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Abstract. We describe our methods for the HECKTOR 2025 chal-
lenge, which involved three tasks using PET/CT imaging and clinical
data: segmentation of primary tumors and lymph nodes, recurrence-free
survival prediction, and HPV-status classification. For tumor segmen-
tation, we used a U-Net style SegResNet that achieved Dice scores of
0.52 for primary tumors and 0.38 for lymph nodes on the validation set,
ranking in the Top 10. For survival prediction, we developed a multi-
modal model combining imaging features with clinical data, obtaining a
C-index of 0.6482, also placing in the Top 10. The same framework ap-
plied to HPV-status classification yielded a balanced accuracy of 0.4655,
earning 2nd place. Our results indicate that integrating features across
data modalities improves performance, though class imbalance remains
challenging. Future work could benefit from incorporating radiotherapy
planning data and tumor volume measurements. Code is available at:
https://github.com /BaixiangZ /hecktor2025
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1 Introduction

Head and neck cancer presents complex challenges in diagnosis and treatment
planning. The HECKTOR 2025 challenge [4] focuses on three key tasks that
address different aspects of clinical management.

Task 1: Tumor Segmentation requires detecting and segmenting primary
tumors (GTVp) and lymph nodes (GTVn) in PET/CT images. This is difficult
because lesions can be small with unclear boundaries, tumors and lymph nodes
may appear similar, and PET/CT images have different resolutions and intensity
characteristics.

Task 2: Survival Prediction involves predicting recurrence-free survival
from FDG-PET/CT images, clinical variables, and radiotherapy dose maps.
Challenges include integrating multimodal data and handling censored obser-
vations.
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Task 3: HPV Status Classification aims to diagnose HPV status from
imaging and clinical data, with the additional difficulty of class imbalance.

Our work presents methods for all three tasks, focusing on effective integra-
tion of PET/CT imaging with clinical data.

2 Related Work

Previous work in medical image analysis has shown the value of combining mul-
tiple data types. Myronenko et al. [3] developed SegResNet for brain tumor seg-
mentation, while Zhao et al. [7] explored spatial guidance methods. For survival
analysis, recent approaches have incorporated ranking losses and contrastive
learning. Kim et al. [1] addressed class imbalance in medical classification.

The HECKTOR challenge series has advanced head and neck cancer analysis
through successive iterations with new data and evaluation protocols [5].

3 Methods

3.1 Data Preprocessing

Imaging Data Preprocessing For all tasks, CT and PET volumes were pro-
cessed through standardized pipelines. For Task 1, we began with resampling to
isotropic 1x1x1 mm voxel spacing using B-spline interpolation for images and
nearest-neighbor for labels. We cropped to a fixed neck region (200x200x310)
based on PET signal distribution and applied intensity normalization: CT to
[250, 250] HU then [0,1], PET to zero mean and unit variance.

For Tasks 2 and 3, CT and PET volumes were loaded with ITK-based readers,
intensity-scaled, and resized to 96x96x96 voxels. All images were reoriented to
RAS coordinate system and converted to tensor format.

Clinical Data Preprocessing Clinical variables (Age, Gender, Tobacco Con-
sumption, Alcohol Consumption, Performance Status, M-stage, Treatment) were
processed identically for training and inference. Continuous variables were im-
puted with training median and standardized; categorical variables underwent
one-hot encoding with handling of missing values. Preprocessing parameters were
fitted once on training data to prevent data leakage.

3.2 Model Architectures

Task 1: Segmentation Network We employed SegResNet [3] from MONAI,
a U-Net-like architecture with residual connections (Figure 1). The network
accepts two-channel input (CT and PET) and produces three-channel output
(background, primary tumor, lymph nodes). Both encoder and decoder use resid-
ual blocks with group normalization, ReL U activation, and 3x3x3 convolutions.
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Fig. 1. SegResNet architecture for tumor and lymph node segmentation (Task 1).

Tasks 2 and 3: Multimodal Prediction Networks We developed a unified
multimodal framework (Figure 2) with:

— Imaging branch: 3D ResNet-18 processing two-channel PET /CT — 512-D
features

— Clinical branch: Two-layer MLP processing clinical variables — 32-D fea-
tures

— Fusion: Concatenation + MLP — 128-D joint representation

— Task-specific heads: Survival risk prediction (Task 2) or HPV classification
(Task 3)
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Fig. 2. Multimodal architecture for survival prediction and HPV classification (Tasks
2 and 3).

3.3 Loss Functions

Task 1: Segmentation Loss We used a composite Dice cross-entropy objective
over three classes:
Eseg = EDice + LCE (1)
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Task 2: Survival Prediction Loss Our training objective combined three
components:
Cox partial likelihood:
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Pairwise ranking loss:
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(i,7)€P

Contrastive regularization'

Loty = Z dij + —; | | Z max(0,m — d;;) (4)

( i,j)€S (i,7)€D

Total objective:
L:surv = Ccox + )\rank»crank + )\ctr»cctr (5)
with Arank = 0.3, Aete = 0.1, @ = 1.0, m = 1.0.

Task 3: Classification Loss Standard cross-entropy loss for binary classifica-
tion:

N
Leclass = Z Yi IOg pz 1 - yz) IOg(l - pl)} (6)

3.4 Training Strategy

All models used stratified 5-fold patient-level cross-validation. Training employed
AdamW optimizer with learning rates of 1 x 10™# (Task 1) and 1 x 10~3 (Tasks
2-3), early stopping with patience of 10 epochs, and appropriate batch sizes
(8 for segmentation, 4 for classification). Data augmentation included random
cropping, rotation, and intensity variations.

For Task 2, we used iterative joint optimization (20 iterations X 3 epochs)
with gradient clipping and learning rate scheduling. For inference, we employed
MONAT’s sliding window inference for segmentation and bagged iCARE ensem-
bles for survival prediction.

3.5 Evaluation Metrics

— Task 1: Dice similarity coefficient for GTVp and GTVn

— Task 2: Concordance index (C-index) measuring survival prediction accu-
racy

— Task 3: Balanced accuracy addressing class imbalance in HPV classification
The C-index is defined as:

Zi,j 1[7’7; > Tj] . 1[251' < tj] c €

C-index =
2 Ut <tj]-ei

(7)



Title Suppressed Due to Excessive Length 5

4 Results

4.1 Task 1: Tumor Segmentation

Our segmentation approach achieved a Dice score of 0.5196 for primary tumors
(GTVp) and an aggregated Dice score of 0.3790 for lymph nodes (GTVn) on the
validation set. In the final challenge evaluation, this performance secured a Top
10 ranking among all participating teams.

4.2 Task 2: Survival Prediction

The multimodal survival prediction model achieved a C-index of 0.6482 on the
validation cohort, demonstrating reasonable concordance between predicted risks
and observed survival outcomes. This performance also placed us in the Top 10
teams for this task.

4.3 Task 3: HPV Status Classification

For HPV status classification, our model achieved a balanced accuracy of 0.4655
on the validation set. Despite the challenging nature of this task with significant
class imbalance, our approach earned 2nd place in this sub-challenge.

Table 1. Performance summary across all tasks

Task Metric Validation Score Challenge Ranking
Task 1: Segmentation Dice (GTVp) 0.5196 Top 10
Dice (GT'Vn) 0.3790
Task 2: Survival C-index 0.6482 Top 10
Task 3: HPV Classification Balanced Accuracy 0.4655 2nd Place

5 Discussion

5.1 Performance Analysis

Our results demonstrate consistent benefits of multimodal learning across all
three tasks. The integration of PET and CT imaging with clinical data provided
complementary information that enhanced model performance beyond single-
modality approaches.

For Task 1, the performance gap between primary tumors (Dice 0.52) and
lymph nodes (Dice 0.38) reflects the greater difficulty in segmenting smaller,
more dispersed lymph node structures. Several factors limited our segmentation
performance: absence of ensemble strategies, limited architecture exploration,
and suboptimal training convergence (training Dice 0.65).
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In Task 2, the ensemble of intermediate features provided stability and perfor-
mance gains. The composite loss function effectively balanced ranking accuracy
with feature consistency, though additional tuning of loss weights might yield
further improvements.

For Task 3, class imbalance significantly impacted performance, highlighting
the need for specialized handling of unbalanced datasets in medical classification
tasks.

5.2 Limitations and Future Work

Several limitations present opportunities for future improvement:

Architectural Limitations: We explored limited network variants and did
not incorporate ensemble strategies. Future work should evaluate broader archi-
tecture families and implement model ensembles.

Data Utilization: We did not incorporate radiotherapy planning data [5] or
tumor volume metrics [2], known prognostic factors. Radiotherapy information
could provide important complementary signals for survival prediction.

Class Imbalance: For HPV classification, we did not explicitly address class
imbalance. Techniques such as those proposed by [1] could improve performance.

Advanced Techniques: Incorporating spatial guidance mechanisms [7] and
probability contour refinement [6] could enhance segmentation boundaries. More
sophisticated data augmentation and test-time augmentation could improve ro-
bustness.

Computational Constraints: Limited hyperparameter optimization and
architecture search due to computational resources restricted potential perfor-
mance. More comprehensive optimization could yield additional gains.

6 Conclusion

We presented comprehensive multimodal frameworks addressing all three tasks
of the HECKTOR 2025 challenge. Our approaches demonstrated the value of
integrating PET/CT imaging with clinical data for head and neck cancer anal-
ysis, achieving competitive results with Top 10 rankings in segmentation and
survival prediction, and 2nd place in HPV classification.

The consistent performance improvements from multimodal learning across
all tasks underscore the importance of comprehensive data integration in medical
image analysis and computational oncology. Future work will focus on incorpo-
rating additional data modalities, implementing sophisticated handling of class
imbalance, exploring ensemble strategies, and developing specialized architec-
tures for each task.

As the field advances, such integrated approaches will play an increasingly
crucial role in personalized cancer care, ultimately contributing to improved
diagnosis, prognosis, and treatment planning for head and neck cancer patients.
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