Transformer Adapters for Robot Learning

Anthony Liang Ishika Singh Karl Pertsch Jesse Thomason
University of Southern California
anthony.liang@usc.edu

Abstract: Large transformer-based architectures are capable of complex robot
task planning and low-level control. In the natural language processing (NLP)
community, fine-tuning large pretrained models (PTMs) such as GPT-3 and PaLM
is the de-facto standard. With the scalability of transformer models and growing
availability of large-scale multimodal robot data, we investigate pretraining large
backbone models to capture useful behavioral priors that enable efficient few-shot
transfer to downstream robot tasks. We explore the setting of modular reinforce-
ment learning (RL) in which each downstream task is encapsulated by an inde-
pendently learned module. With many downstream tasks, fine-tuning or training
separate copies of these large PTMs become computationally and memory inten-
sive. We propose to pretrain a large transformer backbone on task-agnostic data
and learn small task-specific adapters using few-shot imitation learning to quickly
adapt to downstream tasks. We evaluate on complex robot manipulation tasks in
the Metaworld environment and demonstrate that adapter training is a parameter-
efficient approach for modular RL.

Keywords: Parameter-efficient fine-tuning, Modular Reinforcement Learning,
Few-shot imitation learning

1 Introduction

As large pretrained models (PTMs) are being adopted in robotics and eventually deployed onto
physical robot systems, how can non-industry practitioners adapt these large PTMs to custom tasks
beyond just relying on their zero-shot capabilities? We present a scalable approach, inspired by work
in the NLP community, for a large pretrained generalist robot model to acquire diverse behavior and
quickly adapt to new downstream tasks.

Large pretrained models such as PaLM [1], DALL-E [2], and GPT-3 [3] have demonstrated impres-
sive capabilities across many domains ranging from natural language processing (NLP) to vision [2]
and even robotics [4] [5] [6] [7]. Fine-tuning these large PTMs can incur significant training and
storage costs. GPT-3, for example, has 175 billion parameters, cost $10 million and a few months
of training, and takes up 350 GB of storage [3].

The prevalent paradigm for overcoming large model training costs in learning new NLP tasks is
to train small neural modules called adapters [8] on a relatively small amounts of data specific to
the task. Adapters are embedded inside Transformer blocks of large PTMs. This design facilitates
weight sharing and accelerates learning of new NLP tasks by leveraging pretrained linguistic pri-
ors. We advocate for a similar framework whereby an autoregressive Transformer-based policy is
pretrained on a large, diverse task-agnostic robot dataset. Small task-specific adapter modules are
then learned for each new downstream task while sharing a common transformer backbone. We
demonstrate on a challenging robot manipulation environment that a pretrained Transformer model
can zero-shot perform unseen tasks and task-specific adapters can quickly adapt to new tasks with a
few demonstrations using < 2% of the full model parameters.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

Task-agnostic

H H Behavior
Pretraining Offline Cloning Transformer
Pret[r):i‘r;ing — Policy
2 Task-specific Insert Adapters

Adapter Training Tkt~

Transformer Policy

E Task Adapters
Task2 =~ =———p
Adapter 1
Adapter

Frozen Weights

i. Insert adapter for each new task
ii. Freeze pretrained model weights .

iii. Train adapter on new task data "
ﬁ Task N /

Figure 1: We pretrain a Transformer policy on a large corpus of offline task-agnostic data, which
captures useful manipulation priors such as picking up objects. We can use this shared pretrained
backbone to accelerate the learning of new tasks in both offline and online settings. We propose to
train task-specific adapters, small neural modules that are injected in between each transformer layer
to capture task relevant information without damaging the weights of the pretrained model.

2 Approach

We train an imitation learning policy for pretraining transformers using task-agnostic experience
dataset. Thereafter, we learn adapters with frozen transformer backbone for downstream task adap-
tation using few-shot task demonstrations.

2.1 Preliminaries

Transformer Policy. Decision Transformers (DT) [9] demonstrate that self-attention based mod-
els can be applied to solve RL problems due to its efficiency and scalability in modeling long se-
quential data. Rather than learning explicit value functions, DT treats policy learning as a causal
sequence modeling problem. DT uses a Transformer backbone, specifically GPT-2 [10], trained on
a causal modeling objective of predicting the next action token given the context history. Trajecto-
ries are sequences of states s;, actions a;, and reward-to-go 7; tokens. Unlike DT, which learns a
reward-conditioned policy, we pretrain our model on valid trajectories only 7 = {s;, a;}Z_; (Figure
2), followed by goal-conditioned few-shot imitation learning.

Adapters introduce a small set of new parameters between the layers of a large pretrained model.
During downstream training, the pretrained model weights are fixed while the adapter weights learn
to encode task-specific representations. Adapters efficiently share a majority of the weights with
the pretrained model, and this facilitates information sharing that improves downstream learning. In
practice, adapters are very lightweight, typically using only 0.5-8% of the full backbone model pa-
rameters. Houlsby et al. [8] empirically show that a two-layer feed-forward bottleneck architecture
works the best for the adapter design. Adapters are defined as:

Al(x) =X+ W, (GeLU(W i, (X)), (M
where x is the input hidden state, W

up W are the weights for the feed-forward up and down-
projection for layer [respectively. Adapters learn to encapsulate task-specific information that is
non-destructive to the original model [8]. Adapters are modular by design.

2.2 Problem Formulation

We assume access to a task-agnostic dataset DP7 = {7;}}¥ | for pretraining the backbone model.
Each trajectory 7; is collected by an agent interacting with a Markov Decision process (MDP) de-

i Transformer

Layer

Layer Norm
' Adapter
' | te— Layer
Adapter T
1 +
H
2x Feed-forward Feed-forward
q | — P
[
Transformer Policy Layer Norm Nonlinearity
1
W Feed-forward

Embedding Layer
+ Position Encoding

'
Adapter

|
Feed-forward
1

Multi-head Attention

Down

o o o Si-1 a1 St a; o o 0 é $ XN
Figure 2: We embed state and action sequence inputs with modality-specific layers and added to
learned positional timestep encodings. A GPT-2 [10] model autoregressively predicts actions corre-
sponding to each state. Two adapter layers are added to every Transformer block.

fined by a tuple M = {S, A, R, T } of states, actions, rewards, and transition probability. Data can
be collected from an expert planner, play interactions, or even a random policy. We focus on an
imitation learning setting in which the MDP does not have an explicitly defined reward function, i.e
M\ R. The objective is to learn an imitation policy m(a|s) such that the agent behaves like the
expert provided a set of expert demonstrations for a task. During downstream task adaptation, we
assume that there is a dataset D'®* containing a few demonstrations for each target task 7; € T t¢5¢,

2.3 Transformer Adapters

Our approach has two stages: pretraining and downstream task learning. During pretraining, the
model learns to capture useful behavioral priors from the task-agnostic data, such as how to ma-
nipulate different objects. By leveraging the capacity of large models, we capture diverse prior
knowledge that can accelerate learning of downstream tasks. Following [9], our pretraining objec-
tive is to minimize the mean-squared error between the predicted action and ground truth actions:

Lpr(0) = En:{st,at}gt:lNDPT —log pe(at|si—m,at—m, ..., at—1,5¢) |, (2)

where H is the context length, 6 are the policy parameters. During the fine-tuning stage, we use the
pretrained model to bootstrap the learning of new downstream tasks via few-shot imitation learning.
The agent is provided with a small set of expert demonstrations {7;}X ; for each target task. We
insert adapter modules into the layers of the pretrained transformer (see Figure 2), and only train
the weights of the adapter with the pretraining objective using the expert demonstrations.

3 Experiments and Results

We aim to answer two main questions: 1) Does a transformer policy pretrained on large, diverse
offline data provide a strong backbone for transfer to downstream unseen tasks? 2) Are adapters a
parameter-efficient and scalable approach for few-shot imitation learning of new robot tasks?

Environment and Data We evaluate our method in the MetaWorld robot manipulation benchmark
[11]. MetaWorld contains 50 different robot control and manipulation tasks with a Sawyer arm in
the Mujoco environment. We evaluate on the Meta-Learning 45 (ML45) setting, where we pretrain
our policy on 45 tasks and evaluate downstream adaptation to 5 held-out tasks. The task splits are
hand-selected in [11] such that the training tasks are structurally similar to the test tasks. Object and
goal positions are randomized at the start of every episode. The action space A € R%, is the A(zyz)
of the end-effector, and a continuous scalar value for gripper torque. The state S € R3?, contain the
3D positions of the end-effector, first object, second object and the goal.

The goal position is masked during pretraining and provided to the model during downstream adap-
tation. We use a scripted policy to collect 10 trajectories for each of the 50 tasks. We pretrain on
450 trajectories from the training split and few-shot imitation learned on 10 demonstrations per test
task. We report averaged task success across all 5 test tasks over 10 evaluation rollouts and 3 seeds.

Finetune Full (34M)
—— Adapter (0.6M)
Action Head (1.2M)
—— MLP w/ Prediction Head (0.8M)

0.8

Box Door Door Bin Hand
Close Lock Unlock Picking Insert

W ,V,AA/'\[VJ‘V\/\/\['A"""W,M[\ FT A40+.08 .40+.14 1.0+.00 .50+.24 .43+.09 .55+.07
v ' Adapter .23+.05 .43+.00 .97+.05 .43+.17 .43+.24 .50+.06
AH .20+.14 .30+.16 .90+.08 .50+.08 .17+.05 .41+.02
MLP .00+.00 .27+.05 .67+.09 .20+.08 .20+.14 .274.06

Method Average

Success Rate (10 episodes)

o 20 40 60 80 100
Epochs

Figure 3: (Left:) Evaluation success rates over 100 epochs. Shaded areas represent standard de-
viation across three seeds. (Right:) Final success rates for each individual evaluation task and the
average across all. Highest in bold and second highest performance in blue. Methods utilizing
pretrained Transformer backbones exhibit positive zero-shot performance on unseen tasks, unlike
pretrained MLP. Training separate adapters per task matches the performance of fine-tuning the full
model using less than 2% of the model parameters. The pretrained backbone zero-shot solves some
of the downstream tasks with a positive success rate compared to the MLP backbone.

Baselines We evaluate Transformer Adapters against several baselines:

* MLP w/ prediction head (MLP). Fine-tune a copy of the action prediction head for each
downstream task. This comparison measures the advantage of using self-attention based
Transformer models for capturing strong behavioral priors.

* Transformer w/ prediction head (ActHead). Fine-tune a copy of the action prediction
head for each new task. This measures the benefit of training intermediate representations
that are dynamically stitched into a pretrained model versus training the last few layers.

* Fine-tuning entire Transformer (FT Full). Fine-tune the weights of the full model. This
is an upper bound for downstream performance if we do not limit the model capacity.

Results and Discussion Learning task-specific adapter modules on a pretrained transformer back-
bone (Adapter) can almost match the performance of fine-tuning the entire model (FT Full) while
using less than 2% of the pretrained model parameters (Figure 3). Compared to the full transformer
backbone with 200 Mb of storage, each individual task adapter requires less than 2 Mb of storage.
This reduced storage overhead becomes more substantial when working with large foundation mod-
els and deployment on physical robot systems. Adapter converges slower than FT Full as adapter
weights are initialized to zero and trained from scratch. The MLP model, which has slightly more
trainable weights than the Adapter model, fails to converge to good average task performance.

Methods using a frozen pretrained transformer backbone (Adapter, ActHead, FT Full) exhibit
positive zero-shot performance on several of the evaluation tasks, indicating that the pretrained
model may have captured some useful behavioral priors that can generalize without additional fine-
tuning. In comparison, the MLP backbone pretrained on the same data is unable to generalize zero-
shot to unseen tasks. By pretraining on even more diverse task-agnostic data, we hypothesize that
a transformer-based backbone models can provide even stronger zero-shot performance gains. Ad-
ditionally, zero-shot performance can accelerate online learning because the learned priors enable
more guided exploration for the agent to quickly discover reward states.

4 Conclusions and Future Work

We present a two-stage scalable framework for robot learning: task-agnostic transformer policy pre-
training followed by parameter-efficient few-shot downstream task adaption using adapters. Task-
specific adapters outperform task-specific action heads with the same transformer backbone, while
being comparable to fine-tuning the full model. In the future, we hope to extend our setup to other
multi-task environments and conduct experiments with visual perception-based states. There is a
great breadth of work in the NLP community on parameter-efficient fine-tuning that can be adapted
for robot learning. We can explore orthogonal approaches such as LoRA [12] and Compacter [13]
that are even more optimized for training efficiency and reducing storage cost. Moreover, we can
extend our method to handle long-horizon, compositional tasks using AdapterFusion [14].

Acknowledgments

The authors would like to thank Abrar Anwar, Tejas Srinivasan and others from the GLAMOR lab
for their advice and fruitful discussions.

References

[1] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311, 2022.

[2] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.
Zero-shot text-to-image generation. In International Conference on Machine Learning, pages
8821-8831. PMLR, 2021.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877-1901, 2020.

[4] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang,
R. Julian, et al. Do as i can, not as i say: Grounding language in robotic affordances. In 6tk
Annual Conference on Robot Learning, 2022.

[5] L Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and
A. Garg. Progprompt: Generating situated robot task plans using large language models. arXiv
preprint arXiv:2209.11302, 2022.

[6] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. arXiv preprint arXiv:2209.05451, 2022.

[7] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu,
and L. Fan. Vima: General robot manipulation with multimodal prompts. arXiv preprint
arXiv:2210.03094, 2022.

[8] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. At-
tariyan, and S. Gelly. Parameter-efficient transfer learning for nlp. In International Conference
on Machine Learning, pages 2790-2799. PMLR, 2019.

[9] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084-15097, 2021.

[10] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, 1. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

[11] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
robot learning, pages 1094-1100. PMLR, 2020.

[12] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:
Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

[13] R. Karimi Mahabadi, J. Henderson, and S. Ruder. Compacter: Efficient low-rank hypercom-
plex adapter layers. Advances in Neural Information Processing Systems, 34:1022—-1035, 2021.

[14] J. Pfeiffer, A. Kamath, A. Riicklé, K. Cho, and I. Gurevych. Adapterfusion: Non-destructive
task composition for transfer learning. arXiv preprint arXiv:2005.00247, 2020.

[15] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper, Z. Liu, S. Prabhu-
moye, G. Zerveas, V. Korthikanti, et al. Using deepspeed and megatron to train megatron-
turing nlg 530b, a large-scale generative language model. arXiv preprint arXiv:2201.11990,
2022.

[16] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine, and
C. Finn. Robonet: Large-scale multi-robot learning. arXiv preprint arXiv:1910.11215, 2019.

[17] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and
S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets.
arXiv preprint arXiv:2109.13396, 2021.

[18] A. Riicklé, G. Geigle, M. Glockner, T. Beck, J. Pfeiffer, N. Reimers, and I. Gurevych. Adap-
terdrop: On the efficiency of adapters in transformers. arXiv preprint arXiv:2010.11918, 2020.

A. Related Works

Transformers for Robot Learning. Recently, there has been a surge of research in the robotics
community applying large Transformer models to a variety of complex robot learning problems.
Decision Transformers (DT) [9] showed that the causal self-attention mechanism of Transformer
models can be used to perform credit assignment in sequential decision making. Perceiver-Actor [6]
uses a large multi-modal Transformer to learn a multi-task policy for solving robotic manipulation
task. SayCan [4] show that large pretrained language models (PTLMs) encapsulate a wealth of
commonsense knowledge that can be used for efficient high-level task planning in the real-world.
VIMA [7] shows that a Transformer-based model trained on large amounts of expert demonstration
can zero-shot generalize to new tasks using multimodal prompts.

Scaling model and data. In the natural language processing (NLP) community, there is a recent
trend towards increasingly larger Transformer-style models trained on large, diverse text corpuses.
ELMo, one of the earliest works on contextualized word representations, published in 2018 had
roughly 94 million parameters. Within the span of three years, OpenAl released GPT-3 [3] (175
billion parameters) and Microsoft and NVIDIA introduced Megatron-Turing [15] (530 billion pa-
rameter model). GPT-4 is expected to have about 100 trillion parameters. GPT-3 is reported to be
trained on 500 billion tokens of internet text. In contrast, the quantity of robot data available is
nowhere near that magnitude hence the slow adoption of the pretraining-finetuning paradigm. There
have been several recent attempts to curate and publish larger, more diverse robot datasets to address
this gap (e.g. RoboNet [16], Bridge Data [17], VIMA [7], etc).

Parameter-efficient Fine-tuning in NLP. As Transformer models become increasingly large and
more resource intensive, it is infeasible to fine-tune the entire model for each new downstream task.
Several alternatives have been proposed that update only a small number of extra parameters while
keeping the backbone model parameters frozen. For example, Adapter [8] tuning inserts a small
set of trainable weights between each layer of the pretrained Transformer. [18] empirically show
that Adapters are 60% faster than full-model tuning in terms of computational efficient because
of the decrease in overhead in gradient computation and are significantly more storage efficient.
More recently, LoORA [12] and Compacter [13] learns low-rank matrices to approximate parameter
updates.

B. MetaWorld Downstream Tasks

i

hand insert door unlock door lock box close bin picking

Figure 4: For each task in the Meta-Learning 45 (ML45) benchmark in the MetaWorld environment,
we use a scripted policy to collect a diverse dataset of robot behavior. We use the demonstrations
from the 45 training tasks to pretrain our Transformer policy. We then train separate adapters for
each test task (shown in the Figure) through imitation learning using the respective demonstrations.
Object and goal positions are randomized at the start of every episode during data collection and
inference time.

C. Hyperparameters

We show the hyperparameters of Transformer Adapter.

Hyperparameters

Value

context length

learning rate

learning rate decay
number of layers

number of attention heads
dropout

embedding dimension
batch size

max episode length
number of epochs

50
le-4
le-4
4

4

0.1
768
1024
500
100

	Introduction
	Approach
	Preliminaries
	Problem Formulation
	Transformer Adapters

	Experiments and Results
	Conclusions and Future Work

