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ABSTRACT

Complex reinforcement learning (RL) tasks often require a divide-and-conquer
approach, where a large task is divided into pieces and solved by individual
agents. In this paper, we study a teamwork RL setting where individual agents
make decisions on disjoint subsets (blocks) of the state space and have private
interests (reward functions), while the entire team aims to maximize a general
long-term team utility function and may be subject to constraints. This team utility,
which is not necessarily a cumulative sum of rewards, is modeled as a nonlinear
function of the team’s joint state-action occupancy distribution. By leveraging
the inherent duality of policy optimization, we propose a min-max multi-block
policy optimization framework to decompose the overall problem into individual
local tasks. This enables a federated teamwork mechanism where a team lead
coordinates individual agents via reward shaping, and each agent solves her local
task defined only on their local state subset. We analyze the convergence of this
teamwork policy optimization mechanism and establish an O(1/T ) convergence
rate to the team’s joint optimum. This mechanism allows team members to jointly
find the global socially optimal policy while keeping their local privacy.

1 INTRODUCTION

Recent years have witnessed advances in reinforcement learning with multiple agents in many areas
Zhang et al. (2019) such as sensor/communication networks Choi et al. (2009); Xu et al. (2020),
autonomous driving Shalev-Shwartz et al. (2016), and cyber-physical systems Yong and Brintrup
(2019). Most of these works discuss a multi-agent reinforcement learning (MARL) setup, which
addresses a sequential decision-making problem of multiple autonomous agents that operate in a
common environment, each of which aims to optimize its own long-term return by interacting with
the environment and other agents.

In this work, we propose a new reinforcement learning model with multiple agents involved, namely
the teamwork reinforcement learning (teamwork RL) model. In contrast to typical MARL models,
we focus on the teamwork setting where each agent governs a distinct subset of the state space and
makes decisions independently from others. Specifically, we consider a decomposition of the state
space of a Markov decision process (MDP), where the resulting disjoint state blocks are assigned to
individual agents. Each agent can only obtain access to the transition dynamics and choose actions
inside its own block while transitions out of the block are hidden. Each agent makes sole decisions
in her block, and may have private interests that are not revealed to other members of the team.
To coordinate individual agents together, we let there be a team lead who only has access to the
transition information between different blocks. The team lead helps individual agents collaborate
together to maximize a general team utility, which can include not only agents’ private rewards but
also nonlinear team goals. Such a model captures a broad class of cooperative RL tasks where each
agent is only permitted access to a part of the environment.
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We are particularly interested in two common scenarios under the teamwork RL model: 1) teamwork
RL with a joint team utility, where the team goal can be represented as a nonlinear function of
individual blocks’ dynamics, such as minimizing KL-divergence in imitation learning tasks or
maximizing state-wise entropy in exploration tasks; and 2) teamwork RL with shared costs constraints,
where we consider linear cost constraints across agents, for example, to prevent a robotic arm from
relying too heavily on a specific joint motor throughout a sequence of assembly tasks. Due to space
complexity, we focus on the first scenario and refer the discussion of shared costs constraints to
Appendix D.

To solve the teamwork RL model, we propose a min-max multi-block policy optimization framework
using the dual domain to decompose the problem into individual local tasks. This enables a semi-
decentralized teamwork mechanism where the team lead coordinates individual agents through
“reshaping” their local rewards, and each agent solves the resulting regularized variant of the MDP
defined on its own state block in parallel, which can be handled by any viable methods such as
the variational policy gradient (VPG) method Zhang et al. (2020) or a Frank-Wolfe type algorithm
Hazan et al. (2019). The proposed collaboration framework coordinates through the connecting states
between different blocks so that little internal information within each state block will be exposed. We
analyze the convergence of this teamwork mechanism and establish anO(1/T ) sublinear convergence
rate. Our main contributions are summarized as follows:

• We study a state-decomposed teamwork model, that allows us to handle both agents’ private
interests and coupled utility across agents. This model differs from a typical multi-agent RL model
in two aspects: first, the agents operate on disjoint subsets of the state space; second, the utility is
not simply the cumulative return, but a general concave function. To our knowledge, teamwork RL
is the first framework to handle this challenging combination.

• We discuss duality-inspired multi-agent coordination algorithms, making use of a team lead and
regularization, for finding a socially optimal solution. Under this framework, each agent faces
local MDP problems defined on its own block without disclosing much private information.

• We discuss two interesting cases for teamwork RL models: 1) teamwork RL with joint team
utility; and 2) teamwork RL with a shared cost constraint. We propose two augmented Lagrangian
methods (ALMs) and analyse their sublinear convergence guarantees. To our knowledge, our
proposed method is the first existing ALM-type algorithm for multi-block affinely constrained
min-max problems. We make use of the bilinear structure of the problem by incorporating a novel
consensus term into the augmented Lagrangian, which guarantees sublinear convergence without
introducing significant communication overhead.

2 A TEAMWORK RL MODEL

2.1 PROBLEM FORMULATION

Consider a discounted Markov decision process (MDP), denoted as the tupleM = {S,A, P, γ,Ξ},
over a finite state set S and a finite action set A. For each state s ∈ S , the probability of transiting to
state s′ ∈ S when selecting action a ∈ A is given by the transition kernel P (s′|s, a). Let γ ∈ (0, 1)
be the discount factor and Ξ : S → [0, 1] be the given initial state distribution of the MDP.

Team and state blocks Let there be a team of N agents choosing actions in this MDP. Let the state
space S be divided into N disjoint blocks, S1, . . . ,SN , handled by the N agents respectively. For
each state block Si, the local policy πi(·|si) provides a distribution over A for all si ∈ Si. Each
member agent has direct access to the environment model within its state block, but cannot access
what happens outside.

Let there be a team lead who can oversee block-to-block state transitions and communicate with
member agents, but cannot access information on the model regarding the interior (excluding the
boundary) of each block.

Incoming and outgoing state sets To characterize the connection between disjoint state blocks,
we define the incoming state set from block j to block i as: Ij)i = {si ∈ Si|∃ sj ∈ Sj ,∃ a ∈
A, s.t. P (si|sj , a) > 0}, and the outgoing state set from block i to block j as: Oi)j = {si ∈
Si|∃ sj ∈ Sj ,∃ a ∈ A, s.t.P (sj |si, a) > 0}.
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We further denote Oi = ∪j 6=iOi)j , O−i = ∪j 6=iOj)i and Ii = ∪j 6=iIj)i. For ease of exposition, we
assume the state sets O−i’s are non-overlapping, i.e., Oi = tj 6=iOi)j . Our results directly extend to
the general cases.

Figure 1: Illustration of teamwork RL model.

Team workflow graph The transitions from one agent’s block to another agent’s block is governed
by a team workflow graph, which can be viewed as a stochastic graph with directed edges from
outgoing and incoming states. For example, the workflow graph can model how different parts of an
assembly line connect with each other. The team lead may directly have control over this workflow
graph, e.g., directly assigning workload to an agent.

More generally, the team lead can choose a control u ∈ A′ at an outgoing state s so that the workload
from s will be assigned to other agents’ incoming states with probability distribution T (·|s, u). For
example, the workflow graph may be pre-fixed, so that the graph’s transition matrix T (s|s′) stays
unchanged. For another example, the team lead may have power to directly assign traffic from one to
another agent, in this case the team lead’s optimization problem is equivalent to directly optimizing
over static graphs. We visualize the whole picture of our model in Figure 1.

Team objective We consider maximizing a team objective function that is not limited to the sum
of individual agents’ cumulative rewards, but can also be a general joint team utility function R(·). In
particular, we consider the problem

max
π={πi}Ni=1

R(π) = ρ(g1(π1;π−1), · · · , gN (πN ;π−N )). (1)

Here the mapping gi(πi;π−i) denotes the contribution of the i-th agent to the team utility, which is
defined to be a linear functional of the state-action occupancy measure restricted to block Si, and
ρ is some general smooth concave utility coupling across agents. We remark such scenario indeed
captures any smooth concave utility when we set mapping gi to be identity.

Consider the dual formulation of (1). In many interesting cases, the team utility R(π) can be written
as a general concave function of the unnormalized cumulative discounted state-action occupancy
measure, or flux under policy π, denoted as µπ, given by µπ(s, a) :=

∑∞
t=0 γ

tP (st = s, at =
a |π, s0 ∼ Ξ). We emphasize that, even in the single-agent case, problem (1) is no longer a typical
MDP, and the overall objective is no longer a sum of rewards. The loss of additivity invalidates the
foundation of dynamic programming and RL: the value function is no longer defined, the Bellman
equation no longer holds, and dynamic programming fails.

3 A MULTI-BLOCK OPTIMIZATION FRAMEWORK FOR TEAMWORK RL

In this section, we propose a distributed optimization framework for solving the teamwork RL
problem. We inspect the dual space of the problem and propose an iterative multi-agent primal-dual
optimization framework, which coordinates each agent through workflow arrangement and reward
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reshaping. This transformation allows the resulting local problem for each agent to be modeled as a
regularized local MDP defined on its own state block, as further discussed in Section 4.1.

3.1 MIN-MAX POLICY OPTIMIZATION VIA OCCUPANCY MEASURES

We consider the dual problem of teamwork RL (1). It can be formulated in terms of the unnormalized
cumulative discounted state-action occupancy measure. Specifically, denote the occupancy measure
restricted to each state block Si as µi. Problem (1) is equivalent to an optimization problem with flux
and nonnegativity constraints, where the decision variable is the state-action occupancy measure µ:

max
µ≥0

ρ(C1µ1, · · · , CNµN ) s.t.
∑
a

µ(s, a) = γ
∑
s′,a′

µ(s′, a′)P (s|s′, a′) + Ξ(s) ∀s (2)

where Ci’s are the user-given coefficient matrices with respect to each block, which defines the local
linear function gi(πi, π−i) = Ciµi. Here we overload the notation of ρ to be a concave joint team
utility that couples individual agents.

To handle the non-linear utility, we use Fenchel duality ρ(C1µ1, · · · , CNµN ) = infz
∑
i〈Ciµi, zi〉−

ρ∗(z), where ρ∗ is the concave dual function of ρ and zi’s can be viewed as shadow rewards. In this
way we can rewrite problem (2) as:

max
µ≥0

min
z

∑
i

〈Ciµi, zi〉 − ρ∗(z) s.t.
∑
a

µ(s, a) = γ
∑
s′,a′

µ(s′, a′)P (s|s′, a′) + Ξ(s) ∀s (3)

We remark that the flux constraints and the non-negativity constraints ensure that any feasible occu-
pancy measure µ corresponds to a unique policy π, given by π(a | s) = µ(s, a)/(

∑
a∈A µ(s, a)).

Note the occupancy measure µi’s of different agents are coupled together in the flux constraints. In
what follows, we will leverage the linear program nature of the overall MDP and propose a separable
reformulation, in order to motivate a semi-decentralized teamwork algorithm.

Adding dummy variables We introduce the following dummy variables on connecting states:

• For each outgoing state s ∈ Oi and workflow arrangement u, we create a dummy copy νout(s, u)
for its workflow graph occupancy, satisfying νout(s, u) = µ(s, u).

• For each incoming state s ∈ Ii, we create a dummy variable νin(s) for its state-wise occupancy,
satisfying νin(s) =

∑
s′∈O−i,u′

νout(s
′, u′)T (s|s′, u′).

A multi-Block reformulation Using the dummy variables above, the flux constraints in Eq. (3)
can be rewritten as:∑

a∈A
µ(s, a) = γ

∑
s′∈Si,a′∈A

µ(s′, a′)P (s|s′, a′) + γ1{s∈Ii}νin(s) + Ξ(s) ∀s ∈ Si,∀i ∈ [N ]

(local flux / MDP’s dynamics constraints)

νin(s) =
∑

s′∈O−i,u′

νout(s
′, u′)T (s|s′, u′) ∀s ∈ Ii,∀i (block-to-block dynamics constraint)

νout(s, u) = µ(s, u) ∀s ∈ Oi, i ∈ [N ],∀u. (boundary condition)

Based on the above reformulation, problem (2) can be abstracted as a multi-agent min-max optimiza-
tion problem with a bilinear coupling term for some given constant Ai, Bi,b:

min
x∈X

max
z

f(x, z) = ρ∗(z)−
N+1∑
i=1

z>i Bixi s.t. Ax =

N+1∑
i=1

Aixi = b (4)

where the variable xi for i ∈ [N ] denotes the local variable {µi, νin,i} for the i-th agent, characterizing
its local dynamics on state block Si, and the variable xN+1 denotes the dummy variables νout updated
by the team leader. We denote the constraint set X = ⊗N+1

i=1 Xi, where Xi’s are closed convex sets
defined by the intersection of the local flux / MDP’s dynamics constraints and the non-negativity
constraint to help us formulate the local subproblem as a MDP. We refer to Appendix E for their
detailed definitions and expressions.
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3.2 PRIMAL-DUAL PROXIMAL BLOCK COORDINATE METHOD

To handle the multi-agent min-max optimization problem (4), we propose an augmented Lagrangian
method (ALM) approach, where we dualize the coupled linear constraints Ax = b to have the
following augmented Lagrangian with λ being the dual variable:

Lη(x, λ, z) =− λ>(Ax− b) +
η1
2
‖Ax− b‖22 + ρ∗(z)−

N+1∑
i=1

z>i Bixi +
η2
2

N+1∑
i=1

‖Bixi −∇ziρ∗(z)‖22

Here we introduce an extra regularization term ‖Bixi −∇ziρ∗(z)‖22 corresponding to the optimality
condition for dual variable z, which shares the same spirit of consensus optimization in min-max
problems Mescheder et al. (2017); Abernethy et al. (2019). Now we propose the following min-max
ALM update scheme:

primal: xk+1 = argmin
x∈X

L(x, λk, zk; η1, η2) +
1

2
‖x− xk‖2Q

dual: λk+1 = λk − η1(Axk+1 − b),
zk+1
i = zki + η2(∇ziρ∗(zk)−Bixk+1

i )

We pick the predetermined proximal termQ = αI−η1A>A � 0 to make the primal update separable
for each agent, so that a parallel implementation can be achieved.

A sub-linear convergence guarantee
Theorem 1 (Min-max sublinear convergence). Assume ρ∗ is concave with an L∗-Lipschitz contin-
uous gradient. Assume Dx := supx∈X ,Ax=b ‖x‖Q < +∞ and Dz := supx∈X ,Ax=b{‖z‖ : z ∈
argmaxz′ f(x, z′)} < +∞. Then by choosing parameters η1 > 0, η2 ∈ (0, 1/L∗] and α ≥ η1‖A‖22,
we have for any γ > 0:

max
z
f(x̃t, z)− min

x∈X ,Ax=b
f(x, z̃t) + γ‖Ax̃t − b‖2 ≤

1

2(1 + t)

( 1

η1
(γ + ‖λ0‖)2 + (Dx + ‖x0‖)2 +

1

η2
(Dz + ‖z0‖)2

)
where x̃t = 1

1+t

∑t
k=0 x

k+1, z̃t = 1
1+t

∑t
k=0 z

k+1, λ̃t = 1
1+t

∑t
k=0 λ

k+1.

We reiterate that despite the wealth of results on ALM for convex minimization, to our best knowledge,
this is the first existing ALM-type algorithm for multi-block affinely constrained min-max problems.
We make use of the bilinear structure of problem (4) by incorporating the novel consensus term
‖Bixi−∇ziρ∗(z)‖22 into the augmented Lagrangian, which guarantees sublinear convergence without
introducing significant communication overhead. As a direct corollary, Theorem 1 implies both the
duality gap and the constraint violation decrease at a sublinear rate of O(1/t).

4 CONCRETE ALGORITHMIC REALIZATION FOR SOLVING TEAMWORK RL

Inspired by the multi-block optimization analysis in Section 3, we now develop the concrete Algo-
rithm 1 for maximizing a team’s joint utility via coordinating agents. See Figure 2 for a diagram that
illustrates how the algorithm works. The full algorithm involves the following information sharing:

Communication: All communications take place between a local agent and the team lead. Only
information about connecting states and global utilities are to be communicated. Specifically, in each
iteration the local agent i ∈ [N ] passes the following to the team lead:
• {µ(s, u)|s ∈ Oi, u}, νin,i: boundary dynamics of state block Si that should match team lead’s

workflow
• gi(µi) = Ciµi: local contribution to team utility

And the team lead propagates the following information back to each agent i:
• νout,i, ξi: workflow arrangement on the connecting states of block Si that should match local

dynamics
• zi,∇ziρ∗(z), λi, βi: dual variables that reshape and regularize the agent i’s’ local reward

Local privacy: Each local agent i ∈ [N ] never needs to reveal its private reward or local policy. We
emphasize that the following private information is never shared:
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Figure 2: Diagram of Algorithm 1. At each iteration, agents update their local policy and send out the boundary
dynamics and local contribution to the team utility; team lead receives the local information and uses it to
coordinates the agents by arranging an appropriate team workflow graph and reshaping local utilities.

Algorithm 1 Teamwork RL with joint team utility

Initialize: Individual agents’ and team leader’s variables,
parameter η1, η2, α.

for k = 1, 2, · · · , t do
for i = 1, 2, · · · , N + 1 perform following in parallel:

if i ∈ [N ]:
The i-th agent updates its local dynamics
{µ(k)

i , ν
(k)
in,i} by solving subproblem (5) and passes

the following information to the team leader:
• dynamics on its connecting states:
{µ(k)(s, u)|s ∈ Oi, u} and ν(k)in,i ;

• individual contribution to team utility Ciµ
(k)
i .

if i == N + 1:
The team leader updates copied connection
dynamics {ν(k)out , ξ

(k)} by (6).
The team leader updates the dual variables and passes the following to agent i ∈ [N ]:
• shadow reward z (also pass∇ziρ∗(z(k))):
z
(k)
i = z

(k−1)
i + η2(∇ziρ∗(z(k−1))− Ciµ

(k)
i )

• connection dynamics λ, β:
β
(k)
i = β

(k−1)
i − η(ξ

(k)
i − ν(k)in,i)

λ(k)(s, u) = λ(k−1)(s, u)− η(ν
(k)
out (s, u)− µ(k)(s, u))

• copied connection dynamics {ν(k)
out (s, u)|s ∈ Oi}, ξ(k)

i ;
end for
for i = 1, 2, · · · , N do

The i-th agent calculates local policies by
π
(t)
i (a|s) = µ(t)(s,a)∑

a∈A µ
(t)(s,a)

,∀s ∈ Si, a ∈ A.
end for
Output: Individual policies {π(t)

i }Ni=1.

• {P (s′|s, a), s, s′ ∈ Si, a}: information related to internal transition probability within state block
Si
• {µ(s, a), s ∈ Si\Oi, a}: information related to transition dynamics within the internal states of

block Si

Local agent’s subproblem after reward reshaping The primal update {µ(k+1)
i , ν

(k+1)
in,i } for agent

i ∈ [N ] can be formulated as the solution of the following quadratic subproblem defined on block Si:

argmax
µi≥0, νin,i

r
(k)>
i µi − β(k)>

i νin,i + h
(k)
i (µi, νin,i) (5)

s.t.
∑
a∈A

µ(s, a) = γ
∑

s′∈Si,a′∈A
µ(s′, a′)P (s|s′, a′) + γ1{s∈Ii}νin(s) + Ξ(s) ∀s ∈ Si
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where r(k)i (s, a) = Ci(:, s, a)>z
(k)
i − 1{s∈Oi}λ

(k)(s, a) for any s ∈ Si, a ∈ A (for outgoing states,
a is replaced by u),

h
(k)
i (µi, νin,i) = η1

∑
s∈Oi,u

(ν
(k)
out (s, u)− µ(k)(s, u))µ(s, u) + η1

∑
s∈Ii

(ξ
(k)
i (s)− ν(k)

in (s))νin(s)

− η2

2
‖Ciµi −∇ziρ

∗(z(k))‖22 −
α

2

∑
s∈Ii

(νin(s)− ν(k)
in (s))2 − α

2

∑
Si,A

(µ(s, a)− µ(k)(s, a))2

Here ξ(k)i (s) =
∑
s′∈O−i,u′

ν
(k)
out (s′, u′)T (s|s′, u′) is the incoming measure for block i given by the

team lead. We emphasize that despite the local problem being presented in a quadratic form, it is
equivalent to a local regularized MDP as shown in Section 4.1, indicating we can view it as a planning
or a learning problem depending on the situation and solve the local problem via any viable methods.

Team Leader’s Problem for Coordination The primal update ν(k+1)
out for the team leader is the

solution of an unconstrained quadratic program:

argmax
νout

−α
2
‖νout − ν(k)out ‖22 +

∑
i∈[N ]

∑
s∈Oi,u

λ(k)(s, u)νout(s, u) +
∑
i∈[N ]

∑
s∈Ii

β(k)(s)ξi(s)

− η1
∑
i∈[N ]

∑
s∈Ii

(ξ
(k)
i (s)− ν(k)in (s))ξi(s)− η1

∑
i∈[N ]

∑
s∈Oi,u

(ν
(k)
out (s, u)− µ(k)(s, u))νout(s, u) (6)

where ξi(s) =
∑
s′∈O−i,u′

νout(s
′, u′)T (s|s′, u′) denotes the incoming measure for block i.

Following the result of Theorem 1, we obtain the following sublinear convergence for Algorithm 1.
Theorem 2. Assume the occupancy measure under optimal policy π∗ has full support on all states
and the utility function ρ is Lipschitz. By choosing appropriate parameters according to Theorem 1,
the output policy π(t) of Algorithm 1 satisfies R(π∗)−R(π(t)) = O(1/t).

4.1 LOCAL SUBPROBLEM REFORMULATION – LOCAL REGULARIZED MDP

Now we discuss how to interpret the subproblem (5) of an individual agent as a private regularized
MDP defined on its own state blocks. Such reformulation allows us to go beyond the planning setting
to the learning setting where the transition probability within each block are unknown. Consider the
quadratic subproblems (5) of individual agents i ∈ [N ] in the primal updates of the joint utility. We
can rewrite them into the following abstract form defined on state block Si:

{µ(k+1)
i , ν

(k+1)
in,i } = argmax

µi≥0,νin,i

Fi(µi, νin,i) (7)

s.t.
∑
a∈A

µ(s, a) = γ
∑

s′∈Si,a′∈A
µ(s′, a′)P (s|s′, a′) + γ1{s ∈ Ii}νin(s) + Ξ(s) ∀s ∈ Si

where function Fi is a concave quadratic objective. We emphasize that the above problem is purely
defined on state block Si, with constraints similar to the MDP constraints. Hence, by incorporating
a virtual starting state sstart and ending state send, we can construct an equivalent private MDP with
quadratic regularization (see Appendix F). Each agent can solve their respective subproblem in
parallel with the other agents by solving a private MDP with quadratic regularization defined on
its own state block, without disclosing much private information. Such local MDPs can be handled
by any viable methods such as the variational policy gradient (VPG) method or a Frank-Wolfe type
algorithm in a learning scenario. For the completeness, we present solving via VPG in Appendix G.

5 EXPERIMENTS

Here, we empirically support our theoretical findings by demonstrating our algorithm on a state-
partitioned MDP. All experiments were run with a single CPU each for training and evaluation. The
agent and leader updates require solving the quadratic programs defined in equations (5) and (6)
respectively; both were solved using cvxopt Andersen et al. (2021).

The four-room MDP we consider is illustrated in Figure 3a. Each agent controls one of the four rooms
(delineated by the doors), each containing a reward. The 20 yellow states are implicitly numbered
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sequentially left to right, top to bottom. This information is useful for interpreting the time series
heatmaps. For example, row 1 in Figure 4d corresponds to the top left cell with the big “R” and row
8 corresponds to the small “r” in the top right room; columns correspond to actions and are listed
below the figure; each heatmap is titled with the training iteration at which it was recorded. In all
the heatmaps, the colorbar label indicates the quantity measured. Likewise, the heatmaps overlayed
on the gridworld show the log of the state visitation measure with arrows indicating the most likely
action taken by the final policy (a dot indicates the “Stay” action). The stimulus plots reveal how the
coordinator incentivizes collaboration in the constrained and nonlinear utility settings. We assume a
uniform initial state distribution.

If each agent optimizes for their own reward, they will learn policies that seek the reward in their
respective room. In contrast, a globally optimal policy seeks the largest reward in the top left room,
and this is the policy found by our algorithm (Figures 3b and 3c).

(a) (b) (c)
Figure 3: (3a) Each of the four distinct rooms, partitioned by the dotted lines (doors), is controlled by a single
agent. One room contains a big reward (R=10), while the other rooms contain a small reward (R=1). (3b)
Algorithm 1 recovers the optimal policy. (3c) Convergence to the optimal policy.

To demonstrate the effect of a global constraint, we limit the amount of mass that the occupancy
measure can place on “left” actions in Figure 4. A linear constraint is added to the MDP to enforce
that the total occupancy measure associated with the “left” action is one thousandth the total measure
given by all other actions combined. This makes it unlikely for the left action to be taken by the
policy. Also notice in Figure 4a that the brightest states are those with reward, while the next brightest
are those in the rightmost column. The occupancy measure in these states is moderately high because
there is no way to reach a reward state without moving left; therefore, the learned policy remains
somewhat arbitrary in these states (despite the uniformly downward arrows in the column).

To demonstrate the generalizability of our algorithm beyond linear reward functions (aver-
age/discounted reward), we substitute a convex KL penalty for deviating from a uniform occupancy
measure in Figure 5. This reward encourages joint team exploration of the MDP and is added as a
regularizer to the linear reward function. Contrasting Figure 5a with Figure 3b reveals the effect of
the KL penalty on encouraging a more uniform occupancy measure.

In Figures 4 and 5 (c-d), the coordinator penalizes agent 1 initially to discourage it from collecting the
big reward. This is necessary, as a policy strongly biased towards the big reward is antithetical to both
the “no left” constraint and KL-induced exploration objective. In Figure 4d, the coordinator penalizes
agent NW from taking a left action in the cell immediately right of the big reward. In Figure 5d, the
coordinator initially penalizes agent NW choosing to “Stay” seated on the big reward, however, once
a more uniform occupancy measure has been induced, the coordinator adjusts its stimulus to spread
out the occupancy measure elsewhere.

6 CONCLUSION AND DISCUSSION

In this work, we propose the RL problem of maximizing a nonlinear utility function in an MDP where
the state space admits a natural partitioning. By leveraging the duality of the problem, we are led to

(a) (b) (c) (d)
Figure 4: Constrained MDP. (4a) Recovery of optimal policy. (4b) Convergence. (4c) Distribution of coordinator
stimulus to agents. (4d) Coordinator discourages agent NW from collecting +10.

8
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(a) (b) (c) (d)
Figure 5: KL Penalty. (5a) Recovery of optimal policy. (5b) Comparison to optimal occupancy. (5c) Distribution
of coordinator stimulus to agents. (5d) Agent NW penalized for sitting on +10.

formulate its solution as a distributed multi-agent algorithm. A single leader efficiently coordinates
between the agent owned partitions, injecting stimulus where needed to encourage collaboration and
ensuring minimal leakage of private agent information across boundaries. Our proposed algorithm
fits into both planning and learning scenario and guarantees an O(1/T ) convergence rate.

9
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APPENDIX

Roadmap: We provide the hyperparameters of our experiments in Appendix A and additional
experiments in Appendix B. We discuss the related work in Appendix C. In Appendix D, we discuss
the regime of teamwork RL with shared cost constraints. In Appendix E, we provide a detailed
discussion of how to abstract the teamwork RL with joint utility problem as a multi-agent min-max
optimization problem with a bilinear coupling term. In Appendix F we formulate the agents’ private
regularized MDPs and in appendix G, we show how to solve them by variational policy gradient
methods.

A HYPERPARAMETERS

Hyperparamters for each case. We set γ = 0.95 for all experiments.

Figure 3:

• η1 = 0.5 chosen from [0.5, 0.75].
• α = 1.0 chosen from [1.0, 2.0].

Figure 4:

• η1 = 0.5 taken from unconstrained setting above.
• α = 1.0 taken from unconstrained setting above.

• c(s, a) =

−.001 −.001 1 −.001 −.001
...

...
...

...
...

−.001 −.001 1 −.001 −.001

 ∈ R20×5 (see equation (10) in Appx. D).

Figure 5:

• η1 = 0.1 chosen from [0.1, 0.5, 0.8].
• η2 = 0.1 chosen from [0.01, 0.1, 1.0].
• α = 1.0 chosen from [0.5, 1.0, 2.0].
• KL coefficient: 1000.

B ADDITIONAL EXPERIMENTS

Figure 6 examines three settings in sequence. We first confirm that our proposed algorithm recovers
the globally optimal solution when neither the constraint nor the general, nonlinear ρ term is present.
Next, we incorporate a minimal constraint and demonstrate the algorithm adjusts its learned occupancy
measure to satisfy that constraint. Finally, we introduce the nonlinear ρ = DKL(µ||µ∗) where µ∗ is
given as the solution to the previous constrained problem, but with the measures for the “down" and
“left" actions in a state (circled) swapped. In all cases, the algorithm recovers the globally optimal
policy.

C RELATED WORK

Augmented Lagrangian Method The Augmented Lagrangian Method (ALM), an algorithmic
framework we leverage to handle the teamwork RL problem in this work, has been studied extensively
in the literature, see e.g. Bertsekas et al. (1998); Nocedal and Wright (2006). Specifically, for an
affinely constrained convex optimization problem, its convergence and complexity are provided
under various situations He and Yuan (2010); Li et al. (2013); Xu (2017). When the decision
variable consist of multiple blocks, ALM is naturally extended to the Alternating Direction Method
of Multipliers—see Boyd et al. (2011) for a comprehensive overview of the method. Despite the rich
body of theory on ALM for convex minimization, to the best of our knowledge, there is no existing
ALM-type algorithm for the affinely constrained multi-block min-max problem.

Multi-agent Reinforcement Learning Multi-agent Reinforcement Learning (MARL) also considers
a sequential decision-making problem with more than one agent involved. Common MARL frame-
works include Markov games, also known as stochastic games, where multiple agents make decisions
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(a) (b) (c) (d)

Figure 6: (6a) Each of the four distinct rooms, partitioned by the dotted lines (doors), is controlled by a single
agent. One room contains a big reward (R=10) while the other rooms contain a small reward (R=1). (6b) The
policy seeks out the largest reward in the top left room. This is the globally optimal team policy to maximize
welfare. (6c) A linear constraint is enforced on the occupancy measure in the circled state to ensure the “Down"
action contains 10x the mass of the other actions combined. (6d) A KL-penalty is added to the linear reward to
penalize deviating from the optimal policy found in (6c), but with the measures for the “down" and “left" actions
in a state (circled) swapped.

and earn individual rewards simultaneously in a public environment but possibly with a cooperative
overarching goal Littman (1994); Boutilier (1996); Hu and Wellman (2003), and extensive-form
games where agents are largely competitive, make decisions based on possibly incomplete informa-
tion, and the primary representation is a game tree rather than a state-space Osborne and Rubinstein
(1994). Our proposed teamwork RL is most similar to the Markov game setting. It differs in two
aspects: 1) we consider a state-decomposition setting where each agent only has access to its own
part of the state space; 2) we consider general non-linear team utilities while cooperative MARL only
considers objectives based on individual agents’ cumulative rewards.

RL with Concave Utility In this work we consider reinforcement learning problems with general
concave utilities beyond cumulative rewards. Early works Filar et al. (1989); Huang and Kallenberg
(1994) consider concave utilities for tabular settings using dynamic programming approaches, but are
not scalable to large problems. The work by Hazan et al. (2019) considers maximizing the entropy
of a state visitation measure, a special case of the type of concave utilities we study, by proposing
a model-based iterative policy update, which requires explicit knowledge of the environment’s
transition probabilities. The variational policy gradient method developed by Zhang et al. (2020) is a
model-free approach with parameterization over policies that handles general concave utilities.

State-Decomposition Setting In this work we consider a setting where the state set for a given MDP
admits a natural partitioning into several disjoint state blocks, (e.g., in the task of assembling a product,
or execution of a kitchen recipe), each handled by a block-specific (local) agent. Constructing a
specific partitioning can be accomplished with spectral clustering and has previously been studied
in MDPs in the context of proto-value functions Mahadevan and Maggioni (2007). Our setting
is different from the decomposition settings discussed in the factored MDP or graph-based MDP
literature Guestrin and Gordon (2012); Tian et al. (2020); Cheng et al. (2013), where the state space
is factored in the form of a Cartesian product rather than a strict union.

D TEAMWORK RL WITH SHARED COST CONSTRAINTS

In this work, we consider the following two interesting scenarios within our proposed teamwork RL
model, namely teamwork RL with a joint team utility and teamwork RL with shared cost constraints.
We focus on the joint team utility scenario in the main text and discuss the shared cost constraints
scenario here in the appendix. As a reminder, we give out the formulation of both scenarios first.

Teamwork RL with joint team utility: We consider the scenario where the individuals work
together to maximize a general joint team utility:

max
π={πi}

R(π) = ρ(g1(π1;π−1), · · · , gN (πN ;π−N )) (8)

Here the mapping gi(πi;π−i) denotes the contribution of the i-th agent to the team utility, which
is defined to be a linear functional of the state-action occupancy measure restricted to block Si,
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and ρ is some general smooth concave utility coupling across agents. We remark such scenario
indeed captures any smooth concave utility when we set mapping gi to be identity. We are especially
interested in the case where gi’s output low-dimensional vectors such that little private information
needs to be revealed in the joint team utility.

Teamwork RL with shared cost constraints: We consider the task of maximizing the total ex-
pected discounted reward under a shared cost constraint across agents. In particular, given some cost
function c : S ×A → R, we assume the total expected discounted cost incurred by the chosen policy
is constrained from above:

max
π={πi}Ni=1

R(π) =
∑
i∈[N ]

Vi(πi;π−i) (9)

s.t. Vc(π) := E

[
∞∑
t=0

γtc(st, at)

∣∣∣∣∣π, s0 ∼ Ξ

]
≤ 0

where Vi denotes the local cumulative return of the i-th agent, defined as

Vi(πi;π−i) := E

[
∞∑
t=0

γtri(st, at)

∣∣∣∣∣π, s0 ∼ Ξ

]

for some local reward function ri.

In this section, we consider the teamwork RL with shared cost constraints scenario (9), to continue
discussing how to use a simpler (existing) ALM type of algorithm to address it.

Without lose of generality, we consider the scenario where all agents act to maximize their cumulative
returns subject to a shared cost constraint:

max
µ≥0

∑
s∈S,a∈A

r(s, a)µ(s, a) (10)

s.t.
∑
a

µ(s, a) = γ
∑
s′,a′

µ(s′, a′)P (s|s′, a′) + Ξ(s) ∀s

∑
s∈S,a∈A

c(s, a)µ(s, a) ≤ 0

where r(s, a) is the given reward function and c(s, a) is the given cost function. This is a much
simpler case of the general utility ρ in problem (2), and we provide a simpler alternative optimization
method with primal-only updates and does not involve the Fenchel dual.

We follow the same approach as the joint utility case without introducing the min-max formulation
due to the linearity of the objective. To handle the new cost constraint, we introduce a nonnegative
dummy variable νcost ∈ R≥0 and corresponding shadow price τ ∈ R, both handled by the team
leader, to coordinate the agents through reshaping the local rewards. Thus, problem (10) can be
reformulated as:

max
µ≥0,νcost≥0,νin,νout

∑
s∈S,a∈A

r(s, a)µ(s, a)

s.t.
∑
a∈A

µ(s, a) = γ
∑

s′∈Si,a′∈A
µ(s′, a′)P (s|s′, a′) + γ1{s∈Ii}νin(s) + Ξ(s) ∀s ∈ Si,∀i ∈ [N ]

νin(s) =
∑

s′∈O−i

νout(s
′, u)P (s|s′, u) ∀s ∈ Ii,∀i

νout(s, u) = µ(s, u) ∀s ∈ Oi, i ∈ [N ], u∑
s∈S,a∈A

c(s, a)µ(s, a) + νcost = 0
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which can be abstracted as the following multi-agent convex minimization (linear programming)
problem:

min
x∈X

f(x) =

N+1∑
i=1

fi(xi)

s.t. Ax =

N+1∑
i=1

Aixi = b

(11)

where the linear functions fi denotes the cumulative reward of agent i and we include the shared cost
constraint in Ax = b.

To handle the multi-agent optimization problem (11), we apply the primal-dual proximal block
coordinate update (PDBCU) approach proposed in the work Gao et al. (2019). We introduce the
following augmented Lagrangian:

Lη(x, λ) =

N∑
i=1

fi(xi)− λ>(Ax− b) +
η

2
‖Ax− b‖22

The alternating iterative scheme of the PDBCU can be outlined asprimal: xk+1 = argmin
x∈X

Lη(x, λk) +
1

2
‖x− xk‖2Q

dual: λk+1 = λk − η(Axk+1 − b)

Again, by picking the predetermined proximal term Q = αI − ηA>A � 0 with appropriate α > 0,
the primal update can be implemented by individual agents in parallel.

A Sub-linear Convergence guarantee As a corollary of Theorem 3.6 of Gao et al. (2019), we
have the following sub-linear convergence result of the resulting method:
Theorem 3. Assume there exists an optimal primal-dual solution (x∗, λ∗) to problem (11). Choosing
η > 0 and α ≥ η1‖A‖22, we have:

max{|f(x̂t)− f(x∗)|, ‖Ax̂t − b‖2} ≤
1

1 + t

[
1

2
‖x0 − x∗‖2Q +

max{(1 + ‖λ∗‖)2, 4‖λ∗‖22}
2α

]
where x̂t = 1

1+t

∑t+1
k=1 x

k denotes the average of iterates.

Now we present the concrete realization corresponding to the abstract PDBCU updates in Algorithm 2.
Similar to the discussion of joint utility case in Section 4, the full algorithm of the shared cost
constraints case involves the following participants and operations (for the completeness and the ease
of reading, we repeat the same operations showing up in the joint utility case. Only those colored in
blue are unique for the shared cost constraints case):

Team lead: The team lead is given the transition probability between state blocks and updates:
• τ : shadow price corresponds to the cost constraint
• λ, β: transition dynamics on connecting states corresponding to the boundary conditions
• νout: boundary dynamics on the outgoing states which help "reshape" agents’ local rewards.

Local agent: Each local agent may have a private reward ri and receives instructional information
from the team lead. Based upon both local information and received information, the local agent will
construct a regularized local MDP. The local agent solves the local MDP on its own, using any viable
method.
Communication: All communications take place between a local agent and the team lead. Only
information about connecting states and global utilities are to be communicated. Specifically, in each
iteration the local agent i ∈ [N ] passes the following to the team lead:
• {µ(s, u)|s ∈ Oi, u ∈ A′}, νin,i: boundary dynamics of state block Si
•
∑
Si,A c(s, a)µ(k)(s, a): local sum of cost

And the team lead propagates the following information back to each agent i:
• νout,i, ξi: copied boundary dynamics of block Si
• τ , λi, βi: dual variables that reshape and regularize the agent i’s’ local reward
•
∑
S,A c(s, a)µ(k)(s, a): residual of cost
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Local privacy: Each local agent i ∈ [N ] never needs to reveal its private reward or local policy. We
emphasize that the following private information is never shared:
• {P (s′|s, a), s, s′ ∈ Si, a ∈ A}: internal transition probability within state block Si
• {µ(s, a), s ∈ Si\Oi, a ∈ A}: transition dynamics within the internal states of block Si

Local agent only shares following the information to the team leader but not to other agents.
• {µ(s, u)|s ∈ Oi, u}, νin,i: boundary dynamics of state block Si
•
∑
Si,A c(s, a)µ(k)(s, a): local sum of cost

Now, we present the primal updates, i.e., the subproblem each agent and team lead need to solve in
each iteration. Again, we color the unique updates of the shared cost constraints case in blue.

Local Agent’s Problem After Reward Shaping The primal update for agent i ∈ [N ] can be
formulated as the following quadratic subproblem defined on block Si:

{µ(k+1)
i , ν

(k+1)
in,i } = argmax

µi≥0, νin,i

r
(k)>
i µi − β(k)>

i νin,i + h
(k)
i (µi, νin,i) (12)

s.t.
∑
a∈A

µ(s, a) = γ
∑

s′∈Si,a′∈A
µ(s′, a′)P (s|s′, a′) + γ1{s∈Ii}νin(s) + Ξ(s) ∀s ∈ Si

where r(k)i (s, a) = r(s, a) + c(s, a)τ − 1{s∈Oi}λ
(k)(s, a) for any s ∈ Si, a ∈ A and

h
(k)
i (µi, νin,i) =η1

∑
s∈Oi,u

(ν
(k)
out (s, u)− µ(k)(s, u))µ(s, u) + η1

∑
s∈Ii

(ξ
(k)
i (s)− ν(k)in (s))νin(s)

−η(
∑

s∈S,a∈A
c(s, a)µ(k)(s, a) + µ

(k)
cost)

∑
Si,A

c(s, a)µ(s, a)− α

2

∑
s∈Ii

(νin(s)− ν(k)in (s))2

− α

2

∑
Si,A

(µ(s, a)− µ(k)(s, a))2

Here ξ(k)i (s) =
∑
s′∈O−i,u′

ν
(k)
out (s′, u′)T (s|s′, u′) is the incoming measure for block i given by team

lead.

Team Leader’s Problem for Coordination The primal update for the team leader is a quadratic
program:

{ν(k+1)
cost , ν

(k+1)
out } = argmax

νcost≥0,νout

−α
2
‖νcost − ν(k)cost‖22 −

α

2
‖νout − ν(k)out ‖22 +

∑
i∈[N ]

∑
s∈Oi

λ(k)(s)νout(s)

+
∑
i∈[N ]

∑
s∈Ii

β(k)(s)ξi(s)+τ
(k)νcost − η1

∑
i∈[N ]

∑
s∈Oi,u

(ν
(k)
out (s, u)− µ(k)(s, u))νout(s, u)

−η1
∑
i∈[N ]

∑
s∈Ii

(ξ
(k)
i (s)− ν(k)in (s))ξi(s)−η1(

∑
s∈S,a∈A

c(s, a)µ(k)(s, a) + µ
(k)
cost)νcost (13)

where ξi(s) =
∑
s′∈O−i,u′

νout(s
′, u′)T (s|s′, u′) denotes the incoming measure for block i.

Following the convergence result of Theorem 3, we have the following sublinear convergence rate:

Theorem 4. Assume the occupancy measure under optimal policy π∗ has full support on all states.
By choosing appropriate parameters according to Theorem 3, the output policy π(t) of the proposed
Algorithm 2 satisfy:

R(π∗)−R(π(t)) = O(
1

t
) and Vc(π

(t)) = O(
1

t
)

E TEAMWORK RL WITH JOINT TEAM UTILITY

In this section, we provide the details of abstracting problem (2) into a multi-agent min-max opti-
mization problem with a bilinear coupling term. Note from the discussion in Section 3.1, we know
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Algorithm 2 Teamwork RL with shared cost

Initialize: Individual agents and team leader’s variables arbitrarily, parameter η, α.
for k = 1, 2, · · · , t do

for i = 1, 2, · · · , N + 1 perform following in parallel:
if i ∈ [N ]:

The i-th agent updates its local dynamics {µ(k)
i , ν

(k)
in,i} by solving local subproblem (12)

and
passes following information to the team leader:
• dynamics on its connecting states {µ(k)(s, u)|s ∈ Oi, u ∈ A′} and ν(k)in,i ;
• local sum of cost

∑
Si,A c(s, a)µ(k)(s, a).

if i == N + 1:
Team leader updates copied connection dynamics and cost residual {ν(k)out , ν

(k)
cost} by (13).

Team leader updates the dual variables and passes the following to agent i ∈ [N ]:
• shadow price τ : τ (k) = τ (k−1) − η(

∑
S,A c(s, a)µ(k)(s, a) + ν

(k)
cost)

• connection dynamics λ, β: β(k)
i = β

(k−1)
i − η(ξ

(k)
i − ν(k)in,i), ∀i ∈ [N ];

λ(k)(s, u) = λ(k−1)(s, u) − η(ν
(k)
out (s, u) − µ(k)(s, u)), ∀s ∈

Oi, u ∈ A′
• copied connection dynamics {ν(k)out (s, u)|s ∈ Oi, u ∈ A′}, ξ(k)i ;
• residual of cost

∑
S,A c(s, a)µ(k)(s, a) + ν

(k)
cost.

end for
for i = 1, 2, · · · , N do

The i-th agent calculates local policies by

π
(t)
i (a|s) =

µ(t)(s, a)∑
a∈A µ

(t)(s, a)
,∀s ∈ Si, a ∈ A.

end for
Output: Individual policies {π(t)

i }Ni=1

problem (2) can be rewritten as

max
µ≥0,νin,νout

min
z

∑
i

〈Ciµi, zi〉 − ρ∗(z)

s.t.
∑
a∈A

µ(s, a) = γ
∑

s′∈Si,a′∈A
µ(s′, a′)P (s|s′, a′) + γ1{s∈Ii}νin(s) + Ξ(s) ∀s ∈ Si,∀i ∈ [N ]

νin(s) =
∑

s′∈O−i

νout(s
′)P (s|s′) ∀s ∈ Ii,∀i

νout(s) =
∑
a∈A

µ(s, a) ∀s ∈ Oi, i ∈ [N ]

Let the variable xi for i ∈ [N ] represents the variable {µi, νin,i}. Let the variable xN+1 represents
νout. Define x = [x>1 , · · · , x>N+1]>. Note the first and the nonnegativity constraints are separable
and only relates to {xi, i ∈ [N ]}. Define constraint set Xi to be the intersection of the first and the
nonnegativity constraints with respect to xi for i ∈ [N ]. Let XN+1 = R and X = ⊗N+1

i=1 Xi. We
remark each Xi is closed and convex (but not bounded). The rest of constraints are linear with respect
to x, which can be written as Ax = b for some given constant matrix A and vector b. Lastly, the
term 〈Ciµi, zi〉 in objective can be written as a bilinear term coupling xi and zi, which is denoted as
z>i Bixi for some given constant matrix Bi. To summarize, we can abstract above problem as:

min
x∈X

max
z

f(x, z) = ρ∗(z)−
N+1∑
i=1

z>i Bixi

s.t. Ax =

N+1∑
i=1

Aixi = b
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F PRIVATE MDPS

Theorem 5 (Equivalence between local subproblems and quadratic MDPs). The subproblem (7) of
agent i ∈ [N ] is equivalent to an MDPM′ = {S ′i,A′i, P ′i , γ,Ξ′} with utility F ′i (·), where

state space: S ′i = Si t {sstart, send},

action space: A′i =

{
A if s 6= sstart

Ii t send if s = sstart
,

initial distribution: ∀s ∈ Si

Ξ′i(s) =


γ(1− γ)Ξi(s) if s ∈ Si
1−

∑
s∈Si

γ(1− γ)Ξi(s) if s = sstart

0 if s = send

,

transition probability: ∀s ∈ S ′i

P ′i (s
′|s, a) =


P (s′|s, a) if s′ ∈ Si
1−

∑
s′∈Si P (s′|s, a) if s′ = send

0 if s′ = sstart

,

P ′i (s
′|sstart, a) = 1{s′ = a}, P ′i (s′|send, a) = 1{s′ = send}.

Denote the corresponding occupancy measure as µ′i = {µ′(s, a), s ∈ S ′i, a ∈ A′i}. Then the
quadratic utility can be written as

F ′i (µ
′
i) = Fi({

1

γ(1− γ)
µ′(s, a)|s ∈ Si, a ∈ A},

{ 1

γ(1− γ)
µ′(sstart, a)|a ∈ Ii}),

where function Fi is the original local objective in Eq. (7).

G VARIATIONAL POLICY GRADIENT FOR QUADRATIC MDP

Theorem 5 reduces the individual’s subproblem to a quadratic MDP problem. We remark that such
result also holds for the share cost constraints case. Consider solving a general quadratic MDPM′
discussed in Lemma 5. We note that the Bellman equation and dynamic programming all fail in this
case due to the loss of additivity in the utility. Therefore, we apply the variational policy gradient
method proposed in Zhang et al. (2020), which established the parametrized policy gradient for RL
with general utilities.

Parameterizing the policy by π = π(θ), θ ∈ Θ, we can write a quadratic MDP problem with
corresponding parameterized utility measure µ = µ(π(θ)) = µ(θ) as:

max
θ∈Θ

R(π(θ)) = max
θ∈Θ

F (µ(θ)) = max
θ∈Θ

b>µ(θ)− 1

2
µ(θ)>Aµ(θ)

for some quadratic utility F (·) with A = [a>1 ; · · · , ; a>n ] � 0. Then we have the following lemma for
the variational policy gradient.

Lemma 1 (Variational policy gradient for Quadratic MDP). Denote v(θ; z) as the cumulative value
of policy πθ with reward function z, and assume ∇θV (θ; z) always exists. Then we have

∇θR(π(θ)) = ∇θV (θ; b)−∇θV (θ;V (θ;A)). (14)

Here V (θ;A) denotes the vector [V (θ; a1), · · · , V (θ; an)].

Theorem 4.4 of work Zhang et al. (2020) established a sublinear convergence guarantee of the policy
gradient ascent method using policy gradient shown in Lemma 1.

Lastly, we remark that the policy gradient (14) can be calculated via V (θ; z) and∇V (θ; z) for any
given reward function z, which can be estimated given n i.i.d. episodes of sample trajectories with

18
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lengthK following πθ, denoted as ζi = {s(i)k , a
(i)
k }Kk=1. Then according to the classic Policy Gradient

Theorem Sutton et al. (1999), we can estimate V (θ; z) and ∇V (θ; z) for any function z via

V (θ; z) ≈ 1

n

n∑
i=1

V (θ; z; ζi) :=
1

n

n∑
i=1

K∑
k=1

γk · z(s(i)k , a
(i)
k ),

∇V (θ; z) ≈ 1

n

n∑
i=1

∇θV (θ; z; ζi) :=
1

n

n∑
i=1

K∑
k=1

∑
a∈A

γkQπ(θ)(s
(i)
k , a; z)∇θπθ(a|s(i)k ),

where Qπ(θ)(s, a; z) = Eπ(θ)[
∑
t γ

tz(st, at)|s0 = s, a0 = a] denotes the Q-function.

19


	Introduction
	A Teamwork RL Model
	Problem Formulation

	A Multi-Block Optimization Framework for Teamwork RL
	Min-Max Policy Optimization via Occupancy Measures
	Primal-Dual Proximal Block Coordinate Method

	Concrete Algorithmic Realization for Solving Teamwork RL
	Local Subproblem Reformulation – Local Regularized MDP

	Experiments
	Conclusion and Discussion
	Hyperparameters
	Additional Experiments
	Related Work
	Teamwork RL with shared cost constraints
	Teamwork RL with joint team utility
	Private MDPs
	Variational Policy Gradient for Quadratic MDP

