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ABSTRACT

Various phenomena in biology, physics, and engineering are modeled by differen-
tial equations. These differential equations including partial differential equations
and ordinary differential equations can be converted and represented as integral
equations. In particular, Volterra–Fredholm–Hammerstein integral equations are
the main type of these integral equations and researchers are interested in inves-
tigating and solving these equations. In this paper, we propose Legendre Deep
Neural Network (LDNN) for solving nonlinear Volterra–Fredholm–Hammerstein
integral equations (V-F-H-IEs). LDNN utilizes Legendre orthogonal polynomials
as activation functions of the Deep structure. We present how LDNN can be used
to solve nonlinear V-F-H-IEs. We show using the Gaussian quadrature colloca-
tion method in combination with LDNN results in a novel numerical solution for
nonlinear V-F-H-IEs. Several examples are given to verify the performance and
accuracy of LDNN.

1 INTRODUCTION

Deep neural networks are a main and beneficial part of machine learning family which are applied in
various areas including speech processing, computer vision, natural language processing and image
processing (LeCun et al., 2015; Krizhevsky et al., 2012). Also, the approximation of the functions
is a significant branch in scientific computational and achieving success in this area is considered
by some research (Tang et al., 2019; Hanin, 2019). Solving differential equations is the other main
branch of scientific computational which neural networks and deep learning have been shown suc-
cess in this area. (Lample & Charton, 2019; Berg & Nyström, 2018; Raissi et al., 2019). Various
phenomena in biology, physics, finance, neuroscience and engineering are modeled by differential
equations (Courant & Hilbert, 2008; Davis, 1961). In recent years, several researchers studied the
solving differential equations via deep learning or neural networks. differential equations consists
of ordinary differential equations, partial differential equations and integral equations. (Sirignano &
Spiliopoulos, 2018; Lu et al., 2019; Meng et al., 2020). It is notable that the various numerical meth-
ods are applied for solving differential equations. Homotopy analysis method (HAM) (Liao, 2012)
and variational iteration method (VIM) (He & Wu, 2007) are known as analytical/semi-analytical
methods. Usually, spectral methods (Canuto et al., 2012), Runge-Kutta methods (Hairer et al., 2006),
the finite difference methods (FDM) (Smith, 1985) and the finite element methods (FEM) (Johnson,
2012) are considered as the popular numerical methods. When the complexity of the model does not
allow us to obtain the solution explicitly, numerical methods are a proper selection for finding the
approximate solution for the models. Recently, some of the machine learning methods are applied
for solving differential equations. Chakraverty & Mall (2017) introduced orthogonal neural net-
works which used orthogonal polynomials in the structure of the network. Raja et al. (2019) applied
meta-heuristic optimization algorithm to neural network for obtaining the solution of differential
equations. Moreover, other methods of machine learning such as support vector machine (Vapnik,
2013) are used to approximate the solution of the models. Least squares support vector machines
are considered in these researches (Hajimohammadi et al., 2020; Mehrkanoon & Suykens, 2015).
Baker et al. (2019) selected deep neural networks for solving the differential equations. Pang et al.
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(2019) introduced a new network to find the solution of the different equations. Han et al. (2018)
solved high-dimensional problems via deep networks. Also, Long et al. (2018) and Raissi et al.
(2019) introduced a group of the equations which solved by deep learning. Furthermore, He et al.
(2018) and Molina et al. (2019) investigated the effect of the activation function on networks.
In this paper, we concern nonlinear Volterra–Fredholm–Hammerstein integral equations (V-F-H-
IEs) and try to obtain the solution of them via deep neural network. We present a new numerical
approach of machine learning which is a combination of deep neural network and Legendre collo-
cation method. This approach is useful for solving the differential equations and we applied it for
solving nonlinear V-F-H-IEs. We used Legendre collocation method to our network for perfect the
numerical computations and enhancement the performance the network.

2 LEGENDRE DEEP NEURAL NETWORK (LDNN)

The main purpose of introducing LDNN is to apply it for solving differential models. Indeed, this
purpose is to expand the utilization of deep learning networks in the field of scientific computing,
especially the solution of differential equations. Moreover, this network has the advantages of solv-
ing equations by deep learning as well as numerical methods such as collocation method used to
achieve better solution to the equations. LDNN presents a combination of a deep neural network
and Legendre collocation method. In fact, our network consists of two networks which have con-
nected consecutive to each other. The first network is a feed forward neural network which has
an orthogonal Legendre layer. The second network includes operation nodes to create the desired
computational model. In recent decades, numerical methods especially collocation method are pop-
ular methods for solving differential equations. In the collocation method, first an approximation
of the solution is expanded by using the sum of the basic functions. The basic functions consists
of the orthogonal polynomials such as Legendre polynomials.Then this approximation is placed in
the differential equation. By considering the appropriate set of candidate points, an attempt is made
to obtain the unknown coefficients of the basic functions so that the solution satisfies the equation
in a set of candidate points. The first network is applied to creat the approximation of the solution.
This approximation can be known as the scattered data interpolation problem. The second network
is used to obtain the desired equation so that the solution satisfies it. The structure of LDNN is
described in detail at the following rest.
Consider that the first network has aM-layer which defined as follows:

H0 = x, x ∈ Rd,

H1 = L(W (1)H0 + b(1)),

Hi = f(W (i)Hi−1 + b(i)), 2 ≤ i ≤M− 1,

HM = W (M)HM−1 + b(M).

where H0 is the input layer with d dimension. Hi, 1 ≤ i ≤ M − 1 are hidden layers,
L = [L0, L1, ...Ln]

T which Li are i-th degrees of Legendre orthogonal polynomials, H1 is an
orthogonal layer, f is the hyperbolic tangent activation function or other commonly used activa-
tion functions. W (i), i = 1, · · · ,M are the weight parameters and b(i), 1 ≤ i ≤ M are the
bias parameters. HM is the output layer. It is notable that the second network is applied to obtain
the desired differential model. This aim is possible by using operation nodes including integrals,
derivatives, and etc. These nodes are applied to the output of the first network. Moreover, automatic
differentiation (AD) (Baydin et al., 2017) and Legendre Gaussian integration (Shen et al., 2011)
have been used in network computing to obtain more accurate and fast calculations. How to train
the network and set the parameters are also important points. Supervised learning method is used to
train network. The cost function for setting parameters is defined as follows:

CostFun = min(yt − yp) + min(Rm). (1)

where yt is an exact value of the model and yp is a predicted value of the LDNN. The definition
of Rm is explained in section 3.The minimization of CostFun is obtained by performing Adam
algorithm (Kingma & Ba, 2015) and the L-BFGS method (Liu & Nocedal, 1989) on mean squared
errors of training data set.
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2.1 LEGENDRE POLYNOMIALS

Legendre polynomials (Shen et al., 2011) are a main series of orthogonal polynomials which denoted
by Ln(η), are defined as:

Ln(η) =
1

2n

[n2 ]∑
`=0

(−1)` (2n− 2`)!

2n`!(n− `)!(n− 2`)!
ηn−2` (2)

Legendre polynomials are defined in [−1, 1] domain and have the recurrence formula in the follow-
ing form:

(n+ 1)Ln+1(η) = (2n+ 1)ηLn(η)− nLn−1(η), n ≥ 1,

L0(η) = 1, L1(η) = η. (3)

Orthogonality relation for these polynomials is as follows:∫ 1

−1
Ln(η)Lm(η)dη = γδn,m, (4)

where δn,m is a delta Kronecker function and γ = 2
2n+1 .

The weight function of them isW(η) = 1. Some following useful properties of Legendre polyno-
mials are defined:

Ln(−η) = (−1)nLn(η), (5)
|Ln(η)| ≤ 1, ∀η ∈ [−1, 1], n ≥ 0, (6)
Ln(±1) = (±1)n, (7)
(2n+ 1)Ln(η) = L′n+1(η)− L′n−1(η), n ≥ 1. (8)

3 NONLINEAR VOLTERRA–FREDHOLM–HAMMERSTEIN INTEGRAL
EQUATIONS AND LDNN

The general form of nonlinear Volterra–Fredholm–Hammerstein integral equations (V-F-H-IEs) is
as follows:

y(x) = g(x) + ξ1

∫ x

0

K1(x, s)ϕ1(s, y(s))ds+ ξ2

∫ 1

0

K2(x, s)ϕ2(s, y(s))ds, x ∈ [0, 1]. (9)

where ξ1, ξ2 are fixed, g(x), K1(x, s) and K2(x, s) are given functions and ϕ1(s, y(s)), ϕ2(s, y(s))
are nonlinear functions. The aim is to find the proper y(x). In order to use the LDNN, reformulated
Eq. (9) in the following form:

Rm = −y(x)+g(x)+ ξ1
∫ x

0

K1(x, s)ϕ1(s, y(s))ds+ ξ2

∫ 1

0

K2(x, s)ϕ2(s, y(s))ds, x ∈ [0, 1].

(10)
y(x) is approximated by the first network of the LDNN.

y(x) ≈ HM. (11)

Furthermore, we applied Legendre–Gauss integration formula (Shen et al., 2011):∫ 1

−1
h(X)dX =

N∑
j=0

ωjh(Xj) (12)

where {Xj}Nj=0 are the roots of Ln+1 and {ωj}Nj=0 = 2
(1−X2

j )(L
′
n+1(Xj))2

. Here, we should transfer

the [0, x] and [0, 1] domains into the [−1, 1] domain. It is possible by using the following transfor-
mation:

t1 =
2

x
s− 1, t2 = 2s− 1.
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Consider
Z1(x, s) = K1(x, s)ϕ1(s, y(s)),

Z2(x, s) = K2(x, s)ϕ2(s, y(s)).

we have

Rm = −y(x) + g(x) + ξ1
x

2

∫ 1

−1
Z1(x,

x

2
(t1 + 1))dt1 +

ξ2
2

∫ 1

−1
Z2(x,

x

2
(t2 + 1))dt2. (13)

by using Legendre–Gauss integration formula, the below form is concluded:

Rm = −y(x) + g(x) + ξ1
x

2

N1∑
j=0

ω1jZ1(x,
x

2
(t1j + 1)) +

ξ2
2

N2∑
j=0

ω2jZ2(x,
x

2
(t2j + 1)). (14)

The second network of LDNN and its nodes makes Rm. The architecture of LDNN for solving
nonlinear V-F-H-IEs is represented in Figure 1.

Figure 1: The architecture of LDNN for solving nonlinear V-F-H-IEs. The first network approxi-
mates the solution of IE y(x). This network hasM-layer and feed forward neural network is the
structure of it. H1 is introduced as a orthogonal layer which consists of p neurons with {Li}pi=0
(Legendre polynomials) as activation functions. Other layers have f , hyperbolic tangent as activa-
tion functions. The second network with the nodes makes the desired model and the output of it, is
Rm (consider Eq. (14)). The outputs of LDNN are y(x) and Rm.

4 NUMERICAL RESULTS

In order to present the accuracy and performance of the LDNN for solving nonlinear V-F-H-IEs and
justify the efficiency of the proposed method, several examples are given. The convergence behavior
of the LDNN is reported by using the following parameters:
The exact value yt, the predicted value yp and the absolute error (Error) in some points of test data
are reported in various tables. The number of the train data m1, the number of Legendre quadrature
points (N1, N2), the number of the test data m2, the structure of network M-layers, Ltrain

2 and
Ltest
2 are shown in Table 1. Ltrain

2 and Ltest
2 are calculated as follows:

Ltrain
2 = ||yt − yp||2 = [

mtr∑
j=1

(yt(xj)− yp(xj))2]
1
2 ,

Ltest
2 = ||yt − yp||2 = [

mte∑
j=1

(yt(xj)− yp(xj))2]
1
2 , (15)
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Table 1: The LDNN parameters for all the experiments. The structure of M-Layers indicates by
[d,NL(1), NL(2), · · · , NL(M−1), 1]. This network has d dimension in input layer,M− 1 hidden
layers with NL(`), 2 ≤ ` ≤M− 1, neurons in each layer and one output which approximates the
y(x). All the experiments have 4 hidden layers.

Experiment M-Layers m1 (N1, N2) Ltrain
2 m2 Ltest

2

Experiment 1 [1, 10, 30, 20, 10, 1] 500 (50,−) 3.937867e−09 100 4.015095e−09
Experiment 2 [1, 10, 30, 20, 10, 1] 500 (50, 50) 7.156029e−09 100 7.537263e−09
Experiment 3 [1, 10, 30, 20, 10, 1] 500 (50, 50) 1.347132e−09 100 1.659349e−08
Experiment 4 [1, 10, 30, 20, 10, 1] 500 (50, 50) 9.182442e−09 100 1.107755e−09

Table 2: The exact value, the predicted value and the absolute error (Error) in several test points on
[0, 1] domain for Experiment 1.

x exact value (yt = ex) predicted value (yp) Error

0.0 1.0 1.000000049 4.90000001e−08
0.2 1.22140276 1.221402765 4.99999997e−09
0.4 1.4918247 1.49182494 2.40000000e−07
0.6 1.8221188 1.82211831 4.90000000e−07
0.8 2.22554093 2.225540981 5.09999998e−08
1.0 2.71828183 2.71828179 4.00000002e−08

The Tensorflow package of Python version 3.7.0. is applied for writing the code of all experiments.
Adam algorithm is stoped when the number of iteration is up to 5000 and L-BFGS method is stoped
when it converges. The figures are obtained on the test data set.

4.1 EXPERIMENT 1

Suppose that we have the following model (Yousefi & Razzaghi, 2005):

y(x) = ex − 1

3
e3x +

1

3
+

∫ x

0

y3(s)ds, x ∈ [0, 1]. (16)

It has the exact solution y(x) = ex. Table 2 represents the exact value, the predicted value and the
absolute error (Error) in several test points on [0, 1] domain. 50 points of shifted Legendre quadrature
points are applied for training LDNN. The number of train data set is 500 and the number of test
data set is 100. Figure 2 shows the illustrated comparison between yt and yp.

Figure 2: Results of Experiment 1. Exact solution yt(x) = ex, predicted solution yp(x) by LDNN.
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Table 3: The exact value, the predicted value and the absolute error (Error) in several test points on
[0, 1] domain for Experiment 2.

x exact value (yt = cos(x)) predicted value (yp) Error

0.0 1.0 1.000000059 5.90000000e−08
0.2 0.98006658 0.98006683 2.50000000e−07
0.4 0.92106099 0.92106083 1.50000000e−07
0.6 0.82533561 0.82533555 6.00000000e−08
0.8 0.69670671 0.69670670 9.99999994e−09
1.0 0.54030231 0.54030237 6.00000001e−08

4.2 EXPERIMENT 2

Suppose that we have the following model (Razzaghi & Ordokhani, 2002):

y(x) = 1 + sin2(x) +

∫ 1

0

K(x, s)y2(s)ds, x ∈ [0, 1]. (17)

where

K(x, s) =
{−3 sin(x− s), 0 ≤ s ≤ x;

0 x ≤ s ≤ 1.
(18)

It has the exact solution y(x) = cos(x). The exact value, the predicted value and the absolute
error (Error) in several test points on [0, 1] domain are reported in Table 3. 50 points of shifted
Legendre quadrature points are applied for training LDNN. The number of train data set is 500 and
the number of test data set is 100. Figure 3 shows the illustrated comparison between yt and yp.

Figure 3: Results of Experiment 2. Exact solution yt(x) = cos(x), predicted solution yp(x) by
LDNN.

4.3 EXPERIMENT 3

Suppose that we have the following model (Babolian et al., 2007):

y(x) = g(x) +

∫ x

0

(x− s)y2(s)ds+
∫ 1

0

(x+ s)y(s)ds, x ∈ [0, 1]. (19)

where

g(x) = − 1

30
x6 +

1

3
x4 − x2 + 5

3
x− 5

4
(20)

It has the exact solution y(x) = x2 − 2. Table 4 illustrates the exact value, the predicted value
and the absolute error (Error) in several test points on [0, 1] domain. 50 points of shifted Legendre
quadrature points are applied for training LDNN. The number of train data set is 500 and the number
of test data set is 100. Figure 4 represented the comparison between yt and yp.
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Table 4: The exact value, the predicted value and the absolute error (Error) in several test points on
[0, 1] domain for Experiment 3.

x exact value (yt = x2 − 2) predicted value (yp) Error

0.0 −2.0 −2.00000001 9.99999994e−09
0.2 −1.96 −1.96000049 4.90000000e−07
0.4 −1.84 −1.840000009 8.99999986e−09
0.6 −1.64 −1.64000036 3.60000000e−07
0.8 −1.36 −1.35999998 2.00000001e−08
1.0 −1.0 −0.99999999 1.00000001e−08

Figure 4: Results of Experiment 3. Exact solution yt(x) = x2 − 2, predicted solution yp(x) by
LDNN.

4.4 EXPERIMENT 4

Suppose that we have the following model (Hadizadeh & Mohamadsohi, 2005):

y(x) = − 1

10
x4 +

5

6
x2 +

3

8
+

∫ x

0

1

2x
y2(s)ds, x ∈ [0, 1]. (21)

It has the exact solution y(x) = x2 + 1
2 . The exact value, the predicted value and the absolute

error (Error) in several test points on [0, 1] domain are reported in Table 5. 50 points of shifted
Legendre quadrature points are applied for training LDNN. The number of train data set is 500 and
the number of test data set is 100. Figure 5 shows the illustrated comparison between yt and yp.

Figure 5: Results of Experiment 4. Exact solution yt(x) = x2 + 1
2 , predicted solution yp(x) by

LDNN.

5 CONCLUSION

Legendre deep neural network (LDNN) is introduced in this paper. LDNN and its application for
solving nonlinear Volterra–Fredholm–Hammerstein integral equations (V-F-H-IEs) are proposed.
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Table 5: The exact value, the predicted value and the absolute error (Error) in several test points on
[0, 1] domain for Experiment 4.

x exact value (yt = x2 + 1
2 ) predicted value (yp) Error

0.0 0.5 0.50000004 4.00000000e−09
0.2 0.54 0.54000001 9.99999994e−09
0.4 0.66 0.66000002 2.00000000e−08
0.6 0.86 0.85999998 2.00000000e−08
0.8 1.14 1.13999999 9.99999994e−09
1.0 1.5 1.49999999 9.99999994e−09

LDNN includes two networks. The first network approximates the solution of a nonlinear V-F-H-IE
y(x) which hasM-layers feed forward neural network structure. The first hidden layer of this has a
orthogonal layer consists of Legendre polynomials as activation functions. The last network adjusts
the output of the sooner network to fit to a desired equation form. The better performance of the
network has been obtained by using Legendre Gaussian integration and automatic differentiation.
Some experiments of nonlinear V-F-H-IEs are given to investigate the reliability and validity of
LDNN. The results show that this network is an efficient and has high accuracy.
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