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Abstract

Promoting behavioural diversity is of critical importance in multi-agent reinforce-
ment learning, since it helps the agent population maintain robust performance
when encountering unfamiliar opponents at test time, or, when the game is highly
non-transitive in the strategy space (e.g., Rock-Paper-Scissor). While a myriad
of diversity metrics have been proposed, there are no widely accepted or unified
definitions in the literature, making the consequent diversity-aware learning al-
gorithms difficult to evaluate and the insights elusive. In this work, we propose
a novel metric called the Unified Diversity Measure (UDM) that offers a unified
view for existing diversity metrics. Based on UDM, we design the UDM-Fictitious
Play (UDM-FP) and UDM-Policy Space Response Oracle (UDM-PSRO) algo-
rithms as efficient solvers for normal-form games and open-ended games. In the-
ory, we prove that UDM-based methods can enlarge the gamescape by increasing
the response capacity of the strategy pool, and have convergence guarantee to
two-player Nash equilibrium. We validate our algorithms on games that show
strong non-transitivity, and empirical results show that our algorithms achieve bet-
ter performances than strong PSRO baselines in terms of the exploitability and
population effectivity.

1 Introduction

Diversity is a widely studied topic in machine learning, including autonomous driving [52], gam-
ing AI [46], recommender systems [6], generative models [13], and latent variable models [51].
Specially, in Multi-Agent Reinforcement Learning (MARL) [4, 20, 55, 50], diversity of agents’
strategies is helpful for learning different skills [14], facilitating explorations [42], and discovering
sophisticated cooperative policies [27] or an automated agenda towards unexploitable policies in
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competitive games [15, 29]. Promoting diversity of strategies is also an effective method for solv-
ing games with non-transitive dynamics [1, 40, 12, 46]. In general, an arbitrary game, of either
the normal-form type [5] or the differential type [2], can always be decomposed into a sum of a
transitive part and a non-transitive part, where the former represents a transitive rule (i.e., if A beats
B, B beats C, then A beats C), while the latter represents a cyclic rule (i.e., the cycles among Rock,
Paper and Scissors). In fact, many real-world games demonstrate strong non-transitivity [8], and
thus each player must use a diverse pool of winning strategies to achieve low exploitability [53],
which has been justified recently by the super-human performance of AIs in sophisticated tasks like
StarCraft [47, 43] and DOTA2 [3, 57].

In specific, encouraging the diversity of strategies is critical in achieving high-level learning per-
formance due to the following two main aspects: (1) in the training process, diversity prevents
agents from checking the same strategies repeatedly [40], and helps them explore strategy space
sufficiently [42]; and (2) at test time, diversity not only prevents agents from being exploited (i.e., a
single strategy can always be beaten by another one on non-transitive games [40, 30]), but also helps
them learn adaptable strategies and thus maintain robust performances [49, 30].

Due to its great importance, there are a number of studies that investigate the definition of diver-
sity and propose diversity-driven MARL algorithms. The majority of work has followed a heuristic
approach [40], such as evolutionary computation [16] with a central focus that mimics the natu-
ral evolution process. In evolutionary computation, one idea for encouraging diversity is novelty
search [24] that searches for strategies leading to novel outcomes. Quality-diversity (QD) [44] com-
bines novelty search with fitness objective, resulting two representative methods: Novelty Search
with Local Competition [25] and MAP-Elites [7, 37]. Although these methods achieve empirical
successes [21, 7], quantifying diversity in evolutionary computation is often hand-crafted and task-
dependent [40]. There are also various metrics proposed to model diversity in a more rigorous way,
which can be mainly classified into Behavioral Diversity (BD) and Response Diversity (RD) [30].
A main principle in BD to characterize diversity is to construct metrics over the trajectory or state-
action distribution [28, 14, 27, 42]. However, this kind of methods only focus on the behavioral
trajectories and ignore the reward attributes of strategies, which may be problematic in scenarios
when a slight difference in strategy behaviors will lead to a huge difference in the corresponding
reward [30]. Different from BD, RD directly uses the empirical payoff matrix to construct the diver-
sity of strategies [1, 40, 30], and thus it estimates the diversity from the response when encountering
distinct opponents.

Despite of the above great efforts, there are still no consistent formal definitions for diversity, mak-
ing it difficult to evaluate the diverse strategies in MARL. In this paper, we work towards offering a
consistent definition for diversity, and propose a novel population-wide diversity measure called the
Unified Diversity Measure (UDM) that provides a unified view for the existing metrics, including
Effective Diversity (ED) [1], Population Diversity (PD) [42] and Expected Cardinality (EC) [40].
UDM can be interpreted from a geometric perspective through analyzing the meanings of the eigen-
values of a kernel matrix. Using UDM, we can also analyze the advantages and shortcomings of
the existing metrics, and study why ED and PD cannot measure the diversity properly in certain
cases. With our task-agnostic metric, we design the corresponding diversity-promoting objective
and develop novel MARL algorithms, i.e., UDM Fictitious Play (UDM-FP) and UDM Policy-Space
Response Oracle (UDM-PSRO), for solving normal-form games and open-ended games. Theoreti-
cally, we prove that our algorithms can enlarge the gamescape [1], i.e., the convex hull of the row
vectors in the payoff matrix, by increasing the response capacity of the strategy pool, and can con-
verge on two-player games. We validate our diversity-aware algorithms on games that show strong
non-transitivity including the real-world matrix games, Blotto and non-transitive mixture model, and
the empirical results show that our algorithms achieve lower exploitability [23] and higher popula-
tion effectivity [30] than the baselines.

2 Preliminary

2.1 Concepts of Games

Normal-Form Games and Open-Ended Meta-Games. Normal-form games (NFGs) are de-
noted by ⟨N, S,G⟩, where N is the number of players. Each player n ∈ [N ] has a finite set of pure
strategies Sn. Denote the space of joint pure-strategy profiles as S =

∏
n∈[N ] Sn, and the space
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of joint strategy profiles except the n-th player as S−n. G(S) = (G1(S), · · · ,GN (S)) ∈ RN is a
payoff table mapping each joint strategy profile S ∈ S to a vector of reward values for each player. A
mixed strategy (also called policy) of player n is denoted by πn ∈ ∆Sn , where ∆ is a probability sim-
plex. π(S) =

∏
n∈[N ] π

n(S) represents the probability of joint strategy profile S. If all players fol-
low π, the expected payoff of player n is denoted as Gn(π) = G(πn,π−n) =

∑
S∈S π(S)G

n(S).

However, it is inefficient to describe real-world games with NFGs, where the strategy space can
be prohibitively large by enumerating all possible game plans [8]. For example, the number of
atomic actions in StarCraft is 1026 at every time-step and the number of time-steps per episode
is typically several thousands [47], in which case the number of game plans can be more than
(1026)1000. To describe this type of games, meta-games denoted by ⟨N, S,M⟩ are introduced to
consider a policy as a “high-level” strategy, i.e., the meta-strategy. With slight abuse of notation,
the space of meta-strategies is still denoted by Sn for each player n; and thus πn ∈ ∆Sn denotes
the meta-policy of player n. Additionally, meta-games are always open-ended since there could
be infinite meta-strategies to play a game. A meta-game payoff M can be described by a game
engine g : S → Rn. For example, in two-player games, the meta-game payoff can be described as
M =

{
g(S1, S2) : (S1, S2) ∈ S1 × S2

}
, where g(S1, S2) > 0 if S1 ∈ S1 beats S2 ∈ S2, while

g < 0 and g = 0 refer to losses and ties, respectively. A game is symmetric if S1 = S2. A game is
transitive if there exists a monotonic rating function h such that g(S1, S2) = h(S1)−h(S2), ∀S1 ∈
S1, S2 ∈ S2; and non-transitive if

∫
S2 g(S

1, S2)dS2 = 0, ∀S1 ∈ S1, which means that each strategy
can be counterbalanced by another strategy.

Solution Concepts of Games. In a game, a (possibly mixed) strategy πn is a best re-
sponse for player n against joint strategy π−n, if πn ∈ BRn(π−n), where BRn(π−n) :=
argmaxπ̃∈∆Sn

[Gn(π̃,π−n)]. A Nash Equilibrium (NE) [39] is a joint strategy π if πn ∈
BRn(π−n), ∀n. An ϵ-NE is a joint strategy π if πn ∈ BRn

ϵ (π
−n), ∀n, where BRn

ϵ :=
{πn : Gn(πn,π−n) ≥ Gn(π̃,π−n)− ϵ} , π̃ ∈ BRn(π−n). Computing NE is PPAD-hard in N-
player general-sum games [9]; and thus α-Rank [41] is proposed as an alternative solution concept,
which has a polynomial-time solvability in multi-player general-sum games. A more detailed de-
scription of α-Rank can be found in Appendix A.1.

Game Solvers. A game solver consists of an Oracle function and a (meta-)policy solver, where
the Oracle function O computes strategies given joint strategies, such as the best-response Oracle
On(π) = BRn(π−n), and the (meta-)policy solver S computes the (meta)-policy based on the
payoff table. At each time step, the game solver uses the policy solver to compute a policy for
each player based on the current payoff; and then based on this joint policy, it uses O(·) to find a
new strategy for each player and adds it in their populations. Variations of (meta-)game solvers are
summarised in Table 1.

Table 1: Various (Meta-)Game Solvers

Method (Meta-)Policy Solver S Oracle O

Self-play [17] [0, · · · , 0, 1]N BR(·)
GWFP [26] UNIFORM BRϵ(·)
D.O [36] NE BR(·)
PSRON [23] NE BRϵ(·)
PSROrN [1] NE ED-BR(·)
α-PSRO [38] α-Rank PBR(·)
EC-PSRO [40] NE / α-Rank EC-BR(·) / EC-PBR(·)
Our Methods NE / α-Rank Eq.(8) / Eq.(9)

2.2 Evaluation Metrics

Empirical Gamescape. The empirical gamescape (EGS) [1] in a meta-game is defined as
the convex hull of the payoff vectors of all meta-strategies in Sn, written as EGS(Sn) :={∑

i αi ·mi : α ≥ 0,αT · 1 = 1,mi =M[i,:]

}
, which represents the response capacity of a pool

of strategies in meta-games.

Exploitability. The exploitability [10] measures the “distance” of a joint strategy π to the NE,
defined as Exploit.(π) :=

∑
n∈[N ][G

n(π̃,π−n)−Gn(π)], π̃ ∈ BRn(π−n).
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Population Effectivity. The population effectivity (PE) [30] is a fairer evaluation metric to
represent the effectiveness of a population (i.e., a strategy pool) than exploitability: PE(Sn) :=

minπ−n max1Tα=1,αk≥0

∑|Sn|
k=1 αkG

n(Sn
k ,π

−n).

2.3 Existing Diversity Measures

There are various diversity metrics to measure the diversity of a population.

Effective Diversity. Effective Diversity (ED) [1] is a metric proposed to measure the diversity of a
pool of effective-strategies (strategies with support under the NE) in two-player zero-sum symmetric
games as follows:

ED(Sn) := π∗T⌊M⌋+π∗, (1)

where ⌊x⌋+ = x if x > 0 and ⌊x⌋+ = 0 if x ≤ 0. M is the meta-payoff table of Sn and π∗ is the
NE of theM.

Expected Cardinality. Inspired by the derterminantal point process (DPP) [31, 22], the diver-
sity of a population can be increased through increasing the Expected Cardinality (EC) [40] of the
random set Y ⊆ Sn drawn from the population:

EC(Sn) := EY∼PLn [|Y|] = Tr(I− (Ln + I)−1), (2)

where |Y| means the cardinality of Y, and Ln =MMT.

Form of Euclidean Projection. To characterize the contribution of a payoff vector to the en-
largement of the EGS directly, Form of Euclidean Projection (FEP) [30] is defined as the form of
Euclidean projection:

FEP(Sn
new) := min

1Tβ=1,β≥0
∥MTβ − anew∥22, (3)

where Sn
new is the new meta-strategy of player n, and aT

new := (gn(Sn
new, S

−n
j ))j . Note that FEP

only measures the contribution of the new meta-strategy to the current population, rather than the
diversity of the population.

Population Diversity. Population Diversity (PD) [42] uses the determinant to measure the diver-
sity by:

PD(Sn) := det(Kn), (4)

where Kn
i,j = K(ϕn

i ,ϕ
n
j ), and ϕn

i = {πn
i (·|s)}s (s means the state in games) is the behavioral

embedding of a meta-strategy. Here we rename PD as Reward-PD (RPD) when it replaces the
behavioral embedding with ϕn

i =M[i,:].

3 Methods

Based on the existing metrics, we now offer a unified view for them by introducing a novel diversity
measure. Specially, this measure is based on a geometric interpretation of the diversity of strategies,
and is capable of offering a comprehensive analysis of these existing diversity metrics.

3.1 A Unified Diversity Measure

There are various methods to represent a strategy in the existing studies. In RD, a fundamental way to
represent a strategy is through the row vector of the empirical payoff matrix [40, 30], since each row
in this matrix embeds the response of the corresponding strategy against different opponents; and
in BD, the trajectory or the action-state distribution is often used to characterize the corresponding
strategy [42, 30]. To represent a strategy more flexibly, we introduce the strategy feature:

Definition 1 (Strategy Feature). Let Sn
i ∈ Sn denote the i-th (meta-)strategy for player n, then the

strategy feature of Sn
i is defined as a vector : ϕn

i ∈ R1×p, p ≤M =: |Sn|, such that ϕn
i = ϕn

j ⇐⇒
Sn
i = Sn

j , where ∀Sn
i , S

n
j ∈ Sn.

4



Hence, we can represent the i-th strategy by ϕn
i = mi =:M[i,:] in RD, or ϕn

i = {πn
i (·|s)}s in BD.

Equipped with the strategy feature, we can then define the diversity kernel to measure the pairwise
similarity as follows:

Definition 2 (Diversity Kernel). Consider a finite population Sn consisting of M (meta-)strategies.
The diversity kernel of player n is defined as a positive semi-definite (PSD) matrix: Ln

K :=
[K(ϕn

i ,ϕ
n
j )]M×M , where K : Rd×Rd → R is a given kernel function, such that |K(ϕn

i ,ϕ
n
j )| ≤ C

and K(ϕn
i ,ϕ

n
i ) = C, C > 0.

Given a PSD matrix L = BBT, where B ∈ RD1×D2 and D1 ≥ D2. The geometric interpretation
of det(L) is the squared volume of the parallelepiped spanned by the rows of B [22]. Further more,
the determinant of diversity kernel represents the squared volume of a parallelepiped spanned by
strategy feature corresponding to the kernel choice [42]. Thus, a population can be considered
diverse if its parallelepiped can fill the strategy space as much as possible. A natural idea to measure
the diversity of a population is to use the determinant of the diversity kernel, which is the intuition
of PD (RPD) introduced in section 2.3. However, since the determinant becomes zero with du-
plicated rows, PD (RPD) cannot deal with the redundant-strategy problem which turns out to be a
critical challenge for game evaluation [1] (See more discussions in Appendix A.2.). To avoid this
problem, we use the additive term over eigenvalues rather than the product of eigenvalues (i.e., the
determinant) to measure the diversity and propose the Unified Diversity Measure as follows:

Definition 3 (Unified Diversity Measure). Consider a function

f ∈ F :=

{
f : f(x) =

∞∑
k=0

ckx
k, f ′(x) > 0, x ∈ R

}
,

where R is the convergence domain of f . Denote the eigenvalues of Ln
K constructed by Sn =

{Sn
1 , · · · , Sn

M} as λi ≥ 0. Then the Unified Diversity Measure (UDM) of the population Sn is
defined as follows:

UDM(Sn) :=
M∑
i=1

f(λi). (5)

Since the values and the number of the non-zero eigenvalues represent the lengths and the number
of the edges of the parallelepiped, respectively, increasing UDM can help enlarge the volume of the
parallelepiped, which indicates a more diverse strategy population. Otherwise, considering only the
number of non-zero eigenvalues (i.e., the rank of the diversity kernel) will result in the difference
instead of the diversity being measured [40, 56]. For example, in RPS, the meta-strategy [0.99 Rock,
0.01 Paper] is different from [0.98 Rock, 0.02 Paper], but they are not diverse since they both favor
playing Rock.

Meanwhile, we offer an equivalent representation of UDM which can be computed more easily:

Proposition 1 (Equivalent Representation of UDM). The UDM defined in Definition 3 has an equiv-
alent representation:

UDM(Sn) :=
M∑
i=1

f(λi) = Tr(f(Ln
K)), (6)

where the definition of f(Ln
K) is similar to the matrix exponentials.

Proof. See Appendix A.3.1.

Using f(λi) rather than λi directly is vital for UDM. In the case where f(λi) = λi, UDM will
degenerate to Tr(Ln) =

∑
i Ln

ii, where Ln
ii = K(ϕn

i ,ϕ
n
i ) only captures the modulus of Sn

i and
thus

∑
i Ln

ii ignores the similarity Ln
ij between Sn

i and Sn
j ,i ̸= j, making it unable to measure

the diversity properly. Instead, using bounded concave functions f(λi) that involve the pairwise
similarity, such as f(λi) =

1
1+γ exp(−λi)

− 1
1+γ , γ > 0 (the term 1

1+γ is applied to satisfy f(0) = 0),
can force the player to explore more novel strategies since this function with a supremum gains more
marginal benefit from adding a new non-zero eigenvalue rather than increasing an already large
eigenvalue. Given the convexity of f(x), UDM becomes concave due to the following proposition:
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Proposition 2 (Convexity of UDM). Consider a concave function f ∈ F . Then UDM is concave if
all the eigenvalues of Ln

K exist in the convergence domain of f .

Proof. See Appendix A.3.2.

3.2 Unify Existing Metrics into UDM

By mathematically transformations, we argue that some existing diversity metrics, especially the
RD metrics, are the special cases of UDM, which are summarized in Table 2.

Table 2: Unify Existing Metrics into UDM

Methods Kernel Function K(·, ·) Function f Strategy Feature ϕi

ED [1] Linear Kernel f(x) = x m∗
i

PD [42] self-selected f(x) = ln x {π(·|s)}s

RPD self-selected f(x) = ln x mi

EC [40] Linear Kernel f(x) = x
1+x mi

UDM vs. ED. Formally, ED is equivalent to the L1,1 norm of the payoff matrix in two-player
symmetric zero-sum games [1]:

ED(Sn) = π∗T⌊M⌋+π∗ =
1

2
∥π∗ ⊙M⊙ π∗T∥1,1,

where π∗ is the NE onM, ⊙ is the Hadamard product (i.e., element-wise product), and ∥A∥1,1 :=∑
i,j |ai,j |. DenoteM∗ := π∗ ⊙M⊙ π∗T, then:

maxED = max
1

2
∥M∗∥1,1 = max

1

2

∑
i,j

|π∗
iMi,jπ

∗
j |

⇐⇒max
∑
i,j

|π∗
iMi,jπ

∗
j |2=:max ∥M∗∥2F = max

M∑
i=1

λ∗
i ,

where λ∗
i are the eigenvalues ofM∗M∗T. Hence, ED can be covered by UDM with K(·, ·) = ⟨·, ·⟩

and f(x) = x. Using the strategy feature ϕi = m∗
i=:M∗

[i,:] and function f(x) = x in ED
encourages the player to amplify its strengths and ignore its weaknesses in finding a new meta-
strategy, by focusing only on the strong strategies. However, it can sometimes be problematic since
weak strategies may be useful to tackle niche tasks and discover stronger strategies later during
training [40]. A counter example that fails ED is the RPS-X game [38]:

G =

[
0 1 −1 −2/5
−1 0 1 −2/5
1 −1 0 −2/5

2/5 2/5 2/5 0

]
.

In RPS-X, if the initial population is either {R}, {P} or {S}, then PSRO-rN [1], which is a variation
of PSRO equipped with ED, will terminate in {R,P, S}without finding {X}, since the best response
of {R,P, S} is still in {R,P, S}. However, this population will be exploited by others using strategy
X endlessly at test time. We show that how our method tackles this problem in Appendix A.2.

UDM vs. PD (RPD). We consider the case that Ln
K has full rank here since PD (RPD) does

not work when the rank of diversity kernel is not full. Then PD (RPD) is actually UDM with
f(x) = ln(x) and the linear kernel function:

max PD = maxdet(Ln
K) = max

M∏
i=1

λi ⇐⇒ max

M∑
i=1

ln(λi).

When the new eigenvalue is less than 1, PD (RPD) would decrease and thus may ignore some weak
but useful meta-strategies. In fact, through the Eq. (6) and the Jacobi formula [32]: det (exp (A)) =
expTr(A),A ∈ RM×M , we can find that UDM also uses a determinant to measure the diversity.
However, UDM is different from PD (RPD) since the exponential of the diversity kernel is non-
decreasing with duplicated rows, and thus UDM is well-defined when dealing with the redundant-
strategy problem. We give an example to illustrate how UDM tackles this issue in Appendix A.2.
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UDM vs. EC. EC can be rewritten as:

EC = EY∼PL [|Y |] = Tr(I− (Ln + I)−1) = Tr(I)− Tr((Ln + I)−1)

= M −
M∑
i=1

1

1 + λ1
=

M∑
i=1

λi

1 + λi
,

where λi are the eigenvalues of Ln :=MMT. Hence, EC is a special case of QDM when f(x) =
x/(1 + x), K(·, ·) = ⟨·, ·⟩ and strategy feature ϕi = mi.

To summarize, the existing diversity metrics are special cases of UDM with explicit feature ϕn
i ,

kernel function K, and function f . By exploring novel settings of these components, we can then
propose a more reasonable metric to circumvent the shortcomings of existing diversity metrics.

4 Algorithms

Inspired by [40], we extend the classic FP, PSRO and α-PSRO to their diverse versions by incorpo-
rating UDM into their Oracle functions, and prove their convergences in two-player games.

4.1 UDM Fictitious Play

At each iteration t, UDM-FP discovers a new strategy that gains a higher payoff and at the same time
enriches the current population. Formally, UDM-FP only modifies the best response as follows:

BRn
τt(π

−n
t ) = argmax

π̃∈∆Snt

[Gn(π̃,π−n
t ) + τt · UDM(Snt ∪ {π̃})], (7)

where τt is tunable constant; and the population is updated by adding the new strategy πn ∈
BRn

τt(π
−n
t ) so as Snt+1 ← Snt ∪ {πn}.

Intuitively, as t→∞, UDM-FP will almost surely converge to generalised weakened fictitious play
(GWFP) [26] as long as τt → 0, and thus it has the same convergence guarantees with GWFP which
converges to the NE on two-player zero-sum games or potential games (A more detailed description
of GWFP can be found in Appendix A.1). So, we have the following proposition:
Proposition 3 (Convergence of UDM-FP). If UDM is concave, and UDM-FP uses the update rule:

πn
t+1 ∈ (1− αt+1)π

n
t + αt(BRn

τt(π
−n
t ) +Un

t+1),

where αt = o(1/ log t) is deterministic and perturbations Un
t+1 are the differences between the

actual and expected changes in strategies. Then UDM-FP shares the same convergence property
as GWFP: the policy sequence πn

t converges to the NE on two-player zero-sum games or potential
games.

Proof. See Appendix A.3.3

4.2 UDM Policy-Space Response Oracle

In open-ended (meta-)games, PSRO [23, 33, 48, 58, 35] is a more effective method than the direct
search methods since there are infinite (meta-)strategies. Here we extend our diversity metric to
PSRO and develop UDM-PSRO for open-ended (meta-)games. Suppose that player n has learned a
population Snt at t-th iteration. The goal of UDM-PSRO is to find a new (meta-)strategy Sθ parame-
terised by θ ∈ Rd, which maximizes the payoffs of player n and the diversity of Snt . Therefore, the
Oracle function is:

On(π−n) = argmax
θ∈Rd

[
∑

S−n∈S−n

π−n(S−n) · g(Sθ, S
−n) + τ · UDM(Sn ∪ {Sθ})], (8)

where π−n is the (meta-)policy of the player −n. (Meta-)policy πn is computed by (meta-)policy
solver, such as NE, UNIFORM, etc.

UDM-PSRO can enlarge EGS when it adds a new (meta-)strategy via Eq. (8); and thus the popula-
tion learned by UDM-PSRO has a great response capacity. Unlike UDM-PSRO, PSRO-rN can also
enlarge EGS, but it needs to assume that both players should use their Nash policies.
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Proposition 4 (EGS Enlargement). Adding a new (meta-)strategy Sθ via Eq. (8) enlarges EGS.
Formally, we have EGS(Sn) ⊆ EGS(S ∪ {Sθ}).

Proof. See Appendix A.3.4.

4.3 UDM α-Policy-Space Response Oracle

UDM-PSRO suffers from the shortcomings of high complexity (i.e., PPAD-hard) in computing the
NE in N -player general-sum games [9, 11] and the equilibrium-selection problems [19, 18]. To
avoid these problems, UDM α-PSRO replaces NE with α-Rank [54] in the meta-policy solver. Sup-
pose that there are L sink strongly-connected components (SSCC) nodes that have only incoming
edges but no outgoing edges in the response graph of the game; and denote the α-Rank distribution
of l-th SSCC as π(l), which can be considered as the meta-policies for different types of opponents.
Inspired by EC α-PSRO [40], we design an Oracle function that suits α-Rank for UDM α-PSRO:

On
t (π

(l)
t ) = argmax

π̃∈∆Snt

UDM(Snt ∪ {π̃}) = argmax
π̃∈∆Sn

Tr (f(Ln)) , (9)

where the diversity kernel Ln = [qiK(ϕi,ϕj)qj ]M×M is constructed by the strategy feature ϕi =
mi/∥mi∥ and the quality term qi:

qi = exp
{
ES∼π(l){1[Mn(σn

i , S
−n) >Mn(Sn, S−n)]}

}
.

In fact, Eq. (9) celebrates two aspects of diversity. The first aspect is from UDM that forces players to
find more diverse populations; and the second aspect is from L meta-polices π(l), which represents
diverse opponents.

The following proposition shows the convergence of UDM on two-player symmetric NFGs.
Proposition 5 (Convergence of UDM α-PSRO). In two-player symmetric NFGs, UDM α-PSRO
converges to the sub-cycle of the unique SSCC.

Proof. See Appendix A.3.5

5 Experiments

To validate the diverse game solvers proposed in Section 4, we compare them with the baselines
including self-play [17], PSRO [23], Pipeline-PSRO [34], PSRO-rN [1], FEP-PSRO [30], and
EC-PSRO [40]. Their performances are investigated in several games involving both transitive and
non-transitive dynamics. If an algorithm cannot find a diverse and effective population, it will easily
stuck in local strategy cycles, and thus be exploited by others. Hence, exploitability and PE are used
as evaluation metrics in the experiments. We focus on RD metrics and thus use the strategy feature
ϕn

i = mi, and use the kernel function K⟨x, y⟩ = (⟨x, y⟩ + 1)3 since the number of features is
the same with the number of strategies. The function in UDM-PSRO is a concave function f(x) =

1
1+exp(−x) −

1
2 ∈ F (see Appendix A.5 for more discussions on the selection of f and K) . More

experimental settings and results can be found in Appendix A.4.

Real-World Meta-Game. The properties of some complex real-world meta-games are studied in
paper [8], including AlphaStar and AlphaGO. In Figure 1, we report the performances of different
algorithms over the AlphaStar game, which contains the meta-payoffs for 888 RL meta-strategies.
The results show that our method achieves the smallest exploitability, largest population effectivity
and the largest diversity, while baselines without diverse objectives are easily exploited since they
do not find diverse meta-strategies. Our method performs better since more diverse meta-strategies
can help it jump out the current strategic cycles and thus find better strategies.

Blotto. Blotto is a classical resource allocation game that is often used to analyze electoral com-
petition [45]. In this game, each of two players has a budget of coins which will be distributed
simultaneously over a fixed number of areas. A player wins an area where it puts the most coins;
and the player that wins the most areas wins the game. We show the performances of different
algorithms in this game with 3 areas and 10 coins in Figure 1; and the results show that our meth-
ods perform as well as the diversity-aware baselines, and outperforms baselines without diversity
objectives in terms of expolitability and PE.
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Figure 1: AlphaStar and Blotto: Exploitability & Negative PE & UDM vs. Iterations.

Non-Transitive Mixture Model. Non-Transitive Mixture Model [40] is a zero-sum two-player
game consisting of seven equally-distanced Gaussian humps on the 2D plane. Each meta-strategy
corresponds to a point on the plane, and each point is translated into a 7-dimensional vector Sn

i with
each coordinate being the density in the corresponding Gaussian distribution function. Since the
number of points is infinite, this game is open-ended, and it involves both a transitive component
and a non-transitive component, which can be reflected by the payoff:

π1,T



0 1 1 1 −1 −1 −1
−1 0 1 1 1 −1 −1
−1 −1 0 1 1 1 −1
−1 −1 −1 0 1 1 1
1 −1 −1 −1 0 1 1
1 1 −1 −1 −1 0 1
1 1 1 −1 −1 −1 0

π2 +
1

2

7∑
k=1

(π1
k − π2

k).

Therefore, a player should stay close to the center of the Gaussian and explore all the Gaussian
distributions equally to avoid being exploited. We report the exploration trajectories when solving
this game using different algorithms in Figure 2, which shows that our method can indeed generate
diverse trajectories. We also report the exploitability and PE values for the final population generated
by different algorithms in Table 3. It can be found that our method outperforms all the baselines in
terms of PE, which is a better metric to evaluate diverse populations [30].

PSRO-rN PSRO P-PSRO EC-PSRO RPD-PSRO UDM-PSRO

Figure 2: Non-Transitive Mixture Model: Exploration trajectories during training.

Table 3: The OS (Opponent Strength) associated with the PE×102 represents the strength of the
opponent during the process of using PSRO to solve it. The last row is Exploit.×102.

PE(OS) PSRO PSRO-rN P-PSRO EC-PSRO RPD-PSRO UDM-PSRO

PE(10) −18.18 ± 0.32 −18.18 ± 0.32 9.62 ± 0.16 9.34 ± 0.13 9.68 ± 0.19 9.73 ± 0.24
PE(15) −27.28 ± 0.04 −27.28 ± 0.04 0.43 ± 0.04 0.01 ± 0.04 0.39 ± 0.05 0.44 ± 0.06
PE(20) −26.73 ± 0.04 −26.73 ± 0.04 0.10 ± 0.12 0.18 ± 0.06 0.34 ± 0.16 0.69 ± 0.09
PE(25) −25.47 ± 0.07 −25.47 ± 0.07 1.12 ± 0.10 1.25 ± 0.17 1.39 ± 0.14 1.81 ± 0.18

Exploit. 33.71 ± 0.37 35.11 ± 0.23 2.34 ± 0.43 2.05 ± 0.38 1.95 ± 0.54 2.07 ± 0.37
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6 Conclusion

In this paper, we offer a consistent definition for the diversity of strategies in MARL, and propose
a novel diversity measure that provides a unified view for existing diversity metric. With this mea-
sure, we develop corresponding diversity-promoting algorithms based on FP and PSRO. In theory,
we prove that our method converges to two-player NE and can enlarge gamescape by increasing
the response capacity of the population. Empirically, we validate our method on games that show
strong non-transitive including the matrix games, Blotto and non-transitive mixture model. The re-
sults show that our method outperforms the baselines in terms of the exploitability and population
effectivity. In this paper, we mainly focus on the two-player games due to the expensive compu-
tational cost of UDM in n-player cases (see Appendix 5 for more explanations). Investigating how
to reduce the computational cost when extending UDM to n-player, general-sum, or non-symmetric
games can be an important future work.
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