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ABSTRACT

Emergent communication is often studied in dyadic, fully-cooperative reference
games, yet many real-world scenarios involve multiparty communication in adver-
sarial settings. We introduce an adversarial reference game, where a speaker and
listener must learn to generate referring expressions without leaking information
to an adversary, and study the ability of emergent communication systems to learn
covert signaling protocols on this task. We show that agents can develop covert
signaling when given access to additional training time or shared knowledge over
the adversary. Finally, we show that adversarial training results in the emergent
languages having fewer and more polysemous messages.

1 INTRODUCTION

Human language is a uniquely flexible and powerful tool for human collaboration. To build mod-
els that can learn language-like communication skills, previous work has trained agents to develop
language protocols from scratch to solve collaborative tasks (see Lazaridou & Baroni, 2020 for a
review). One dominant setting in emergent communication is the fully-cooperative Lewis reference
game (Lewis, 1969) with two agents, a speaker and a listener, in some common grounded context,
where the speaker must produce a message that allows the listener to identify the correct refer-
ent. However, human language is used for much more than fully-cooperative, two-player signaling
games. In particular, semi-cooperative and competitive behavior among multiple agents is the norm
in a variety of everyday scenarios, such as negotiation (Nash, 1950) or covert signaling (Smaldino
et al., 2018), where individuals may have both shared goals and conflicting interests. Accordingly,
there is a need to study how language conventions change in more complex settings involving mul-
tiple parties, with more nuanced incentive structures.

Towards this aim, we introduce a three-player adversarial reference game, which involves a speaker,
a listener, and a third adversary. The goal of the game is for the speaker to send a message that can
be used by the listener to identify a referent, but that cannot be used by the adversary. To succeed, the
speaker and listener must form a covert signaling protocol to communicate while avoiding leaking
information to the adversary: this setting is common in real-world scenarios such as communication
among political dissidents (Kuran, 1989; Coopman, 2011), or cryptographic communication (Abadi
& Andersen, 2016).

By training agents to play these games, we aim to answer the following research questions: (1) Under
what conditions can the speaker and listener agents develop a successful covert signaling protocol?
(2) How do the properties of the emergent language change under adversarial pressure? We find that
a speaker and listener can develop a covert signaling protocol, but only when granted advantages
over the adversary, such as additional training time or a private source of common ground. We also
examine how the languages change as a result of adversarial pressure: we suggest that speakers and
listeners obscure their language by sending fewer yet more polysemous messages, which degrades
the ability of agents to communicate about out-of-domain concepts.
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2 THE ADVERSARIAL REFERENCE GAME

Formally, an adversarial reference game consists of 3 players: a speaker S, a listener L, and an
adversarial listener A, each parameterized by θS , θL and θA, respectively. We say that S and L form
a coalition because that they have the shared incentive to communicate while avoiding information
leakage to the adversary.

Each game involves N inputs {i1, . . . , iN}, with one input designated as the target t ∈ [1, N ],
revealed only to the speaker S. The role of S is to produce a message m given the inputs and target:
S(m | i1, . . . , iN , t; θS), where m is some discrete sequence of tokens m = (m1, . . . ,mk) with
mi ∈ V (a fixed vocabulary) and k ≤ K (some maximum message length).

The goal of both the listener L and the adversary A is to identify the correct target input given the
speaker’s message: L(t̂ | i1, . . . , iN ,m; θL) and A(t̂ | i1, . . . , iN ,m; θA), respectively. The key
difference is how L and A are trained. A is trained independently of S and L to maximize the
likelihood of guessing the target given the message m by minimizing the cross-entropy loss:

LA(θA) = Em∼S [− logA(t | i1, . . . , iN ,m; θA)] . (1)

S and L are trained so that the speaker generates messages m that maximize success of L and
minimize success of A. They jointly optimize the loss function

LS,L(θS , θL) = Em∼S

[
− logL(t | i1, . . . , iN ,m; θL)︸ ︷︷ ︸

Listener surprisal

+ logA(t | i1, . . . , iN ,m; θA)︸ ︷︷ ︸
Negative adversary surprisal

]
. (2)

Note that the coalition cannot modify the adversary parameters, and vice versa. In other words, θS
and θL are held constant when updating θA, and θA is held constant when updating θS and θL.

This setup bears similarity to cryptographic encryption with neural networks (Abadi & Andersen,
2016); the key difference is that the goal of encryption is to provide a general-purpose approach for
secure information exchange, whereas our goal is to induce a discrete covert signaling protocol, and
analyze the resulting languages in line with similar work in emergent communication.

In early experiments, we found that jointly optimizing argminθS ,θA,θL LA(θA) + LS,L(θS , θL)
was unable to induce covert signaling. Instead, similar to Abadi & Andersen (2016), we adopt an
alternating optimization procedure, where S and L are trained for r steps, then A is trained for 1
step. Across experimental conditions, we vary the value of r, where a larger r represents a larger
computational advantage in favor of the coalition. Additionally, we examine the effect of introducing
shared common ground between S and L in the form of J additional private inputs ipriv

1 , ..., ipriv
J . S

and L are then updated to condition on these private inputs: S(m | i1, . . . , iN , t, ipriv
1 , . . . , ipriv

J ; θS)

and L(t | i1, . . . , iN , ipriv
1 , . . . , ipriv

J ,m; θL), respectively.

3 DATASET AND EVALUATION

We use the ShapeWorld dataset (Kuhnle & Copestake, 2017), a grounded visual reasoning dataset
consisting of synthetic images. Each example reference game contains 5 colored shape images over
which the speaker produces a message and the listeners disambiguate. There are 10 possible colors
and 9 possible shapes for a total of 90 color-shape pairs, which we refer to as concepts. We perform
data augmentations on the images during training so that each agent sees a different “view” of the
same image, to discourage overfitting of the communication protocol to low-level visual features
(Dessı́ et al., 2021). We found that applying these augmentations increased systematicity of the
speaker messages and the listener accuracy in the non-adversarial setting, which motivated us to
also apply them to the adversarial game. Further details on the data are available in the Appendix.

To evaluate the effectiveness of the resulting emergent communication, we first compute accuracy
for L and A on the reference games, with successful covert signaling indicated by differentially
higher accuracy for L. We evaluate the agents’ generalization ability by measuring accuracy on
two test sets, with one containing only concepts seen during training, and the other containing only
concepts where the concept color was unseen during training (meaning that every concept in this
test set is novel to the agents). We refer to these two splits as the seen test set and unseen test set,
respectively.
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To measure the correlation between concepts and messages, we compute the normalized mutual in-
formation between messages M and concepts C. The normalized mutual information NMI(M,C)
yields a value between 0 and 1, with larger values representing higher alignment between concepts
and messages. We also measures the conditional entropies of messages and concepts H(M | C)
and H(C | M) and count the number of unique messages sent across all games in the dataset.

4 EXPERIMENTS

Each agent is a CNN-RNN network trained end-to-end. In each agent, the images are encoded via
a CNN. The speaker then uses the image embedding to condition a GRU (Cho et al., 2014), from
which a message is sampled using the Gumbel-Softmax trick with the straight-through estimator
(Jang et al. 2017; Maddison et al. 2017). The listeners encode the message with a GRU and compute
a dot product between the image embedding and the message embedding which represent the logits
over image targets (see Appendix for more details).

4.1 EMERGENCE OF COVERT SIGNALING

In our experiments, we manipulate two experimental variables: the computational advantage, and
the common ground advantage, that the speaker and listener possess relative to the adversary.

Computational advantage: This experiment examines whether increasing the amount of training
time to develop conventions affects task success and the emergent language. In this setting, the
coalition takes more uninterrupted gradient steps compared to the adversary, i.e. increasing r. The
lower bound ratio 1:1 indicates an equal number of gradient steps taken by the coalition and the
adversary, while at the upper bound 50:1, the coalition takes 50 steps for every one taken by the
adversary.1

Common ground advantage: This experiment examines whether manipulating the amount of addi-
tional common ground among the coalition affects downstream behavior. In this setting, the coalition
has access to a bank of additional images containing random concepts that the adversary cannot see.
The computational ratio is held constant at 1:1.

(a) Computational advantage (b) Knowledge base advantage

Figure 1: Listener and adversary accuracy in the (a) computational advantage and (b) common
ground advantage settings. Dashed lines are listener accuracy on seen (blue) and unseen (red) test
sets when trained in the absence of an adversary. Points are the mean of 5 runs; error bars are stdev.

Figure 1 shows the coalition and adversary accuracy across experimental conditions. Note that since
there are 5 images per game, chance accuracy is 0.2. Looking at performance on the seen test set
in the computational advantage experiments (a), we observe that with no computational advantage

1We note that the conditions in which the computational advantage is most skewed in favor of the coalition
are not simply instances of undertraining the adversary. Because we train on a simple dataset, listener accu-
racy in the non-adversarial setting converges quickly. Accordingly, the number of gradient steps taken by the
adversary even in the most skewed setting is comparable to the number required for ceiling performance in the
non-adversarial game.
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AccL AccA NMI(M,C) n uniq. H(C | M) H(M | C)

True language - - 1 34 0 0

Baseline 0.74 0.73 0.31 118.2 2.87 3.29
(no adversarial)

Comp. 1:1 0.73 0.72 0.31 120 2.84 3.34
advantage 5:1 0.41 0.24 0.07 8.4 5.57 3.58

20:1 0.50 0.23 0.07 6.4 5.47 3.61
50:1 0.65 0.20 0.11 12.8 4.73 3.60

Common 0img 0.73 0.72 0.31 120 2.84 3.34
ground 1img 0.71 0.56 0.29 101.4 3.05 3.35

2img 0.71 0.51 0.27 92 2.99 3.40
5img 0.53 0.32 0.19 43 4.17 3.48

Table 1: Effects of adversarial training on listener accuracy AccL, adversary accuracy AccA, nor-
malized mutual information NMI(M,C), n unique messages, and conditional entropies H(C | M)
and H(M | C), on the seen test set. True language represents the compositional rules from which
the dataset was derived; the number of unique messages is equal to the number of color-shape pairs.
Baseline (no adversarial) represents agent performance and language evaluation without the ad-
versarial loss function. Note that the 1:1 and 0img conditions are identical; they are duplicated for
readability. Data points are the mean of 5 runs per condition.

(1:1 ratio), both the listener and adversary achieve high accuracy. As the computational advantage
increases, both listener and adversary accuracy decrease, but adversary accuracy drops more; beyond
5:1, adversary accuracy is at chance. This indicates that the coalition has learned to evade the
adversary, although at the cost of its own performance. Only when the computational advantage is
heavily skewed (the ratio is 50:1) do we observe successful covert signaling: the listener returns to
near baseline accuracy, while adversary accuracy stays at chance. However, in all conditions on the
unseen test set, both listener and adversary accuracy are well below baseline levels, meaning that
the adversarial pressure has led the agents to completely fail to generalize to unseen concepts.

In the common ground experiments (b), first looking at performance on the seen test set, we ob-
serve that adding 1 or 2 images as a source of common ground does not affect listener performance
compared to the baseline but does bring down adversary accuracy, suggesting successful covert
signaling. However, adding more than 2 images begins to hurt listener adversary, since the task
becomes harder due to the increased context. Similar to the computational advantage setting, agents
fail to generalize on the unseen test set.

4.2 LANGUAGE ANALYSIS

How are listeners learning covert signaling protocols? Table 1 shows how adversarial pressure
affects language effectiveness and systematicity on the seen test set2. First, adversarial training
decreases the mutual information (NMI) of the messages with the ground-truth concepts, indicating
that the language is less predictable with respect to the natural language color-shape concepts in
the dataset. Second, adversarial training significantly decreases the number of unique messages
sent, particularly in the computational advantage setting. This indicates that the coalition agents
learn covert signaling by producing fewer messages to refer to the same number of concepts, rather
than more messages. We see further evidence for this in the conditional entropy measurements:
adversarial training increases H(C | M), which again is most pronounced in the computational
advantage setting, while H(M | C) remains about the same. This concretely shows that a single
message refers to more concepts. These trends collectively suggest that the coalition develops a
shared convention as to what the more limited set of unique messages mean in different contexts.

2Because accuracy is poor for both the listener and the adversary on the unseen test set and suggests a
degraded language protocol, we chose to highlight the language metrics on the seen test set. The metrics for
the unseen set are available in the Appendix.
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5 DISCUSSION

We showed that emergent communication agents can learn to covertly signal when given an ad-
vantage through additional training time or additional common ground. We also showed that the
communication strategy of the agents changed under adversarial pressure; most notably, the speaker
agent sent far fewer unique messages and used fewer messages to refer the same number of con-
cepts. This indicates that the agents learn a more polysemous communication protocol to perform
covert signaling, although additional explanation is required to fully explain the learned strategies.

A compelling direction for future work would be to compare the conventions developed by artificial
agents to the human conventions that emerge in iterated reference games similar to those in Hawkins
et al. (2022), but with an adversarial component. Furthermore, collecting such a dataset would also
enable us to study if deep learning-based agents can learn to covertly signal when trained on natural
language corpora. In conclusion, we hope that this work will help us to take some initial steps toward
understanding the dynamics of communication in multi-party, mixed-incentive environments in both
humans and artificial agents.
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David Kellogg Lewis. Convention: A Philosophical Study. Cambridge, MA, USA: Wiley-
Blackwell, 1969.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relax-
ation of discrete random variables. In 5th International Conference on Learning Representations,
ICLR 2017, 2017.

John F. Nash. The bargaining problem. Econometrica, 18(2):155–162, 1950. ISSN 00129682,
14680262. URL http://www.jstor.org/stable/1907266.

Paul E Smaldino, Thomas J Flamson, and Richard McElreath. The evolution of covert signaling.
Scientific Reports, 8(1), 2018.

A GAME DETAILS

DATASET

The synthesized ShapeWorld dataset contains images with 10 colors and 9 shapes for a total of 90
possible concepts. The train set contains images across 72 distinct concepts (8 colors and 9 shapes).
We use one test set containing only color-shape concepts seen during test time, for a total of 34
concepts. The other test set contains the 2 colors unseen during test time, and the 9 shapes, for a
total of 18 novel concepts. Figure 2 shows an example of a reference game.

Following Dessı́ et al. (2021), we perform data augmentations on the train set inspired by the ones
used in SimCLR (Chen et al., 2020), including randomized color distortion, cropping, Gaussian
blurring and flipping.

In the common ground setting, the concepts depicted in the common ground images are randomly
generated, meaning that they do not stay consistent between different example games.

MODELS

The vision module of each agent is a 4-layer convolutional neural network, consisting of a 64-filter
3x3 convolution, batch normalization, ReLU activation function, and 2x2 max-pooling layer. RNN
encoders and decoders consist of a one-layer Gated Recurrent Unit (GRU) (Cho et al., 2014) with
embedding size 1024 and hidden layer size 100.

For the message encoder, we set the size of the vocabulary |V | = 22 and the maximum message
length k = 4 (including a start and stop token). The reason for setting |V | = 22 is to encourage the
models to learn concepts similar to the natural language concepts in Shapeworld, in which there are
10 colors, 9 shapes and 3 other tokens (START, STOP, PAD) for a total of 22 tokens. By similar
reasoning, k is set to 4 (including a START and STOP) to encourage the speaker agent to produce
messages that have 1-to-1 correspondences with the natural language concepts (i.e. “START blue
triangle STOP”).

TRAINING

We use the Gumbel-Softmax trick (Jang et al., 2017) with τ = 1 to allow us backpropagation with
categorical distributions from the discrete symbols sampled by the speaker. We optimize model
parameters with the Adam optimizer (Kingma & Ba, 2015). Models are trained with learning rate
0.00005 and batch size 32, until convergence.

6

http://www.jstor.org/stable/1907266


Published as a workshop paper at EmeCom at ICLR 2022

AccL AccA NMI(M,C) n uniq. H(C | M) H(M | C)

True language - - 1 18 0 0

Baseline 0.47 0.44 0.09 33.8 3.74 3.81
(no adversarial)

Comp. 1:1 0.10 0.11 0.18 89.6 3.28 3.66
advantage 5:1 0.01 0.05 0.01 2.2 6.59 3.99

20:1 0.04 0.09 0.02 5.4 6.07 3.96
50:1 0.06 0.13 0.03 7.8 5.66 3.91

Common 0img 0.10 0.11 0.18 89.6 3.28 3.66
ground 1img 0.08 0.07 0.19 97.4 3.20 3.68

2img 0.05 0.05 0.15 69.8 3.63 3.70
5img 0.03 0.02 0.05 13 5.51 3.86

Table 2: Effects of adversarial training on metrics for unseen test set.

B LANGUAGE METRICS ON UNSEEN TEST SET

In Figure 2 we show the language effectiveness and systematicity for the unseen test set. The lan-
guage analysis trends here are similar to those observed on the seen test set, namely that adversarial
pressure decreases NMI(M,C), decreases the number of unique messages and increases H(C|M).
However, the accuracy is very low.
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