances in
neural information processing systems, 33:10199–10210, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Alireza Shamsoshoara, Mehrdad Khaledi, Fatemeh Afghah, Abolfazl Razi, and Jonathan Ashdown.
Distributed cooperative spectrum sharing in uav networks using multi-agent reinforcement learn-
ing. In 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC),
pp. 1–6. IEEE, 2019.

10



Under review as a conference paper at ICLR 2024

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Hostallero, and Yung Yi. QTRAN: learn-
ing to factorize with transformation for cooperative multi-agent reinforcement learning. CoRR,
abs/1905.05408, 2019. URL http://arxiv.org/abs/1905.05408.

Nikolaos Spanoudakis and Pavlos Moraitis. Using aseme methodology for model-driven agent sys-
tems development. In International workshop on agent-oriented software engineering, pp. 106–
127. Springer, 2010.

Peter Stone and Manuela Veloso. Task decomposition, dynamic role assignment, and low-bandwidth
communication for real-time strategic teamwork. Artificial Intelligence, 110(2):241–273, 1999.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020a.

Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Roma: Multi-agent reinforcement
learning with emergent roles. arXiv preprint arXiv:2003.08039, 2020b.

Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
Rode: Learning roles to decompose multi-agent tasks. arXiv preprint arXiv:2010.01523, 2020c.

Tong Wu, Pan Zhou, Kai Liu, Yali Yuan, Xiumin Wang, Huawei Huang, and Dapeng Oliver Wu.
Multi-agent deep reinforcement learning for urban traffic light control in vehicular networks.
IEEE Transactions on Vehicular Technology, 69(8):8243–8256, 2020.

Zhao Xu, Yang Lyu, Quan Pan, Jinwen Hu, Chunhui Zhao, and Shuai Liu. Multi-vehicle flock-
ing control with deep deterministic policy gradient method. In 2018 IEEE 14th International
Conference on Control and Automation (ICCA), pp. 306–311. IEEE, 2018.

Mingyu Yang, Jian Zhao, Xunhan Hu, Wengang Zhou, Jiangcheng Zhu, and Houqiang Li. Ldsa:
Learning dynamic subtask assignment in cooperative multi-agent reinforcement learning. Ad-
vances in Neural Information Processing Systems, 35:1698–1710, 2022.

Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao
Tang. Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv
preprint arXiv:2002.03939, 2020.

Deheng Ye, Guibin Chen, Wen Zhang, Sheng Chen, Bo Yuan, Bo Liu, Jia Chen, Zhao Liu, Fuhao
Qiu, Hongsheng Yu, et al. Towards playing full moba games with deep reinforcement learning.
Advances in Neural Information Processing Systems, 33:621–632, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative, multi-agent games, 2022.

Xianghua Zeng, Hao Peng, and Angsheng Li. Effective and stable role-based multi-agent collabo-
ration by structural information principles. arXiv preprint arXiv:2304.00755, 2023.

Meng Zhou, Ziyu Liu, Pengwei Sui, Yixuan Li, and Yuk Ying Chung. Learning implicit credit
assignment for cooperative multi-agent reinforcement learning, 2020.

11

http://arxiv.org/abs/1905.05408


Under review as a conference paper at ICLR 2024

A RELATED WORKS

A.1 VALUE DECOMPOSITION METHODS

Value decomposition is an effective technique for solving the credit assignment problem and has
gained popularity in recent years. It factorizes the global Q-value into individual Q-values follow-
ing the individual-global-max (IGM) assumption (Rashid et al., 2018). VDN (Sunehag et al., 2017)
and QMIX (Rashid et al., 2018) factorize the global Q-value by additivity and monotonicity, re-
spectively. Qatten (Yang et al., 2020) replaces the MLP in the mixing network of QMIX with the
attention mechanism. QTRAN (Son et al., 2019) transforms the original global Q-value function into
another one that is easier to decompose and equivalent to the original task. Weighted QMIX (Rashid
et al., 2020) adjusts the weights of different joint actions when updating to overcome the limitation
imposed by the monotonic constraint in QMIX. QPLEX (Wang et al., 2020a) proposes a duplex
dueling network architecture to implement the complete IGM function class.

A.2 MULTI-AGENT POLICY GRADIENT

Multi-agent policy gradient algorithms enjoy stable theoretical convergence properties, and hold the
promise to extend MARL to continuous control problems. COMA (Foerster et al., 2018) proposes
the paradigm of centralized critic and decentralized actor (CCDA). MADDPG (Lowe et al., 2017)
and MAPPO (Yu et al., 2022) migrate the original algorithms to multi-agent scenarios. MAAC (Iqbal
& Sha, 2019) extends CCDA by introducing the attention mechanism. LICA (Zhou et al., 2020)
proposes a global critic that takes the global state and the joint action as input to calculate a global
value estimation like value decomposition methods do.

A.3 SUBTASK-BASED METHODS

By decomposing the overall task, agents can focus on restricted subtasks that are easier to solve.
Besides, a proper subtask assignment can facilitate the cooperative behaviors of agents. However,
it is challenging to come up with a set of subtasks that can effectively decompose the whole multi-
agent task. The most straightforward way is to predefine the subtasks by leveraging the prior domain
knowledge(Becht et al., 1999; Stone & Veloso, 1999; Spanoudakis & Moraitis, 2010; Lhaksmana
et al., 2018). Recent methods attempt to automatically decompose the task without prior knowledge.
ROMA (Wang et al., 2020b) introduces the concept of roles for each agent based on its local obser-
vation and conditions agents’ policies on their roles. RODE (Wang et al., 2020c) explicitly defines
the subtasks based on joint action space decomposition during pretraining, where each subtask is
mapped on a subset of actions. RODE is considered to be a SOTA method due to its superior perfor-
mance, but it would fail in certain scenarios as it restricts the available actions of the agent after it is
assigned a subtask. LDSA (Yang et al., 2022) builds subtask representations from one-hot vectors,
then it generates subtask-specific Q networks for decision-making. The subtask in LDSA is used to
control the diversity of agents’ behavior, but it does not necessarily improve coordination as there is
no global information in the subtask representations to guide the agents.

B ENVIRONMENT DETAILS

B.1 SMAC

SMAC is a simulation environment for research in collaborative multi-agent reinforcement learning
(MARL) based on Blizzard’s StarCraft II RTS game. The goal of each task is to control different
types of agents to move or attack to defeat the enemies. The version of StarCraft II is 4.6.2 (B69232)
in our experiments, and it should be noted that results from different client versions are not always
comparable. The difficulty of the game AI is set to very hard (the 7th level). Table 1 presents the
details of selected scenarios in our experiments.

B.2 SMACV2

SMACv2 (Ellis et al., 2023) is proposed to address SMAC’s lack of stochasticity. In SMACv2,
the team compositions and agent start positions are generated randomly at the beginning of each
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Table 1: Information of selected challenges.
Challenge Ally Units Enemy Units Type Level of Difficulty

3s_vs_5z 3 Stalkers 5 Zealots Homogeneous
Asymmetric Hard

5m_vs_6m 5 Marines 6 Marines Homogeneous
Asymmetric Hard

3s5z_vs_3s6z 3 Stalkers
5 Zealots

3 Stalkers
6 Zealots

Heterogeneous
Asymmetric Super Hard

MMM2
1 Medivac

2 Marauders
7 Marines

1 Medivac
3 Marauders
8 Marines

Heterogeneous
Asymmetric Super Hard

corridor 6 Zealots 24 Zerglings Homogeneous
Asymmetric Super Hard

27m_vs_30m 27 Marines 30 Marines Homogeneous
Asymmetric Super Hard

episode. The sight range of the agents is narrowed, and the attack ranges of different unit types are
no longer the same. These modifications make SMACv2 extremely challenging. The version of the
StarCraft II engine is also 4.6.2 (B69232) in our experiments.

B.3 GOOGLE RESEARCH FOOTBALL

We choose three official scenarios from Football Academy. Academy_3_vs_1_with_keeper and
Academy_pass_and_shoot_with_keeper are relatively easy scenarios, and Academy_Corner is a
hard one. Agents are rewarded when they score a goal or kick the ball to a position close to the
goal. Observations of the agent include the relative positions of all other entities. We restrict the
football to the opponent’s half of the field and stop the episode once the ball enters our half to speed
up training.

B.4 COOPERATIVE PREDATOR-PREY

Based on the mixed simple tag scenario in multi-agent particle environments (MPE), we modify it
into a cooperative task named continuous_pred_prey, following the implementation of Peng et al.
(2021). The modified scenario is depicted in Figure 9. The prey is controlled by a heuristic pol-
icy which moves the prey to the sampled position with the largest distance to the closest predator.
The predators gain a team reward of +10 when one of them collides with a prey. To introduce
partial observability to the environment, the agents are constrained to access information within a
view radius. We extend the task to three variants with different numbers of agents. For example,
continuous_pred_prey_9a means there are 9 predators and 9/3 = 3 preys in the environment.

C IMPLEMENTATION DETAILS

C.1 SETTINGS OF HYPERPARAMETERS

We list the hyperparameters of the variants of LSVQ in Table 2. The hyperparameters of the other
baselines remain the same as their official implementations.

C.2 ALGORITHMIC DESCRIPTION

We mainly test the performance of LSVQ-QMIX in this paper, and the pseudocode is shown in
Algorithm 1. The code for LSVQ can be found in the supplementary material.
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Figure 9: The illustration of cooperative predator-prey scenario. Left: The top-down view of the
environment, with predators (red), prey (green), and obstacles (grey). Right: The observation radii
of the agents, and the prey’s heuristic of escape.

Table 2: Information of selected challenges.
Algorithm Description Value

QMIX

Type of optimizer
Exploration mode
Learning rate
Target network update interval
Batch size
Replay buffer size
Discount factor γ
Probability of random action (ϵ)
ϵ anneal time

RMSProp
ϵ-greedy
0.0005
200
32
5000
0.99
1.00̃.05
50000

MADDPG

Type of optimizer
Exploration mode
Learning rate
Target soft update τ
Batch size
Replay buffer size
Discount factor γ
Standard deviation of action noise

Adam
Gaussian
0.01
0.001
32
5000
0.85
0.1

LSVQ
Number of subtasks
Dimension of subtask representations
Coefficient of regularizer β

8
32
0.4

D ADDITIONAL EXPERIMENTS

Due to the space limitations, we display some additional experiment results here.

D.1 EXPERIMENTS ON GRF

Figure 10 presents the results on three GRF scenarios. Although the performance of LSVQ-QMIX is
inferior to LDSA in academy_3_vs_1_with_keeper, it still reaches promising results and maintains
its effectiveness while other methods may fail in particular scenarios.

D.2 EXPERIMENTS ON SMACV2

We test LSVQ on SMACv2 and select QMIX and LDSA as baselines. QMIX is the baseline that
performs best in the original paper of SMACv2, and LDSA is an outstanding subtask-based method
with a decision-making process similar to LSVQ but lacking global information. Both LSVQ and
LDSA employ the mixing network structure of QMIX. The results are displayed in Figure 11. LSVQ
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Algorithm 1: LSVQ-QMIX
Initialize replay buffer D
Initialize the subtask encoder ze, decoder fd, and subtask representations E. Initialize the
QMIX network with parameters θ, initialize target parameters θ− = θ

while training do
for episode← 1 to M do

Start with initial state s0 and each agent’s observation o0
a = O

(
s0, a

)
Initialize an empty episode recorder R for t← 0 to T do

For every agent a, with probability ϵ select action ut
a randomly

Otherwise, calculate zq(o
t
a) = ek ∈ E and assign a with subtask zta = k based on

Equation 1 and 2, select ut
a = argmaxut

a
Qa (τ

t
a, z

t
a, u

t
a)

Take joint action ut, and retrieve next state st+1, next observations ot+1 and reward
rt

Store transition
(
st,ot,ut, rt, st+1,ot+1

)
in R

end
Store episode data R in D

end
Sample a random mini-batch data B with batch size N from D
for t← 0 to T − 1 do

Extract transition
(
st,ot,ut, rt, st+1,ot+1

)
from B

For every agent a, calculate zq(o
t
a) and Qa (τ

t
a, z

t
a, u

t
a|θ)

Reconstruct ŝ in light of Equation 5
Calculate Qtot (τ

t, zt,ut|θ)
With target network, calculate Qa

(
τ t+1
a , zt+1

a , ut+1
a |θ−

)
= maxQa

(
τ t+1
a , · |θ−

)
Calculate Qtot

(
τ t+1, zt+1,ut+1|θ−

)
end
Update the subtask learner by minimizing the loss in Equation 6
Update θ by minimizing the loss in Equation 7
Update target network parameters θ− = θ periodically

end

Figure 10: Comparison of LSVQ-QMIX against baselines on GRF scenarios.

achieves the optimal overall outcomes and is superior to LDSA. This indicates that the global infor-
mation incorporated in the subtask representations is very helpful to the agents’ coordination under
conditions with severely restricted observations. It also demonstrates the universal effectiveness of
LSVQ.

D.3 VISUALIZATION OF SUBTASK LEARNER

Besides MMM2, we also investigate how the subtask learner works in corridor to assess the effec-
tiveness of LSVQ in various scenarios. The 2D t-SNE embeddings of the observations are shown in
Figure 12(a), and we find that the observations with proximity are classified into the same subtask
by LSVQ. According to Figure 12(b), the correlation between observations from the same subtask
is further accentuated after being processed by the subtask encoder. This suggests that LSVQ learns
reasonable subtask representations from a global perspective.

15



Under review as a conference paper at ICLR 2024

Figure 11: Results on SMACv2 scenarios.

(a) (b)

Figure 12: Visualization of corridor scenario.
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