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Abstract

As planning and autonomy in general become increasingly
deployed on board spacecraft, missions will face a paradigm
shift in how ground operations teams command and interact
with the spacecraft: moving from specifying timed sequences
of commands to high-level goals that on-board autonomy
will elaborate based on the spacecraft’s state and sensed en-
vironment. It will become increasingly difficult for opera-
tors to predict a mission’s outcome as autonomous spacecraft
venture into deeper space, react to unknown conditions, and
face stronger communication constraints. However, data from
simulated autonomous missions can be analyzed and lever-
aged, allowing operators to make informed decisions when
selecting mission parameters and high-level goals. To this
end, our paper presents a framework that gains insights from
simulation data in order to help operators of autonomous
spacecraft missions to predict, explain, and search for spe-
cific outcomes given a set of high-level goals. We show and
discuss how our approach can help operators to better under-
stand predictions, explore options and make informed deci-
sions. Specifically, we describe a case study that builds upon
previous work on simulated autonomous spacecraft missions
to the Neptune-Triton system where the spacecraft uses an au-
tomated planning and execution framework to make onboard
decisions (Castano et al. 2022; Vaquero et al. 2022).

Introduction
Future space exploration missions will have advanced on-
board autonomy capabilities to increase science return, im-
prove spacecraft reliability, reduce operations costs, or even
achieve goals that cannot be attained through regular ground
operations due to communication constraints or limited life-
time. Examples of autonomy capabilities being developed
for future mission include autonomous planning, schedul-
ing and execution (Chi et al. 2019; Troesch et al. 2020), au-
tonomous selection of scientific targets (Francis et al. 2017),
autonomous fault management (Kolcio, Fesq, and Mackey
2017) and onboard data summarization and compression
(Doran et al. 2020). Autonomy has already significantly in-
creased the capabilities of Mars rover missions, enabling
them to perform tasks such as autonomous long-distance
navigation and autonomous data collection of new science
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targets (Estlin et al. 2012). Automated ground-based plan-
ning and scheduling, in particular, has been deployed on
daily ground operations for the Perseverance rover (Yela-
manchili et al. 2021) and is projected to be deployed on
board in the near future (Rabideau et al. 2020).

As spacecraft become more autonomous, mission out-
comes will be increasingly difficult to foresee, especially for
missions that face very limited communications in environ-
ments with large uncertainties (e.g., deep space). There will
be a need to build user trust in the decision making of the
onboard planner. The Crosscheck system developed for the
Perseverance rover (Yelamanchili et al. 2021) is an expla-
nation tool that serves as an example. Moreover, the graph-
ical user interfaces developed for the ASPEN-RSS sched-
uler (Chien et al. 2021) on the Rosetta Orbiter mission also
has explanation features, in this case providing feedback on
which constraints are preventing an observation from being
scheduled.

While it is not possible to anticipate all potential scenar-
ios that the spacecraft will encounter, the uncertainty related
to the environment (e.g. likelihood that a plume will be ac-
tive a certain latitude and longitude) and the spacecraft it-
self (e.g. the likelihood of components failures, variations
in the duration of on-board activities, etc) can be modelled
on the ground. A team can evaluate and simulate how likely
the goals will be achieved given such models, what is the
impact on the mission, and how that translates to progress
towards the campaigns and science objectives. Users can in-
spect each subset of outcomes to analyze possible perfor-
mance. However, navigating through the possible outcomes
is not trivial as there may be many environmental and space-
craft variables involved in the analysis. Furthermore, mis-
sion simulations can take a long time to run, especially if
they have a high fidelity.

One valuable notion is that data patterns from previous
simulations can be identified and leveraged during the pro-
cess of navigating through possible scenarios. To this end,
our paper presents a framework that gains insights from sim-
ulation data in order to help operators of autonomous space-
craft missions to predict, explain, and search for specific out-
comes given a set of high-level goals. We show and discuss
how our approach can help operators to better understand
predictions, explore options and make informed decisions.
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Figure 1: Simulation framework for autonomous spacecraft missions developed by (Castano et al. 2022; Vaquero et al. 2022).
It uses a Monte Carlo simulation approach to generate and explore different scenarios. In summary, it consists of: a) an en-
vironment model that is defined by a set of science parameters, b) a spacecraft model that is defined by a set of engineering
parameters, and c) an on-board planning and execution system (MEXEC) that works using task networks. All of these simula-
tion inputs produce a set of mission outcomes.

To this end, we describe a case study that builds upon pre-
vious work on simulated autonomous spacecraft missions
that use an automated planning and execution framework to
make onboard decisions (Castano et al. 2022; Vaquero et al.
2022).

Background
This paper builds upon previous work regarding operations
for autonomous spacecraft (Castano et al. 2022; Vaquero
et al. 2022). Specifically, we focus on simulated autonomous
spacecraft missions to the Neptune-Triton system, which is
an especially interesting setting because the significant light-
speed latency, low available bandwidth, short duration of
flybys, and dynamic scientific phenomena make autonomy
highly attractive to fulfill primary mission objectives, but
also make operations of such a mission very challenging.

The framework for these simulated missions uses
MEXEC (Multi-mission EXECutive) (Troesch et al. 2020)
as the core planning and execution system onboard the
spacecraft. MEXEC is a flight-proven system that has been
demonstrated on the ASTERIA CubeSat and was used on
the JPL’s Europa Lander Surface Mission Autonomy project
(Wang et al. 2022). Also, MEXEC shares core reasoning
components with the planning system used in the Perse-
verance rover’s operations. Campaign goals are represented
in task networks, which is the foundation of timeline-based
temporal planning and Hierarchical Task Network (HTN)
planning. Task networks are meant to be used by operators,
mission planners, engineers and autonomy experts to repre-
sent their intent as goals. Goals are expressed in the form
of tasks, including their pre-, post- and maintenance condi-
tions, impact/effect constraints, temporal and resource con-
straints, priority, as well as ordering constraints and how the
tasks decompose into sub-tasks hierarchically.

In such framework (Figure 1), variability models are first
captured, i.e., users specify science and engineering param-
eters that can vary, and a model for that variability. For
example, this can entail modeling activity duration uncer-

tainty as a Pert or Gaussian distribution, or modeling activ-
ity effects probabilistically, or modeling off-nominal behav-
ior of instruments and components, or modeling uncertainty
of science phenomena models. Once variability information
is captured, a Monte Carlo simulation approach is used for
exploring different scenarios and conditions and investigat-
ing possible outcomes given a particular task network. The
Monte Carlo simulation also requires a model of both the
spacecraft and environment, this is what the performance
of the automated planning and scheduling systems and the
goals are tested against. The framework integrates both the
Monte Carlo system and the simulator, and stores data from
each simulation run into a database.

In total, previous work simulated 165 variations of the
mission to the Neptune-Triton system. There was runtime
replanning in these simulation runs. Two different task net-
works were used, each corresponding to a different orbit.
Out of the 165 simulations, 90 were run using the first task
network while 75 used the second task network. Specifically,
the simulations had 29 science (uncontrollable) and engi-
neering (controllable) input parameters. During each simu-
lation, 8 outcome metrics or outputs (also known as key per-
formance indicators (KPIs)) were evaluated. Figure 2 shows
these mission variables in more detail.

Outcome Prediction Framework
This paper presents a framework that allows operators to
predict, explain, and search for outcomes of autonomous
spacecraft missions by leveraging data patterns from sim-
ulations. We present and develop a case study using the data
that was collected using the simulation environment that was
described in the previous section (Castano et al. 2022; Va-
quero et al. 2022).

In order to offer the operations team a more complete
overview of the potential behaviors of the on-board auton-
omy, we predict the various outcomes that may result from a
given task network and a set of environment and spacecraft
parameters by running an array of high-fidelity simulations.
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Figure 2: Simulation environment variables of the Neptune-Triton mission.

Our framework tends to favor Bayesian formalism for
data analysis and prediction as it provides several benefits
(Murphy 2013). First, Bayesian formalism provides mathe-
matical rigor together with statistical and uncertainty guar-
antees, which are vital for safe spacecraft operations. Sec-
ond, Bayesian formalism can improve explainability and
transparency in the overall process as opposed to many
black-box approaches for data analysis. Finally, Bayesian
formalism aligns well with the aforementioned Monte
Carlo-based simulation framework for the spacecraft mis-
sions.

Our framework consists of the following three elements:
1. Prediction: we start with a tool for fast and accurate out-

come predictions given a particular task network and a
set of specific mission parameters.

2. Explanation: we then describe a tool for conducting an
exploratory analysis of the mission data in order to orga-
nize and explain different outcome distributions.

3. Search: finally, we describe an approach to direct the
search for a specific outcome within the simulation en-
vironment.

The rest of the paper describes these three elements in
more detail.

Outcome Prediction

As we had discussed, data patterns from previous mis-
sion simulations can be inferred and leveraged. To this
end, herein we employ Gaussian process regression (GPR).
GPR regression has been extensively studied in the machine
learning and statistics literature (Rasmussen and Williams
2006). It is Bayesian, data-driven approach to modeling
complex relationships between input variables and output
variables. GPR assumes that the function values are nor-
mally distributed with a mean and covariance matrix that
are defined by a kernel function that measures the similarity
between the input points.

The prediction of a new output variable given new input
values is obtained by conditioning the GPR on the observed
data. This results in a posterior distribution over functions,
which can be used to obtain the predictive mean µ and vari-
ance σ2 at any new input value. The mean function describes
the expected value of the prediction, while the variance func-
tion describes the uncertainty of the prediction. As more data
becomes available, the predictions tend to improve while the
uncertainty is reduced. Figures 3 and 4 show examples of
these notions on our dataset, specifically for the 90 simula-
tion runs that correspond to the first orbit and task network.
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Figure 3: GPR predictions for the number of detected storms during a mission scenario. GPR predictions are probabilistic and
described by a mean and a standard deviation (µ±σ). At first, GPR predictions are less accurate and have a higher uncertainty.
With more data, the GPR gets better at modeling the relationships between the mission parameters and the outcome metrics.
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Figure 4: GPR prediction error (left) and average uncertainty
(right) for the number of detected storms during a mission
scenario. These plots show trends for 100 permutations of
the dataset. As more data becomes available, both the error
and uncertainty tend to decrease. For this particular example,
the knee or elbow of the curve is at around 30 simulations,
indicating that most of the data patterns have already been
inferred by then.

Specifically, we applied GPR using the squared exponen-
tial kernel, which is a common function for modeling sim-
ilarities and differences between data points. All the input
and output data was preprocessed to achieve good results; it
was rescaled between 0 and 1 using min-max normalization.
Figure 5 includes examples of the training data together with
small perturbation predictions for a couple of variables. GPR
is able to learn how some mission outcomes are strongly
coupled to certain input parameters while others are essen-
tially uncorrelated.

Outcome Explanation
Predicting outcomes is a useful step, but operators also need
to understand these predictions. In other words, they need
to be able to extract and visualize patterns in the simulation
data in order to make informed decisions when planning a
mission. To this end, our framework relies on machine learn-
ing for organizing and grouping the data.

In machine learning, clustering involves grouping to-
gether data points or objects based on their similarities or
patterns in the data (Bishop 2007), without the need for pre-
defined labels or categories. The goal of clustering is to iden-
tify natural structures or clusters in the data that can help
to segment the data, gain insights, and facilitate decision-
making processes.

In the machine learning literature, there are many cluster-
ing algorithms, each with its own benefits and drawbacks.
Herein we employ Gaussian Mixture Models (GMM), a
popular probabilistic clustering algorithm that assumes that
the data is generated from a mixture of Gaussian distribu-
tions, each of which represents a cluster or a subpopulation
in the data. GMMs assign each data point to one of the clus-
ters based on the likelihood of belonging to each cluster.
GMMs estimate the parameters of these underlying Gaus-
sian distributions, namely the mean and covariance; hence,
directly providing useful statistics for each group.

GMMs require users to specify in advance the number
of clusters in the model. One common approach to selecting
the appropriate number of Gaussian components for a GMM
is the Bayesian Information Criterion (BIC). The BIC is a
measure of model complexity that balances the goodness-
of-fit of the model to the data and the number of parame-
ters used in the model. The BIC penalizes models with more
parameters, which reduces the risk of overfitting and helps
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Figure 5: Mission outcome prediction using GPR. For mission parameters that are similar to the training data, the model is
consistently predicting similar outcomes. The model is able to learn the patterns where some mission outcomes are strongly
coupled to certain input parameters (left), whereas others are essentially uncorrelated (right).
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Figure 6: Application of the BIC approach for estimating the
best number of clusters k. For our dataset, 5 clusters provide
the best solution as they minimize the BIC value.

to identify the optimal number of clusters that best explain
the data. Lower BIC values indicate a better model fit with
fewer parameters, and the optimal number of clusters can
be determined by selecting the model with the lowest BIC
value. In our study, five clusters better fit the data according
the BIC method (Figure 6). After performing clustering, our
tool shows operators the statistics for each cluster in terms of
the variability parameters and their corresponding outcomes
(Figure 7).

The clusters are hard to visualize and compare to each
other since there are 29 different variability parameters (in-
puts) and 8 outcomes (outputs). This work explores two pop-
ular techniques used for visualizing high-dimensional data:
Principal Component Analysis (PCA) and t-Distributed
Stochastic Neighbor Embedding (t-SNE).

PCA is a statistical method that reduces the dimensions
of a dataset while retaining the most important information
in the data (Jolliffe 2002). PCA works by projecting high-
dimensional data onto a lower-dimensional subspace while
preserving the maximum amount of variation in the data.
The new dimensions in the lower-dimensional subspace are
called principal components. These principal components
are orthogonal to each other and can be ranked based on the
amount of variation they explain in the data.

On the other hand, t-SNE is an algorithm that is specif-
ically designed for visualizing high-dimensional data in a
low-dimensional space (van der Maaten and Hinton 2008).
Unlike PCA, t-SNE does not rely on linear transformations
of the data. Instead, it converts the high-dimensional simi-
larity between datapoints into a probability distribution and
then tries to optimize a low-dimensional similarity distribu-
tion that is as close as possible to the high-dimensional one.

Figure 8 shows 2D representations, using both PCA and
t-SNE, of the 5 clusters that were previously derived. These
visualizations allow us to see which clusters are more similar
to each other, and vice versa. In this case, both PCA and t-
SNE show how clusters 0, 3, and 4 are more closely related
to each other, while clusters 1 and 2 are the most dissimilar.

Our framework also makes the clustering results more ex-
plainable and understandable for operators, especially for
complex models with many variables, as the one in our case
study. For this we rely on SHapley Additive exPlanations
(SHAP) values, which are a method for explaining the out-
put of machine learning models (Lundberg and Lee 2017).
SHAP values assign a numerical value to each feature in
a data point, indicating how much that feature contributes
to the predicted outcome of the model. When it comes to
clustering, SHAP values can be used to explain which input
parameters have the greatest impact on each cluster. As an
example, Figure 9 shows the SHAP values for cluster #4,
which consists of scenarios where a large number of storms
were detected. These values show that the input parameter
with the greatest impact is indeed the number of storm thun-



acs/power/maintain_state_w

acs/power/slew_state_w

communications/power/downlink_state_w

communications/power/gravity_meas_state_w

magnetic_field/neptune_interesting_end_km

magnetic_field/neptune_interesting_start_km

magnetic_field/triton_interesting_end_km

magnetic_field/triton_interesting_start_km

magnetometer/duration

magnetometer/power/collecting_state_w

magnetometer/power/on_state_w

magnetometer/storage_impact_mbps

nac/duration

nac/image_size_mb

nac/power/imaging_state_w

nac/power/on_state_w

plume_generation/deterministic_plumes/plume1/duration

plume_generation/deterministic_plumes/plume1/exist_probability

plume_generation/deterministic_plumes/plume2/duration

plume_generation/deterministic_plumes/plume2/exist_probability

sms/data_impact_mbs

sms/duration

sms/power/imaging_state_w

sms/power/on_state_w

storm_generation/num_thunderheads

wac/duration

wac/image_size_mb

wac/power/imaging_state_w

wac/power/on_state_w

(a) Variability parameter (input) statistics.

num_storms_detected
0 5 10

num_plumes_detected
0 1 2

plume_A_detected
0.0 0.5 1.0

plume_B_detected
0.0 0.5 1.0

num_storms_observed
0 2 4 6

num_plumes_observed
0 1 2

plume_A_observed
0.0 0.5 1.0

plume_B_observed
0.0 0.5 1.0

(b) Outcome (output) statistics.

Figure 7: Clustering of mission scenarios and outcomes. This example shows the statistics of cluster #4, which represents top-
performing scenarios, especially those where a high number of storms were detected. Saturated colors represent one standard
deviation regions, whereas light colors indicate min-max ranges.

derheads that were generated for the simulation, which is
reasonable and confirms the relationship that the GPR pre-
dictor learned (Figure 5).

Outcome Search
Once we have a prediction tool and a better understanding of
different possible outcomes, we proceed to search for input
parameters that produce a desired outcome. In our study, the
search process focuses on controllable engineering parame-
ters and not on uncontrollable science inputs. For simplicity,
our search process is conducted on each outcome metric in-
dependently from the others.

Our search process employs Bayesian optimization. It is
a model-based approach for navigating through black-box
functions that are expensive to evaluate (Snoek, Larochelle,
and Adams 2012), which makes it appealing for our pur-
poses. It works by constructing a probabilistic model of the
objective function, called a surrogate, which is used to guide
the selection of the next point to evaluate (in our case a sce-
nario to simulate). This guidance process is based on the
values that are predicted by the surrogate together with their
uncertainties, ultimately balancing exploration and exploita-

tion so as to reduce the number of function queries. The sur-
rogate model is updated with each new evaluation, incorpo-
rating the information gained from previous evaluations to
improve its predictions.

GPR is a popular choice for constructing the surrogate
model in Bayesian optimization. The key idea behind using
GPR in Bayesian optimization is to use the surrogate model
to estimate the acquisition function, which is a heuristic that
balances exploration and exploitation. The acquisition func-
tion is used to select the next point to evaluate; here we
employ the lower confidence bound (LCB) criterion, which
combines predicted values together with their uncertainties.
By using the acquisition function, the algorithm can effi-
ciently search the input space and converge to a global solu-
tion with just a small number of expensive evaluations.

Bayesian optimization with GPR has been successfully
applied to a wide range of applications, including hyper-
parameter tuning of machine learning models, design opti-
mization of physical systems, and drug discovery (Shahri-
ari et al. 2016). It is a transparent, powerful, and flexi-
ble optimization method that can handle noisy and high-
dimensional functions, and can be customized to suit dif-
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Figure 8: 2D visualizations of the similarities and differ-
ences among data clusters. These visualizations employ lin-
ear and nonlinear methods: PCA (top) and t-SNE (bottom),
respectively. Both approaches show that out of the five clus-
ters in the dataset, clusters 0 (blue), 1 (orange), and 4 (pur-
ple) are more closely related or each other, while clusters 2
(green) and 3 (red) are the most dissimilar.

ferent problem domains.
Figure 10 illustrates how our outcome search works. At

first, little information is known from only a few random
scenarios that are not likely to produce the desired outcome;
this represents a blind search process. The GPR surrogate
model is updated with this data and the LCB acquisition
function suggests which scenario should be simulated next.
The approach tends to favor exploration first, that is, simulat-
ing diverse scenarios. After running some simulations, there
is more information, hence the search process converges and
now focuses on exploitation, that is, on simulating similar

scenarios that achieve a specific outcome.
The Bayesian optimization approach can be comple-

mented with our GPR predictor. Since running simulations is
expensive and slow, fast GPR predictions can serve as “true”
outcomes until the process converges to a solution that can
be simulated afterwards, further reducing the number of sim-
ulation runs. The GPR predictor can also be used to test and
finetune the Bayesian optimization process before running
any actual simulations.

Conclusions and Future Work
This paper describes a framework for autonomous space-
craft missions that can help operators to predict, explain,
and search for outcomes given a set of high-level goals
(i.e., a task network). We present and develop a case study
that builds upon previous work on simulated autonomous
spacecraft missions to the Neptune-Triton system where the
spacecraft uses an automated planning and execution frame-
work to make onboard decisions (Castano et al. 2022; Va-
quero et al. 2022).

The GPR predictor learns a model of the simulation envi-
ronment that can generate much faster results, which is es-
pecially useful for exploratory, testing and prototyping pur-
poses. Even if the GPR predictor starts by not being as accu-
rate as a high-fidelity simulation, it can be further improved
as more simulation data becomes available for training.

Using GMMs to cluster outcomes based on data patterns
and similarities is useful as it provides cluster statistics right
away; this can help identify off-nominal scenarios. Linear
and nonlinear methods of data visualization can be used to
intuitively show users which clusters are most similar to
each other, and vice versa. Furthermore, SHAP values tell
users which input parameters have the greatest impact on
each cluster.

Outcome search using Bayesian optimization provides a
transparent strategy for directing the process of navigating
through desired outcomes. It starts by exploring diverse sce-
narios to get a better sense of the underlying distribution of
scenarios and outcomes. When more data is available, it fo-
cuses on generating specific scenarios that produce a desired
outcome. This search process can be fine-tuned and/or accel-
erated with the GPR predictor so as to reduce the number of
expensive simulation runs.

We have shown how our approach can be used for mission
operations of autonomous spacecraft but we want to empha-
size that these methods are also applicable to other missions
that use automated planning and execution. For example, the
Europa Lander Surface Mission Autonomy project also uses
MEXEC. Automated planning and scheduling will be de-
ployed on board the Perseverance rover in the near future,
and these tools could help a lot on this endeavor.

Our work can be used on the ground for design purposes,
and ultimately we would like to explore how it could be used
in an online fashion to interact with the planner and produce
better plans, either during the initial plan creation, or inter-
actively during execution to refine the plan as uncertainty
and outcomes become known.

Future work will continue to improve this outcome pre-
diction framework. For instance, it will directly incorporate



Figure 9: Clustering explanations using SHAP values. The most important features are ranked, as well as their impact on a
particular cluster. In this case, the number of storm thunderheads that were generated for the simulation is the input parameter
with the greatest impact on cluster # 4, which comprises missions where a high number of storms were detected.
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Figure 10: Outcome search process using Bayesian optimization. This particular example illustrates the process of finding
underperforming mission scenarios in terms of the number of observed plumes. For simplicity and visualization purposes, just
one input parameter (magnetometer/duration) is shown. At first (top row), the search focuses on exploration as little information
is known from only a few random scenarios. The GPR surrogate model is updated with this data (left column) and the LCB
acquisition function (right column) suggests which scenario should be simulated next based on predicted values together with
their uncertainties. After running more simulations (bottom row), the search process now performs exploitation since there is
more information about which scenarios produce the desired outcome.

task network parameters such as task durations and con-
straints. We also want to expand the outcome search ap-
proach so it supports multi-objective criteria and accelera-
tion via distributed computing. Finally, future work will in-
vestigate how to adapt and apply these tools to other JPL
missions that rely on automated planning and execution.
We are especially interested in applying this method to the
CADRE and Mars 2020 missions.
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