
Under review as a conference paper at ICLR 2023

SPECULATIVE DECODING: LOSSLESS SPEEDUP OF
AUTOREGRESSIVE TRANSLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Different from some previous work accelerating autoregressive translation (AT)
at the sacrifice of quality, we propose Speculative Decoding (SpecDec) – a novel
decoding paradigm inspired by speculative execution in computer architecture,
which combines respective advantages of AT and non-autoregressive translation
(NAT) for lossless speedup of translation. At each decoding step, SpecDec first
speculatively drafts (i.e. decodes) next k tokens with an NAT model and then veri-
fies them with an AT model, where only the drafted tokens passing the verification
are accepted as decoded tokens for guaranteeing its translation result is exactly the
same as AT. The collaboration of NAT drafting and AT verification leads to a much
higher decoding speed without quality loss due to parallel computing enabled by
speculative decoding.
We conduct experiments in 4 standard WMT translation benchmarks and con-
firm the vanilla SpecDec yields exactly the same results as AT greedy decoding
with an around 3× speedup, and that its variant (SpecDec++) with an advanced
verification strategy not only outperforms AT greedy decoding, but also further
improves the decoding speed, resulting in an around 5× speedup over AT. More-
over, SpecDec can be easily generalized for speeding up other seq2seq tasks like
Abstractive Summarization, and benefit more from stronger computing devices,
demonstrating its potential to become a de facto decoding standard in the future
for efficient and lossless seq2seq generation. We will release all our codes and
checkpoints to facilitate reproducing our results.

1 INTRODUCTION

Since the Transformer (Vaswani et al., 2017) prevailed in Natural Language Processing (NLP), au-
toregressive decoding has become the de facto standard for neural machine translation (NMT) as
well as other generation tasks, because it is easy to train and reliable to generate high-quality results.
Despite its advantages, autoregressive translation (AT) has been widely blamed for its poor inference
efficiency, motivating non-autoregressive translation (NAT). Unlike AT which sequentially decodes
only one token at each iteration so that the next token prediction can condition on the previous de-
coding results, NAT decodes tokens in parallel without depending on the surface form of previous
tokens, largely improving the inference efficiency.

Recent research in NAT mainly focuses on improving its translation quality to bridge the perfor-
mance gap between NAT and AT (Gu et al., 2018; Qian et al., 2021; Geng et al., 2021; Savinov
et al., 2021). Until now, however, NAT’s performance is still less reliable than AT, as NAT is more
difficult than AT given its unawareness of the conditional dependence of translated tokens.

Given AT’s reliable generation results and NAT’s high efficiency, we propose an approach named
Speculative Decoding (SpecDec) to combine their advantages, inspired by speculative execution1,
to accelerate translation without quality loss compared with AT. SpecDec decomposes a decoding
iteration into two substeps: draft and verify: At each iteration, SpecDec first speculatively drafts (i.e.,
decodes) a fixed number of tokens2 in parallel through NAT; Then, the drafted tokens are verified

1Speculative execution is an optimization technique used in computer architecture where a system performs
some task in advance to avoid delays that would have to be incurred by doing the task after it is known that it is
required (https://wikipedia.org/wiki/Speculative_execution).

2We use “a block of drafted tokens” to denote them in the following parts of this paper.

1

https://wikipedia.org/wiki/Speculative_execution

Under review as a conference paper at ICLR 2023

Draft (NAT)

Verify (AT)

Input

Output

[MASK] [MASK][MASK] [MASK][MASK][BOS] Was

sind Grund@@die ischenphys@@[BOS] Was

sind Grund@@die ischengrundlegenden gesetze[BOS] Was

sind die grundlegenden[BOS] Was

Source Sentence What are the basic physical laws of the Universe ?

✓ ✓ ✗ ✗ ✗

[BOS] Was sind die grundlegenden [MASK] [MASK] [MASK] [MASK] [MASK]Next Input

bifurcation

Figure 1: Speculative Decoding where a decoding iteration involves two substeps: draft and verify.
In the Draft substep, an NAT model speculatively drafts (i.e., decodes) a block (block size k = 5
for this example) of tokens in parallel conditioning on the source sentence and previously decoded
tokens (i.e., the tokens in the rectangle boxes). In the Verify substep, drafted tokens are verified in
parallel: bifurcation is detected as the first position where we find the drafted token does not match
the top-1 result verified by an AT model. The drafted tokens after the bifurcation position are all
discarded, for guaranteeing SpecDec’s translation is exactly the same with greedy decoding of AT.

by an AT model in an autoregressive manner to determine how many of them match AT’s (top-1)
results and thus can be accepted as translation results, as Figure 1 shows. In contrast to conventional
AT which decodes at a low speed, AT verification is highly efficient because it performs in parallel;
more importantly, it helps guarantee SpecDec’s translation is identical to AT, resulting in a desirable
balance between translation speed and quality, as shown in Figure 2.

27.5 28.0 28.5 29.0
Translation quality (BLEU)

1.0x

1.5x

2.0x

2.5x

3.0x

3.5x

4.0x

4.5x

Tr
an

sla
tio

n
Sp

ee
d-

up

b = 5 b = 5
b = 1

= 5, = 3

= 3, = 1

Lo
ss

le
ss

AT
AT w/ KD
SMART
Imputer
Multi-Task
Rewrite
SUNDAE
SpecDec
SpecDec++

Figure 2: Translation quality and effi-
ciency of models on WMT14 EN-DE. The
speedup baseline (1.0×) is the Transformer-
base (Vaswani et al., 2017) with beam search.
All models above except “AT” are trained
with KD by a Transformer-big teacher.

In addition to the vanilla SpecDec whose translation
is required (strictly by the top-1 matching criterion
in AT verification) to be identical to greedy decoding
of AT, we propose SpecDec++ — an advanced vari-
ant of SpecDec by slightly relaxing the rigid require-
ment during AT verification. SpecDec++ not only
yields translations beyond greedy decoding, but also
prevents good drafted tokens from being discarded
just because they are different from greedy decoding
results, leading to a higher inference speedup.

The experiments in four standard WMT bench-
marks show that SpecDec can yield exactly the same
translations as greedy decoding of AT with a 3×
speedup and that its variant SpecDec++ can out-
perform greedy decoding with an even higher (∼
5×) speedup. Moreover, the SpecDec paradigm
can be easily generalized to other seq2seq tasks like
Abstractive Summarization and benefit more from
stronger computing devices. Its lossless quality and
promising speedup results demonstrate its great po-
tential to evolve into a de facto decoding standard for
efficient seq2eq generation in the future.

2 BACKGROUND

2.1 AUTOREGRESSIVE TRANSLATION

Given a source sentence x = (x1, x2, . . . , xn) and the target sentence y = (y1, y2, . . . , ym), an au-
toregressive translation (AT) model is trained with the target distribution of conditional probabilities
based on the chain rule:

LAT = logP (y | x;θAT) =

m∑
i=1

logP (yi | y<i,x;θAT) (1)

where y<i denotes previous target tokens before the ith position. As Eq (1) shows, an AT model is
trained via the teacher-forcing strategy that uses target tokens as previously decoded tokens, which
performs efficiently as the probability P (yi | y<i,x) at each iteration can be calculated in parallel.

2

Under review as a conference paper at ICLR 2023

During inference, an AT model sequentially predicts output tokens given preceding decoded tokens:

ŷ = argmax
y∗

m′∑
j=1

logP
(
y∗
j | y∗

<j ,x;θAT
)

(2)

where ŷ = (ŷ1, ŷ2, . . . , ŷm′) is the predicted output sentence.

Although AT offers desirable translation quality, its sequential decoding scheme with limited paral-
lelism largely reduces its decoding speed, being its main efficiency bottleneck.

2.2 NON-AUTOREGRESSIVE TRANSLATION

To accelerate inference, non-autoregressive translation (NAT) (Gu et al., 2018) removes sequential
dependence between target tokens with a conditional independence assumption:

LNAT =

m∑
i=1

logP (yi | x;θNAT) (3)

In contrast to AT that will not start predicting yj until y<j are completely decoded, NAT decodes3

the output sentence in parallel, which is much more efficient than AT:

ỹ = argmax
y∗

m′∑
j=1

logP
(
y∗
j | x;θNAT

)
(4)

On the other hand, however, the conditional independence assumption makes it hard to train an NAT
model well, leading to degradation in translation quality despite an improvement in decoding speed.

3 SPECULATIVE DECODING

Given the fact that AT translates better whereas NAT performs faster, we propose Speculative Decod-
ing (SpecDec) to combine their respective advantages, inspired by speculative execution, to achieve
lossless acceleration for seq2seq generation. Specifically, SpecDec decomposes every decoding it-
eration into two substeps – draft and verify:

Draft At each iteration, SpecDec first utilizes an NAT model to simultaneously decode a block
of drafted tokens (denoted as [MASK] in its decoder input in Figure 1) speculatively, conditioning
on preceding translated tokens. Formally, given the source sentence x = (x1, x2, . . . , xn) and the
previously translated tokens y≤j = (y1, y2, . . . , yj), SpecDec decodes the next k (drafted) tokens
as a block in parallel:

ỹj+1···j+k = arg max
ỹj+1···j+k

k∑
i=1

logP (ỹj+i | y≤j ,x;θNAT)

Verify Then, the drafted tokens ỹj+1···j+k are verified with an AT model in the autoregressive
manner, which performs in parallel. We find the bifurcation position c by comparing the drafted
tokens with the autoregressive decoding results conditioning on the draft as Figure 1 shows:

c = argmax
i

1 (ỹj+i ̸= ŷj+i)

i
, 1 ≤ i ≤ k

ŷj+i = argmax
ŷj+i

logP (ŷj+i | y≤j , ỹj+1···j+i−1,x;θAT) (5)

where 1(·) is the indicator function and ŷj+i is the top-1 result verified by the AT model conditioning
on the previously translated tokens y≤j and the drafted tokens ỹj+1···j+i−1. We only accept the
verified tokens before (including) the bifurcation position as translated tokens, which ensures that
SpecDec yields the same results as greedy decoding of AT:

yj+1···j+c = ŷj+1···j+c = (ỹj+1···j+c−1, ŷj+c)

We iterate decoding with the above substeps until the termination condition is met, i.e. the [EOS]
token is decoded or the sentence reaches the maximal length. As illustrated, SpecDec is highly
efficient because both draft and verify perform in parallel.

3We use ỹ to denote NAT’s translations, while we use ŷ to denote AT decoded/verified translation results.

3

Under review as a conference paper at ICLR 2023

ischen

Draft (NAT)

Verify (AT)

Input [MASK] [MASK][MASK] [MASK][MASK][BOS] Was

sind Grund@@die ischenphys@@[BOS] Was

[BOS] Was

Source Sentence What are the basic physical laws of the Universe ?

Grund@@die grundlegenden gesetze

[blank][blank] [blank]physi@@

sind

[blank]

[blank] [blank][blank] [blank]phys@@

[BOS] Was sind die phys@@ ischen Grund@@ gesetze [MASK] [MASK] [MASK] [MASK] [MASK]Next Input

Output [BOS] Was sind Grund@@ischendie phys@@ gesetze

𝛽 = 3

Figure 3: Illustration of SpecDec++. Compared to the vanilla SpecDec strictly requiring the drafted
tokens to match the top-1 result of the AT verifier, SpecDec++ slightly relaxes the criterion to trust
NAT’s draft more, by only requiring the drafted tokens to fall in the top-β candidates of the AT
verifier with a tolerable log-likelihood gap (not shown in this Figure; see Eq (7)). As a result,
SpecDec++ allows more drafted tokens to be accepted even if they are slightly different from the
top-1 result of the AT verifier, leading to a higher inference speedup.

3.1 NAT DRAFTER

As demonstrated above, an NAT model is the key to speculative decoding, which can efficiently
generate a block of drafted tokens in parallel. Our NAT drafter differs from other NAT models
in two aspects: First, we only require the NAT drafter to decode a block (i.e., fixed length) of
tokens in each decoding iteration, instead of the whole sequence; Second, as illustrated in Figure
1, since we decode from Left to Right, the NAT drafter is required to decode tokens conditioning
on the previously decoded tokens. Formally, given the source sentence x = (x1, · · · , xn) and the
randomly sampled prefix y≤p (0 ≤ p < m) of the target sentence y = (y1, · · · , ym), the model is
trained to predict the next k tokens, as shown in Figure 1:

LNAT =

p+k∑
i=p+1

logP (yi | y≤p,x;θNAT)

In addition, we leverage the glancing strategy following Qian et al. (2021), which exploits cur-
riculum learning during training to get better performance. As in previous NAT work, we apply
sequence-level knowledge distillation (Seq-KD) (Kim & Rush, 2016) by an autoregressive Trans-
former teacher model to train our NAT drafter.

3.2 AT VERIFIER

We use the conventional Transformer (see Section 2.1) as our AT verifier, which is the key to guar-
anteeing translation quality. As we hope as many drafted tokens by the NAT model as possible can
be accepted by the AT verifier for a higher speedup, we also apply Seq-KD to the AT verifier by
a shared teacher (with the NAT drafter), which not only allows the NAT drafter and AT verifier to
perform similarly, but also improves the AT verifier’s translation quality (Furlanello et al., 2018).

4 SPECDEC++

As shown in Figure 1 and discussed in Section 3, the vanilla SpecDec only accepts the drafted
tokens that match the top-1 result of the AT verifier, which guarantees that SpecDec’s translation
is identical to greedy decoding of AT. However, the top-1 results are not necessarily better than the
drafted tokens. As a result, the strict verification criterion (i.e., top-1 matching) will result in many
good drafted tokens being discarded just because they are different from the top-1 result of the AT
verifier, which limits the speedup of SpecDec.

To overcome this limitation, we propose a variant of SpecDec named SpecDec++, which is illus-
trated in Figure 3. Instead of the rigid top-1 matching requirement shown in Eq (5), SpecDec++
relaxes the criterion to trust NAT’s draft more, by only requiring the drafted tokens to fall in top-β
candidates with a tolerable (log-likelihood) score gap τ (away from the top-1 result):

4

Under review as a conference paper at ICLR 2023

ŷj+i =

{
ỹj+i, if SpecDec++ requirement is met
same as Eq (5), otherwise

As discussed above, SpecDec++ requirement is met if Eq (6) and (7) are both true:

logP (ỹj+i | y≤j ,x;θNAT) ≥ logP (ŷ
(β)
j+i | y≤j , ỹj+1···j+i−1,x;θAT) (6)

logP (ŷ
(1)
j+i | y≤j , ỹj+1···j+i−1,x;θAT)− logP (ỹj+i | y≤j ,x;θNAT) ≤ τ (7)

where logP (ŷ
(β)
j+i|·) is the top-β ranked result’s log-likelihood score by the AT verifier.

The advanced verification criterion with the hyperparameter top-β and tolerance τ not only allows
more drafted tokens to be accepted for a higher speedup but also enables SpecDec++ to yield trans-
lations beyond greedy decoding.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation We mainly evaluate our approach on the most recognized machine trans-
lation benchmark: WMT14 English-German translation which contains 4.5M translation pairs for
training. Following prior work (Ott et al., 2018), we adopt newstest-13 as our validation set for
finding the best hyperparameters and model checkpoints, and test on newstest-14. We use 32K Byte
Pair Encoding (BPE) (Sennrich et al., 2016) subwords4 as the joint source-target dictionary. Fol-
lowing prior work in NAT, we report BLEU (Papineni et al., 2002) to facilitate translation quality
comparison. For inference efficiency, we use both the average number of decoding iterations and
speedup over beam search. Specifically, we test the inference speed by running the model with one
sentence at a time (batch=1)5 using fairseq implementation6 on 1 Nvidia P100 GPU.

In addition to WMT14 EN-DE, we also test SpecDec on WMT14 DE-EN and WMT16 EN-RO/RO-
EN benchmarks, as previous NAT work.

Model Configuration We mainly conduct experiments on the most commonly used base-size
Transformer (Vaswani et al., 2017) architecture. The Transformer-base7 has a 6-layer encoder and a
6-layer decoder. Its embedding/FFN dimension/#heads are 512/2,048/8. We use the model architec-
ture for both the drafter (NAT) and the verifier (AT). We apply sequence-level knowledge distillation
as discussed in Section 3.1 and 3.2 for both the drafter and verifier using a shared teacher. Following
recent iterative NAT work (Saharia et al., 2020; Savinov et al., 2021), we use the Transformer-big
as the teacher for WMT14 EN-DE/DE-EN8 and use Transformer-base for WMT16 EN-RO/RO-EN,
which all train with the raw training set and generate the distilled training set with beam search
(b = 5). We include model training details in Appendix A.

5.2 MAIN RESULTS

The translation quality and speedup results on WMT14 EN-DE are presented in Table 1. Unlike
previous NAT approaches that are inferior to AT with Seq-KD (i.e., our AT verifier), SpecDec in-
troduces an around 3× speedup with exactly the same translation quality as (autoregressive) greedy
decoding by our AT verifier, truly achieving lossless acceleration. SpecDec++ further improves
the results by relaxing the strict top-1 matching criterion: slightly relaxing (i.e., SpecDec++ high-
quality) allows us to achieve better translation than greedy decoding – even approaching the beam
search result with a higher speedup (3.0× → 3.6×), and a little more aggressively relaxing (i.e.,
SpecDec++ high-efficiency) further accelerates inference (3.6× → 4.5×) owing to the acceptance
of more tokens despite a marginal loss of translation quality.

4We use the same BPE tokenization and vocabulary as Ghazvininejad et al. (2019).
5We report performances with various batch sizes in Appendix E.
6https://github.com/pytorch/fairseq. Beam search (b = 5) is our speed baseline (1.0×).
7We also include results of a Transformer with a deep encoder and a shallow decoder in Appendix B.5.
8As a reference, the teacher models of Saharia et al. (2020) achieve 29.5 and 32.2 BLEU in WMT14 EN-DE

and DE-EN respectively, which are stronger than our teachers achieving 29.3 and 32.1 respectively.

5

https://github.com/pytorch/fairseq

Under review as a conference paper at ICLR 2023

Models Iter. Speedup WMT14 WMT16
EN-DE DE-EN EN-RO RO-EN

AT baseline Transformer-base (w/o Seq-KD)† N - 1.0× 27.74 31.09 34.28 33.99

Fully NAT

NAT w/ Fertility (Gu et al., 2018) 1 15.6× - 17.69 21.47 27.29 29.06
CTC (Libovický & Helcl, 2018) 1 - - 17.68 19.80 19.93 24.71
AXE (Ghazvininejad et al., 2020a)∗ 1 - - 23.53 27.90 30.75 31.54
GLAT (Qian et al., 2021) 1 15.3× - 25.21 29.84 31.19 32.04
OaXE (Du et al., 2021)∗ 1 - - 26.10 30.20 32.40 33.30
AligNART (Song et al., 2021) 1 13.4× - 26.40 30.40 32.50 33.10
DSLP (Huang et al., 2021) 1 14.8× - 27.02 31.61 34.17 34.60
F-VAE (Gu & Kong, 2021) 1 16.5× - 27.49 31.10 33.79 33.87
REDER (Zheng et al., 2021) 1 5.5× - 27.50 31.25 33.60 34.03
DA-Transformer (Huang et al., 2022a)∗ 1 13.9× - 27.49 31.37 - -

Iterative NAT

iNAT (Lee et al., 2018) 10 - - 21.61 25.48 29.32 30.19
CMLM (Ghazvininejad et al., 2019)∗ 10 1.7× 1.8× 27.03 30.53 33.08 33.31
LevT (Gu et al., 2019) 2.1 4.0× 3.7× 27.27 - - 33.26
SMART (Ghazvininejad et al., 2020b)∗ 10 1.7× 1.8× 27.65 31.27 - -
DisCo (Kasai et al., 2020)∗ 4.8 3.5× - 27.34 31.31 33.22 33.25
Imputer (Saharia et al., 2020)∗ 8 3.9× - 28.20 31.80 34.40 34.10
Multi-Task NAT (Hao et al., 2021)∗ 10 1.7× 1.8× 27.98 31.27 33.80 33.60
RewriteNAT (Geng et al., 2021)∗ 2.7 3.1× 2.8× 27.83 31.52 33.63 34.09
SUNDAE (Savinov et al., 2021)∗ 16 1.4× - 28.46 32.30 - -
CMLMC (Huang et al., 2022b)∗ 10 - 1.5× 28.37 31.41 34.57 34.13

Ours

Teacher N - / 29.31‡ 32.11‡ 34.72 34.49
NAT drafter (k = 25) 1.6 - 14.3× 26.48 30.23 32.08 32.21
AT verifier (b = 5) N - 1.0× 28.89 32.53 34.96 34.86
AT verifier (b = 1) N - 1.1× 28.73 32.18 34.83 34.65
SpecDec (k = 25) 4.9 - 3.0× 28.73 32.18 34.83 34.65
SpecDec++ (k = 25, high-quality) 4.0 - 3.6× 28.89 32.56 35.32 34.98
SpecDec++ (k = 25, high-efficiency) 3.1 - 4.5× 28.73 32.19 34.92 34.80

Table 1: Results of SpecDec on four standard WMT benchmarks. For inference efficiency, we report
the averaged decoding iteration (denoted as Iter.) and speedup on WMT14 EN-DE. The results that
truly match or outperform autoregressive decoding (i.e., AT verifier with b = 1) are highlighted in
red. † AT baselines’ results are from Ghazvininejad et al. (2019). ‡ indicates results obtained by
Transformer-big. ∗ denotes models distilled by a Transformer-big model. While speedup numbers
reported by the previous papers (left column) are not strictly comparable to ours due to different
devices and environments, we reran some of them that are open source using the same device and
environment as ours and report their speedups (right column), observing no significant difference.

By looking into the results, our NAT drafter’s translation quality is better than the majority of early
fully NAT work but inferior to most iterative NAT approaches. Compared with the NAT models
including complicated mechanisms such as length prediction, length beam, reranking, and CTC that
slow down the efficiency per iteration9, our NAT drafter is simple and straightforward. As a result,
its decoding efficiency per iteration is higher – even comparable to fully NAT despite taking 1.6
decoding iterations on average. The acceptable translation quality and high efficiency of our NAT
drafter significantly help accelerate autoregressive decoding, playing an instrumental role in lossless
acceleration of SpecDec.

Results for other language pairs are similar to WMT14 EN-DE. We include details in Table 8 in
Appendix B.1.

5.3 ANALYSIS

5.3.1 HYPERPARAMETER

Block Size k We conduct experiments with various block sizes on the development set and show
the results in Table 2. As the block size k increases, the number of mean accepted tokens, which
highly correlates with speedup and the number of decoding iterations, first increases and reaches a
peak when k = 25. Further increasing k has an adverse effect, because it will become very hard
for the model to learn to translate too many tokens simultaneously given the limited model capacity,
leading to a drop in both efficiency and quality.

Top-β and Tolerance τ in SpecDec++ We study the effects of hyperparameters in SpecDec++:
top-β and tolerance τ , and show the results on the development set in Table 3. Moderately increas-
ing τ and β not only leads to an increase of mean accepted tokens since AT verification becomes

9For example, RewriteNAT (Geng et al., 2021) uses length beam size 5, slowing down its efficiency.

6

Under review as a conference paper at ICLR 2023

Models k Tok. BLEU Speed
AT (b = 5) - 1.00 26.72 1.00×

SpecDec++

10 5.97 26.68 3.04×
15 6.74 26.94 3.47×
20 7.24 26.75 3.55×
25 7.56 26.92 3.79×
30 7.44 26.75 3.63×

Table 2: The mean accepted tokens (Tok.), the
translation quality (BLEU), and the efficiency
(Speed) when decoding with a various num-
ber of block size k on the development set
(newstest-13). The results are obtained with
SpecDec++ (top-3, τ = 1.0).

Models τ Top-3 (β = 3) Top-5 (β = 5)

SpecDec++

1 7.56/27.02 7.58/27.02
2 8.64/26.92 8.77/26.92
3 9.46/26.84 9.72/26.84
4 10.04/26.78 10.50/26.74
5 10.38/26.70 10.99/26.64

Table 3: Results on the development set
(newstest-13) with different hyperparameters in
SpecDec++ (k = 25). Each cell lists the mean
accepted tokens and BLEU score. The BLEU
score of greedy decoding of the AT verifier is
26.62.

Models Iteration BLEU Speed

Blockwise
Stern et al. (2018)

Blockwise decoding (k = 1) N 29.11 1.0×†

Blockwise decoding (k = 2) / 28.95 1.7×†

Blockwise decoding (k = 10) / 27.40 3.0×†

Ours

Teacher (Transformer-big, b = 5) N 29.31 1.0×
AT verifier (b = 5) N 29.25 1.0×
AT verifier (b = 1) N 29.18 1.1×
NAT drafter (k = 10) 3.3 27.41 7.2×
SpecDec (k = 10) 5.4 29.18 2.7×
SpecDec++ (k = 10, top-3, τ = 1.0) 5.0 29.28 2.9×
SpecDec++ (k = 10, top-5, τ = 6.0) 3.9 29.12 3.8×
NAT drafter (k = 30) 1.4 27.35 15.0×
SpecDec (k = 30) 4.8 29.18 3.0×
SpecDec++ (k = 30, top-3, τ = 1.0) 4.2 29.32 3.5×
SpecDec++ (k = 30, top-5, τ = 6.0) 2.6 29.15 5.0×

Table 4: Results of SpecDec of the big-size model configuration on WMT14 EN-DE and the com-
parison to the state-of-the-art Blockwise Decoding Stern et al. (2018). † denotes the speedup results
reported in original papers obtained by comparison with greedy decoding.

less strict but also improves the translation quality over greedy decoding. However, the translation
quality will decrease if the constraints are over relaxed: the BLEU score will degrade from the peak
of 27.02 to 26.64 when decoding with top-5 selection (i.e., β = 5) and τ = 5.0. Based on the results
in the development set, we conservatively select β = 3, τ = 1.0 for the high-quality SpecDec++,
and use β = 5, τ = 3.0 as the high-efficiency SpecDec++ to pursue the higher speedup without
substantial loss of translation quality for WMT14 EN-DE as in Table 1.

5.3.2 MODEL SIZE

In addition to models of the base-size configuration, we also study larger models to test the effec-
tiveness of SpecDec. We here use Transformer-big (Vaswani et al., 2017) as our model architecture
for both the NAT drafter and the AT verifier in SpecDec/SpecDec++10, and compare it with the
conventional Transformer-big baseline as well as Blockwise Decoding (Stern et al., 2018) – a state-
of-the-art efficient Transformer-big variant by introducing additional k − 1 heads on top of the
Transformer decoder to generate next k tokens as a block and verifies, which works in a similar way
to ours. According to Table 4, our SpecDec/SpecDec++ substantially speeds up the AT baselines
and outperforms Blockwise Decoding with both better results and a higher speedup. Compared
with Blockwise Decoding whose performance drops significantly when k increases to 10 due to its
underinvestment in speculation by only using lightweight heads to generate the next few tokens in
parallel, SpecDec/SpecDec++ using an independent NAT drafter is much more powerful to generate
more drafted tokens that can be accepted, turning out to result in a significantly higher speedup, de-
spite introducing more parameters (see Appendix C for detailed discussion of memory cost issues).

10The hyperparameters (e.g., block size k, Top-β, tolerance τ) in SpecDec (big) are re-tuned on the devel-
opment set, which may be different from those in the base-size models.

7

Under review as a conference paper at ICLR 2023

Models Drafter Tok. Iter. BLEU
AT-base (greedy) - 1.00 N 28.73

SpecDec-base
lightweight heads 2.23 11.5 28.73
NAT-base 5.53 5.0 28.73
NAT-big 5.90 4.7 28.73

SpecDec++-base (top-3, τ = 1.0)
lightweight heads 2.35 10.9 28.11
NAT-base 6.69 4.1 28.81
NAT-big 7.32 3.8 29.12

SpecDec++-base (top-5, τ = 3.0)
lightweight heads 2.61 10.6 27.02
NAT-base 8.71 3.2 28.58
NAT-big 9.73 2.8 28.98

Table 5: Results of SpecDec-base (k = 30) with various sizes of drafters on WMT14 EN-DE.

Models Iteration R-1 R-2 R-L Speed
Teacher BART (Lewis et al., 2020) N 44.16 21.28 40.90 -

AT (w/o Seq-KD) BART-base (b = 5) N 42.84 20.08 39.51 1.0×

Ours

NAT drafter (k = 25) 3.3 37.10 14.87 33.47 15.0×
AT verifier (b = 5) N 42.55 19.83 39.31 1.0×
AT verifier (b = 1) N 43.00 20.28 39.96 1.1×
SpecDec (k = 25) 14.0 43.00 20.28 39.96 3.0×
SpecDec++ (k = 25, top-3, τ = 1.0) 10.8 42.95 20.24 39.73 3.7×
SpecDec++ (k = 25, top-5, τ = 3.0) 7.9 42.02 19.42 38.66 4.8×

Table 6: Results of SpecDec-base model on CNN-DM for Abstractive Summarization.

Moreover, we observe that big-size models can use a larger block size (k = 30) than the base-size
models (k = 25) since larger capacity equips the model with a more powerful ability to learn to
decode more tokens well in parallel. To better demonstrate this point, we conduct a comparative
study of using drafters of different sizes in SpecDec-base, given the same block size (k = 30).
According to Table 5, the big-size NAT drafter largely outperforms the base-size counterpart and
the drafter with lightweight heads (as used in Stern et al. (2018)) performs worst, demonstrating that
a stronger drafter can generate drafted tokens more reliably (i.e., on average more drafted tokens
accepted by the AT verifier), resulting in fewer decoding iterations, which indicates that SpecDec
may be further improved if a more powerful (not necessarily larger) NAT drafter is equipped.

5.3.3 OTHER SEQ2SEQ TASKS

We test SpecDec’s effectiveness in one of the most representative seq2seq tasks – Abstractive Sum-
marization. We employ the distilled training data of CNN Daily Mail (Hermann et al., 2015) from
BART (Lewis et al., 2020) to train the NAT drafter and the AT verifier whose model architectures
are both BART-base, and test on the CNN Daily Mail test split following previous work.

According to Table 6, the vanilla SpecDec consistently achieves exactly the same result as the AT
verifier (b = 1), which is, to the best of our knowledge, the first work that achieves such a 3× lossless
speedup for Abstractive Summarization. SpecDec++ further accelerates inference but does not show
any quality improvement as observed in NMT experiments because of the larger performance gap
between the NAT drafter and the AT verifier in the abstractive summarization benchmark.

5.4 DISCUSSION

Extensive experiments in multiple tasks show that SpecDec can significantly speed up seq2seq gen-
eration without quality loss. The state-of-the-art lossless speedup is attributed to the substantially im-
proved computational parallelism that allows better utilization of (hardware) computing resources.
We believe SpecDec is promising and can even benefit more from evolving processor hardware that
will become increasingly powerful and better at parallel computing (shown in Appendix E).

As a preliminary study, SpecDec is far from perfect and has much headroom for improvement. First,
according to the experimental results above, we know SpecDec’s translation quality mainly depends
on the AT verifier and its efficiency relies on the NAT drafter (whose capability matters how many
drafted tokens can be accepted). We believe more powerful NAT/AT models (than the simple and
naive ones used in this paper) will benefit SpecDec to achieve better results.

8

Under review as a conference paper at ICLR 2023

Moreover, SpecDec’s potential can be further exploited by optimizing its implementation in com-
puting and memory access. For example, according to Table 18 showing time cost by modules in
SpecDec++, our naive implementation costs a total of approximately 16% of overall time to (se-
quentially) encode the input for AT and NAT. Obviously, this part can be optimized by performing
AT and NAT encoding in parallel because they are independent, or sharing (or partially sharing)
AT’s encoder with NAT, which we leave as future exploration. Also, the NAT decoder costs more
than the AT decoder because it employs bi-directional attention and cannot save the computation
for the already decoded tokens as AT, which we believe can be improved in the future with a better
non-autoregressive decoding mechanism designed for SpecDec.

6 RELATED WORK

Non-autoregressive Decoding To accelerate autoregressive translation (AT), Gu et al. (2018) first
proposed Non-Autoregressive Translation (NAT), which decodes the output sentence in one single
iteration despite translation quality loss. Recent work mainly focused on improving the quality while
maintaining competitive speedups, including applying various training objectives (Wang et al., 2019;
Wei et al., 2019; Shu et al., 2020; Shao et al., 2020; Guo et al., 2020; Liu et al., 2021; Ding et al.,
2021b; Zeng et al., 2022; Shao et al., 2022), modeling dependencies between target tokens (Kaiser
et al., 2018; Sun et al., 2019; Ghazvininejad et al., 2019; Liu et al., 2020; Bao et al., 2021; Zhan
et al., 2022; Zhu et al., 2022) and refining the translation outputs with multi-pass iterations (Chan
et al., 2019; Stern et al., 2019; Sun & Yang, 2020; Ghazvininejad et al., 2020b; Ding et al., 2021a;
Norouzi et al., 2022). However, due to the inherent conditional independence assumption, NAT
models’ translation quality is generally less reliable than AT.

Semi-autoregressive Decoding There are also some attempts trying to combine autoregressive
(AR) and non-autoregressive (NAR) decoding: Wang et al. (2018) proposed to utilize NAR decoding
locally while keeping the AR property globally; on the contrary, Ran et al. (2020) and Kong et al.
(2020) introduced a local-AR model which retained the NAR property globally. Similar ideas have
been also proposed for Grammatical Error Correction (GEC): Chen et al. (2020) proposed to use
a sequence tagger to identify the grammatical errors’ spans and then use AR decoding to correct
them; Aggressive Decoding (Sun et al., 2021) is the first work that introduces speculative decoding
into GEC. It assumes that the input is the sentence to be generated in the future (i.e., there are no
grammatical errors in the input), and then verifies the whole sentence in parallel through greedy
decoding of AT. However, Aggressive Decoding works only for tasks where the input and output are
highly similar, which limits its application. The most similar work to ours is Blockwise Decoding
(Stern et al., 2018) that proposed to additionally insert k − 1 NAR heads on top of the Transformer
decoder to generate k positions in parallel and use the original AR head to verify these outputs.
However, its underinvestment in the NAR modeling seriously limits its performance, resulting in a
much lower efficiency than our approach.

7 CONCLUSION AND FUTURE WORK

We propose a novel Speculative Decoding (SpecDec) paradigm as well as its variant (SpecDec++)
by combining respective advantages of AT and NAT. Contrary to the stereotype that more models
(parameters) tend to slow down inference, SpecDec’s introduction of an additional NAT model sub-
stantially speeds up AT without quality loss, achieving a state-of-the-art lossless acceleration result
owing to higher computational parallelism introduced by the idea of speculative execution to better
utilize computing resources.

Besides machine translation, SpecDec can be easily generalized to other seq2seq tasks like Ab-
stractive Summarization and benefit from stronger computing devices (to discuss in Appendix E). It
demonstrates a novel yet promising perspective for efficient seq2seq generation, orthogonal to the
efforts for advancing the state-of-the-art NAT and AT models that can further benefit SpecDec.

Despite the state-of-the-art results, SpecDec still has great potential with much headroom for im-
provement, as we discuss in Section 5.4. We hope that our preliminary study could draw more
attention to improving this promising decoding paradigm with potential to evolve into a de facto
standard for efficient and lossless seq2seq generation in the near future.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Yu Bao, Shujian Huang, Tong Xiao, Dongqi Wang, Xinyu Dai, and Jiajun Chen. Non-autoregressive
translation by learning target categorical codes. In Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy
Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021, pp. 5749–5759. Association for Computational
Linguistics, 2021. doi: 10.18653/v1/2021.naacl-main.458. URL https://doi.org/10.
18653/v1/2021.naacl-main.458.

William Chan, Nikita Kitaev, Kelvin Guu, Mitchell Stern, and Jakob Uszkoreit. KERMIT: gen-
erative insertion-based modeling for sequences. CoRR, abs/1906.01604, 2019. URL http:
//arxiv.org/abs/1906.01604.

Mengyun Chen, Tao Ge, Xingxing Zhang, Furu Wei, and Ming Zhou. Improving the efficiency
of grammatical error correction with erroneous span detection and correction. arXiv preprint
arXiv:2010.03260, 2020.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F. Wong, Dacheng Tao, and Zhaopeng Tu. Reju-
venating low-frequency words: Making the most of parallel data in non-autoregressive transla-
tion. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers),
Virtual Event, August 1-6, 2021, pp. 3431–3441. Association for Computational Linguistics,
2021a. doi: 10.18653/v1/2021.acl-long.266. URL https://doi.org/10.18653/v1/
2021.acl-long.266.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F. Wong, Dacheng Tao, and Zhaopeng Tu. Un-
derstanding and improving lexical choice in non-autoregressive translation. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021b. URL https://openreview.net/forum?id=ZTFeSBIX9C.

Cunxiao Du, Zhaopeng Tu, and Jing Jiang. Order-agnostic cross entropy for non-autoregressive ma-
chine translation. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139
of Proceedings of Machine Learning Research, pp. 2849–2859. PMLR, 2021. URL http:
//proceedings.mlr.press/v139/du21c.html.

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In International Conference on Machine Learning, pp. 1607–1616.
PMLR, 2018.

Xinwei Geng, Xiaocheng Feng, and Bing Qin. Learning to rewrite for non-autoregressive neural
machine translation. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November,
2021, pp. 3297–3308. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.
emnlp-main.265. URL https://doi.org/10.18653/v1/2021.emnlp-main.265.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Paral-
lel decoding of conditional masked language models. In Kentaro Inui, Jing Jiang, Vincent
Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 6111–6120.
Association for Computational Linguistics, 2019. doi: 10.18653/v1/D19-1633. URL https:
//doi.org/10.18653/v1/D19-1633.

Marjan Ghazvininejad, Vladimir Karpukhin, Luke Zettlemoyer, and Omer Levy. Aligned cross
entropy for non-autoregressive machine translation. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 3515–3523. PMLR, 2020a. URL http:
//proceedings.mlr.press/v119/ghazvininejad20a.html.

10

https://doi.org/10.18653/v1/2021.naacl-main.458
https://doi.org/10.18653/v1/2021.naacl-main.458
http://arxiv.org/abs/1906.01604
http://arxiv.org/abs/1906.01604
https://doi.org/10.18653/v1/2021.acl-long.266
https://doi.org/10.18653/v1/2021.acl-long.266
https://openreview.net/forum?id=ZTFeSBIX9C
http://proceedings.mlr.press/v139/du21c.html
http://proceedings.mlr.press/v139/du21c.html
https://doi.org/10.18653/v1/2021.emnlp-main.265
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
http://proceedings.mlr.press/v119/ghazvininejad20a.html
http://proceedings.mlr.press/v119/ghazvininejad20a.html

Under review as a conference paper at ICLR 2023

Marjan Ghazvininejad, Omer Levy, and Luke Zettlemoyer. Semi-autoregressive training improves
mask-predict decoding. CoRR, abs/2001.08785, 2020b. URL https://arxiv.org/abs/
2001.08785.

Jiatao Gu and Xiang Kong. Fully non-autoregressive neural machine translation: Tricks of the trade.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Findings of the Association
for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021, volume
ACL/IJCNLP 2021 of Findings of ACL, pp. 120–133. Association for Computational Linguistics,
2021. doi: 10.18653/v1/2021.findings-acl.11. URL https://doi.org/10.18653/v1/
2021.findings-acl.11.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. Non-autoregressive
neural machine translation. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=B1l8BtlCb.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 11179–11189, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html.

Junliang Guo, Linli Xu, and Enhong Chen. Jointly masked sequence-to-sequence model for
non-autoregressive neural machine translation. In Dan Jurafsky, Joyce Chai, Natalie Schluter,
and Joel R. Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 376–385. Association for
Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.36. URL https://doi.
org/10.18653/v1/2020.acl-main.36.

Yongchang Hao, Shilin He, Wenxiang Jiao, Zhaopeng Tu, Michael R. Lyu, and Xing Wang.
Multi-task learning with shared encoder for non-autoregressive machine translation. In Kristina
Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard,
Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, pp. 3989–3996.
Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.naacl-main.313. URL
https://doi.org/10.18653/v1/2021.naacl-main.313.

Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Corinna
Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp.
1693–1701, 2015. URL https://proceedings.neurips.cc/paper/2015/hash/
afdec7005cc9f14302cd0474fd0f3c96-Abstract.html.

Chenyang Huang, Hao Zhou, Osmar R. Zaı̈ane, Lili Mou, and Lei Li. Non-autoregressive translation
with layer-wise prediction and deep supervision. CoRR, abs/2110.07515, 2021. URL https:
//arxiv.org/abs/2110.07515.

Fei Huang, Hao Zhou, Yang Liu, Hang Li, and Minlie Huang. Directed acyclic transformer for non-
autoregressive machine translation. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 9410–9428. PMLR, 2022a. URL https://proceedings.mlr.
press/v162/huang22m.html.

Xiao Shi Huang, Felipe Perez, and Maksims Volkovs. Improving non-autoregressive translation
models without distillation. In International Conference on Learning Representations, 2022b.
URL https://openreview.net/forum?id=I2Hw58KHp8O.

11

https://arxiv.org/abs/2001.08785
https://arxiv.org/abs/2001.08785
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://openreview.net/forum?id=B1l8BtlCb
https://proceedings.neurips.cc/paper/2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.36
https://doi.org/10.18653/v1/2020.acl-main.36
https://doi.org/10.18653/v1/2021.naacl-main.313
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://arxiv.org/abs/2110.07515
https://arxiv.org/abs/2110.07515
https://proceedings.mlr.press/v162/huang22m.html
https://proceedings.mlr.press/v162/huang22m.html
https://openreview.net/forum?id=I2Hw58KHp8O

Under review as a conference paper at ICLR 2023

Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish Vaswani, Niki Parmar, Jakob Uszkoreit, and
Noam Shazeer. Fast decoding in sequence models using discrete latent variables. In Jen-
nifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning Research, pp. 2395–2404. PMLR, 2018. URL
http://proceedings.mlr.press/v80/kaiser18a.html.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and Jiatao Gu. Non-autoregressive machine
translation with disentangled context transformer. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 5144–5155. PMLR, 2020. URL http:
//proceedings.mlr.press/v119/kasai20a.html.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, and Noah A. Smith. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine translation. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL https://openreview.net/forum?id=KpfasTaLUpq.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

Xiang Kong, Zhisong Zhang, and Eduard H. Hovy. Incorporating a local translation mechanism into
non-autoregressive translation. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pp. 1067–1073. Association for Computational
Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.79. URL https://doi.org/10.
18653/v1/2020.emnlp-main.79.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Ellen Riloff, David Chiang, Julia Hockenmaier,
and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pp. 1173–1182. As-
sociation for Computational Linguistics, 2018. doi: 10.18653/v1/d18-1149. URL https:
//doi.org/10.18653/v1/d18-1149.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Dan Jurafsky, Joyce
Chai, Natalie Schluter, and Joel R. Tetreault (eds.), Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 7871–7880.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.703. URL
https://doi.org/10.18653/v1/2020.acl-main.703.

Jindrich Libovický and Jindrich Helcl. End-to-end non-autoregressive neural machine transla-
tion with connectionist temporal classification. In Ellen Riloff, David Chiang, Julia Hocken-
maier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pp. 3016–
3021. Association for Computational Linguistics, 2018. doi: 10.18653/v1/d18-1336. URL
https://doi.org/10.18653/v1/d18-1336.

Jinglin Liu, Yi Ren, Xu Tan, Chen Zhang, Tao Qin, Zhou Zhao, and Tie-Yan Liu. Task-level
curriculum learning for non-autoregressive neural machine translation. In Christian Bessiere
(ed.), Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI 2020, pp. 3861–3867. ijcai.org, 2020. doi: 10.24963/ijcai.2020/534. URL https:
//doi.org/10.24963/ijcai.2020/534.

Ye Liu, Yao Wan, Jian-Guo Zhang, Wenting Zhao, and Philip S. Yu. Enriching non-autoregressive
transformer with syntactic and semantic structures for neural machine translation. In Paola
Merlo, Jörg Tiedemann, and Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021,
Online, April 19 - 23, 2021, pp. 1235–1244. Association for Computational Linguistics, 2021.

12

http://proceedings.mlr.press/v80/kaiser18a.html
http://proceedings.mlr.press/v119/kasai20a.html
http://proceedings.mlr.press/v119/kasai20a.html
https://openreview.net/forum?id=KpfasTaLUpq
https://doi.org/10.18653/v1/2020.emnlp-main.79
https://doi.org/10.18653/v1/2020.emnlp-main.79
https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/d18-1336
https://doi.org/10.24963/ijcai.2020/534
https://doi.org/10.24963/ijcai.2020/534

Under review as a conference paper at ICLR 2023

doi: 10.18653/v1/2021.eacl-main.105. URL https://doi.org/10.18653/v1/2021.
eacl-main.105.

Sajad Norouzi, Rasa Hosseinzadeh, Felipe Pérez, and Maksims Volkovs. Dims: Distilling multiple
steps of iterative non-autoregressive transformers. CoRR, abs/2206.02999, 2022. doi: 10.48550/
arXiv.2206.02999. URL https://doi.org/10.48550/arXiv.2206.02999.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine trans-
lation. In Proceedings of the Third Conference on Machine Translation: Research Papers,
pp. 1–9, Brussels, Belgium, October 2018. Association for Computational Linguistics. doi:
10.18653/v1/W18-6301. URL https://aclanthology.org/W18-6301.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA, pp. 311–318. ACL, 2002.
doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040/.

Matt Post. A call for clarity in reporting BLEU scores. In Ondrej Bojar, Rajen Chatterjee,
Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio
Jimeno-Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana L. Neves,
Matt Post, Lucia Specia, Marco Turchi, and Karin Verspoor (eds.), Proceedings of the Third
Conference on Machine Translation: Research Papers, WMT 2018, Belgium, Brussels, October
31 - November 1, 2018, pp. 186–191. Association for Computational Linguistics, 2018. doi:
10.18653/v1/w18-6319. URL https://doi.org/10.18653/v1/w18-6319.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong Yu, and Lei Li.
Glancing transformer for non-autoregressive neural machine translation. In Chengqing Zong,
Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pp. 1993–2003. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.
acl-long.155. URL https://doi.org/10.18653/v1/2021.acl-long.155.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. arXiv preprint arXiv:2201.05596, 2022.

Qiu Ran, Yankai Lin, Peng Li, and Jie Zhou. Learning to recover from multi-modality errors for
non-autoregressive neural machine translation. In Dan Jurafsky, Joyce Chai, Natalie Schluter,
and Joel R. Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp. 3059–3069. Association
for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.277. URL https:
//doi.org/10.18653/v1/2020.acl-main.277.

Ricardo Rei, Craig Stewart, Ana C. Farinha, and Alon Lavie. COMET: A neural framework for
MT evaluation. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, pp. 2685–2702. Association for Computational Linguistics, 2020.
doi: 10.18653/v1/2020.emnlp-main.213. URL https://doi.org/10.18653/v1/2020.
emnlp-main.213.

Chitwan Saharia, William Chan, Saurabh Saxena, and Mohammad Norouzi. Non-autoregressive
machine translation with latent alignments. In Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2020, Online, November 16-20, 2020, pp. 1098–1108. Association for Com-
putational Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.83. URL https://doi.
org/10.18653/v1/2020.emnlp-main.83.

Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aäron van den Oord.
Step-unrolled denoising autoencoders for text generation. CoRR, abs/2112.06749, 2021. URL
https://arxiv.org/abs/2112.06749.

13

https://doi.org/10.18653/v1/2021.eacl-main.105
https://doi.org/10.18653/v1/2021.eacl-main.105
https://doi.org/10.48550/arXiv.2206.02999
https://aclanthology.org/W18-6301
https://aclanthology.org/P02-1040/
https://doi.org/10.18653/v1/w18-6319
https://doi.org/10.18653/v1/2021.acl-long.155
https://doi.org/10.18653/v1/2020.acl-main.277
https://doi.org/10.18653/v1/2020.acl-main.277
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.83
https://doi.org/10.18653/v1/2020.emnlp-main.83
https://arxiv.org/abs/2112.06749

Under review as a conference paper at ICLR 2023

Robin M. Schmidt, Telmo Pires, Stephan Peitz, and Jonas Lööf. Non-autoregressive neural machine
translation: A call for clarity. CoRR, abs/2205.10577, 2022. doi: 10.48550/arXiv.2205.10577.
URL https://doi.org/10.48550/arXiv.2205.10577.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics, 2016. doi: 10.18653/v1/p16-1162. URL https:
//doi.org/10.18653/v1/p16-1162.

Chenze Shao, Jinchao Zhang, Yang Feng, Fandong Meng, and Jie Zhou. Minimizing the bag-of-
ngrams difference for non-autoregressive neural machine translation. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,
pp. 198–205. AAAI Press, 2020. URL https://aaai.org/ojs/index.php/AAAI/
article/view/5351.

Chenze Shao, Xuanfu Wu, and Yang Feng. One reference is not enough: Diverse distillation
with reference selection for non-autoregressive translation. In Marine Carpuat, Marie-Catherine
de Marneffe, and Iván Vladimir Meza Ruı́z (eds.), Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL 2022, Seattle, WA, United States, July 10-15, 2022, pp. 3779–3791. As-
sociation for Computational Linguistics, 2022. doi: 10.18653/v1/2022.naacl-main.277. URL
https://doi.org/10.18653/v1/2022.naacl-main.277.

Raphael Shu, Jason Lee, Hideki Nakayama, and Kyunghyun Cho. Latent-variable non-
autoregressive neural machine translation with deterministic inference using a delta posterior. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pp. 8846–8853. AAAI Press, 2020. URL https://ojs.aaai.org/
index.php/AAAI/article/view/6413.

Jongyoon Song, Sungwon Kim, and Sungroh Yoon. Alignart: Non-autoregressive neural machine
translation by jointly learning to estimate alignment and translate. In Marie-Francine Moens, Xu-
anjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021, pp. 1–14. Association for Computational Linguis-
tics, 2021. doi: 10.18653/v1/2021.emnlp-main.1. URL https://doi.org/10.18653/
v1/2021.emnlp-main.1.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for
deep autoregressive models. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 10107–
10116, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
c4127b9194fe8562c64dc0f5bf2c93bc-Abstract.html.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion transformer: Flexible
sequence generation via insertion operations. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov (eds.), Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pp. 5976–5985. PMLR, 2019. URL http://proceedings.mlr.press/v97/
stern19a.html.

Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. Instantaneous grammatical error correction with
shallow aggressive decoding. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli
(eds.), Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP

14

https://doi.org/10.48550/arXiv.2205.10577
https://doi.org/10.18653/v1/p16-1162
https://doi.org/10.18653/v1/p16-1162
https://aaai.org/ojs/index.php/AAAI/article/view/5351
https://aaai.org/ojs/index.php/AAAI/article/view/5351
https://doi.org/10.18653/v1/2022.naacl-main.277
https://ojs.aaai.org/index.php/AAAI/article/view/6413
https://ojs.aaai.org/index.php/AAAI/article/view/6413
https://doi.org/10.18653/v1/2021.emnlp-main.1
https://doi.org/10.18653/v1/2021.emnlp-main.1
https://proceedings.neurips.cc/paper/2018/hash/c4127b9194fe8562c64dc0f5bf2c93bc-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/c4127b9194fe8562c64dc0f5bf2c93bc-Abstract.html
http://proceedings.mlr.press/v97/stern19a.html
http://proceedings.mlr.press/v97/stern19a.html

Under review as a conference paper at ICLR 2023

2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, pp. 5937–5947. Associa-
tion for Computational Linguistics, 2021. doi: 10.18653/v1/2021.acl-long.462. URL https:
//doi.org/10.18653/v1/2021.acl-long.462.

Zhiqing Sun and Yiming Yang. An EM approach to non-autoregressive conditional sequence gen-
eration. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp.
9249–9258. PMLR, 2020. URL http://proceedings.mlr.press/v119/sun20c.
html.

Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, and Zhi-Hong Deng. Fast struc-
tured decoding for sequence models. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
3011–3020, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
74563ba21a90da13dacf2a73e3ddefa7-Abstract.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Chunqi Wang, Ji Zhang, and Haiqing Chen. Semi-autoregressive neural machine translation. In
Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pp. 479–488. Association for Computational Linguistics, 2018.
doi: 10.18653/v1/d18-1044. URL https://doi.org/10.18653/v1/d18-1044.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Non-autoregressive
machine translation with auxiliary regularization. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019,
pp. 5377–5384. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33015377. URL https://doi.
org/10.1609/aaai.v33i01.33015377.

Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang Lin, and Xu Sun. Imitation learning for
non-autoregressive neural machine translation. In Anna Korhonen, David R. Traum, and Lluı́s
Màrquez (eds.), Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp.
1304–1312. Association for Computational Linguistics, 2019. doi: 10.18653/v1/p19-1125. URL
https://doi.org/10.18653/v1/p19-1125.

Chun Zeng, Jiangjie Chen, Tianyi Zhuang, Rui Xu, Hao Yang, Ying Qin, Shimin Tao, and
Yanghua Xiao. Neighbors are not strangers: Improving non-autoregressive translation under
low-frequency lexical constraints. In Marine Carpuat, Marie-Catherine de Marneffe, and Iván
Vladimir Meza Ruı́z (eds.), Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022,
Seattle, WA, United States, July 10-15, 2022, pp. 5777–5790. Association for Computational
Linguistics, 2022. doi: 10.18653/v1/2022.naacl-main.424. URL https://doi.org/10.
18653/v1/2022.naacl-main.424.

Jiaao Zhan, Qian Chen, Boxing Chen, Wen Wang, Yu Bai, and Yang Gao. Non-autoregressive
translation with dependency-aware decoder. CoRR, abs/2203.16266, 2022. doi: 10.48550/arXiv.
2203.16266. URL https://doi.org/10.48550/arXiv.2203.16266.

15

https://doi.org/10.18653/v1/2021.acl-long.462
https://doi.org/10.18653/v1/2021.acl-long.462
http://proceedings.mlr.press/v119/sun20c.html
http://proceedings.mlr.press/v119/sun20c.html
https://proceedings.neurips.cc/paper/2019/hash/74563ba21a90da13dacf2a73e3ddefa7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/74563ba21a90da13dacf2a73e3ddefa7-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/d18-1044
https://doi.org/10.1609/aaai.v33i01.33015377
https://doi.org/10.1609/aaai.v33i01.33015377
https://doi.org/10.18653/v1/p19-1125
https://doi.org/10.18653/v1/2022.naacl-main.424
https://doi.org/10.18653/v1/2022.naacl-main.424
https://doi.org/10.48550/arXiv.2203.16266

Under review as a conference paper at ICLR 2023

Zaixiang Zheng, Hao Zhou, Shujian Huang, Jiajun Chen, Jingjing Xu, and Lei Li. Du-
plex sequence-to-sequence learning for reversible machine translation. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 21070–21084, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/afecc60f82be41c1b52f6705ec69e0f1-Abstract.html.

Minghao Zhu, Junli Wang, and Chungang Yan. Non-autoregressive neural machine translation with
consistency regularization optimized variational framework. In Marine Carpuat, Marie-Catherine
de Marneffe, and Iván Vladimir Meza Ruı́z (eds.), Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL 2022, Seattle, WA, United States, July 10-15, 2022, pp. 607–617. As-
sociation for Computational Linguistics, 2022. doi: 10.18653/v1/2022.naacl-main.45. URL
https://doi.org/10.18653/v1/2022.naacl-main.45.

16

https://proceedings.neurips.cc/paper/2021/hash/afecc60f82be41c1b52f6705ec69e0f1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/afecc60f82be41c1b52f6705ec69e0f1-Abstract.html
https://doi.org/10.18653/v1/2022.naacl-main.45

Under review as a conference paper at ICLR 2023

APPENDIX

A HYPERPARAMETERS

Hyper-parameters of training SpecDec are listed in Table 7. Following Vaswani et al. (2017) and Ott
et al. (2018), we also average model parameters from the last 10 checkpoints.

Hyperparameter Value
devices 8 Nvidia V100 GPU
label smoothing 0.1
max tokens 20000
update frequency 4
dropout rate [0.1, 0.2, 0.3]
max source positions 1000
max target positions 1000
Adam lr 1× 10−3

Adam β1 0.9
Adam β2 0.99
lr-scheduler inverse square
warm-up lr 1× 10−7

weight decay 0.00001
clip norm 3.0
warmup updates 4000
max updates 100K
max epoch 1000

Hyperparameter Value
devices 8 Nvidia V100 GPU
label smoothing 0.1
max tokens 4096
update frequency 4
dropout rate [0.1, 0.2, 0.3]
max source positions 1000
max target positions 1000
Adam lr 5× 10−4

Adam β1 0.9
Adam β2 0.999
Adam ϵ 1× 10−6

lr-scheduler inverse square
warm-up lr 1× 10−7

weight decay 0.01
clip norm 5.0
warmup updates 10000
max updates 300K

Table 7: Hyper-parameters and settings of the AT verifier (left) and the NAT drafter (right).

B DETAILS OF EXPERIMENTAL RESULTS

B.1 SPEEDUP RESULTS FOR MACHINE TRANSLATION

While we only report the speedup results of EN-DE translation in the main body of this paper
due to space limitation, we here report speedup details of EN-DE, DE-EN, EN-RO and RO-EN
in Table 8. As demonstrated in Section 5.3.1, we tune the hyperparameters (k, β and τ) of
SpecDec/SpecDec++ on the development set for each direction of benchmarks. According to Table
8, SpecDec/SpecDec++ performs consistently well on all the language pairs despite slight differ-
ences in speedup ratios.

Models EN-X X-EN
β, τ Iter. BLEU Speed β, τ Iter. BLEU Speed

AT AT verifier (b = 1) - N 28.73 1.1× - N 32.18 1.1×

WMT14
EN-DE

NAT drafter - 1.6 26.48 14.3× - 1.5 30.23 14.0×
SpecDec (k = 25) - 4.9 28.73 3.0× - 4.4 32.18 3.0×
SpecDec++ (k = 25, high-quality) 3,1.0 4.0 28.89 3.6× 3,1.0 3.4 32.56 3.9×
SpecDec++ (k = 25, high-efficiency) 5,3.0 3.1 28.73 4.5× 5,3.0 2.5 32.19 4.8×

AT AT verifier (b = 1) - N 34.83 1.1× - N 34.65 1.1×

WMT16
EN-RO

NAT drafter - 1.6 32.08 13.3× - 1.6 32.21 13.8×
SpecDec (k = 25) - 6.4 34.83 2.2× - 5.9 34.65 2.4×
SpecDec++ (k = 25, high-quality) 5,4.0 4.5 35.32 3.1× 3,2.0 4.6 34.98 2.9×
SpecDec++ (k = 25, high-efficiency) 5,6.0 4.0 34.92 3.3× 5,3.0 4.0 34.80 3.3×

Table 8: Details of the main results of SpecDec/SpecDec++ on WMT benchmarks. X denotes the
corresponding language in each benchmark (German in WMT14 EN-DE and Romanian in WMT16
EN-RO). k is the block size. β indicates the Top-β selection in SpecDec++ and τ is the tolerance
hyperparameter. All hyperparameters (k, β and τ) are tuned on the development set of each bench-
mark.

17

Under review as a conference paper at ICLR 2023

B.2 SPEEDUP DISTRIBUTION

To further understand the acceleration effects of SpecDec, we present the speedup distribution of
a single sentence on the WMT14 EN-DE test set (which has 3,003 sentences in total) in Figure 4,
showing that most sentences are translated with a 3× ∼ 6× speedup compared to the beam search
baseline, while some rare cases can even achieve over 10× speedup.

� � � � � � � � � �� ��

�������

�

��

���

���

���

���

���

�
�
�
�
��
��
�
�
�
�
�

Figure 4: Single sentence speedup distribution
by SpecDec++ (k = 25, high-efficiency).

Models BLEU Rep.
AT (greedy) 28.73 0.18%
CMLM (T = 4) 25.75 1.13%
CMLM (T = 10) 27.09 0.24%
SpecDec 28.73 0.18%
SpecDec++ 28.89 0.17%

Table 9: Token repetition ratio on WMT14 EN-
DE. SpecDec-base is test with hyper-parameters
k = 25, top-3, τ = 1.0. CMLM is tested with
our implementation with the length beam set to
3.

B.3 WORD REPETITIONS

With the conditional independence assumption, NAT models show a serious weakness in modeling
highly multimodal distributions. The token repetition ratio is often utilized as a proxy to measure
this multi-modality problem, which represents the degree of the text inconsistency. However, the
role of our AT verifier guarantees that this problem does not exist in SpecDec. As shown in Table
9, the token repetition ratio of SpecDec/SpecDec++ is similar to that of our AT baseline, which is
significantly lower than most relevant NAT models.

B.4 TEACHER MODEL(S)

We study the effects of the teacher11 on SpecDec, by comparing the results of a single teacher
with the teacher ensemble of 3 Transformer-big models in Table 10. Compared with a sin-
gle teacher model, teacher ensemble improves all the NAT drafter, AT verifier, and end-to-end
SpecDec/SpecDec++ results, indicating that our approach can benefit from a better teacher.

Models Single Teacher Teacher Ensemble
Iter. BLEU Speed Iter. BLEU Speed

Teacher Transformer-big (b = 5) N 29.31 - N 30.64 -

Base

NAT drafter 1.6 26.48 14.3× 1.6 27.16 14.0×
AT verifier (b = 5) N 28.89 1.0× N 29.19 1.0×
AT verifier (b = 1) N 28.73 1.1× N 29.24 1.1×
SpecDec (k = 25) 4.9 28.73 3.0× 4.5 29.24 3.3×
SpecDec++ (k = 25, top-3, τ = 1.0) 4.0 28.89 3.6× 4.0 29.31 3.4×
SpecDec++ (k = 25, top-5, τ = 3.0) 3.1 28.73 4.5× 3.1 29.52 4.3×

Big

NAT drafter 1.4 27.35 15.0× 1.4 28.10 14.8×
AT verifier (b = 5) N 29.25 1.0× N 29.74 1.0×
AT verifier (b = 1) N 29.18 1.1× N 29.69 1.1×
SpecDec (k = 30) 4.8 29.18 3.0× 4.2 29.69 3.3×
SpecDec++ (k = 30, top-3, τ = 1.0) 4.2 29.32 3.5× 3.8 29.88 3.6×
SpecDec++ (k = 30, top-5, τ = 6.0) 2.6 29.15 5.0× 2.5 29.81 5.1×

Table 10: Performance comparison between a single teacher model and teacher ensemble (3
teacher models) on WMT14 EN-DE. We report the results of both base-size and big-size SpecDec.
Transformer-base/big with beam search are the speed baselines of SpecDec-base/big respectively.

11We will release all our teachers to facilitate reproducing our results.

18

Under review as a conference paper at ICLR 2023

B.5 RESULTS FOR TRANSFORMER-12-2

Kasai et al. (2021) points out that the Transformer with a deep encoder and a shallow decoder
can achieve comparable translation quality with remarkable speedups. In Table 11, we present the
results of SpecDec-base with the configuration of 12 encoder layers and 2 decoder layers. The
results indicate that even in the deep-shallow configuration, SpecDec/SpecDec++ can further speed
up translation without quality loss.

Models E-D Iteration BLEU Speed
AT baseline Transformer-base (w/o Seq-KD)∗ 6-6 N 27.74 1.0×

Ours

Teacher 6-6 N 29.31† -
NAT drafter (k = 25) 12-2 1.6 25.67 18.1×
AT verifier (b = 5) 12-2 N 29.13 1.8×
AT verifier (b = 1) 12-2 N 28.99 2.0×
SpecDec (k = 25) 12-2 5.6 28.99 4.6×
SpecDec++ (k = 25, top-3, τ = 1.0) 12-2 4.7 29.13 5.0×
SpecDec++ (k = 25, top-5, τ = 4.0) 12-2 3.4 29.00 6.3×

Table 11: Results of SpecDec with the deep-shallow model configuration on WMT14 EN-DE. Both
the AT verifier and the NAT drafter have 12 encoder layers and 2 decoder layers. E: encoder depth;
D: decoder depth. ∗ denotes the results of AT baselines (b = 5) implemented by Ghazvininejad et al.
(2019). † indicates results obtained by Transformer-big.

B.6 SACREBLEU AND COMET SCORES FOR WMT14 EXPERIEMENTS

We report SacreBLEU12 (Post, 2018) and COMET13 (Rei et al., 2020) scores in order to provide a
reference for future research. SpecDec/SpecDec++ can also achieve lossless speedup even evaluated
in sacreBLEU and COMET. Schmidt et al. (2022) pointed out that inconsistencies in the use of
tokenized BLEU lead to deviations of up to 1.8 BLEU points. Therefore, we recommend that future
research use sacreBLEU when comparing with our work.

BLEU SacreBLEU COMET
Teacher (Transformer-big) 29.31 28.6 52.95
NAT drafter (k = 25) 26.48 26.0 23.63
AT verifier (b = 5) 28.89 28.2 51.90
AT verifier (b = 1) 28.73 28.0 51.53
SpecDec (k = 25) 28.73 28.0 51.53
SpecDec++ (k = 25, high-quality) 28.89 28.2 52.10
SpecDec++ (k = 25, high-efficiency) 28.73 28.0 51.56

Table 12: SacreBLEU and COMET scores on WMT14 EN-DE.

Models) EN→DE DE→EN EN→RO RO→EN
Teacher (Transformer-big) 29.31(28.6†) 32.11(31.6†) 34.72(33.9†) 34.49(33.9†)
NAT drafter (k = 25) 26.48(26.0†) 30.23(29.8†) 32.08(31.3†) 32.21(31.7†)
AT verifier (b = 5) 28.89(28.2†) 32.53(32.1†) 34.96(34.0†) 34.86(34.2†)
AT verifier (b = 1) 28.73(28.0†) 32.18(31.7†) 34.83(33.9†) 34.65(33.9†)
SpecDec (k = 25) 28.73(28.0†) 32.18(31.7†) 34.83(33.9†) 34.65(33.9†)
SpecDec++ (k = 25, high-quality) 28.89(28.2†) 32.56(32.1†) 35.32(34.4†) 34.98(34.3†)
SpecDec++ (k = 25, high-efficiency) 28.73(28.0†) 32.19(31.7†) 34.92(34.0†) 34.80(34.2†)

Table 13: BLEU and SacreBLEU (denoted by †) scores on WMT14 EN-DE and WMT16 EN-RO
benchmarks.

12https://github.com/mjpost/sacrebleu
13Obtained with wmt20-comet-da from version 1.1.0.

19

https://github.com/mjpost/sacrebleu

Under review as a conference paper at ICLR 2023

C MEMORY ANALYSIS

C.1 ADDITIONAL MEMORY COST BY SPECDEC

The peak memory footnote of SpecDec during inference mainly comes from three parts:

• Static AT verifier’s weights

• Static NAT drafter’s weights

• Intermediate variables/results

Compared with AT, the additional memory cost of SpecDec comes from the last two parts. While
the static NAT drafter’s weights account for the majority of the additional memory cost, the addi-
tional cost for storing intermediate variables is negligible because the NAT drafter and AT verifier
decode alternatively during inference. Compared with AT, SpecDec’s additional intermediate vari-
ables/results include:

• The NAT drafter’s last encoder layer’s representation that will not be freed until decoding
finishes, which is equal to B ·S ·d where B is the batch size, S is the sequence length and d
is the dimension of the model. This part is actually negligible: for example, when B = 32,
S = 128, d = 512, this part’s memory cost is only 8MB (fp32) / 4MB (fp16).

• The largest intermediate variables/results during inference:

– For a short sequence (e.g., sentence-level inputs/outputs in MT tasks), the largest inter-
mediate variable is the output tensor after the NAT drafter’s/AT verifier’s vocabulary
projection layer – B · |V | · k where B is the batch size, |V | is the vocabulary size
and k is the block size. Compared with the memory cost for storing the NAT drafter’s
weights, this part is usually smaller. Also B ·k tokens can be easily divided into small
batches (e.g., –softmax-batch in fairseq) for vocabulary projection to avoid massive
memory cost in case B · |V | · k is large.

– For a long sequence (e.g., paragraph/document-level inputs/outputs in summarization
tasks), the largest intermediate variable becomes the tensor for storing self-attention
computation whose size increases quadratically with S (S is the sequence length).
This variable accounts for the largest memory cost for storing intermediate results in
both AT and SpecDec. Therefore, in this case, this part does not introduce additional
memory cost compared with AT.

Models Model Weights Batch Size
1 4 8 16 32

AT (greedy) 232.4 243.2 271.7 301.4 366.4 494.6
SpecDec++ 469.8 483.4 511.8 551.1 626.0 774.4
∆Memory 237.4 240.2 240.1 249.7 259.6 279.8

Table 14: Peak GPU memory utilization on WMT14 EN-DE translation dataset. The results are
obtained with fp32 on a single Nvidia P100 GPU. The hyperparameters of SpecDec++ are k = 25,
top-5, τ = 3.0.

Models Model Weights Memory Cost
AT (greedy) 534.6 696.9
SpecDec++ 1071.4 1246.2
∆Memory 536.8 549.3

Table 15: Peak GPU memory utilization on CNN-DM with batch size 1 with fp32 on a single Nvidia
P100 GPU.

20

Under review as a conference paper at ICLR 2023

Table 14 and Table 15 show the comparisons of peak GPU memory footprint14 (MB) between
SpecDec and AT (during inference) on the above two scenarios (i.e., MT and summarization). The
results are consistent with our analysis above:

The majority of the additional memory cost (i.e., ∆Memory) is for storing
the NAT drafter’s weights and the additional memory cost is not very likely
to significantly increase as the batch size or sequence length increases.

Our experiments above pre-loaded both the NAT drafter and AT verifier. In fact, it is also possible to
load the static weights of the AT verifier and NAT drafter in a lazy loading manner in the meantime
of GPU computation to save memory as they run alternatively. However, it is usually unnecessary
in practice, because for a seq2seq model deployed on modern GPUs for online service, it is latency
rather than memory that is the performance bottleneck. See the next section for more discussion.

C.2 MEMORY IS RARELY THE BOTTLENECK

To understand the performance bottleneck of online deployed seq2seq models, we test the latency
and memory cost of T5-large15 (around 770M parameters) with fp16 on 1 Nvidia A40 GPU running
greedy decoding in the machine translation and abstractive summarization task, and show results in
Table 16 and 17.

Statistics Batch Size
1 32

Latency (s) 1.0 1.4

Memory Util. (MB) 1482 2003
Memory Util. (%) 3.0 4.0

Table 16: Latency and peak GPU memory uti-
lization of T5-Large on WMT14 EN-DE.

Statistics Batch Size
1 32

Latency (s) 2.7 4.7

Memory Util. (MB) 2999 7230
Memory Util. (%) 6.2 15.0

Table 17: Latency and peak GPU memory uti-
lization of T5-Large on CNN-DM.

For MT, T5-large’s latency is over 1 second which is actually too long to be accepted because most
MT engines in practice require the latency to be less than 100ms. However, its memory cost is only
less than 2GB – far below A40 GPU’s memory capacity (i.e., 48GB16).

For abstractive summarization, even if the batch size increases to 32, its memory cost is still less
than 50% utilization of 1 A40 GPU but its latency is already close up to 5 seconds that is too long
for an online service in practice.

To sum up, we now understand latency is the bottleneck of seq2seq models for online deployment
in most cases. Therefore, we do not think additional memory cost by SpecDec will undermine its
practical value; instead, we think a significant lossless acceleration even at the cost of memory (i.e.,
time–memory trade-off) is much more meaningful than the acceleration at the cost of quality, which
should be the right path that we need to pay more attention to given much memory headroom on
modern GPUs.

D PROFILING

We show the inference time cost by modules in SpecDec++ in Table 18. The current naive imple-
mentation costs a total of approximately 16% of overall time to (sequentially) encode the input for
the AT and NAT model, which can be obviously optimized. Also, the NAT decoder costs more than
the AT decoder because of the multi-round computation for previously decoded tokens.

14Tested with the command torch.cuda.max memory allocated()
15In practice, T5-large is rarely deployed for online service because it is too large and expensive to serve.
16It can also easily scale to 96GB with NVIDIA NVLink connection of multiple GPUs.

21

Under review as a conference paper at ICLR 2023

Modules Latency(ms) Percent(%)
AT Encoder 5.65 7.70
NAT Encoder 5.73 7.80
NAT Decoder 31.44 42.81
AT Decoder 27.33 37.21
Others 3.31 4.48
Total 73.46 100

Table 18: Profiling of SpecDec++(base-size, k = 25, top-5, τ = 3.0) on the WMT14 EN-DE test
set.

E SPECDEC ON VARIOUS COMPUTING DEVICES

We also test17 the inference efficiency of SpecDec with the batch implementation18 on various
GPUs, as shown in Figure 5. It is obvious that more powerful devices (e.g., V100/A100) can benefit
SpecDec/SpecDec++ more (i.e., higher speedup).

0 4 8 12 16 20 24 28 32
batch

200

400

600

800

1000

tim
e

(m
s)

 c
os

t p
er

 b
at

ch
 (o

n
av

g)

1.0x

1.3x

P100

AT
SpecDec
SpecDec++

0 4 8 12 16 20 24 28 32
batch

100

200

300

400

500

600

tim
e

(m
s)

 c
os

t p
er

 b
at

ch
 (o

n
av

g)

1.0x

2.4x

2.7x

V100

AT
SpecDec
SpecDec++

0 4 8 12 16 20 24 28 32
batch

100

200

300

400

500

tim
e

(m
s)

 c
os

t p
er

 b
at

ch
 (o

n
av

g)

1.0x

2.6x

3.0x

A100

AT
SpecDec
SpecDec++

Figure 5: Inference latency of SpecDec-base (k = 25, top-5, τ = 3.0) on P100 (fp32), V100 (fp16)
and A100 (fp16). The results are obtained on WMT14 EN-DE. The speedup baseline (1×) is AT
(b = 5) when batch = 32.

Therefore, we believe SpecDec’s speedup ratio in the future can be much higher than the number we
report in this paper, because it can benefit more from evolving processor hardware that will become
increasingly powerful and better at parallel computing (e.g., Nvidia H10019 with fp8 support).

F DISCUSSIONS OF BEAM SEARCH

For possible concerns that SpecDec may not apply beam search, we make three points here:

1. As Kim & Rush (2016) mentioned, knowledge distillation largely decreases the perfor-
mance gap of beam search and greedy decoding. In practice, greedy decoding can actually
be comparable to beam search results after KD.

2. In practical online deployment, KD is almost used by default for enhancing the results for
student models and greedy decoding is much more common than beam search because it
is more cost-effective – it not only runs faster than beam search but also achieves decent
performance with a student model trained through KD (as Point 1 addressed)

17We test with the batch size up to 32 because as the batch size increases, the inference latency per batch
will become higher. Therefore, it is impractical to use a large batch size during inference, as Rajbhandari et al.
(2022) points out.

18For simplifying implementation, we do not use incremental states in SpecDec to save the computation for
previously decoded tokens as conventional AT, which means that its result is probably much underestimated.
But even so, SpecDec/SpecDec++ still shows very promising speedup.

19https://www.nvidia.com/en-us/data-center/h100/

22

https://www.nvidia.com/en-us/data-center/h100/

Under review as a conference paper at ICLR 2023

3. Beam search is also an approximate and heuristic solution, which is not a golden rule.
In fact, SpecDec++ works in a similar way as beam search – it is also an approximate
and heuristic solution by considering n-best and scores, which can be considered as an
approximation of beam search. As shown in Table 1, it achieves comparable performance
to beam search but much faster (3×∼ 5×). Therefore, we think it can replace beam search
for efficient seq2seq generation.

G CASE STUDY

In Table 19, we represent several examples to illustrate how SpecDec/SpecDec++ generates trans-
lations. Take Example 1 for illustration, in the first iteration, the outputs of the drafter are non-
autoregressive with multi-modality problems like ”Angaben Angaben”. The verifier accepts tokens
of ”Nach den” and replaces the inappropriate translation ”Angaben” with ”vorliegenden”. In the
second iteration, the verification of the vanilla SpecDec finds the bifurcation at the first position
thus all tokens after this position are discarded. After 4 iterations, the decoding is finished since the
[EOS] token is found.

Compared with the vanilla SpecDec, in the second iteration, SpecDec++ finds that the top-β can-
didate ”Angaben” meets the relaxing requirement so that it accepts this token, showing that the
relaxing constraints do help to accept more tokens for our proposed SpecDec model.

23

Under review as a conference paper at ICLR 2023

Example 1- vanilla SpecDec
SOURCE According to the details provided , the tunnel had not yet been put into use .

D Nach den Angaben Angaben war der Tunnel noch nicht in
V Nach den vorliegenden war war der Tunnel noch nicht in Betrieb
D Nach den vorliegenden Angaben war der Tunnel noch nicht in Betrieb genommen
V Nach den vorliegenden Einzelheiten war der Tunnel noch nicht in Betrieb genommen worden .
D Nach den vorliegenden Einzelheiten war der Tunnel noch nicht in Betrieb genommen [EOS]
V Nach den vorliegenden Einzelheiten war der Tunnel noch nicht in Betrieb genommen worden
D Nach den vorliegenden Einzelheiten war der Tunnel noch nicht in Betrieb genommen worden . [EOS]
V Nach den vorliegenden Einzelheiten war der Tunnel noch nicht in Betrieb genommen worden . [EOS]

RESULTS Nach den vorliegenden Einzelheiten war der Tunnel noch nicht in Betrieb genommen worden .
Example 2-vanilla SpecDec
SOURCE Yesterday , Gut@@ acht ’s Mayor gave a clear answer to this question .

D Gestern hat der Bürger@@ meister von Gut@@ acht eine klare
V Gestern hat Gut@@ Bürger@@ meister von Gut@@ acht eine klare Antwort
D Gestern hat Gut@@ acht@@ ts Bürger@@ meister eine klare Antwort auf diese Frage
V Gestern hat Gut@@ ach@@ s Bürger@@ meister eine klare Antwort auf diese Frage gegeben
D Gestern hat Gut@@ ach@@ ts Bürger@@ meister eine klare Antwort auf diese Frage gegeben
V Gestern hat Gut@@ ach@@ ts Bürger@@ meister eine klare Antwort auf diese Frage gegeben .
D Gestern hat Gut@@ ach@@ ts Bürger@@ meister eine klare Antwort auf diese Frage gegeben . [EOS]
V Gestern hat Gut@@ ach@@ ts Bürger@@ meister eine klare Antwort auf diese Frage gegeben . [EOS]

RESULTS Gestern hat Gut@@ ach@@ ts Bürger@@ meister eine klare Antwort auf diese Frage gegeben .
Example 1-SpecDec++
SOURCE According to the details provided , the tunnel had not yet been put into use .

D Nach den Angaben Angaben war der Tunnel noch nicht in
V Nach den vorliegenden war war der Tunnel noch nicht in Betrieb
D Nach den vorliegenden Angaben war der Tunnel noch nicht in Betrieb genommen [EOS]
V Nach den vorliegenden Angaben war der Tunnel noch nicht in Betrieb genommen worden
D Nach den vorliegenden Angaben war der Tunnel noch nicht in Betrieb genommen worden . [EOS]
V Nach den vorliegenden Angaben war der Tunnel noch nicht in Betrieb genommen worden . [EOS]

RESULTS Nach den vorliegenden Angaben war der Tunnel noch nicht in Betrieb genommen worden .
Example 2-SpecDec++
SOURCE Yesterday , Gut@@ acht ’s Mayor gave a clear answer to this question .

D Gestern hat der Bürger@@ meister von Gut@@ acht eine klare
V Gestern hat der Bürger@@ meister von Gut@@ acht eine klare Antwort
D Gestern hat der Bürger@@ meister von Gut@@ acht eine klare Antwort auf diese Frage gegeben . [EOS]
V Gestern hat der Bürger@@ meister von Gut@@ acht eine klare Antwort auf diese Frage gegeben . [EOS]

RESULTS Gestern hat der Bürger@@ meister von Gut@@ acht eine klare Antwort auf diese Frage gegeben .

Table 19: Examples from the WMT14 English-German translation task. At each iteration, D and
V are the outputs of the drafter and the verifier, respectively. Tokens within red blocks are the bi-
furcation positions. The verification pieces after the bifurcation are annotated as strikethrough. The
highlighted parts are translations of previous iterations. Tokens in blue blocks are top-β candidates
which meet the SpecDec++ requirement. The hyperparameters are k = 10, top-3, τ = 1.0. ‘@@’ is
the BPE token, e.g., Gut@@ acht → Gutacht. The output pieces after the [EOS] token is omitted in
the table.

24

	Introduction
	Background
	Autoregressive Translation
	Non-Autoregressive Translation

	Speculative Decoding
	NAT drafter
	AT verifier

	SpecDec++
	Experiments
	Experimental Settings
	Main Results
	Analysis
	Hyperparameter
	Model Size
	Other Seq2seq Tasks

	Discussion

	Related Work
	Conclusion and Future Work
	Hyperparameters
	Details of Experimental Results
	Speedup Results for Machine Translation
	Speedup Distribution
	Word Repetitions
	Teacher Model(s)
	Results for Transformer-12-2
	SacreBLEU and COMET Scores for WMT14 Experiements

	Memory Analysis
	Additional Memory Cost by SpecDec
	Memory is rarely the bottleneck

	Profiling
	SpecDec on Various Computing Devices
	Discussions of Beam Search
	Case Study

