Under review as a conference paper at ICLR 2021

SYNTHESIZER: RETHINKING SELF-ATTENTION FOR
TRANSFORMER MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The dot product self-attention is known to be central and indispensable to state-
of-the-art Transformer models. But is it really required? This paper investigates
the true importance and contribution of the dot product-based self-attention mech-
anism on the performance of Transformer models. Via extensive experiments, we
find that (1) random alignment matrices surprisingly perform quite competitively
and (2) learning attention weights from token-token (query-key) interactions is
useful but not that important after all. To this end, we propose SYNTHESIZER,
a model that learns synthetic attention weights without token-token interactions.
In our experiments, we first show that simple Synthesizers achieve highly com-
petitive performance when compared against vanilla Transformer models across a
range of tasks, including machine translation, language modeling, text generation
and GLUE/SuperGLUE benchmarks. When composed with dot product atten-
tion, we find that Synthesizers consistently outperform Transformers. Moreover,
we conduct additional comparisons of Synthesizers against Dynamic Convolu-
tions, showing that simple Random Synthesizer is not only 60% faster but also
improves perplexity by a relative 3.5%. Finally, we show that simple factorized
Synthesizers can outperform Linformers on encoding only tasks.

1 INTRODUCTION

Transformer models (Vaswani et al.,[2017) have demonstrated success across a wide range of tasks.
This has resulted in Transformers largely displacing once popular auto-regressive and recurrent mod-
els in recent years. At the heart of Transformer models lies the query-key-value dot product atten-
tion. The success of Transformer models is widely attributed to this self-attention mechanism since
fully connected token graphs, which are able to model long-range dependencies, provide a robust
inductive bias.

But is the dot product self-attention really so important? Do we need it? Is it necessary to learn
attention weights via pairwise dot products? This paper seeks to develop a deeper understanding of
the role that the dot product self-attention mechanism plays in Transformer models.

The fundamental role of dot product self-attention is to learn self-alignment, i.e., to determine the
relative importance of a single token with respect to all other tokens in the sequence. To this end,
there have been memory metaphors and analogies constructed to support this claim. Indeed, the
terms query, keys, and values imply that self-attention emulates a content-based retrieval process
which leverages pairwise interactions at its very core.

Moving against convention, this paper postulates that we cannot only do without dot product
self-attention but also content-based memory-like self-attention altogether. Traditionally, attention
weights are learned at the instance or sample level, where weights are produced by instance-level
pairwise interactions. As a result, these instance-specific interactions often fluctuate freely across
different instances as they lack a consistent global context.

This paper proposes SYNTHESIZER, a new model that learns to synthesize the self-alignment matrix
instead of manually computing pairwise dot products. We propose a diverse suite of synthesizing
functions and extensively evaluate them. We characterize the source information that these synthe-
sizing functions receive, i.e., whether they receive information from individual tokens, token-token

Under review as a conference paper at ICLR 2021

interactions, and/or global task information. Intuitively, different source inputs to the synthesizing
functions should capture diverse views, which may be useful when employed in conjunction.

Aside from generalizing the standard Transformer model, we show that it is possible to achieve
competitive results with fully global attention weights that do not consider token-token interactions
or any instance-level (local) information at all. More specifically, a random matrix SYNTHESIZER
model achieves a 27.27 BLEU score on WMT 2014 English-Germa Via a set of rigorous exper-
iments, we observe that the popular and well-established dot-product content-based attention can
be approximated with simpler variants such as random matrices or dense layers without sacrificing
much performance in some cases.

In our experiments, we also show that our relatively simple Synthesizer models also outperform
Dynamic Convolutions (Wu et al., 2019) with a +3.5% relative improvement in perplexity while
being 60% faster. On encoding tasks, our factorized Synthesizers can outperform other low-rank
efficient Transformer models such as Linformers (Wang et al., 2020).

While simple Synthesizer models are able to perform competitively, our experiments show that the
pairwise dot product is still ultimately helpful. When composing our synthesizing functions with
dot products, we find that they consistently improve the performance of Transformers. In general,
we believe our findings will spur further investigation and discussion about the true role and utility
of the self-attention mechanism in Transformer models.

Our Contributions Our key contributions are described as follows:

e We propose Synthetic Attention, a new way of learning to attend without explicitly attend-
ing (i.e., without dot product attention or content-based attention). Instead, we generate
the alignment matrix independent of token-token dependencies and explore a potpourri of
parameterized functions for synthesizing attention matrices.

o We propose SYNTHESIZER, a new model that leverages Synthetic Attention. The model
performs competitive to state-of-the-art Transformer models on a wide range of language
tasks, including machine translation and language modeling.

e Moreover, we show that (1) random learnable alignment matrices perform competitively
and (2) token-token dependencies are not necessary to achieve good performance with
Transformer models on certain tasks.

e On large-scale masked language modeling on the C4 dataset (Raffel et al.| 2019)) and fine-
tuning on SuperGLUE and GLUE benchmarks, we show that simple random Synthesizers
can outperform/match Lightweight Dynamic convolutions (Wu et al.| 2019) along with
outperforming Transformers and Universal Transformers (Dehghani et al.| 2018). On two
encoding tasks, factorized random Synthesizers outperform low-rank Linformers (Wang
et al.,[2020).

2 RELATED WORK

Attention-based models are used across a wide spectrum of problem domains. Such models are
especially popular, due to their effectiveness, in the language and vision domains. Attention models
can be traced back to the machine translation models of (Bahdanau et al., |2014) and (Luong et al.,
2015), where attention is employed to learn soft word alignments between language pairs. The
intuition behind the attention mechanism is deeply-rooted in the notion of memory-based retrieval
(Graves et al., [2014; [Weston et al., [2014), in which soft differentiable addressing of memory was
initially proposed.

The paradigm of learning self-alignments, also known as self-attention, has been largely popularized
by Transformer models (Vaswani et al.| [2017). This technical narrative has also been explored
by a number of other recent studies, including those on intra-attention (Parikh et al., [2016)), self-
matching networks (Wang et al.;|[2017)), and LSTMN (Cheng et al.,|2016). To this end, Transformer
models, which function primarily based on self-attention and feed-forward layers, generally serve
as a reliable replacement for autoregressive recurrent models.

!The originally reported result is 27.30.

Under review as a conference paper at ICLR 2021

The self-attention layer itself has been the subject of many recent technical innovations. For exam-
ple, recent studies have investigated improving the layer’s overall efficiency via sparsification and
reducing the complexity of computing the alignment matrix (Child et al., [2019; Kitaev et al., |2020;
Huang et al} [2018; Tay et al., [2020; Beltagy et al.l |2020). These methods are tightly coupled with
the query-key-value paradigm, employing a form of memory-based content retrieval as an attention
mechanism. On the other end of the spectrum, there have been studies that advocate for replacing
self-attention with convolution (Wu et al., |2019). The recent surge in interest in simplifying the
attention mechanism raises important questions about the role and utility of the pairwise dot prod-
ucts, which are one the defining characteristics of self-attention models. Meanwhile, in the image
domain, (Cordonnier et al.,|2019) shows connection of Transformers with CNNss.

Our work is a new take on the self-attention mechanism in Transformer models. We delve deeper,
starting with replacing the pairwise dot products with what we call synthesizing functions that learn
attention matrices that may or may not depend on the input tokens. The most closely related work
is ((Raganato et al., [2020)), in which the authors propose using fixed (i.e., not learned) attention
patterns in Transformer encoders. However, the scope of their work is limited to encoders and relies
on manually defined handcrafted patterns that seem to work well. Our work takes this intuition
further and expands on this narrative.

3 THE PROPOSED METHOD

This section introduces our proposed SYNTHESIZER model. At its core, our model is essentially
a Transformer model with self-attention modules replaced with our Synthetic Attention modules.
Figure [3.T]illustrates the key ideas behind (a) Transformer (b) Dense Synthesizers and (c) Random
Synthesizers.

3.1 SYNTHESIZER MODEL

This section introduces Synthetic Attention, our proposed self-attention module. Our model removes
the notion of query-key-values in the self-attention module and directly synthesizes the alignment
matrix instead.

Dense Synthesizer Let us consider the simplest variation of the SYNTHESIZER model which is
conditioned on each input token. Overall, our method accepts an input X € R**¢ and produces an
output of Y € R*?, Here, ¢ refers to the sequence length and d refers to the dimensionality of the
model. We first adopt F'(.), a parameterized function, for projecting input X; from d dimensions to
¢ dimensions.

B; = F(X;) (D

where F(.) is a parameterized function that maps R to R’ and i is the i-th token of X and is
applied position-wise (to each vector in the sequence of length ¢). Intuitively, this can be interpreted
as learning a token-wise projection to the sequence length ¢. Essentially, with this model, each token
predicts weights for each token in the input sequence. In practice, we adopt a simple two layered
feed-forward layer with ReLU activations for F'(.):

F(X;) = Wa(or(Wi(Xi) +b1)) + b2 2)

where o, is the ReLU activation function and W; € R%*4 and W, € R4*¢. Hence, B; is now of
R¢. Given B € R***, we now compute:

Y = Softmax(B)G(X) (3)

where G/(.) is another parameterized function of X that is analogous to V' (value) in the standard
Transformer model. This approach eliminates the dot product attention Y = Softmax(QK ")V
altogether by replacing QK ' in standard Transformers with the synthesizing function F(.).

Random Synthesizer The previous variant learns synthetic attention by conditioning on each in-
put of X and projecting to ¢ dimensions. Hence, the Dense Synthesizer conditions on each token
independently, as opposed to pairwise token interactions in the vanilla Transformer model. We con-
sider another variation of SYNTHESIZER where the attention weights are not conditioned on any

Under review as a conference paper at ICLR 2021

(a) Transformer (b) Synthesizer (Dense) (c) Synthesizer (Random)

A

Dense Synthesizer

Ldddd =

Random Synthesizer

| Query | | Key | | Value | Value Value

Input X Input X

I

Figure 1: Our proposed SYNTHESIZER model architecture.

input tokens. Instead, the attention weights are initialized to random values. These values can then
either be trainable or kept fixed (denoted as Fixed).

Let R be a randomly initialized matrix. The Random Synthesizer is defined as:
Y = Softmax(R)G(X). 4)

where R € R“*¢. Notably, each head adds ¢? parameters to the network. The basic ide of the
Random Synthesizer is to not rely on pairwise token interactions or any information from individual
token but rather to learn a task-specific alignment that works well globally across many samples.
This is a direct generalization of the recently proposed fixed self-attention patterns Raganato et al.
(2020).

Factorized Models The Dense Synthesizer adds d x ¢ parameters to the network. On the other
hand, the Random Synthesizer adds ¢ x ¢ parameters. Here, note that we omit the (), K projections in
the standard Transformer which results in further parameter savings. Despite these savings, synthe-
sized models can be cumbersome to learn when /£ is large. Hence, we propose factorized variations
of the SYNTHESIZER models and show that these variants perform comparably in practice.

Factorized Dense Synthesizer Factorized outputs not only slightly reduce the parameter cost of
the SYNTHESIZER but also aid in preventing overfitting. The factorized variant of the dense synthe-
sizer can be expressed as follows:

where F4(.) projects input X; into a dimensions, Fj(.) projects X; to b dimensions, and a x b = £.
The output of the factorized module is now written as:

Y = Softmax(C)G(X). (6)

where C' = H 4(A) * Hg(B) where H 4, Hp are tiling functions and C' € R**¢. The tiling function
simply duplicates the vector k times, i.e., R® — R** In this case, H4(-) is a projection of
R — R**? and Hp(-) is a projection of R — R®*®_ To avoid having similar values within the
same block, we compose the outputs of H4 and Hp.

Factorized Random Synthesizer Similar to Factorized Synthesizers, we are also able to factorize
R into low rank matrices R, Ry € R*F,

Y = Softmax(R; R,y)G(X). (7)

2We were not expecting this variation to work at all, but it turns out to be a strong baseline.

Under review as a conference paper at ICLR 2021

Therefore, it is easy to see that, for each head, this reduces the parameter costs from 2 to 2(0k)
where k£ << £ and hence helps prevent overfitting. In practice, we use a small value of k = 8.

Mixture of Synthesizers Finally, we note that all of the proposed synthetic attention variants can
be mixed in an additive fashion. This can be expressed as:

Y = Softmax(a1.51(X) + - - - anSn(X))G(X). (8)

where S(.) is a parameterized synthesizing function and the o (where > o = 1) are learnable
weights. In the case of mixing Random Factorized with standard Dense Synthesizers, this is ex-
pressed as:

Y = Softmax(a; R1 Ry + o F(X))G(X).)

We investigate several Mixture of Synthesizers variants in our experiments.

On Parameters Depending on Sequence Length Random and dense Synthesizers both rely on
parameters that depend on length ¢. In general, we define a maximum length and dynamically
truncate to the actual length of each batch. We note that this is in similar spirit to trainable positional
encodings which have been common practice in Transformer models. Hence, we do not forsee any
issue here. In the case that this is really a problem, one potential solution is to project to a smaller
value b and tile b to the maximum sequence length. We leave this exploration to future work.

3.2 DISCUSSION

This paper asks fundamental questions about the attention matrix A and whether it is possible to
synthesize A by alternate means other than pairwise attention. It is worth noting that the regular
dot product attention can also be subsumed by our SYNTHESIZER framework, i.e., SYNTHESIZER
generalizes the Transformer model. In the case of the Transformer, the synthesizing function in
question is S(X) = Fo(X)Fr(X) .

Model S(X) Condition On Sample Interact 10|

Dot Product Fo(X)Fr(X:)" X; Vj Local Yes 2d°
Random R N/A Global No 0

Fac. Random RiR; N/A Global No 20k
Dense Fio(F2(X5)) X; Local No a2+ de
Fac. Dense | Ha(Fa(X:))) * He(Fp(X)))) X; Local No d® + d(k1 + ko)

Table 1: Overview of all Synthesizing Functions.

Table [T]lists the different model variants explored within our SYNTHESIZER framework. The con-
dition on’ column refers to whether the synthesized output is produced as a function of X; or every
X, X; pair. The ‘sample‘ column indicates whether a given variant leverages local or global con-
text. Random Synthesizers are global because they share the same global alignment patterns across
all samples. Dense Synthesizers are considered to be local as they are conditioned on X;, which
makes the alignment pattern dependent on each individual sample. To this end, it is imperative for
synthesized models to have multiple heads to be effective.

4 EXPERIMENTS

This section outlines our experimental setup and results. We first conduct experiments on five tasks
to evaluate the effectivenessﬂ of different Synthesizer variants along with how they compare to
the vanilla Transformer. Specifically, we conduct experiments on (1) machine translation (EnDe,
EnFr) (2) autoregressive language modeling (LM1B) (3) text generation (summarization and di-
alogue modeling and (4) multi-task natural language processing (GLUE/SuperGLUE). Details of
each experiments can be found in the appendix.

3Note that we are primarily interested in making controlled comparisons instead of going for the state-of-
the-art result on each task.

Under review as a conference paper at ICLR 2021

Notation of Variants We use R to denote Random, D to denote Dense and V to denote vanilla
dot product attention. Fix to represent Fixed Random, FR to represent Factorized Random and FD
to represent Factorized random. For Mixture Synthesizers, we use + to denote that two methods are
mixed.

4.1 COMPARING SYNTHESIZER VARIANTS AND TRANSFORMER MODELS

This section dives into a detailed study of multiple Synthesizer variants and the base Transformer

model.

Experimental Results on MT/LM First, we
observe that our Random Synthesizer baseline

NMT (BLEU) LM (PPL) achieves 27.27 on EnDe and 41.12 on EnFr. The
Model |0 EnDe EnFr | |6 LM non-trainable (i.e., fixed) variant performs sub-
Trans.” | 67M 2730 38.10 - - stantially worse, but still yields surprisingly strong
Trans. | 67M 27.67 41.57 | 70M 38.21 ~ 24 BLEU with fixed random attention weights.
_ Synthesizer Models Most other SYNTHESIZER variants achieve com-
Fix 6IM 23.89 3831 | 53M 50.52 petitive performance, although with slight per-
R 67M 27.27 41.12 | 58M 40.60 formance degradation compared to Transformers.
FR 6IM 2730 4112 53M 42.40 An interesting finding is that the Mixture model

D 62M 2743 4139 | 53M 40.88 .
of Random + Dense synthesizer performs com-

FD 61M 27.32 4157 | 53M 41.20 .

R+D 67M 27.68 4121 | 58M 4235 parably to vanilla Transformers on EnDe. When
D+V 74M 2757 4138 | 7To0M 37.27 mixing the standard dot product attention, per-
R+V 73M 2847 4185 | 70M 40.05 formance further increases by +0.8 BLEU points

(EnDe). In general, the performance of SYNTHE-

Table 2: Experimental Results on WMT’ 14 English- SIZER variants are competitive with Transformers
German, WMT’ 14 English-French Machine Trans- for this task. On LM1b, We find that the Random
lation tasks and Language Modeling One Billion Synthesizers perform within 1-2 PPL points away
(LMIB). { denotes original reported results infrom the vanilla Transformer model. The best per-
(Vaswan et al., 2017).

forming model is the Synthesizer (D+V), which

achieves the best performance on this setting.

Results on Text Generation For summarization,
we find that the (R) and (D) variants do not outperform

Sum. Dialogue

Transformers. The performance of the (D) model is Model | RL B, RL Met CIDr

~ 2 Rouge-L points below Transformers. Hence, we Trans. 13577 1320 1338 530 1894

postulate that the local sample-wise pairwise interac-

. . b Synthesizer Models
tions are important for the summarization task. On the — 3310 [225 1500 642 1957
other hand, the utility of synthesized attention can also 3370 | 402 1522 6.61 20.54

be observed, i.e., the (R+V) and (R+D) models both pi vy 36.02 | 3.57 1422 632 18.87
outperform Transformers. On the dialogue task, Syn- R+V 3595 | 2.28 1479 639 19.09

thesizers (R) and (D) both outperform vanilla Trans-
formers by a reasonable margin (= 1-3) points across

most/all m;trics. The' best perfo'rming model here is ;.. Summarization (CNN/Dailymail) and
the (D) variant. Surprisingly, unlike most other tasks, Dialogue Generation (PersonaChat). We re-

the (+V) variants do not perform well, signifying that port on RL (Rouge-L), B4 (Bleu-4), Met.
dot product self-attention may actually be harmful for (Meteor) and CIDr.

this task.

Table 3: Experimental results on Abstrac-

4.2 COMPARING SYNTHESIZERS WITH DYNAMIC CONVOLUTIONS

To ascertain the competitiveness of Synthesizers, we also compare them with Dynamic convolu-
tions (Wu et al., [2019). We compare them on (1) pretraining perplexity using the masked language
modeling objective on C4 and (2) downtream finetuning results on GLUE and SuperGLUE.

Results on Masked Language Modeling We also benchmark the speed of these models. In order
to do so, we conduct additional experiments on the TS5 adaptation of masked language modeling
on the C4 dataset (Raffel et al.| 2019) by comparing against lightweight dynamic convolutions (Wu
et al.l |2019) on a masked language modeling task. We also take this chance to benchmark the

Under review as a conference paper at ICLR 2021

Model Glue | CoLA SST MRPC STSB QQP MNLI QNLI RTE
T5 (Base) 83.5 531 922 92.0/88.7 89.1/88.9 88.2/91.2 84.7/85.0 91.7 769
T5 (Base+) | 82.8 543 929 88.0/83.8 85.2/85.4 88.3/91.2 84.2/843 914 79.1
DyConv 69.4 339 90.6 82.6/72.5 60.7/63.1 84.2/88.2 73.8/75.1 844 58.1
Syn (R) 75.1 412 912 859/79.4 74.0/74.3 85.5/89.0 77.6/18.1 87.6 59.2
Syn (D) 72.0 189 899 86.4/79.4 753/75.5 852/88.3 77.4/78.1 869 574
Syn(D+V) | 82.6 | 48.6 924 91.2/8777 889/89.0 88.6/91.5 84.3/848 91.7 75.1
Syn (R+V) | 84.1 533 922 91.2/87.77 89.3/88.9 88.6/91.4 85.0/84.6 923 81.2

Table 5: Experimental results (dev scores) on multi-task language understanding (GLUE bench-
mark) for small model and en—-mix mixture. Note: This task has been co-trained with SuperGLUE.
Model SGlue | BoolQ CB CoPA MultiRC ReCoRD RTE WiC WSC
T5 (Base) 70.3 78.2 72.1/83.9 59.0 73.1/32.1 71.1/70.3 773 658 80.8
T5 (Base+) | 70.7 79.3 81.1/87.5 60.0 75.1/344 71.7/70.7 805 646 712

DyConv 57.8 66.7 65.9/73.2 58.0 57.9/871 584/574 690 586 73.1
Syn (R) 61.1 69.5 54.6/73.2 60.0 63.0/15.7 584/574 675 644 663
Syn (D) 58.5 69.5 51.7/711.4 51.0 66.0/15.8 54.1/53.0 67.5 652 587

Syn (D+V) | 69.7 79.3 743/85.7 64.0 73.8/33.7 69.9/69.2 787 643 683
Syn (R+V) | 72.2 79.3 82.7/91.1 64.0 74.3/34.9 70.8/699 82.7 646 750

Table 6: Experimental results (dev scores) on multi-task language understanding (SuperGLUE
benchmark) for small model and en-mix mixture. Note: This task has been co-trained with GLUE.

speed of Synthesizers compared with Transformers. Experiments are conducted on Mesh Tensorflow
(Shazeer et al.||2018) and ran on 2x2 TPU V3 Chips for approximately 524K steps.

Model Log PPL Steps/Sec Params FLOPS

Transformer (Vaswani et al.][2017) 1.865 3.90 223M 3.70 x 10™?
Dynamic Conv (Wu et al.,[2019) 2.040 2.65 257M 3.93 x 1012
Lightweight Conv (Wu et al.[[2019) 1.972 4.05 224M 3.50 x 10*2
Synthesizer (D)) 1.965 3.61 224M 3.80 x 1072
Synthesizer (R) 1.972 4.26 254M 3.36 x 10*2
Synthesizer (R+V) 1.849 3.79 292M 4.03 x 10*2
Synthesizer (D+V) 1.832 3.34 243M 4.20 x 10'?

Table 4: Validation perplexity scores on C4 dataset (Raffel et al.l[2019). All models are at approxi-
mately similar parameterization.

Results on MLM Tablereports the validation set log perplexity on masked language modelingﬂ
We observe that Synthesizers (R) can outperform Dynamic Convolutions by a relative +3.5% while
being +60% faster. Against Lightweight Dynamic Convolutions, we match the performance while
being +5% faster. Given that this is the simple random Synthesizer baseline, we find this extremely
interesting how it is able to outperform dynamic convolutions, a relatively complex model. The
Random Synthesizer also has less FLOPS compared to both convolution models. On the other hand,
the Mixture Synthesizer models that use the dot product attention improves the performance of the
base Transformer model with relatively an equal model speed. Finally, similar to the earlier results,
we see a consistent performance gain of Synthesizer (D+V) and Synthesizer (R+V) outperforming
the base Transformer model.

Results on GLUE and SuperGLUE Tables[5]and[6]report results on the GLUE and SuperGLUE
benchmarks. We note that the (R) and (D) variants of SYNTHESIZER do not achieve reasonable per-
formance. This can be largely attributed to the fact that the encoder self-attention in the TS setting
also functions as a cross-sentence attention. For example, in the entailment or reading compre-
hension tasks, the premise and hypothesis are concatenated together and self-attention effectively
acts as cross-sentence attentio On datasets like SST, a straightforward sentiment classification

“Note that this follows the sequence transduction style in T5.

>0On a related note, the perceived success of pairwise self-attention might also be attributed to the fact that
these public benchmarks are bias towards pairwise matching tasks. In reality, this is computationally prohibitive
for many practical real-world applications (Seo et al., [2018).

Under review as a conference paper at ICLR 2021

task, this cross sentence attention is not necessary and therefore Syn (R) and Syn (D) both perform
competitively. To this end, Dynamic Convolutions (Wu et al., [2019) also do not have this encoder
“cross-attention” and therefore also suffer on many of these pairwise matching tasks. Notably, in
this ‘no cross attention’ setting, the Random Synthesizers are are 4 to 5 percentage points higher in
GLUE/SuperGLUE score compared to Dynamic Convolutions.

Optimistically, we observe that the mixture model Syn (R+V) outperforms the T5 model by a sub-
stantial margin (+1.9 points on SuperGLUE and +0.6 points on GLUE). Naturally, the hybrid mix-
ture model also very substantially outperforms Dynamic Convolution. Finally to ensure that the
Syn (+V) variations are not outperforming Transformers due to simply having more parameters, we
also compared with T5 (Base+) which has equal number of parameters to Syn (+V) variants (ap-
proximately ~ 10M more parameters). Our results show that Synthesizers (+V) still outperform T5
(Base+).

4.3 COMPARING SYNTHESIZERS WITH LINFORMERS

We conduct more experiments comparing factorized random Synthesizers with Linformers. Since
Linformer cannot be used to decode, we compare them on two encoding tasks from tensor-
flow datasets (AGnews (Zhang et al. 2015) and movie reviews (Maas et al.) [2011)). We
use k=32 for both factorized models. We also benchmark Transformers on this task. Note
we do not use contextualized embeddings so results are not comparable with other work.

Model News Reviews Steps/Sec Results

Transformer | 88.83 81.34 1.09 . . .
Linformer 26.50 236 109 ers (FR) are competitive with Linformers and

Syn (FR) 86.53 83.39 1.10 granslf:(ﬁmers on th'15' task.h Eh ef accuracyh.(l)f
Syn (FR+V) | 89.13 84.61 0.80 yn (FR) is competitive with Linformers while
Syn (FR+V) outperforms both Transformers
and Linformers.

We notice that factorized Synthesiz-

Table 7: Results on Encoding only tasks (accu-
racy).

4.4 OVERALL SUMMARY OF QUANTITATIVE RESULTS
This section summarizes our overall findings.

e Synthetic Attention is competitive even without Dot Product Attention On all evalu-
ated tasks, we showed that synthesized attention functions competitively, i.e., it achieves
performance reasonably close to the dot product self-attention. On one task (dialogue gen-
eration), the dot product self-attention is found to actually degrade performance. Amongst
the other tasks, machine translation is the least affected by the removal of the vanilla dot
product. These findings allow us to introspect about whether pairwise comparisons for
self-attention are even necessary. On the multi-task language understanding benchmark,
the self-attention functions as a form of cross-attention by concatenating sentence pairs.
Hence, synthesize attention performance is considerably worse than vanilla Transformers.

e Synthetic Attention and Dot Product Attention are highly complementary Overall, we
also observe that the dot product attention is very helpful. To this end, synthetic attention is
highly complementary to the pairwise dot product attention. While Synthetic Attention can
usually achieve competitive and fast performance on its own, synthetic attention boosts per-
forms, composing multiple synthetic attention (and dot product attention) together shows
gains on almost all tasks that we have investigated. Hence, we believe this to be a robust
finding.

The simplest Synthesizers such as Random Synthesizers are fast competitive baselines
Finally, we note that simple random Synthesizers are competitive with dynamic convolu-
tions and Linformers, which are recently proposed models. On two encoding task and a
large-scale masked language modeling task, we show that random (or factorized random)
Synthesizers remain competitive to other fast or efficient Transformer models.

Under review as a conference paper at ICLR 2021

5 CONCLUSION

This paper proposed SYNTHESIZER, a new Transformer model that employs Synthetic Attention.
We conducted a principled study to better understand and evaluate the utility of global alignment and
local, instance-wise alignment (e.g., independent token and token-token based) in self-attention. We
show that, on multiple tasks such as machine translation, language modeling, dialogue generation,
masked language modeling and document classification, synthetic attention demonstrates compet-
itive performance compared to vanilla self-attention. Moreover, for the dialogue generation task,
pairwise interactions actually hurt performance. Notably, we reemphasize that this study refers to
self-attention. We found that we are not able to replace cross-attention with simpler variants in most
cases. Via a set of additional large-scale experiments, also find that Synthesizers can outperform or
match Dynamic Convolutions and Factorized Synthesizers can outperform other low rank Linformer
models.

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv:2004.05150, 2020.

Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for machine
reading. arXiv preprint arXiv:1601.06733, 2016.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-
attention and convolutional layers. arXiv preprint arXiv:1911.03584, 2019.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with
gated convolutional networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 933-941. IMLR. org, 2017.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, lan Simon, Curtis
Hawthorne, Andrew M Dai, Matthew D Hoffman, Monica Dinculescu, and Douglas Eck. Music
transformer. arXiv preprint arXiv:1809.04281, 2018.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142-150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015,

Ankur P Parikh, Oscar Téckstrom, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention
model for natural language inference. arXiv preprint arXiv:1606.01933, 2016.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

Under review as a conference paper at ICLR 2021

Alessandro Raganato, Yves Scherrer, and Jorg Tiedemann. Fixed encoder self-attention patterns in
transformer-based machine translation. arXiv preprint arXiv:2002.10260, 2020.

Minjoon Seo, Tom Kwiatkowski, Ankur P Parikh, Ali Farhadi, and Hannaneh Hajishirzi. Phrase-
indexed question answering: A new challenge for scalable document comprehension. arXiv
preprint arXiv:1804.07726, 2018.

Shikhar Sharma, Layla El Asri, Hannes Schulz, and Jeremie Zumer. Relevance of unsupervised met-
rics in task-oriented dialogue for evaluating natural language generation. CoRR, abs/1706.09799,
2017. URL http://arxiv.org/abs/1706.09799.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool,
Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, et al. Mesh-tensorflow: Deep
learning for supercomputers. In Advances in Neural Information Processing Systems, pp. 10414—
10423, 2018.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention.
arXiv preprint arXiv:2002.11296, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. Gated self-matching networks
for reading comprehension and question answering. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 189-198, 2017.

Jason Weston, Sumit Chopra, and Antoine Bordes. @ Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin, and Michael Auli. Pay less attention with
lightweight and dynamic convolutions. arXiv preprint arXiv:1901.10430, 2019.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. In Advances in neural information processing systems, pp. 649—657, 2015.

A APPENDIX

A.1 DETAILED SETUP FOR EXPERIMENTS

Machine Translation We implement our models in Tensor2Tensor, using the standard base hyper-
parameter settings. Specifically, we use byte-pair encoding (BPE), 6-layered Transformer networks
with hidden size 512, filter size of 2048 and 8 heads. We use label smoothing of 0.1. The maximum
sequence length is set to 256. Training is performed using 8 x V100 GPUs. We train all models
for 250K steps and report results at the last checkpoint. We use a length penalty of 0.6 and beam
size of 4 following the default settings. We also compare with standard Transformer models. In the
interest of keeping a consistent, fair evaluation across all model settings, we do not use checkpoint
averaging or tune the decoding hyperparameters although this generally leads to better performance.
We evaluate BLEU scores using sacrebleu.

Language Modeling We implement our models in Tensor2Tensor using the packed TPU setup
of sequence length 256. We train our models on 300K steps on 16 TPU V2 chips. We use the
Imx_base model setting for fair comparison across all model variations. The model has 6 layers
and 8 heads, along with a filter width of 2048 and hidden size of 512. We used conv_relu for the
positional feed-forward layers across all baselines since we find them to perform slightly better. We
report results (subword level perplexity scores) on the test set at the final checkpoint.

10

http://arxiv.org/abs/1706.09799

Under review as a conference paper at ICLR 2021

Summarization For the summarization task, we train all models for 300K steps and a batch size
of 128. All models use the base size setting. For the dialogue generation task, due to the smaller
dataset size, we train a small model for 20K steps. All results are reported on the test set. For
the summarization task, we use the well-established metrics, i.e., Rouge-1, Rouge-2 and Rouge-L.
Experiments are conducted using Mesh Tensorflow.

Dialogue Generation For the dialogue generation task, we train our models on the small size
for 20K steps. Experiments are conducted in Tensor2Tensor. We use NLG-Evaﬂ (Sharma et al.,
2017) and report BLEU-1, BLEU-4, Rouge-L, Meteor, CIDr and Embedding based similarity scores
(Emb).

Multi-Task Language Understanding Our experiments are based on the T5 repositor imple-
mented in Mesh Tensorflow (Shazeer et al) [2018)). We pre-train the vanilla TS models and our
models for 524288 steps using the span denoising objective. We then co-train the model on multiple
tasks. We co-train on the en_mix mixture (SuperGLUE and GLUE) for 100k steps with a constant
learning rate of 10~3. Embedding and Softmax output layer parameters are kept fixed. The maxi-
mum sequence length is set to 512. We evaluate on the en_mix mixture as defined in the original
codebase which is comprised of training GLUE, SuperGLUE and SQuAD in a single model.

Pretraining experiments on C4 Experiments are conducted on Mesh Tensorflow. We pretrain
for 524288 steps and report the perplexity on the validation set. We use 2x2 TPU V3 chips for our
experiments. The sequence length is 512 and optimizer is Adafactor.

Experiments on Document Classification We run experiments in JAX/FLAX (https://
github.com/google/flax) with base size models of 8 heads, 6 layers, MLP dimensions of
2048 and a hidden size of 512. We use the Adam optimizer with learning rate 0.05 and 8K steps
linear warmup. We train for 10K steps and report evaluation results at 10K step. We use a batch
size of 128. We build a new sentencepiece model for each new dataset comprising of 32K tokens.
No pretraining or contextualized embeddings are used. Experiments are run on 16 TPU v3 chips.

A.2 ADDITIONAL VARIANTS OF SYNTHESIZER

We report results of several additional variants of SYNTHESIZER, most of which we found to have
marginal or no improvement over the simple dense/random variations.

e Convolution - Applying a 1D convolution instead of a 2 layer nonlinear network. We vary
the filter width in our experiments.

e Bottleneck - Converting the 2 layered feed forward network to a bottleneck layer, e.g.,
512 — 16 — 512. We also experiment with a convolutional variant of bottleneck, i.e.,
projecting to low dimension space and then projecting back to high dimensions.

e Gated Linear Units (GLU), applying the GLU units of (Dauphin et al., 2017) as the Syn-
thesizing function.

®https://github.com/Maluuba/nlg-evall
"nttps://github.com/google-research/text-to-text-transfer-transformer

11

https://github.com/google/flax
https://github.com/google/flax
https://github.com/Maluuba/nlg-eval
https://github.com/google-research/text-to-text-transfer-transformer

Under review as a conference paper at ICLR 2021

Variant BLEU
Transformer 27.67
Random 27.27
Dense 27.43
Conv (f = 3) Linear 27.43
ConvReluConv (f = 3) 27.51
ConvReluConv (f = 5) 27.56
ConvReluConv (f = 3,5) 27.49
Bottleneck + Dense 27.43
Bottleneck + ConvReluConv | 27.72
GLU 27.43

Table 8: Results for additional SYNTHESIZER variants on WMT EnDe (BLEU scores)

A.3 EFFECT OF NUMBER OF HEADS

We also investigate the impact of the number of heads on performance. We trained three Random
Synthesizer models for the small version of the machine translation tasks using the TS5 framework
without pretraining. For simplicity, evaluation is done via greedy decoding. We report scores on the
development set. We are mainly interested in relative performance and not absolute numbers. Table
Q) reports the results on varying the number of heads on performance.

Heads EnDe EnFr EnRo
Syn h=2 1943 34.12 18.67
Syn h=4 2042 3526 19.78
Syn h=8 20.88 3492 20.28
Syn h=16 | 21.71 3526 2043
Syn h=32 | 21.72 36.01 20.52

Table 9: Effect of number of heads on multi-task MT. Increasing the number of heads improves
performance.

A.4 ANALYSIS

Enc L1 Enc L3 Enc L5 Dec L1 Dec L3 Dec L5

Figure 2: Histogram of Encoder and Decoder Attention Weights on MT (WMT EnDe). L denotes
the layer number and Enc/Dec denotes encoder or decoder.

12

Under review as a conference paper at ICLR 2021

Distribution of Weights We are interested in investigating how the
synthetically generated attention weights differ from the dot product
attention weights. Figure [2[shows the attention histograms on trained
Transformer and SYNTHESIZER models. We report histograms at lay-
ers 1, 3, and 5 of a 6 layered (Transformer or SYNTHESIZER) model
at 50K steps. We found that the weight distributions remain relatively
identical thereafter. Figure [3] shows the initialization state. We ob-
serve that there are distinct differences in the weight distribution of
SYNTHESIZER and Transformer models. The variance of the SYN-
THESIZER weights tends to be higher. On the other hand, the weights
on the Transformer model tends to gravitate near 0 and have smaller
variance. There are also notable differences across the (R) and (D) Figure 3: Init Decoder
SYNTHESIZER variants. Specifically, the (D) model in general has weights (Reference)
greater max values with more values in the 0.1-0.2 range while the

values of the R model tends to stay closer to 0.

A.5 WHAT PATTERNS DO SYNTHESIZERS LEARN?

In this section, we perform a deeper analysis of the SYNTHESIZER model.

Analysis Finally, we are interested to understand what these
Synthesizer models are learning. We inspect the random syn-
thetic attention weights for language modeling task LM 1B
and visualise the differences compared to the vanilla atten-
tion. We find that, for the LM task, Synthesizers are capa-
ble of learning a local window, emulating the vanilla Trans-
former quite closely despite starting from completely random.
The weights, however, seem smoother and less coarse as com-
@ pared to the Transformer. This seems to reflect what we expect
Synthesizer Transformer since the Synthesizer does not benefit from token specific in-
weights on LM1B. weights on LM1B. formation. We provide additional analysis and visualisation of
weights for the Machine Translation task in the supplementary

material.

A.6 MORE ATTENTION WEIGHTS ANALYSIS

This section illustrates the attention weights extracted from different variants of Synthesizer on the
machine translation (En-De) task. Weights are extracted from lower layers although we do not find
any substantial difference in the patterns in early layers and deeper layers. We extract them from
Tensorboard midway during training.

Vanlla . Random Fac. Random Dense Fac. Dense

Figure 4: Visual analysis of Synthetic Attention (decoder) on WMT EnDe.

13

Under review as a conference paper at ICLR 2021

Vanilla Random Fac. Random Dense Fac. Dense

Figure 5: Visual analysis of Synthetic Attention (encoder) on WMT EnDe.

Analysis We first observe that these weights differ a lot from the LM weights shown in the main
paper in Section 4.5. This shows that the Synthesizer learns very different weights for different tasks.
Next, based on the weighs on MT, we observe a very different pattern in all variants of Synthesizer.
For the decoder weights, the main difference seems to be the overall magnitude and distribution
values of the weights. However, we can easily observe the cracks and lines of the factorized variants.
For the encoder weights, we observe that the Random and Dense variants are more uniform. On the
other hand, there appears to be structural/regional clustering of values in the factorized variants.

A.7 CONVERGENCE OF SYNTHESIZERS VS TRANSFORMERS

Convergence of Synthesizers (Brown) vs Transformers (Blue)

Figure [A.7] shows the convergence of Synthesizers vs Transformers on SuperGLUE finetuning. In
general, Synthesizers and Transformers have pretty similar convergence patterns and this is also
observed across other tasks.

14

	introduction
	Related Work
	The Proposed Method
	Synthesizer Model
	Discussion

	Experiments
	Comparing Synthesizer Variants and Transformer Models
	Comparing Synthesizers with Dynamic Convolutions
	Comparing Synthesizers with Linformers
	Overall Summary of Quantitative Results

	Conclusion
	Appendix
	Detailed Setup for Experiments
	Additional Variants of Synthesizer
	Effect of Number of Heads
	Analysis
	What patterns do Synthesizers learn?
	More Attention Weights Analysis
	Convergence of Synthesizers vs Transformers

