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ABSTRACT

This paper considers few-shot learning under the cross-domain scenario. The
cross-domain setting imposes a critical challenge, i.e., using very few (support)
samples to generalize the already-learned model to a novel domain. We hold a
hypothesis, i.e., if a deep model is capable to fast generalize itself to different
domains (using very few samples) during training, it will maintain such domain
generalization capacity for testing. It motivates us to propose a novel Domain-
Switch Learning (DSL) framework. DSL embeds the cross-domain scenario into
the training stage in a “fast switching” manner. Specifically, DSL uses a single
domain for a training iteration and switches into another domain for the following
iteration. During the switching, DSL enforces two constraints: 1) the deep model
should not over-fit the domain in the current iteration and 2) the deep model should
not forget the already-learned knowledge of other domains. These two constraints
jointly promote fast generalization across different domains. Experimental results
confirm that the cross-domain generalization capacity can be inherited from the
training stage to the testing stage, validating our key hypothesis. Consequentially,
DSL significantly improves cross-domain few-shot classification and sets up new
state of the art.

1 INTRODUCTION

This paper challenges a realistic problem, i.e., the cross-domain scenario, for few-shot learning.
Basically, the few-shot learning task uses a classifier learned on the training set to recognize novel
classes with very few support samples. In real-world applications, there is usually a domain gap
between the training samples and the support samples Tseng et al. (2020); Guo et al. (2020); Chen
et al. (2019). The domain gap further imposes a critical challenge: since the support samples are very
rare, they do not suffice for mitigating the domain gap between the support set (for novel classes)
and the training set. Consequentially, the domain gap significantly compromises the recognition
accuracy of the novel classes. Therefore, learning a model with strong cross-modality generalization
capacity is important for cross-domain few-shot learning Tseng et al. (2020).

We argue that we may enhance the desired cross-modality generalization by “learning-to-
generalize”. To be more specific, we hold a hypothesis / intuition that if a deep model learns to
fast generalize itself to different domains (using very few samples) during training, it will maintain
the good domain generalization capacity for testing.

We model our intuition into a novel Domain-Switch Learning (DSL) framework, as illustrated in
Fig. 1. DSL uses multiple (M > 1) domains to construct cross-domain training scenario in a “fast
switching” manner. Instead of simply mixing all the domains to construct a mini-batch (Fig. 1 (a)),
DSL includes only a single domain into every training iteration and switches to another domain for
the following iteration (Fig. 1 (b)). Moreover, each iteration contains very few samples per category,
so as to imitate the few-shot setting. Therefore, after every switch, the deep model crosses into a
domain different from the former one, yielding the cross-domain few-shot scenario.
∗Zhengdong Hu makes his part of work during internship in Baidu Research.
†Corresponding author.
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Figure 1: The comparison between Domain-Switch Learning (DSL) and a domain-mix pipeline. (a)
mixes up all the M domains in each training iteration. The deep model memorizes all the domain-
specific knowledge (apart from the domain-general knowledge), which hinders cross-domain gen-
eralization. (b) DSL includes only a single domain into a training iteration and switches to another
domain for the following iteration. Since the domain-specific knowledge does not fit other domains,
the deep model is prone to discarding the domain-specific knowledge when switching to another
domain. We note that in our experiments, we use multiple relatively small datasets ( e.g. CUB
Welinder et al. (2010), Cars Krause et al. (2013), Places Zhou et al. (2018), and Plantae Horn et al.
(2018) ) as the switchable domains while using mini-ImageNet as a basic training set which appears
in each iteration.

An important advantage of this domain-switch learning manner is that it can suppress learning from
domain-specific knowledge, as illustrated in Fig. 1. Specifically, we consider each domain contains
both domain-general and domain-specific knowledge. If we mix all the domains for each training
iteration (Fig. 1 (a)), the deep model may memorize all the domain-specific knowledge, as well as the
domain-general knowledge. Consequentially, during testing, the domain-specific knowledge hinders
generalization towards the novel domain and thus compromises few-shot classification accuracy. In
contrast, in DSL (Fig. 1 (b)), the model only learns from one single domain in an iteration. Since the
domain-specific knowledge of the current domain does not fit the following domain, the deep model
is prone to discarding these domain-specific knowledge during the following iteration.

To further promote cross-domain generalization in this domain-switch learning scheme, DSL en-
forces two constraints as follows:

1) The deep model should not over-fit the domain in the current iteration, because over-fitting the
current domain makes the model memorize much of the domain-specific knowledge. The first con-
straint is implemented with a domain-specific prompter module (consisted of multiple prompters).
After the model learns from the i-th training domain Di and gets updated, its prediction accuracy
on Di increases and is relatively high. We store this edition of model as the prompter for Di. Next
time before the training domain switches to Di again, the model just gets updated from Di−1 and
becomes relatively inaccurate on Di. Given the accurate prompter and the inaccurate learner (w.r.t.
Di), we average their prediction for supervision so that the penalty on the learner will be suppressed.
The details are to be accessed in Section 3.3.

2) The deep model should not forget the already-learned knowledge of former domains, so that next
time the model crosses into these domains again, it can directly re-use the corresponding knowl-
edge for prediction. The second constraint is implemented with a domain-general teacher module.
Specifically, we collect several historical models and average their parameters to get a mean model.
During training, we use the softmax prediction of the mean model as the auxiliary supervising sig-
nals for the learner (apart from the ground truth label). The mean model serves as a teacher distilling
the already-learned knowledge of former domains to the learner. Since this teacher has no obvious
bias towards any single domain, we name it as a domain-general teacher. The details of the domain-
general teacher module are to be accessed in Section 3.4.
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These two constraints achieve complementary benefits for DSL, and jointly reinforce the cross-
domain generalization. Extensive experiments under four cross-domain scenarios show that DSL
consistently improves cross-domain few-shot learning and achieves performance on par with the
state-of-the-art methods.

Our main contributions are summarized as follows:

•We propose a novel Domain-Switch Learning (DSL) framework for cross-domain few-shot learn-
ing. DSL uses multiple domains for training and switches the domain in consecutive training itera-
tions. It provides a cross-domain learning scenario where the deep model learns to generalize across
different domains.

• Under the DSL framework, we integrate two modules, i.e., the domain-specific prompter and the
domain-general teacher. These two modules achieve complementary benefits for DSL and jointly
reinforce the cross-domain generalization.

•We conduct extensive experiments to validate the effectiveness of the proposed DSL. Experimental
results confirm that the fast generalization capacity can be inherited from training to testing and thus
improves cross-domain few-shot classification. On all the four popular benchmarks, DSL achieves
performance on par with the state of the art.

2 RELATED WORKS

Few-Shot Learning. Few shot learning methods could be roughly categorized into two branches:
meta-learning and fine-tuning methods. Some meta-learningSatorras & Estrach (2018); Mishra et al.
(2018); Ren et al. (2018); Snell et al. (2017); Sung et al. (2018); Vinyals et al. (2016) methods
map the few-shot samples into a non-linear embedding space and evaluate the similarity between
support samples and the query samples. Recently, fine-tuning methods Chen et al. (2019); Tian
et al. (2020); Afrasiyabi et al. (2020) propose to pre-train the model on the training set (typically
in a classification learning approach), and fine-tune the classifier on the novel classes. The fine-
tuning methods achieve competitive performance compared with the state-of-the-art meta-learning
methods. This work considers the few-shot learning task under the cross-domain scenario and adopts
the fine-tuning pipeline as the baseline.

Domain Generalization and Adaptation may be viewed as two closely related concepts. Do-
main adaptation uses abundant (unlabeled) samples to adapt the already-learned model from the
source domain to the target domain Ganin & Lempitsky (2015); Tzeng et al. (2017); Long et al.
(2017; 2015; 2016); Tzeng et al. (2014). In contrast, domain generalization aims to generalize the
knowledge from multiple source domains to the target domain without learning any samples of the
target domain during the training stage Balaji et al. (2018); Li et al. (2018). In cross-domain few-
shot learning, there is a domain gap between the training set and the testing set. To promote the
cross-domain generalization, Tseng et al. (2020) considers the challenge is more of a domain gener-
alization problem than a domain adaptation problem. This consideration is reasonable because the
support samples are very rare and do thus not suffice for a typical domain adaptation.

From the viewpoint of domain generalization, FWT Tseng et al. (2020) proposes to simulate the
cross-domain scenario to improve the domain generalization capacity. It indeed inspires us of the
multi-domain training strategy. In spite of sharing the multi-domain training strategy, DSL signifi-
cantly differs from FWT: First, FWT uses changes the training domain epoch-by-epoch. It does not
rely on fast switching for better generalization. In contrast, DSL is featured for the novel fast switch-
ing manner and finds that this manner promotes learning domain-general knowledge. Second, DSL
further considers two constraints in multi-domain training strategy, i.e., the deep model should not
over-fit every single domain and keep recognition on learned knowledge shared with other domains.
Finally, DSL achieves superior cross-domain effect than FWT (Section 4.2).

Catastrophic forgetting. Catastrophic forgetting plays an important role in the mechanism of DSL.
When the deep model is trained sequentially on multiple tasks (domains), there is a tendency that
the knowledge learned on former tasks (domains) is abruptly lost, yielding the so-called catastrophic
forgetting Kirkpatrick et al. (2017); McCloskey & Cohen (1989); French (1999).

In DSL, when the deep model switches from a domain to another, it forgets much of the knowledge
on the former domain, due to catastrophic forgetting. Forgetting the domain-specific knowledge is
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beneficial, while forgetting the domain-general knowledge is harmful. In response, next time the
deep model comes across the former domain again, we 1) supplement it with the corresponding
knowledge with a domain-specific prompter to prevent over-fitting the domain-specific knowledge
and 2) use a domain-general teacher to reinforce the common knowledge shared among all the for-
mer domains. In a word, in its mechanism, DSL actually utilizes catastrophic forgetting to improve
cross-domain generalization.

3 METHODS

3.1 PRELIMINARIES

In the cross-domain few-shot learning task, there is a significant domain gap between the training
set and the testing set. The testing set consists the support set and query set, which are sampled
from the same novel categories (which are unseen in the training set). The support set provides very
few labeled samples for recognizing the unlabeled samples in the query. Concretely, the support
set contains C classes and each class has K samples, which is a C-way K-shot setup in few-shot
learning.

Our work is based on a popular fine-tuning pipeline Chen et al. (2019); Tian et al. (2020); Afrasiyabi
et al. (2020). The fine-tuning baseline uses the training set D to learn a deep model consisted of a
feature encoder F and a feature classifier Y . F is parameterized with θ and Y is parameterized
with a weight matrix W . During training, given a sample x, the feature encoder first maps x
into a feature F (x;θ) ∈ Rd. Then the feature classifier Y predicts the softmax probability of x
belonging to each training category as P (i|x;θ,W ) =

exp(wT
i F (x;θ))∑

j exp(wT
j F (x;θ))

(wi is the weight vector
for the i-th category). The training is supervised with a popular classification loss function, i.e., the
cross-entropy loss, which is formulated as:

LCE(x) = − log(P (y|x;θ,W )) = − log
exp(wT

y F (x;θ))∑
j exp(wT

j F (x;θ))
, (1)

where y is the label for x, wy is the weight vector corresponding to the ground-truth category.

During the testing stage, we replace the feature classifier Y with a new linear classifier L. L is
a C-way classifier, corresponding to the total number of classes in the support set. We freeze the
parameters of the feature encoder F and fine-tune the parameters of Lwith samples from the support
set. Finally, we use the feature encoder F and the learned L as the predictor for the query.

This paper focuses on the training stage, i.e., learning the feature encoder F and the classifier Y on
the training set.

3.2 OVERVIEW OF DOMAIN-SWITCH LEARNING

Domain-Switch learning (DSL) employs M datasets to construct the training set, i.e., D =
{D1, D2, ..., DM}. Di is an individual domain, which may be selected from some popular few-
shot datasets, e.g., CUB Welinder et al. (2010), Cars Krause et al. (2013), Places Zhou et al. (2018),
Plantae Horn et al. (2018). These switchable training sets are relatively small, and does not suffice
for learning a discriminative feature encoder. Therefore, following Tseng et al. (2020), we employ
a relatively large-scale dataset mini-ImageNet Deng et al. (2009) as a “basic” training set. During
training, each mini-batch actually contains samples from the basic mini-ImageNet and a switchable
training set Di. We note that such implementation does NOT contradict our motivation of using a
single domain for each training iteration, because we may view the mixture of mini-ImageNet and a
Di as a single “compound” domain.

During training, DSL uses samples from a single switchable domain Di (and the mini-ImageNet)
for each iteration, as illustrated in Fig. 2. Since mini-ImageNet appears for every iteration, we omit
it in Fig. 2 for simplicity. The domain-switching process is formulated as:

Bj ← Di | Di ∈ D; i = j − b j
M
c ×M (2)

where Bj is the training batch at the j-th iteration, Di is the i-th domain, b·c is the rounding down
operation. We define a enumeration of all the M domains as a switching round.

4



Published as a conference paper at ICLR 2022

…

Learner 

𝐷1

learner softmax prompter softmax

𝜆 𝑝 + 1 − 𝜆 𝑝𝒫

𝑝𝒫𝑝

𝐷1F

𝐷2F

𝐷𝑀F

Teacher 

past iterations

Ƹ𝑝

model  updated by 𝐷𝑁
… …

…

𝐷2Fiteration (i+1)

model  updated by 𝐷2

model  updated by 𝐷1

…

Prompter

Binary KLD Loss   Reweighted CE Loss

…

Cross-Entropy Loss

iteration i (current)

iteration (i-1)

iteration (i-M+1)

iteration (i-M )

…

Reweighted CE Loss

weighted average

average

F Feature encoder

Figure 2: The overview of Domain-Switch Learning. DSL uses a single domain for a training
iteration and switches to another domain for the following iteration. During the current iteration
(the red area), DSL uses a domain-specific prompter and a domain-general teacher to assist the
learner. The prompter prevents the learner from over-fitting the domain-specific knowledge of the
current domain using a Re-weighted Cross-Entropy loss (Section 3.3). The teacher helps the learner
to memorize the domain-general knowledge shared among former domains using a novel Binary
Kullback-Leibler divergence loss (Section 3.4).

In order to further improve the cross-domain generalization in the above “fast switching”, DSL
enforces two constraints: 1) the deep model should not over-fit the domain in the current iteration
and 2) the deep model should not forget the knowledge of other domains. These two constraints
are implemented with a Domain-Specific Prompter (Section.3.3) and a Domain-General Teacher
(Section.3.4) module, respectively.

3.3 DOMAIN-SPECIFIC PROMPTER

Definition of the prompter: Let us consider in the j-th iteration, the model has already learned from
Di and gets updated. We store this edition of model as the prompter for the (j +M)-th iteration
(when the learner is to learn from Di again), as illustrated in Fig. 2. The prompter aims to prevent
the learner from over-fitting the current domain Di.

Given a sample x in current domain, DSL averages the softmax prediction of the prompter
(P (y|x;θP ,WP), where the upper-script P denotes the prompter) and the softmax prediction of
the learner (P (y|x;θ,W )), which is formulated as:

P̂ =

{
λP (y|x;θ,W ) + (1− λ)P (y|x;θP ,WP), argmax

i
P (i|x,θP ,WP) = y

P (y|x;θ,W ), otherwise
(3)

where λ is a hyper-parameter. The condition argmax
i

P (i|x;θP ,WP) = y is to ensure the

prompter makes the correct prediction.

With the re-weighted softmax prediction P̂ , the cross-entropy loss for supervising the classification
is transformed into a Re-weighted Cross-Entropy loss (RCE loss in Fig. 2):

LRCE = − log(P̂) (4)

We explain how the domain-specific prompter prevents the learner from over-fitting the current
domain with two following remarks (Remark1 and Remark2).

Remark1: Compared with the learner, the prompter has relatively higher predicted probability on
the ground-truth category, i.e., P (y|x;θP ,WP) ≥ P (y|x;θ,W ).
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Figure 3: Analysis on the predictions of prompter and teacher. “D1(∗)” indicates that the current
training domain is D1. (a) The prompter fits D1 better than the learner before the learner gets
updated on D1. (b) The teacher memorizes the general knowledge from all the domains and thus
fits the former domains (e.g., D2, D3) better, while the learner fits better D1.

Remark1 is intuitive. Without losing generality, we assume the current learning domain in Fig. 2
is D1. The domain-specific prompter is the former model updated by D1 and thus fits D1 well. In
contrast, the current learner is newly updated by DM and forgets some knowledge of D1, due to the
well-known “catastrophic forgetting”. Therefore, the prompter has higher predicted probability on
the ground-truth category than the learner does. We empirically validate the above analysis in Fig. 3,
from which we clearly observe that the prompter has higher prediction accuracy than the learner.

Remark2: Since P (y|x;θP ,WP) ≥ P (y|x;θ,W ) (i.e., Remark1), the re-weighted procedure in
Eq. 3 alleviates the penalty on the learner, which is beneficial to exclude domain-specific knowledge.
Please refer to the Appendix for the conceptual proof. Consequentially, the prompter counters over-
fitting the current domain.

3.4 DOMAIN-GENERAL TEACHER

Definition of the domain-general teacher: We recall that a switching round is a period within
which all the M domains are enumerated. As illustrated in Fig. 2, we average the parameters of all
the M encoders updated in the past switching round to generate the domain-general teacher for the
current domain Di, which is formulated as:

θT ← 1
M

∑j=i−1
j=i−M θj (5)

The teacher aims to preserve and distill the domain-general knowledge learned in former domains
to the current learner.

We note that the domain-general teacher is different from the popular temporal moving average for
semi-supervised and unsupervised task Tarvainen & Valpola (2017); He et al. (2020); Grill et al.
(2020). In temporal moving average, the teacher absorbs parameters from all the historical models
(with higher weighting factor for the more recent model). In contrast, our domain-general teacher
absorbs parameters from only M historical models with equal weighting factor.

Remark3: When the learner gets updated from Di, it has higher prediction accuracy on Di than the
teacher does. Meanwhile, the teacher has higher prediction accuracy on former domains Dj(j 6= i).

Remark3 is intuitive. It is because the teacher absorbs knowledge from M historical learners, there-
fore preserving historical knowledge of the former domains. We empirically validate this intuition
in Fig. 3 (b), which is consistent with Remark3. Moreover, since the teacher averages the parameters
of all the M historical learners, it has no obvious bias towards any single domain. Therefore, the
teacher has relatively smaller variation of accuracy on all the domains, as shown in Fig. 3 (b).

Binary Kullback-Leibler divergence loss. Given a sample x in the current domain, we use the
output of the teacher P (y|x;θT ,W T ) as an auxiliary supervising signal for the learner. To this
end, we propose a novel Binary Kullback-Leibler divergence (KLD) Loss as follows:
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Methods CUB Cars Places Plantae
MatchingNet s 35.89 ± 0.51 30.77 ± 0.47 49.86 ± 0.79 32.70 ± 0.60
RelationNet s 42.44 ± 0.77 29.11 ± 0.60 48.64 ± 0.85 33.17 ± 0.64
MatchingNet+FT s 36.61 ± 0.53 29.82 ± 0.44 51.07 ± 0.68 34.48 ± 0.50
RelationNet+FT s 44.07 ± 0.77 28.63 ± 0.59 50.68 ± 0.87 33.14 ± 0.62
RelationNet + ATA s 43.02 ± 0.40 31.79 ± 0.30 51.16 ± 0.50 33.72 ± 0.30
MatchingNet m 37.90 ± 0.55 28.96 ± 0.45 49.01 ± 0.65 33.21 ± 0.51
RelationNet m 44.33 ± 0.59 29.53 ± 0.45 47.76 ± 0.63 33.76 ± 0.52
MatchingNet + LFT m 43.29 ± 0.59 30.62 ± 0.48 52.51 ± 0.67 35.12 ± 0.54
RelationNet + LFT m 48.38 ± 0.63 32.21 ± 0.51 50.74 ± 0.66 35.00 ± 0.52
DSL m 50.15 ± 0.80 37.13 ± 0.69 53.16 ± 0.88 41.17 ± 0.80

Table 1: Comparison with the state of the arts for 5-way 1-shot task. “FT” (“LFT”) denotes method
in Tseng et al. (2020) , “ATA” denotes method in Wang & Deng (2021), “s”(“m”) denotes single-
domain (multi-domain) learning.

Methods CUB Cars Places Plantae
MatchingNet s 51.37 ± 0.77 38.99 ± 0.64 63.16 ± 0.77 46.53 ± 0.68
RelationNet s 57.77 ± 0.69 37.33 ± 0.68 63.32 ± 0.76 44.00 ± 0.60
MatchingNet+FT s 55.23 ± 0.83 41.24 ± 0.65 64.55 ± 0.75 41.69 ± 0.63
RelationNet+FT s 59.46 ± 0.71 39.91 ± 0.69 66.28 ± 0.72 45.08 ± 0.59
RelationNet + ATA s 59.36 ± 0.40 42.95 ± 0.40 66.90 ± 0.40 45.32 ± 0.30
NSAE s 68.51 ± 0.76 54.91 ± 0.74 71.02 ± 0.72 59.55 ± 0.74
MatchingNet m 51.92 ± 0.80 39.87 ± 0.51 61.82 ± 0.57 47.29 ± 0.51
RelationNet m 62.13 ± 0.74 40.64 ± 0.54 64.34 ± 0.57 46.29 ± 0.56
MatchingNet + LFT m 61.41 ± 0.57 43.08 ± 0.55 64.99 ± 0.59 48.32 ± 0.57
RelationNet + LFT m 64.99 ± 0.54 43.44 ± 0.59 67.35 ± 0.54 50.39 ± 0.52
DSL m 73.57 ± 0.65 58.53 ± 0.73 74.10 ± 0.72 62.10 ± 0.75

Table 2: Comparison with the state of the arts for 5-way 5-shot task. “FT” (“LFT”) denotes method
in Tseng et al. (2020) , “ATA” denotes method in Wang & Deng (2021), “s”(“m”) denotes single-
domain (multi-domain) learning.

LBKLD = P Ty · log
P Ty
Py

+ (1− P Ty ) · log
1− P Ty
1− Py

, (6)

where Py = P (y|x;θ,W ) and P Ty = P (y|x;θT ,W T ).

The difference between the proposed BKLD loss and the popular KLD loss is: KLD aims to make
the student consistent with the teacher at all the entries of the softmax prediction. In contrast, the
proposed BKLD loss only focuses on the consistency at the ground-truth entry. In the experiment in
Section 4.4, we empirically show BKLD loss is better than the KLD loss for DSL.

Overall Training. We recall that besides the switchable domains, mini-ImageNet is employed as a
“basic” training set, which is sampled into all the training iterations. For mini-ImageNet, we adopt
the cross-entropy loss as a basic loss LBasic. The overall training loss is as follows:

L = LBasic + α · LRCE + (1− α) · LBKLD (7)

where α is a weighting factor.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

We evaluate the proposed DSL on five datasets: i.e., 4 fine-grained datasets (CUB Welinder et al.
(2010), Cars Krause et al. (2013), Places Zhou et al. (2018), and Plantae Horn et al. (2018)) and 1
popular large scale dataset mini-ImageNet Deng et al. (2009). We use ResNet-10 He et al. (2016)
without pretraining as the backbone network. Please refer to the Appendix for more experimental
setups and implementation details.
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Methods CUB Cars
mini-ImageNet (single) 63.76 ± 0.60% 51.21 ± 0.40%
domain-mix (multi) 64.73 ± 0.68% 51.78 ± 0.60%
domain-switch (multi) 66.33 ± 0.71% 53.61 ± 0.68%

Table 3: Comparison between two multi-domain learning scheme for 5-way 5-shot task.

4.2 COMPARISON WITH THE STATE OF THE ARTS

We compare DSL with the existing state of the arts on 4 benchmarks. We adopt the leave-one-out
setting, i.e., one of the fine-grained datasets is chosen as a testing set and the other 3 datasets (out
of the 4 datasets) are used as the training sets. Meanwhile, we employ mini-ImageNet as a “basic”
training set, which is available during the whole training stage. The results of 5-way 1-shot and
5-way 5-shot are summarized in Table 1 and Table 2, respectively.

From Table 1, we clearly observe the superiority of DSL under 5-way 1-shot classification. First,
comparing DSL with all the single-domain training methods, we find that DSL achieves significant
superiority. For example, DSL outperforms the most competing single-domain method (“Relation-
Net + ATA (s)”) Wang & Deng (2021) by +7.13%, +5.34%, +2%, +7.45% on CUB, Cars, Places
and Plantae, respectively. Second, while the multi-domain training methods achieve considerable
improvement (over their single-domain counterpart), DSL still outperforms them with a clear mar-
gin. For example, DSL outperforms the most competing multi-domain method (“RelationNet + LFT
(m)”) by +1.77%, +4.92%, +2.42%, +6.17% on CUB, Cars, Places and Plantae, respectively.

From Table 2, we clearly observe that DSL achieves competitive accuracy under the 5-way 5-shot
classification. Most of the competing methods already appear in the comparison of 5-way 1-shot
setting (Table 1). Compared with all these methods (except NSAE Liang et al. (2021)), DSL main-
tains significant superiority on all the four benchmarks. For example, DSL surpasses “RelationNet
+ LFT(m)”Tseng et al. (2020) by +8.58%, +15.09%, +6.75%, +11.71% on CUB, Cars, Places and
Plantae, respectively.

NSAE in Table 2 is a very recent and competitive single-domain training method. It splits the
support samples of the same category into two sub-sets for similarity learning. Therefore, it requires
more than 1 support samples for each category and is incompatible to the 1-shot setting. With this
unique similarity-learning manner, it achieves very competitive performance (e.g., 68.51% on CUB).
Compared with NSAE, DSL obtains consistent superiority For example, DSL surpasses NSAE by
5.06% on CUB.

4.3 THE EFFECTIVENESS OF THE DOMAIN-SWITCH OPERATION

A key characteristic of DSL is the domain-switch operation. In Table 3, we compare the single-
domain baseline (on mini-ImageNet), the domain-mix and the proposed domain-switch scheme
(without domain-general teacher and the domain-specific prompter ) on CUB and Cars. We draw
two following observations:

First, compared with single-domain training, the domain-mix learning scheme only brings slight
improvement. Although it employs multiple domains (as well as multiple datasets) for training,
the benefit of more training data is trivial (less than 1% improvement). We infer it is because in
the domain-mix learning scheme, the disadvantage of learning domain-specific knowledge largely
offsets the advantage of more training data.

Second, comparing “domain-mix” with “domain-switch”, we observe that domain-switch is a su-
perior multi-domain learning manner. Specifically, domain-switch surpasses domain-mix by 1.60%
accuracy under 5-way 5-shot setting on CUB. It is consistent with our conceptual analysis, i.e., the
domain-switch learning manner better ignores the domain-specific knowledge, therefore improving
the cross-domain generalization.

4.4 ABLATION STUDIES

Ablation on the prompter and teacher module. While the domain-switch framework already
improves cross-domain generalization, DSL uses the domain-specific prompter and the domain-
general teacher to prevent over-fitting domain-specific knowledge and to reinforce the domain-
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Figure 4: Analysis on Binary KLD loss and the number of switching round of teacher module.

Components 5-way 1-shot 5-way 5-shot
domain-switch 46.34 ± 0.73% 66.33 ± 0.71%
domain-switch + specific prompter 49.05 ± 0.60% 71.13 ± 0.68%
domain-switch + general teacher 48.88 ± 0.61% 70.45 ± 0.71%
All (DSL) 50.15 ± 0.80% 73.57 ± 0.73%

Table 4: Ablation studies of our proposed method on individual components.

general knowledge, respectively. We investigate their benefits through ablation in Table 4, from
which we draw two observations:

First, both the domain-specific prompter and the domain-general teacher are beneficial. Based
on the domain-switch operation, we find that adding the prompter or the teacher brings accuracy
improvement. For example, under the 5-way 5-shot setting on CUB, adding the prompter and the
teacher increases the accuracy by 4.80% and 4.12%, respectively.

Second, the domain-specific prompter and the domain-general teacher are complementary to each
other. While both modules already bring independent improvement, combining them (“All (DSL)”)
yields even higher accuracy. It validates that these two modules achieve complementary benefits
(i.e., countering domain-specific knowledge and promoting domain-general knowledge).

Analysis on some important configurations of the teacher module. We investigate two configura-
tions: 1) using a novel Binary KLD loss (instead of the popular KLD loss) for knowledge distillation
and 2) using the historical models within a single switching round for generating the teacher.

Fig. 4 (a) shows that the domain-general teacher favors the Binary KLD loss than the canonical
KLD loss. Under the 5-way 5-shot setting on CUB, the canonical KLD barely improves over “no
teacher”, while the BKLD surpasses KLD by 1.69% accuracy. We infer it is because the knowledge
from other domains is not accurate for the non-target classes. Therefore, forcing the learner to
approximate the teacher w.r.t. all the non-target classes is inappropriate.

Fig. 4 (b) shows that using more switching rounds gradually compromises the effectiveness of the
teacher, compared with using a single round. We infer it is because increasing switching rounds
includes some severely out-of-date models, whose knowledge largely diverges from the up-of-date
model. Therefore, we use a single switching round for generating the teacher model.

5 CONCLUSION

This paper proposes a novel Domain-Switch Learning (DSL) method for cross-domain few-shot
classification. DSL embeds the cross-domain scenario into the training stage in a fast switching
manner. We show that during the domain switching procedure, the deep model favors domain-
general knowledge and is prone to ignoring the domain-specific knowledge, so as to fast adapt itself
to different domains. Moreover, DSL employs a domain-specific prompter and a domain-general
teacher module to further promote the cross-domain generalization capacity. Experiments conducted
on multiple benchmarks demonstrate that DSL improves cross-domain few-shot classification and
the achieved results are on par with the state of the arts.
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ETHICS STATEMENT

This paper can help to improve the model generalization capacity in recognizing novel classes with
limited labeled samples (e.g., the rare birds, the rare plants,etc) under a significant domain gap
between training sets. It may be applied to some environmental protection projects which require
monitoring on the diversity of species. Specifically, it can help recognize some rare species in the
wild reserve. We will explore more application scenarios of few-shot learning, as well as cross-
domain few-shot learning. Moreover, we will try to improve the reliability of few-shot learning
systems to reduce the potential problems.

REPRODUCIBILITY STATEMENT

The DSL is reproducible. In the main text, we describe the utilized datasets in DSL, i.e., 4 fine-
grained datasets (CUB, Cars, Places, and Plantae) and 1 popular large scale dataset mini-ImageNet.
We provide the details about the experimental implementation, the proof of the proposed remark and
the analysis of some hyper parameters in appendix.
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A APPENDIX

In the appendix, we supply the details which are not described in the main text due to space limita-
tion. In Section A.1, we provide the details about the experimental implementation. In Section A.2,
we prove the Remark2 in Section 3.3. In Section A.3, we investigate DSL on different backbones.
In the main experiments, DSL and all the competing methods adopt the standard inductive infer-
ence. In Section A.4, we further provide some comparison under the transductive setup (e.g., with
a label propagation method Liu et al. (2020)). In Section A.5, we analyze the impact of some
hyper-parameters.

A.1 IMPLEMENTATION DETAILS.

We use ResNet-10 He et al. (2016) without pretraining as the backbone network. When training the
model on the training set, we use the Adam Kingma & Ba (2015) optimizer. We train the model
with 400 epochs and set the initial learning rate as 1e-3. In each training iteration, the mini-batch
size of switchable domain and the “basic” training set are both 64. In each mini-batch , we randomly
sample 16 classes from each domain (4 images per class).

We evaluate the classification accuracy over 1000 experiments on the test set. When fine-tuning the
model on the support set, we randomly sample C classes and K samples per class, according to the
C-way K-shot setting(e.g., C=5, K=1 or 5). We use the SGD Qian (1999) to optimize the linear
classifier layer and the initial learning rate is 0.01. The weight decay of SGD is 0.001 and the SGD
momentum is 0.9.

A.2 REMARK2 PROOF.

We first recall the domain-specific prompter in Section 3.3. Given a sample x in current domain, we
average the softmax predictions of the prompter P (y|x;θP ,WP) and learner P (y|x;θ,W ) to get
re-weighted softmax prediction P̂ . It can prevent the learner from over-fitting the current domain.

Remark2: Given P (y|x;θP ,WP) ≥ P (y|x;θ,W ), we have the re-weighted softmax prediction
P̂ ≥ P (y|x;θ,W ). It thus reduces final prediction errors (on the current domain), alleviating the
penalty on the learner. The proof is as illustrated by:

1

P (y|x;θP ,WP)
≤ 1

P (y|x;θ,W )

⇒ 1

λ · P (y|x;θP ,WP) + (1− λ) · P (y|x;θP ,WP)
≤ 1

P (y|x;θ,W )

⇒ λ

λ · P (y|x;θP ,WP) + (1− λ) · P (y|x;θP ,WP)
≤ 1

P (y|x;θ,W )

⇒|dLRCE

dP̂
| ≤ | dLCE

dP (y|x;θP ,WP)
|

(8)

where | · | denotes the value of vector. λ ∈ [0, 1] is a hyper parameter.
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Figure 5: Illustration of our proposed method on both shallow or deeper backbone settings.
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A.3 DSL ON VARIOUS BACKBONES.

We further analyze the adaptation of our methods on Conv4 and ResNet18. The performance on
CUB are shown in Fig. 5. We adopt “domain-mix” learning manner as the baseline. We observe
that the proposed method can still achieve considerable improvements on both shallow or deeper
backbone settings, which proves the robustness of the proposed method.

A.4 ADDITIONAL EXPERIMENTS.

We adopt a simple label propagation method Liu et al. (2020) for DSL and compare “DSL+LP” with
label-propagation based methods.

Methods CUB Cars Places Plantae
TPN+ATA 65.31 ± 0.40 46.95 ± 0.40 72.12 ± 0.40 55.08 ± 0.40
GNN 69.26 ± 0.68 48.91 ± 0.67 72.59 ± 0.67 58.36 ± 0.68
GNN+LFT 73.11 ± 0.68 49.88 ± 0.67 77.05 ± 0.65 58.84 ± 0.66
DSL+ LP 76.72 ± 0.60 62.21 ± 0.70 77.10 ± 0.70 65.70 ± 0.75

Table 5: Comparison with the state of the arts for 5-way 5-shot task. “ATA” denotes Adversarial
Task Augmentation,“LFT” denotes learning-to-learned feature-wise transformation.

From Table 5, we observe that when all the methods use transductive setup (e.g., label propagation),
DSL achieves competitive accuracy under the 5-way 5-shot classification. ’DSL+LP’ outperforms
GNN + LFT by +3.61%, +12.33%, +0.05%, +6.86%on CUB, Cars, Places and Plantae, respectively.

A.5 HYPER-PARAMETERS ANALYSIS.

We analyze the impact of three important hyper-parameters,i.e.,λ in re-predicted procedure(Eq. 3),
the α in overall loss(Eq. 7) and the temperature coefficient µ in computing the predictions P Ty =

P (y|x;θT ,W T ) of domain-general teacher.
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Figure 6: Analysis on the hyper-parameter λ.

In Fig. 6, we evaluate the impact of hyper-parameter λ, which controls the weight of predictions
from domain-specific prompter in Eq. 3. We observe that the accuracy first increases (when λ
increases from 0 to 0.4) and then decreases (when λ further increases to 1.0). We set λ = 0.4 as the
weight factor.
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Figure 7: Analysis on the hyper-parameter α.
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In Fig. 7, we evaluate the impact of hyper-parameter α, which controls the weight of Binary KLD
loss and RCE loss in Eq. 7. We observe that the accuracy first increases (when α increases from 0
to 0.7) and then decreases (when α further increases to 1.0). We set α = 0.7 as the weight factor.
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Figure 8: Analysis on the hyper-parameter µ.

In Fig. 8, we evaluate the impact of hyper-parameter µ, which denotes the temperature coefficient in
computing predictions P Ty = P (y|x;θT ,W T ) of domain-general teacher. When the temperature
coefficient µ ≥ 1, we consider that the predictions of domain-general teacher are more smooth and
thus transfer more general knowledge shared with other domains. We set µ to vary from 1 to 2. It
is observed that the accuracy undergoes an increase (when µ increases from 1 to 1.25) and then a
decrease (when µ > 1.25). Therefore, we set µ = 1.25 as the optimized threshold for domain-general
teacher.
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